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Which problems are important?
2

We can ask many questions, some of them are important, some
others are less important

Which problems are important, that is difficult to decide.
Erdős had a talent to ask the right questions
Erdős often looked for the first difficult problem in the area
Turán always explained the motivation of his problems
It is not that important if the conjecture turns out to be right
or wrong:

The important thing is if it leads to understanding the area.
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Disclaimer
3

In this lecture I will not go into all the details, however, soon I will
post a concise pdf form of the lecture, with many references:

My homepage is www.renyi.hu/˜miki
and several surveys can also be found on my homepage

The lecture will be posted in a few days:

www.renyi.hu/˜miki/XianSlides2021f.pdf
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Extremal Graph Theory
4

Extremal graph theory is one of the oldest areas of Graph Theory.
In the 1960’s it started evolving into a large, deep, connected
theory.

In this lecture we shall start with describing some major areas in
the classical extremal graph theory. Then we shall concentrate on
some open conjectures, problems.
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What is an extremal graph problem?
5

We fix some objects, they form the Universe.

The simplest case is when we consider simple graphs: graphs
without loops and multiple edges, and a family L of excluded
subobjects. Gn is an n-vertex graph.
The extremal problem is to determine

ex(n,L) := max {e(Gn) : L 6⊂ Gn if L ∈ L}

Generally there is a fixed family of objects, say
graphs,
multigraphs,
digraphs,
r -uniform hypergraphs,

= Universe and we maximize some parameter of these objects,
say the number of edges, hyperedges, arcs, . . . under the condition
that the object has n vertices and does not contain some
subgraphs, more generally, some sub-objects, fixed in advance.
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Notation
6

Gn: n-vertex graph. The first subscript is always the number
of vertices, e.g. in Tn,p.

Product of two graphs: G
⊗

H Take two vertex-disjoint
graphs, G and H and join each vertex of G to each vertex of H.

Tn,p: Turán graph

Kp, Pk , Ck : complete / path / cycle

L: family of forbidden subgraphs. . .
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Turán theorem
7

Turán graph Tn,p: n vertices are partitioned into p classes as
uniformly as possible and x , y are joined iff they belong to different
classes.

Theorem (Turán 1941)

Among the graphs Gn (on n vertices) not containing a Kp+1, the
Turán graph Tn,p has the most edges: it is an extremal graph
and the only extremal graph.
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General asymptotics
8

Let L be a fixed family of excluded graphs. The
Subchromatic number is

p := min
L∈L

χ(L)− 1 (1)

Theorem (Erdős-Sim., Lim/ o(n2) form form)

ex(n,L)
e(Tn,p)

→ 1, i.e., ex(n,L) =
(

1− 1

p

)(

n

2

)

+ o(n2)

Theorem (Erdős-Sim. ε− δ form)

For every ε > 0 there exist a δ > 0 for which if Gn does not
contain any L ∈ L and has at least ex(n,L)− δn2 edges, then Gn

can be obtained from a Tn,p by deleting and adding < εn2 edges.
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Extremal problems in general
9

Problem

Given a Universe U , a property P and some parameters f , g , e
on the Universe, and we try to maximize e = e(G ) on U ∩ P under
the assumption that f (G ) = xf , g(G ) = xg . e(G ) is mostly the
number of edges.

A simple example, Erdős 1962,. . . On “Rademacher-Turán”

How many edges can Gn have if it does not contain a K3 and the
chromatic number χ(Gn) ≥ 3.
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Turán type extremal problems (again)
10

Universe = Ordinary, simple graphs.

ex(n,L) = max
L∈L

e(Gn).

EX(n,L) is the family of n-vertex graphs attaining the maximum:
the family of extremal graphs.

For us the structure of extremal graphs is often more important
than the maximum number of edges.
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Origins in Geometry, Logic and Number theory
11

Mantel’s theorem (1907)
Erdős, Multiplicative Sidon problem, Tomsk

Multiplicative Sidon condition for a1, . . . , am ∈ [n]:

If aiaj = akaℓ then {i , j} = {k , ℓ}. How large can m be?

Erdős-Szekeres theorem → Ramsey → Turán
Esther Klein, Erdős and Szekeres:

How many points of the plane E
2 guarantee a convex k-gone?

Conjecture (Erdős-Szekeres)

n = 2k−2 + 1 points guarantee a convex k-gone.

For k = 4 this is easy, for k = 5 this is difficult (older E. Makai),
generally open, one of the most important question in
Combinatorial Geometry
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Unit distances:
12

Consider a metric space M and n points in it, x1, . . . , xn and join
two of them iff their distance is 1.

Problem (Erdős, for E
d

(Q1))

How many edges can have such a graph Gn?

Erdős Lemma: O(n3/2)

Problem (Hadwiger-Nelson (Q2))

How large can the chromatic number χ(Gn) be (as a function of d
and n)?
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Erdős-Stone-Sim.
13

Theorem (Erdős-Sim.)

Let
p = p(L) = min

L∈L
χ(L)− 1.

Then

ex(n,L) = ex(n,Kp+1) =

(

1− 1

p

)(

n

2

)

+ o(n2).

So the maximum number of edges primarily depends on the
minimum chromatic number.
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Stability
14

Theorem (Extremal Structure, Erdős-Sim.)

Let
p = p(L) = min

L∈L
χ(L)− 1.

If Sn is extremal for L then one can change o(n2) edges of Sn to
get Tn,p.

Theorem (Almost extremal structure, Stability, Erdős-Sim.)

Let p = p(L) = minL∈L χ(L)− 1. If (Gn) is an almost extremal
graph sequence for L, i.e.

no L ∈ Gn and

e(Gn) > ex(n,L)− o(n2)

then one can change o(n2) edges of Gn to get Tn,p.
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Turán and Ramsey problems:

very closely related
15

Ramsey Theory

Random Graphs

Algebraic 

Constructions

Pseudo−random 
structures

Turan Theory

Turán was motivated by Ramsey theorem
Turán misjudged the symmetric Ramsey
Random graph method emerged this way
Stability method came from Extremal problems
Szemerédi Regularity Lemma (new) came from extremal graph
problems

Applications of Ramsey Thm: (Erdős)
Applications of Turán Thm (Turán,Katona, Sidorenko,
Erdős-Meir-Sós-Turán)
→ Ramsey-Turán (T. Sós, Erdős-Hajnal-T. Sós-Szemerédi,
(...+Sim) + Bollobás-Erdős) . . .
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Ramsey, simplified
16

Given n,

for how large ℓ do we have a Kℓ either in every Gn or in its comple-
mentary graph Gn?

Given ℓ,

for how large n do we have a Kℓ either in Gn or Gn?

Problem (Ramsey-extremal graphs? (Q3))

V. T. Sós: Are Ramsey-extremal graphs randomlike in some
sense?
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The Random method enters
17

n vertices p = [
√
n] classes

Turán conjectured: this is Ramsey-extremal: . . .

Let m =
√
n. Each Gn contains a Km or m independent vertices

Erdős: the Random graph is much “better”:

Let m = (2+ ε) log n. Most Gn contains no Km neither m indepen-
dent vertices.

This way Extremal Graph Theory lead to Random Graphs.
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Stability and Exact results
18

The stability methods help to prove exact results.
We have an extremal problem with a conjectured simple

extremal structure.

If we have stability, then

First we show that in the important subcases the extremal
structure is near to the conjectured one.

Using this structural information we prove the conjectured
extremal structure
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Degenerate problems
19

We call the problem of ex(n,L) degenerate if

ex(n,L) = o(n2).

By Erdős-Sim. Theorem, or by Kővári-Sós-Turán thm

ex(n,L) = o(n2) iff L contains a bipartite L.

The Product conjecture tries to reduce general extremal prob-
lems to Degenerate extremal graph problems, showing that an
Sn ∈ EX(n,L) is the product of p graphs Gi which are extremal
for some Degenerate problems ex(n,Mi ).
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Octahedron Theorem
20

Erdős-Sim.:

Erdős-Sim.: Octahedron Theorem, see next page.

Forbidden

Forbidden

See Erdős-Rényi-T. Sós, and Füredi for C4-free graphs, ...
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The Product conjecture
21

We start with an illustration. Let O6 = K (2, 2, 2) be the
octahedron graph.

Theorem (Octahedron Theorem, Erdős and Sim. (1971))

If Sn is an extremal graph for the octahedron O6 for n sufficiently
large, then there exist extremal graphs G1 and G2 for the circuit C4

and the path P3 such that Sn = G1
⊗

G2 and |V (Gi )| = 1
2n+ o(n),

i = 1, 2.

If G1 does not contain C4 and G2 does not contain P3, then
G1

⊗

G2 does not contain O6. Thus, if we replace G1 by any
H1 ∈ EX(v(G1),C4) and G2 by any H2 ∈ EX(v(G2),P3), then
H1

⊗

H2 is also extremal for O6.
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More generally, on Kp+1(n1, . . . , np)
22

Theorem (Erdős–Sim.)

Let L be a complete (p + 1)-partite graph,
L := K (a, b, r3, r4, ..., rp+1), where rp+1 ≥ rp ≥ · · · ≥ r3 ≥ b ≥ a
and a = 2, 3. There exists an n0 = n0(a, b, . . . , rp+1) such that if
n > n0 and Sn ∈ EX(n,L), then Sn = U1

⊗

U2
⊗

. . .
⊗

Up, where

1 v(Ui ) = n/p + o(n), for i = 1, . . . , p.
2 U1 is extremal for Ka,b

3 U2,U3, . . . ,Up ∈ EX(n,K(1, r3)).

This theorem is indeed a reduction theorem.
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Conjecture (The Product Conjecture, Sim. (Q4))

Assume that p(L) = minL∈L χ(L)− 1 > 1. If for some constants
c > 0 and ε ∈ (0, 1)

ex(n,L) > e(Tn,p) + cn1+ε, (1)

then there exist p forbidden families Mi , with

p(Mi ) = 1 and max
M∈Mi

v(M) ≤ max
L∈L

v(L),

such that any Sn ∈ EX(n,L) is a product:
Sn = G1

⊗

. . .
⊗

Gp, where Gi are extremal for Mi .

This means that the extremal graphs Sn are “products” of
extremal graphs for some degenerate extremal problems (for Mi ),
and therefore we may reduce the general case to degenerate
extremal problems.
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Explaining Condition (1)
24

This is equivalent with

There exist no p + 1-colouring of any L ∈ L for which the first two
colour classed span a tree.

Without this condition the “product” conjecture is not necessarily
true:

in some cases, e.g. in Turán’s theorem it does hold, in a complicated
case Simonovits found a counterexample to it.
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Remarks
25

(a) If we allow infinite families L, then one can easily find
counterexamples to this conjecture.
(b) If we allow linear error-terms, i.e. do not assume (1), then one
can also find counterexamples, using a general theorem of
Simonovits Sim74Symm; however, this is not trivial at all, see

Sim83ProdBirk.
(c) A weakening of the above conjecture would be the following:
for arbitrary large n, in Conjecture ?? there are several extremal
graphs, and for each n > nL, some of them are of product form,
(but maybe not all of them) and the families Mi also may depend
on n a little.
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Assume that for some γ > 0,

ex(n,L) >
(

1− 1

p

)(

n

2

)

+ n1+γ

for n > n0. Then for every n > n1 each extremal graph Sn is the
product:

Sn :=

p
∏

i=1

Hi

where Hi is extremal for some degenerate extremal graph problem.
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Open problems connected to degenerate

extremal graphs
27

Theorem (Kővári–T. Sós–Turán, (1954))

Let Ka,b denote the complete bipartite graph with a and b vertices
in its color-classes. Then

ex(n,Ka,b) ≤
1

2
a
√
b − 1 · n2−(1/a) + O(n).

Kővári, T. Sós, and Turán conjectured that this is sharp:

Conjecture (Kővári–T. Sós–Turán (Q5))

For any integers a ≥ 2 and b ≥ a, there exists a constant ca,b > 0
for which

ex(n,Ka,b) ≥ ca,b · n2−(1/a).
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Sharpness
28

This conjecture was proved
for a = 2 by Erdős Erd38Tomsk,

for a = 2, 3 by W.G. Brown Brown66Thomsen,

and Kollár, Rónyai, and T. Szabó KollRonyaiSzab96,

improved by Alon, Rónyai, and Szabó AlonRonyaiSzab99:

– it holds for b > (a− 1)!.

These constructions used basically (?!?!) the Unit Distance Graphs.

The simplest unknown case is

Conjecture ( (Q6))

Prove that there exist a constant c > 0 for which, for n > n0,

ex(n,K (4, 4)) > cn2−(1/4).
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Space E
3:

29

Claim (Erdős)

The unit distance graph Gn does not contain K (3, 3) therefore, by
Kővári-T. Sós-Turán,

e(Gn) = O(n2−(1/3)).
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Connection to the Unit distance graph
problem

30

Problem (Erdős (Q7))

How many unit distances can occur in the unit distance graph Un

in R
d?

Connection to extremal graph problems.

Remark (Erdős)

The plane unit distance graph does not contain K (2, 3), therefore
in the plane we may have at most O(n3/2) unit distances.

Conjecture (Erdős (Q8))

For any ε > 0, if n > n0(ε), then a plane unit distance graph Un

has at most O(n1+ε) unit distances.
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Even cycles
31

When we consider excluded bipartite graphs, we should mention

Theorem (Bondy and Sim. 1974)

ex(n,C2k) = O(n1+(1/k)).

Erdős, and Bondy and Sim. conjectured that this (i.e. the
exponent) is sharp. This sharpness is known for C4,C6 and C10,
however it is not known for any other C2k .

Conjecture ( (Q9))

There exists a constant c8 > 0 such that ex(n,C8) > c8n
5/4.

Conjecture ( (Q10))

There exists a constant c2k > 0 such that

ex(n,C2k) > c2kn
1+(1/k).
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Even cycles II
32

Claim (Erdős)

In each Gn we can find a bipartite Hn with at least 1
2e(Gn) edges.

Claim (Győri lemma, approximately)

In each C6-free Gn we can find a subgraph Hn without C4 and with
at least 1

2e(Gn) edges.

Conjecture (Győri compactness (Q11))

In each C2k -free Gn we can find a subgraph Hn without
C2k−2,C2k−4, . . . ,C4 and with at least cke(Gn) edges.
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Compactness
33

Theorem (Erdős, Klein)

ex(n,C4) =

(

1

2
+ o(1)

)

n
√
n.

Theorem (Erdős, compactness (Q12))

ex(n, {C4,C3,C5,C7, . . . }) =
(

1

2
√
2
+ o(1)

)

n
√
n.

Actually, the story is longer and more complicated.

Conjecture (Erdős, compactness (Q13))

ex(n, {C3,C4}) =
(

1

2
√
2
+ o(1)

)

n
√
n.
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An easier result is
34

Theorem (Erdős-Sim. compactness)

ex(n, {C5,C4}) =
(

1

2
√
2
+ o(1)

)

n
√
n.

(Exluding a C5 is a much stronger assumption than excluding C3.)

Many related results. e.g.:

Allen, Peter; Keevash, Peter; Sudakov, Benny; Verstraëte, Jacques:

Turán numbers of bipartite graphs plus an odd cycle. J. Combin.
Theory Ser. B 106 (2014), 134–162.
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A weaker question is
35

Conjecture (Erdős, compactness (Q14))

Does there exist a constant c > 0 such that

ex(n, {C3,C4}) <
(

1

2
− c

)

n
√
n ?

A general conjecture:

Conjecture (Simonovits, compactness (Q15))

For any finite family L = {L1, . . . , Lh} of bipartite graphs there
exists an L ∈ L for which

ex(n,L) = O(ex(n, L)).

I.e. Excluding one of them does the same as excluding all of them.
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Remark

Some research of Faudree and Simonovits suggest that after
all, this conjecture is not always true. So: decide if this is true or
not, perhaps by finding a counterexample.

Conjecture (Rational exponents (Q16))

For any finite family L of bipartite excluded graphs L ∈ L, there
exist a rational γ ∈ [0, 1] such that

ex(n,L)
n1+γ

converges to a c = cL > 0.

This does not hold for 3-uniform hypergraphs:

Remark (The famous Ruzsa-Szemerédi theorem provides a
counterexample for hypergraphs.)

Consider 3-uniform hypergraphs and L be the family of 3-uniform
6-vertex hypergraphs with three hyperedges dots
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The positioned exclusion problem
37

Let ex∗(n, L) be the maximum number of edges in a Red-Blue
K (n, n) not containing a Red-Blue L whose Red vertices are in the
Red class of K (n, n).

Problem (Positioned exclusion (Q17))

Let L be a bipartite (connected) Red-Blue excluded graph. Is it
true that ex∗(n, L) = O(ex(n, L))?

Perhaps the simplest unknown case is that of K (4, 5).
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More complicated bipartite excluded

subgraphs
38

When the (degenerate) extremal problems of the path Pk , of the
complete bipartite graphs K (a, b) were solved (at least good upper
bounds were found) and then the Bondy-Simonovits upper
bound was also proved, for even cycles, the Faudree-
Simonovits upper bound was found on Θ-graphs, the researchers
looked for more complicated degenerate extremal graph problems.
Here we mention only three of them: M10,M11, and the cube Q8.

Füredi: ex(n,M11) = Θ(N
√
n)
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Cube excluded
39

Q8: the cube graph on 8 vertices with 12 edges.

Theorem (Erdős-Simonovits (1970) )

ex(n,Q8) = O(n8/5).
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Later some alternative proofs were given on this theorem. Erdős
and Simonovits conjectured that

Conjecture (Cube, lower bound (Q18))

There exist a constant c > 0 such that

ex(n,Q8) > cn8/5.

We know that ex(n,C4) ≈ 1
2n

√
n, however, we cannot even prove

Conjecture (Cube, much weaker lower bound
(Q19))

ex(n,Q8)

n3/2
→ ∞.

Another annoying problem is that we do not have reasonable upper
bound for higher dimensional cube graphs.
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Erdős-Simonovits-Sidorenko type problems
41

Here we formulate only the Erdős-Simonovits type problems,
(see Simonovits (1984)) The Sidorenko (1991) problems are
their formulation with integrals.
We restrict ourselves to the simplest versions.

Problem (Erdős-Sim. (Q20))

Let χ(L) = 2. There exists a large constant c and a small constant
γ = γL > 0 such that If e(Gn) > cex(n, L) then Gn contains at
least γnv(L) copies of L.



Extremal graph problems Introduction General theory Ramsey-Turán

Some open problems in Ramsey-Turán theory
42

Large area, see the survey of Simonovits and Sós
SimSosV01RT.
Start in the middle!

Problem (General Question)

Given an L, estimate RT(n, L, o(n)).

In other words, consider an L-free graph sequence (Gn) with
α(Gn) = o(n). Estimate e(Gn) from above.
Find good constructions = lower bounds.

Theorem (Triviality)

RT (n,K3, o(n)) = o(n2)
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Research started by

Erdős, Simonovits, and Sós (1973)
43

Problem (Erdős (19xx) (Q21))

If (Gn) is a sequence of K (2, 2, 2)-free graphs and α(Gn) = o(n),
does this imply that e(Gn) = o(n2)?

Theorem (Szemerédi)

If (Gn) is K4-free and α(Gn) = o(n2), then

e(Gn) ≤
n2

8
+ o(n2).

Theorem (Bollobás-Erdős)

There exist a K4-free (Gn) with α(Gn) = o(n2), for which

e(Gn) ≥
n2

8
+ o(n2).
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General asymptotics?
44

Problem ( (Q22))

Find some analogue of Erdős-Sim. asymptotics.

Problem ( (Q23))

Find some analogue of Erdős-Sim. asymptotics: is it true that
there exists a generalized matrix graph providing almost extremal
graphs, where the densities are 0, 12 , 1

Explanation: Matrix graphs

The n vertices arepartitioned into r classes C1, . . . ,Cr and the edges
between Ci and Cj are either random, or (at least) ε-regular (in the
sense of Szemerédi regularity lemma) with edge-density ai ,j ∈ [0, 1].
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Hypergraph Extremal problems
45

Erdős generalized the Kővári-T. Sós-Turán Theorem to
hypergraphs.

Theorem (Erdős)

ex(n,K
(p)
p (t, . . . , t)) < cnp−(1/tp−1).

Problem ( (Q24))

Provide a reasonable lower bound.

Remark

Erdős stated that for two suitable constants, c1, c > 0,

ex(n,K
(p)
p (t, . . . , t)) > c1n

p−(c/tp−1).

However, the proof was not reconstructed. (???)
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Complete 4-graph is excluded
46

Conjecture (Turán (Q25))

Consider 3-uniform simple hypargraphs and let H(3)
4 be the

excluded hypergraph. Then

ex(n,H(3)
4 ) =

5

9

(

n

3

)

+ o(n3).
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4-3-graph is excluded
47

Problem (4/3 problem (Q26))

Consider 3-uniform hypergraphs. Let H(3)
4 be a 3-uniform

hypergraph on 4 vertices with 3 hyperedges. Extimate ex(n,H(3)
4 ).

Frankl-Füredi: NO, they improved this construction.
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