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Abstract. The main result of this paper is that for a special, but rather wide class of "sample
graphs", the extremal graphs, i.e, the graphs of n vertices without subgraphs isomorphic to the
sample graph and having maximum number of edges under this condition, have very simple and
sYmmetric structure. This result remains valid even in the case when the' condition "the graph
does not contain the sample graph" is replaced by the condition "the graph does not contain
the sample graph and its chromatic number is greater than t, where t is a fixed integer". The
results of this paper have a lot of different applications, a few of which are listed in Section 3.

O. Notations

The graphs, considered in this paper, do not contain loops or multiple
edges. They will be denoted by capital letters, the upper indices will
always denote the number of vertices. The vertices of a graph will be de..
noted by x, ..., the edges by (x, Y), ... ; v(G), e(G) and X(G) denote the
number of vertices, edges and the chromatic number of the graph G,
respectively. If x E G, then st x denotes the star of x, i.e., the set of
Verticesjoined to x, The number of these vertices, i.e. the valence (de
gree) of x, will be denoted by a(x); if E is a set, then lEI denotes its
cardinali ty.

To simplify the definitions of graphs we use the following operations:
(a) G =~ G, if G( are spanned subgraphs of G no two of which have

vertices in common and vertices of different Gt's are never joined.
(b) G =XGi if Gt's are spanned subgraphs of G( no two of which

have vertices in common and vertices of G belonging to different Gt's
are always adjacent.

(c) IfG} is a subgraph ofG ora set of vertices of it, then G-G I is
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the graph obtained from G by omitting all the vertices of G l from it
and also all the edges at least one endpoint of which is omitted.

Special graphs. Ka(rl' .... ra) =X Gnp, where e(Gnp) =0 (the com
plete d-chromatic graph with rp vertices in its pth class). Ka(l, ... , 1) =
Kd is the complete graph of d vertices. pi and C

'
denote the path and

circuit of I vertices, respectively.

Constants will be denoted by co' ... , cm , ... and will always be suppos
ed positive. Nk» .,. will denote large but fixed positive integers.

Important! If we have to distinguish between the following two rela
tions:

(a) G1 is a subgraph of G;
(b) G contains a subgraph, isomorphic to G l ;

then we use Gl ~ G in the first case and G1 C G in the second one.

1. Introduction

A well-known theorem of Turan [14] states that: Let p and n ~ p
be given integers. If we consider all the graphs of n vertices not contain
ing Kp , then there exists exactly one among them having maximum num
ber of edges. If this graph is denoted by S" , then S" is defined by

where~ni=nandln,-n/(p-I)I< I (i= l, ...,p-l).
It is natural to replace Kp by other graphs or families of graphs in

Turdn's problem. Thus we obtain:

Problem (L l , ... , L'A,)' Let L1 , ... ,L'A, be given graphs. How many edges
can a graph G" have if it does not contain any Li?

Here the graphs L, will be called sample graphs, the graphs attaining
the maximum will be called extremal graphs and the maximum itself
will be denoted by fen; L}, ..., L·A) .

The most important theorem of [7] asserts thatf(n; L}, ..., L'A,) de
pends above all on
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if n is large. More exactly,

(2) lim f(n; L 1, .... L·,.)/(2) =l-l/d .
n-+ 00
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P. Erdos and the author tried to modify the original proof of (2) to show
that not only the asymptotic number of edges but the "asymptotic
structureU of the extremal graphs are also determined by d. The main
result, obtained by Erdos and the author independently [4,5,12] can
be summarized in the following two theorems. (Throughout this paper,
d is defined by (l)!)

Theorem A. Let S" be an extremal graph for L 1, ..• , L.A' Let c =
{max v(L i ) } -1 > O. Then S" can be obtained from aproduct
Xp5 d Gnp by omitting O(n2- c ) edges, where

e(Gnp) =O(n1- C ) , np-n/d= O(n 1- c ) when n -+ 00 •

The minimal valence of vertices in sn is n(1-l/d) + O(n1- c ) . The
number of vertices of Gnp joined to at least en vertices of Gnp is 0e(1).

Theorem B. For every e > 0, there exists a 0 > 0 (depending also on
L1, ... , LA) such that if n is sufficiently largeand

e(Gn ) ~ (2) (1-(1 /d) -5)

and L j ¢. G" (i = 1, ..., A), then G" can be obtained by omitting at most
€ n2 edges from a product Xp5 d Gnp. where

Gn 2_e( P)<en. p-l, ....d .

(Theorem B is a stability theorem: it expresses that if G" is almost
extremal, then en has almost the same structure as the extremal graphs.)

Theorems A, B are valid without any restrictions on the graphs
L1, •.. , L.,.. Ifwe wish to get some further information on the structure
of the extremal and almost extremal graphs, we need to restrict our in
vestigations to special cases. In this paper we deal with the case when
there exists an integer T such that
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(3) L 1 c P' X Kd - 1(T, •.• , T) .

Without any loss of generality we may assume that

(4) T =max v(L i ) .

(3) and (4) are assumed from now on.
These conditions mean that if the minimum of the chromatic number

of sample graphs is d + 1, then at least one sample graph of chromatic
number d + 1 is almost d-chromatic in the sense that it can be coloured
by d + 1 colours, so that e.g. the subgraph spanned by the vertices of the
first and second colours is a path or a subgraph of a path.

We shall see (Section 3) that our results on this special case have a
lot of different applications, Le., the class of problems considered here
is fairly wide.

To formulate our theorems, we have to define some classes of "very
symmetrical graphs".

Definition 1.1. Symmetric subgraphs. Let T] and T2 be connected,
spanned subgraphs of G. They are called symmetric (in G) if either
T1 = T2 or:

(i) T1 n T2 =0; and
(ii)(x,y)¢ Gifxe T1.ye T2;and
(iii) there exists an isomorphism 1/12: T1 ... T2 such that for every

x e T] and u E G-T1-T2• x is joined to u if and only if 1/12 (x) is join
ed to u.

T1, ...• T., are symmetric if for every 1 ~ t <] ~ "1, T; and Tj are sym
metric.

Remark 1.2. The transitivity of our relation is the consequence of the
connectedness of the considered subgraph,

If we speak about a set of symmetric subgraphs, we suppose that the
isomorphisms 1/1; ; T1 ... T; are fixed even in those cases when they are
not uniquely determined.

Definition 1.3. G(n. r, d) is the class of graphs G" having-the following
properties:

(i) It is possible to omit ~ r vertices of G", so that the remaining graph
Gn is a product
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Gfi = X G
m

p , where Imp -snld; ~ r .
pSd

(ii) The graphs Gmp are the disjoint unions of small symmetric graphs:
For every p ~ d. there exist connected graphs Hp.i £ Gmp and iso
morphisms "'p,j: Hp• 1 .... Hp,j such~hat v(Hp•i ) ~ rand Hp•i (j= 1, ..., vp)
are symmetric subgraphs of G" (G p =~ Hp•i )'

In (ii), it is very important th;t Hp•i (j = 1, ..., vp ) are symmetric sub
graphs of G" and not only of G r ,

Now we formulate the main result of this paper.

Theorem La. Let L l' .... Lx be given graphs and let

and LIe P' X Kd -1 (r, ..., r), There exists a constant r (depending only
on r) such that for every n, G(n. r, d) contains at least one extremal
graph for L 1• .. . . Lx.

This result remains valid under much more general conditions too.
More exactly, we shall define the concept of "chromatic conditions"
and an operation Om on graphs and prove:

Theorem 1. Let L i- .... Lx be given graphs. d and r be defined accord
ing to (l) and (4) respectively. and let (3) also hold

L 1 cP'X Kd _ 1(r ..... r).

Let A be a chromatic condition and let us consider those graphs ofn ver
tices. which satisfy A and do not contain any Li (if n is large enough.
such graphs do exist!). The graphs, having maximum number of edges
among the considered ones. will be called extremal graphs for
(L 1• .. . . Lx; A). There exists an r =rtr, A) such that for every n, large
enough. G(n, r, d) contains an extremal graph for (L 1 , ... , Lx; A).

Theorem 1 is an existence theorem; however, in many cases it
makes possible to find some extremal graphs for given concrete prob
lems relatively easily. Sometimes there are very many extremal graphs,
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sometimes only one. Our next theorem asserts that one can decide,
whether there exists only one extremal graph or not considering only
G(n, r, d).

Theorem 2. Using the notations of Theorem 1. There exists a constant
ro such that if for every sufficiently large n, G(n, ro, d) contains only
one extremal graph (for (L l' ... , L,,; A», then there exist no other ex
tremal graphs.

In the case when there are many extremal graphs, they may be char
acterized by the help of:

Theorem 3. Using the notations of Theorem 1. There exists an no and
a finite set of extremal graphs, denoted by S, such that if n > no, then
sn is an extremal graph (for (L i- ... , L,,; A), of course) ifand only if
S" E om (S) for some S E S and integer m selested in a suitable way.

(Here the operator Om is a multivalent operator, thus sometimes we
may consider it as a family of graphs and use the notation G E Om (S).)

Now we define the concept of "chromatic condition" and the oper
ator Om.

Definition 1.4. Symmetrization. Let T be a connected subgraph of a
graph G and let each vertex of G belong to another graph G. We say
that Gis obtained from G by symmetrizing xl ' ... , x m to T ~ G if:

(i) G-{Xl'''''Xm } =G-{xl'''''xm } 2 T;
qi) the subgraphs Tj spanned by XjlJ+l' ... , x(j+l)lJ are symmetric to T

in G, where v = v(n, j = 1, ..., m/v, m is divisible by v.

Definition 1.5. Chromatic conditions. Let us suppose that A is a con
dition such that (using the expression A-graph instead of writing "a
graph, satisfying the condition AU):

CO If G is an A-graph and II contains G, then II is also an A-graph.
(ii) For every w, there exists an A-graph each circuit of which is

longer than w.1

(iii) There exists a constant p such that if Tl , ... , Tp are symmetric
subgraphs of an A-graph G, then G-Tp is also an A-graph.

1 As a matter of fact, this condition can be omitted. However, in this case some classes of graphS
considered by us will become empty.
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Examples. We do not distinguish between a chromatic condition and
the family of graphs, satisfying this condition.

(1) Let A be the family of at least r-chromatic graphs. Then A is a
chromatic condition. (For the proof of (iii) see the Appendix, (ii) is
proved in [ 1, 10] .

(2) If t and u are given integers and we consider the family of graphs
from which omitting any u vertices we obtain a graph of chromatic
number ~ t, then we obtain a chromatic condition. (iii) is proved in
the Appendix, (ii) follows from [I. 10] .

(3) Let A be the family of graphs each vertex of which has valence
greater than t. This is also a chromatic condition. However, it is in
teresting to notice that because of Theorem A if n is large enough,
there is no difference between (L 1 ' ... , L],..; A) and (L l' ... , L],..), unless
d = 1.

(4) Similar is the situation with the chromatic condition "G is non
planar".

(5) If A and B are chromatic conditions, then A () B and A u Bare
also chromatic conditions.

Remark 1.6. Our theorems remain valid even if (iii) is replaced by
(iii)": there exists a sequence Pk such that if T1, ... , Tpk are symmetric
SUbgraphs of k vertices in an A -graph G, then G-T1 EA, too.

Definition 1.7. The operator Om. The operator defined here is a multi
valent one and it depends also on two parameters N 1 and p. Let us sup
pose that the graph G contains a family Tp.i,1 of subgraphs, p =1, ..., d,
i =I, ..., tp .t = 1, ..., p.

Let us suppose also that no two of them have vertices in common and
if we fix p and I, then the obtained subfamily be a set of symmetric sub
graphs of G. Further, if x E Tp,i,l andy E Tp',f,!, then (x,y) E S" iff
p ::J: p', Let us suppose that vp,i' P = 1, ..., d, I = 1, ..., ~p, are given in
tegers such that 'I:ivp,i = (No!) = N1 for p = 1, ..., d. Let V(Tp,i,/) ~ No
for every considered subgraph, Now we symmetrize vp,i new vertices
to Tp,i, 1 for every considered pair (p, 1).2 If p and No are fixed, let
D(G) denote the family of graphs obtainable in this manner. om (G)
is defined recursively: Om (G) is the family of graphs obtained by ap
plying 0 to the graphs of om-l (G) (Om(G) can be considered as a
family of graphs and as an operator as well).

'2
Here we irnplicitely supposed that "p,i is divisible by v(Tp,i,i)'
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As we shall see in Lemma 3.4.1, if a graph does not contain any
sample graphs and we apply the operator D to this graph with a suit
ably large p, then the obtained graph will neither contain any sample
graph; on the other hand, if the original graph was an A-graph, then
(because of Definition 1.5(iii) and (i) the new graph will be an A
graph as well. Therefore, if we apply this operation to an extremal
graph, the obtained graph will have at most as many edges as the corre
sponding extremal graph. Theorem 3 asserts that if no is large enough,
it will have exactly the same number of edges.

The Appendix includes a theorem, showing that our theorems are
the best possible in a certain sense.

2. Applications

(A) Let

where Imj-(n-s+ I)/dl <, I and };mj =n-s+1.
For many families of sample graphs, Htn, d. s) is the only extremal

graph if n is large enough. E.g:

Theorem 2.1 (Moon [11]). There exists an nid, s) such that if n > n(d,s)
and L is the sum ofs c Kd +l' then Htn, d, s) is the only extremal graph
for L.

For d =1, the theorem was proved by Erdos and Gallai [6] first. My
Ph.D. Thesis [13] contains a generalization of this theorem for the case
when Kd +1 is replaced by an arbitrary d + l-chromatic graph at least one
edge of which is colour-eritical (an edge is called colour-critical if by its
omitting the chromatic number of the graph decreases). This result is a
very special case of the next theorem.

Theorem 2.2. Let L 1, ... , L'1< be given graphs. min X(Lj) =d+ 1. If omit:
tlng any s-1 vertices ofany L, we obtain a ~ d + l-chromatic graph but
omitting s suitable edges of L 1 we get a d-chromatic graph, then Htn, d. s)
is the only extremal graph whenever n is sufficiently large. Further, for
every chromatic condition A, there exists an integer g(A) such that
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(6) f A(n; L 1, •.•, L~,) =fen; L 1, ••. , L~J-(n/d)g(A) +0(1).
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This theorem is an almost trivial consequence of Theorems 1,2. An
interesting special case of it is:

Theorem 2.3. H(n, d, I) (= the extremal graph of Turdn's theorem) is
the extremal graph for L l' ... , L.,., for every sufficiently large n ifand
only if (1) holds and a d+ t-chromatic L; contains a critical edge.

(B) A problem of P. Turan, published by Erdos [3] asks: Let L be
the graph, determined by the vertices and edges of a regular polyhedron.
How many edges can en have if L ¢. en?

In the case of the tetrahedron L =K4 , thus Turan's theorem gives a
complete answer. If L is the octahedron-graph, the results of Erdos and
the author give a fairly good description of the extremal graphs [9] . (In
this case, L =K 3 (2,2,2).) In the case of the cube, we have some upper
and lower bounds [8]. but they are different powers of n (it seems to
rne that the lower one is too weak).

Let D20 and 112 denote the dodecahedron- and the icosahedron
graphs, respectively.

Theorem 2.4. If n is large enough, Htn, 2,6) is the only extremal graph
for D20 . Every almost extremal graph is very similar to Htn, 2,6) in
the following sense:

IfD20 ¢. en and

(7) e(en) > e(H(n, 2,6)) - ~n +M2 ,

Where M2 is a suitable constant, then we can omit 5 vertices of en, so
that the remaining graph is 'l-chromattc.

Theorem 2.5. lin is large enough, H(n, 3,3) is the only extremal graph
for 112 .

Remark 2.6. Let A be the chromatic condition, "it is impossible to omit
S vertices of G to obtain a 2-chromatic graph". It can be proved that D20

E: A, but it is possible to omit 6 edges from it so that the obtained graph
is 2-ehromatic. Therefore:

(a) Theorem 2.4 is the special case of Theorem 2.3 apart from the
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fact that g(A) = 1. Thus, if we wish to prove Theorem 2.4, we can de
duce it from -Theorem 1 directly, or to prove in Theorem 2.3 that
g(A) ~ 1 ifHtn, d. s) is not an A-graph for every sufficiently large n.

Trivially, this implies Theorem 2.4.
(b) In Theorem 2.4, we asserted that the almost extremal graphs are

similar to Htn, 2,6) in the sense that we can omit 5 vertices from them
so that the remaining graph be 2-chromatic. Does this property express
a real similarity?

Yes, this and (7) imply that there exist an m1 and an m2 such that
en can be obtained from K5 X K 2(m l ' m2) by omitting O(n) edges,
where mj - ~n = O(Yn). (If we do not omit edges and Imj-Hn-5)1< 1,
then the obtained graph is just Htn, d, s).)

(c) (7) is the best possible; M2 can not be replaced by a small negative
integer.

(d) Theorem 2.5 is essentially deeper than Theorem 2.4, it cannot
be deduced from Theorem 2.3. Its proof, based on Theorems 1, 2,
will be published later. No assertion analogous to the second part of
Theorem 2.4 holds for the icosahedron.

(C) A theorem of Erdos, Gallai and Andrasfai states that: If en does
not contain K3 and is not 2-chromatic, then

(see [2]).
In connection with this result Erdos asked:

Problem. What is the maximum number of edges, a graph of n vertices
and chromatic number ~ t can have if it does not contain K3 ?

I showed [13] that:

Theorem 2.7. Let ft(n; K3 ) denote the maximum in the problem above.
Then

where e3 (t) is the largest integer m such that for any graph G not con
taining K3 and having chromatic number ~ t, at least m vertices of G
must be omitted to get a 2-ehromatic graph.
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Remark 2.8. (a) According to [10], there exist graphs of chromatic
number ~ t and not containing circuits shorter than ~. If G is such a
graph and G1 is a subgraph of it of < ~ vertices, then G1 is a tree, i.e.,
a 2-chromatic graph. Therefore the definition of g3 (t) is legitimate.
Comparing g3 and g3 of [1] , one can easily prove that

(b) Theorem 2.7 would also be a very special case of Theorem 2.3
if the corresponding g(A) were known.

(c) Replacing K3 by K4 , we get an essentially more difficult problem
the exact solution of which is unknown to me.

(d) In the original form of (8),0(1) was replaced by the best possible
Constant. Later I generalized this theorem for every Kp (see [12]) de
termining the exact constants and the extremal graphs as well.

Now we turn to the proofs of Theorem 1,2,3.

3. Proofs of Theorems 1,2,3

3.1. A general lemma

If we prove any of the Theorems 1,3, to prove the others will be
an essentially simpler task. Actually, we will prove Theorem 3 first and
deduce the other two theorems from it. The proof of Theorem 3 con
sists of two parts, a general and a special one. Here the expression
"general part" means that if we replace the condition (3) by

Where T is a 2-chromatic graph, then the estimations O(n 2- c ) and
O(n I-c) can be replaced in Theorem A by

O(f(n; 1)) and O(f(n; 1)/n) ,

respectively. The proof of this assertion needs no new ideas but a slight
modification of the proofs in [4,5,12] (see also [13]). In our case, Tis
a path and therefore a tree and one can easily prove that
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if T is a tree, then f(n; T) =O(n) .

This leads us to Lemma 3.1.1, the proof of which will be sketched in
the Appendix.

Lemma 3.1.1. Let us suppose that (10) holds with a tree T. Let K be a
fixed integer and G" be a graph not containing any L, and satisfying
the condition

If we colour the vertices of G" by d colours so that the number of
edges joining vertices of the same colour be minimal, and denote by
Gnp the subgraph of G" determined by the pth colour at this colouring,
then:

(i) G" can be obtained from the product Xp$.dGnp by omitting
O(n) edges. (In other words, at most O(n) pairs (x,y) of vertices, where
x E Gnp and y E c», p ~ q, are not joined in G", These pairs will be
called "missing edges".)

(ii) e(Gnp) =O(n).
(iii) np -n/d = O(Yn).
(iv) Let a(x) and (3(x) denote the number of vertices

(a) of Gnp joined to x E Gnp, and
(b) of G" _Gnp not joined to x E Gnp, respectively.

Then for every e > 0, the number of vertices such that either a(x) > en
or (3(x) > en ts 0e(l).

(v) Let A p be the class of vertices x E Gnp such that a(x)::; en,
(3(x) ~ en. If e< 1/2r and n is large enough, then T ¢. G(Ap)' (If E is a
subset of the set of vertices ofa graph G, then G(E) denotes the sub
graph of G spanned by E.)

As we can see, (i)-(iv) are improvements of the corresponding asser
tions of Theorem A. (v) is needed to prove (ii) and this is also the point
where we shall apply our main condition (3). The proof - as we have
already remarked - is outlined in the Appendix.

3.2. Graphs not containing pi

Here we shall investigate the structure of graphs not containing pi
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and prove that they have a fairly simple and symmetric structure for
every fixed 1. This result is needed to guarantee that the graphs G(Ap ) of
Lemma 3.1.l(v) cannot be to complicated when T=pI.

Lemma 3.2.1. Let 1be a given integer, e > 0 and let {mk} be an arbitrary
sequence of positive integers. There exists an integer No such that if
n > No and pI ¢ G", then G" contains a family ofsubgraphs Tj,j'
i =1,2, ..., j =1,2, ..., with the following properties:

(i) No two of them have vertices in common.
(ii) For every fixed l, Tj./'sare symmetrical subgraphs of G", If

v(Tj,j) =k j, then j =1,2, ..., mkr
(iii) ~ ~ v(Tj,j) > n -en.

Proof. The lemma holds for 1= 2 trivially. We apply induction on I. Let
us suppose that the lemma holds for I-I.

According to the hypothesis, we determine No corresponding to
1-1, ~ e and mk = mk t 2k(I- l) • Now if G" is a graph not containing P!
and Up's are the connected components of it, we divide the components
into three classes. The first one contains the components of> No ver
tices not containing Pt: 1 , the second class contains the components of
$ No vertices and the third one contAains the other components. If p.
denotes the number of graphs of ~ No vertices and n'Y the number of
vertices of components in the oyth class (oy = 1,2,3), then at least

vertices of components from the second class belong to symmetric
graphs of the desired type: we select mk

1
isomorphic components of

k 1 vertices from the second class (if we can), then mk
2

isomorphic
components of k2 vertices and so on. If finally we cannot select mk t
isomorphic components of k, vertices from the second class, then there
remain less than J.I. maxk<'R mk components. Now the only thing we_ 0

have to notice is that isomorphic components are symmetric subgraphs,
In the case of the first class, we apply the induction hypothesis. The

graph spanned by the components of the first class contains a family of
Subgraphs Tt.J satisfying (i)-(iii), where, of course, n must be replaced
by nl'

The essential step of the proof is made only in the case of the third
class. If U is a component of the third class having u vertices, then it
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contains a pI-I. If U_pl-l contained an other pI-I, then U would con
tain a pl. Therefore U_pl-l does not contain apl-l and we can apply
the induction hypothesis. Let Tt,i be symmetrical subgraphs of U_pl-l
for every fixed i and j =1, ..., mkr Sometimes they are not symmetric in
G" since they are joined to pl-l in different ways. However, among
any 2kj (l - l) mk

t
subgraphs Ti,j (for fixed i), there exist mk

t
subgraphs

joined to pl-l in the same way. These subgraphs are symmetric in G"
«a-:as well. Therefore one can find at least 2 I ) t mkt subgraphs among

• k·(l-l) . kt(P-l) fthe considered 2 I t mkt ones forming 2 (t-l) sets 0 mkt sym-
metric subgraphs of U. For i =1,2, ..., the total number of vertices of
these graphs will be

~ (l -!e) (u-/+ 1) (l -lit) > (l-e)u

if e is small enough, t =3/e and No is large enough. Therefore the ob
tained systems of symmetric graphs contain at least

(1-e)n3 + (I-e)nl + n2 -0(1) ~ (I-e)n

vertices together if n is large enough. Further, these symmetric graphs
have O( I) vertices.

Let us notice now that if € < .; T (the sample graphs and the chro
matic condition are supposed to be fixed), then Lemma 3.1.1 is ap
plicable to every extremal graph. Indeed, there exists an A-graph Gh

not containing circuits shorter than T + 1. Let H" =Gh + Kd(ml' ... , md)'
where Imp-(n-h)/dl < 1 (p= 1, ...,d).Now

e(Hn) = ~n2(1-lld)-nh (I-l/d) + 0(1).

Clearly, H" is an A-graph and each subgraph of ~ T vertices is ~ d-chrO
matic in it. The number of edges of the extremal graphs are greater than
that of H" , i.e., greater than

Therefore, Lemma 3.1.1 is applicable to the extremal graphs. Now we
fix an extremal graph S" and define the graphs Gnp according to Lemma
3.1.1. We know that P! ¢ G(Ap ) , P = 1, ....d. Hence G(Ap ) contains a .
lot of symmetric subgraphs. If we knew that these graphs are symmetrIC
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in G" as well, then we could prove Theorem 3 easily. However, general
ly these graphs are not symmetric in G", Our aim is to prove that it is
possible to select some of them, symmetrical in G" too.

3.3. Symmetric subgraphs of the extremal graphs

Notation. a(x) and (3(x) were defined in Lemma 3.1.1 (v). If T is a sub
graph of Gnp, let

a(D = E «(x), {3(D = E (3(x).
xET xET

(a(D expresses the number of edges of Gnp at least one endpoint of
which belongs to T.)

Lemma 3.3.1. Let rbe a positive integer. There exists a constant cr > 0
such that if T1 , ... , T.., are symmetric subgraphs of G(A p) and v(Tj):S r,
(3(Tj) :S r for j =1, ..., 'Y. then at least cr'Y of them are symmetric in G"
too.

Lemma 3.3.2. For every sequence {mk} ofpositive integers and S > 0,
there exists a constant No such that if n > No. then G(A p) contains a
family ofsubgraphs Tp,J.I symmetric for j =1, ..., mkp.; (where p :S d
and t =1, ... are fixed. kp.; =v(Tp.;,j»' Further.

Proof of Lemma 3.3.1. If cr > 0 is fixed and cr 'Y < 1, then Lemma 3.3.1
is trivial. Thus we shall consider only the case when 'Y is large enough.
We define an algorithm of selecting such that in the rth step of the al
gorithm we have a set of integers (denoted by I r ) and a set of vertices
y l' .... Yr E S" -Bo-A l' where Bo is the set of exceptional vertices,
i.e., the set of vertices of S" -Up A p :

Let B, =Bo U {yl ..... Yr}' The algorithm will ensure that {Ti : iElr}
are symmetric in G(A 1 U Br ) and for every y s (s :S r) and T; (i E Ir), at
least one vertex of T; is not joined to Ys:

(a) If r =0, T1• . .. . T.., are symmetric subgraphs of G(A 1) and veT;) =k,
then because of IBol =00) we can find anM such that IBol :SM. At
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least 'Y. 2- rM subgraphs among T1,. .. , T'Y are symmetric in G(A 1 U Bo)
too, being joined to Bo in the same way.

(b) Now we define the rth step. Let us suppose first that there is an
(x,y) fj. S", such that x E T1, y ¢:. Al U Br- 1 • Adding (x,y) to S", we
obtain a G" and this G" contains at least one L *=:: Lto since S" is an ex
tremal graph and G" is an A-graph. Of course, L* C1. S" and S" -{x} :=

G"- {x}, thus x E L* . Permutating the indices, we can achieve that
1, ..., 7 E I, and if i > 7, then L * n Tj =0. (Tj's have no common vertices
and L * has at most 7 vertices!) We show that the number of T/s such
that

is at most 7. «(13) means that every vertex of T, is joined to every one
of L *-A 1-Br_1 .) Otherwise, we could suppose that for i = 7+ 1, ...,27,
(13) holds. Let 1/Ii be the isomorphisms in the definition of symmetry
of T i , ... , T'Y' Replacing each 1/Ij(z) E Tj n L * by the corresponding
vertex 1/Ij+'7'(z) E Ti+1; (i:::; 7), we should obtain an L" =:: L * =:: L t o in
G" since

(i) 1/1i+'7' (z) is joined to all the vertices of L *- TI - Ti+'7' which are join
ed to 1/Ij(z);

(ii) if z i- Z2 E T1 ' then 1/111 (z 1) and 1/111.(z 2) are joined if and only if
I/J /

1
+'7' (Z1) and I/J 1,,+'7' (z2) are joined.

Since L * and L" have no vertices in common, x ¢;L" and conse
quently L· * ~ S": This contradiction proves that (13) holds for less
than 7 indices i E I r - 1 • Therefore there exist an Yr E L • -A 1-Br - 1 and
at least

subgraphs TI , so that Yr is not joined to each vertex of TI . At least

TI are joined to Yr in the same way. Let I, C Ir- 1 be the .corresponding
set of indices. Clearly, {TI : i E I r } are symmetric in G(A 1 U B0

u {y l' ... , Yr } ) and no Ys (s:::; r) is joined to each vertex of TI (i Elf)'

The algorithm stops (by definition) if we cannot find a suitable "mis-
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sing edge" (x, y). In this case, {Tj : t e Ir - 1 } are symmetric not only in
G(A 1 U Br- 1 ) but also in S" since each vertex of each remaining T, is
joined to each vertex of S" -(AI U Br ) . Thus {Tj : i e Ir } are symmetric
in S'", what implies the lemma if the algorithm stops fairly soon. Clear
ly, (3(Tj ) ~ r for every i e I r ; thus the algorithm stops in at most ~ steps.
An easy calculation gives that if'Y > no, then we have at least

symmetric subgraphs at the end. To get rid of no, we observe that if

then Lemma 3.3.1 holds for every 'Y.

Proof of Lemma 3.3.2. Let M be a constant such that

(3(G(A p ) ) < Mn p

(see Lemma 3.1.l(i)). Let (1-17)4 =1-5, ~k =4Mk17-2 , and let mk =
2mk (17 Crk)-l. We apply Lemma 3.2.1 to G(A 1) , 17 and mk' Thus we
obtain a family {Ur•s } of subgraphs symmetric in G(A 1) for s =1, ...,
mk

r
(k, =v(Ur• s) and r is fixed). Further,

~ ~ v(Ur,s) ~ (l-17)n1' v(Ur,s) =k, s M 1 .
r s

Now we omit some of these subgraphs in two steps. First we omit all
the graphs ~s Ur•s satisfying

Thus we omitted at most 17n1 vertices, otherwise

would hold. In the second step we omit all the remaining subgraphs
Ur,s such that
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Thus we omitted for each r at most 11 v(};s U, s) vertices. (The total num-.
ber of vertices of the remaining graphs is at least (1-211) (1-11) nl')

Let us consider now the remaining components Ur•s of a graph
~s Ur.s for a fixed r. Let C, denote the number of these components.
Clearly, C, ~ (1-11)mkr ' Since rk r > k, and rk r > (3(Ur•s ) ' we can apply
Lemma 3.3.1 to any crk

l • mkr of these components. We apply Lemma
3.3.1 repeatedly: havingobtained some sets of m«, symmetric subgraphS

of k, vertices we apply the lemma to the other components. Thus we
obtain at least

c, - -i: .mk ~ (1 -11) c, (11 < !)
r r

components, collected into sets of mkr symmetric subgraphs. If we
take the union of these families of sets of symmetric graphs for every
r, then we get a family Ti•j of subgraphs, symmetric in S" for every
fixed i, while j = 1, ..., mki' k i = v(Ti•j ) . Further

3.4. Symmetrization and extremal graph problems

The last lemma we need expresses that symmetrization is an opera
tion which can be used to solve some extremal problems.

Lemma 3.4.1. Let T l • .. . . T"( £ G be symmetric subgraphs and let L be
an arbitrary graph such that vel) ~ 'Y. If G is obtained from G by sym
metrizing

to T l (where m is divisible by v(Tl »)and L q. G. then L q. G.

Proof. (Essentially the same as the argument used in the proof of Lemma
3.3.1).Indirect1y,letL~ L* £6. Sincev(L)~'Y,if T"(+-I, ...,T"(+w are
the subgraphs obtained from xl' ... ,xm , then the number of 1j's(i> 'Y)
for which Tj n L* =1= (/J does not exceed the number of T/s (j ~ 'Y) for
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which Tj n L· =f/J. Without loss of generality we may suppose that for
t> 'Y + Jl, T;n L· =f/J and for j ='Y + I, ..., 'Y + Jl, Tj n L· =1= f/J and for
j =I, ..., u, Tj n L· =f/J, too. Let us replace in L· every x E T;n L· by
VJj-'Y(VJj 1(X)), j = 'Y + 1, ..., 'Y+u, Thus we obtain a new graph L" ~ L
in

'Y+ W

G- U Tj =G- {x i- ... , Xm } f. G .
'Y+ 1

This contradicts L q. G.

3.5. The background ofour theorems

If there are given some sample graphs and a chromatic condition,
then, as we have seen, the extremal graphs contain a lot of symmetrical
subgraphs. Let us consider two sets of symmetric subgraphs in an ex
tremal graph S", If we select almost all the subgraphs of the first set but
do not select at least T +P of them (see Definition 1.5), then symmet
rizing the vertices of the selected subgraphs to the subgraphs of the
second set, we obtain a new graph S1 of the same number of vertices
which is an A-graph because of Definition 1.5(iii) and does not contain
any sample graph. Symmetrizing the same number of vertices of the
second set to the subgraphs of the first set, we obtain a third graph S2 and,
as we shall see, at least in one case the number of edges increased, or the
new graphs S1 and Si have the same number of edges as the original one.
The original one was an extremal graph, therefore the number of edges
remains unchanged and the two new graphs are extremal graphs. Ap
plying this operation repeatedly one can easily prove Theorem 1. After
this the other theorems will follow easily. However, here we shall prove
Theorem 3 first.

3.6. Proofof Theorem 3

In the first part of the theorem (i.e., in (a) and '(b)), we givesome
estimations on o:(W) and /3(W) which will be needed when we apply
Lemma 3.3.1 in (c).

(a) Let T1, ... , Tp be symmetric subgraphs of sn and Wf. T1 n G(A 1)'
then
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(15) IBoI v(W) +~(W) ~ ~(W) .

(For the definitions of Bo and p see Lemma 3.1.1 and Definition 1.5.)
Indeed, S" - W 2 S" - T1 is an A-graph. Therefore, if we omit all the
edges at least one endpoint of which belongs to Wand join each edge
of W to each vertex of S" - Al - B0' then we obtain a new A-graph Sn
not containing any L i . (We can apply here a modified version of the
proof of Lemma 3.4.1: from L{ ::: L * £;. sn would follow L{ ::: L** £;. S"
because the vertices of Wn L* could be replaced by some vertices of
A1-W-L* joined to each vertex of L *-A I-BO' Such vertices do exist
because e < 1{2r in Lemma 3.1.1. Since the vertices of W in the new
graph sn are not joined to Bo, by this replacing of vertices we obtain
an L ** :::: L * in S" !) Thus e(sn) ~ e(Sn). This proves (15) because

(b) We prove that if T1, .... Tp are symmetric subgraphs of S" and
We T1 n G(A 1)' and either W=T1 or WI' ..., WT ' Ware symmetric
subgraphs of T1 , then

(16) ~(W) = O(v(W» .

This, (15) and IBo1= 0(1) will imply

(16*) ~(W) = O(v(W».

From P' ¢. W follows that

(17) e(W) = O(v(W».

Further, at most! (r-l) vertices of G(A 1) - T1 can be joined to T1 • In
deed, if VI' ..., Va are symmetric subgraphs of a graph G and xl' ... , Xa
are joined to VI' then G contains a circuit

where ul, vl_I are the vertices of VI joined by a path in 0U =1, ..., a,
Vo =va)' Hence p2a C G. Therefore at most! (r-l) vertices of G(A 1)-T1

can be joined to W. Similarly, at most !(r-l) vertices of T 1-W can be
joined to W. Thus
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a(W) s e(W)+(2(r-l)/2 + IBoD v(W) =O(v(W)).
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(c) Let No and p be given integers. A family T;,j of subgraphs (j =
I, ..., p, t =I, ...,N 1 =No!) is a matrix of symmetric graphs (in sn) if
for every fixed i, T;,l' .... T;,p are symmetric subgraphs of S" and the
graphs T; =: Lj T;,j are also symmetric subgraphs apart from the fact
that they are not connected.

Now we prove the existence of an No =No (p) such that G(A 1) con
tains either N 1 symmetric subgraphs of ~ No vertices or a matrix of
symmetric subgraphs (if n is large enough). Let M be a constant such
that in (16*), I3(W) < M v(W). Let mk =p 2T (CkM )-1 and e =5 =1/2r.
The constant No is the corresponding constant of Lemma 3.2.1.. Now
we apply Lemma 3.3.2 to S" and mk == N l . Thus we obtain a system
Uj of symmetric graphs (j = I, ...,Nl). If v(Uj) ~ No, then there is
nothing to prove. If v(Uj) > No, then we apply Lemma 3.2.1 to Ul.
Thus we obtain a system Tl,1 of symmetric subgraphs of Ul• j =I, ..., mk
(k = v(Tl,j))' As we know, at most !<r-l) vertices of G(A I )-Ul are
joined to Ul and at most Hr-l) vertices of Ul- UTl,j are joined to
UTl,I' Therefore at least 2- T mk subgraphs from T l• l • .. .. Tl,mk are sym
metric in G(A l ) as well. Applying Lemma 3.3.1 (and (16*) with the
constant M) to these graphs we obtain p of them symmetric in S" , too.
If VJi: Ul -+ U, are the isomorphisms in the definition of symmetry and
Tl,j' j = I, ..., p, are the symmetric subgraphs of Ul , then T;,J = : VJ;(Tl,/)
is trivially a matrix of symmetric graphs.

Applying the result of (c), the simpler case when we obtain N l sym
metric graphs of~ No vertices will always be neglected.

(d) Let be given for every p a matrix of symmetric subgraphs Tp,i,j
in G(Ap ) ' Then

(18) xEE Tpil£sn.
p i I "

Indeed, if e.g, x E Tl,l,l and y E T2,1,1 and (x, y) i S", then

contradicting (16*) if No is large enough what can be assumed.
If now we omit Tp,~p for every p =I, ...,d and i =I, ...,Nl/vp (up=

U(Tp,;,j)), then we obtain a graph Gn-N 1 d such that
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Our main purpose is to prove that Gn-dNl is also an extremal graph.
Because of Definition 1.5(iii) it is an A-graph and it does not contain
sample graphs. Therefore. the fact that it is an extremal graph or not
depends only on the number of its edges. In order to characterize
e(Gn-dNl ). we introduce a new function

(19)

(Here we have to suppose that the family Tp,i,J is fixed!) Now

(20) e(Siz)_e(Gn-N1d) =
=e(Kd(N1..... N 1))+(n-dN1) (d-l)N1+<I>(sn)N1•

To prove (20). observe that if Otp =(3p =0 for each P. then the first term
is the number of edges both endpoints of which were omitted. the sec
ond term is the number of edges just one endpoint of which was omit
ted. In the other cases <I>(sn) is just the "correction".

(e) First we need a definition.

Definition 1.7*. Let G" be a given graph and Tp,J be symmetric sub
graphs of it when i =1..... p for every fixed p. Let v(Tp,J) ~ No and
Xp '"?/ Tp./ 5; o«. Let us symmetrize m N1 new vertices to T1,l and then
mN1 new vertices to T2,l and so on. The obtained graph of n+dmN1

vertices will be denoted by o"'m (Gn). Clearly. the operator otm is a
very special case of om .

Without loss of generality we may restrict our consideration to the
case. when an N2 is given and n == N 2 (mod N 1 ) . Let us fix a system Tp,i'/
in each considered S" . Thus N1<I>(sn ) is a well-defined bounded integer
valued function. (it is bounded because of (16). (16*) and integer
because N1 is divisible by v(Tp,~/)') Let Sh be a considered extremal
graph for which it attains its maxim~m. T;,i,J be the fixed system of
matrices in Sh . Now we can apply 0 m to Sh and the set !;,1,/. Let

Zm = : otm (Sh) .
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Further, for the sake of simplicity, if sh+dmNt is an extremal graph, we
denote it by 8m . Since Zm is an A-graph not containing any L i , we have

If we could prove that

(22) Ll(m + 1) ~ Ll(m) ,

then

(23) Ll(m + 1) = Ll(m)

would hold for every m large enough.

(f) Now we prove (22). The proof may seem too technical for the
reader; however, it is the special case of a general method used in [12}
(so called "progressive induction"). The advantage of this method is
that one can apply induction even in the cases when the assertion is
not true for small values of m, i.e., we do not have an "initial hypothe
sis".

"There exists an 8 m of h + d mN1 vertices such that

As we have seen, 8m is an A-graph not containing any Lt. Thus

(24) Ll(m+1)-Ll(m) = {e(Sm+l )-e(Sm )}-{e(Zm +1 )-e(Zm)}

s {e(Sm+l )-e(Sm)}+ {e(Zm+l )-e(Zm)}

=N1 {If>(Sm+l)-lf>(Zm+l)}

={If>(Sm+l)-lf>(Shn N 1 s O.

(Here we applied (20) and D(Zm ) 3 Zm+1') Thus we proved (22) and,
consequently, (23) too: for m > mo, Ll(m) is constant. Hence in (24),
we have equality everywhere. Therefore 8m is an extremal graph. Thus
we proved that ifm is large enough, every extremal graph 8m+l can be
obtained from an extremal graph Sm by applying 0: Sm+l E D(Sm)'

Clearly, this is one half of Theorem 3. The other half is that if we
apply 0 to an extremal graph, the obtained graph is always extremal
(m> mol).



372 M. Simonovits, Extremalgraph problems

Since we have equality in (24) everywhere,

i.e., <I>(Sm) is a constant if m > mo' Let S~+1 = D(Sm)' It does not con
tain any sample graph and is an A-graph. Further,

e(S~ +1 )-e(Sm +1) ={e(S~ +1 )-e(Sm)}- {e(Sm +1 )-e(Sm)}

= N 1(<I>(Sm )-<I>(Sm)) = 0 .

Thus S~ +1 is really an extremal graph.

4. Proofs of Theorems 1.2

Let us notice that Theorem I is already proved: using the notations
of the proof above, we have

Here h depends also on N 2 , but since it is enough to consider a finite
number of possible choices for N2' there exist an r majorant for all of
them. Now G(n, r, d) contains at least one extremal graph for every n
large enough.

To prove Theorem 2 let us consider the graphs c;h and vn and let
us fix the systems Tp•J C c;h and Zp.J C yh, so that D*m could be ap
plied to them. First we prove that if for infinitely many m,

then c;h ~ yh. Trivially, (25) implies that by an appropriate indexing,
one may achieve that Tp,j ~ Zp.k ~Now we choose a maximal system
of symmetric subgraphs T;,J of 0 m(eI') such that

xE T* co*m(eI')
p j p,j-

(where the symmetry is required for every fixed p and the maximality
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means the maximality of ~ ~v(T;'i»' Clearly, if m is large enough, then
this system is just the system of subgraphs symmetric to one of Tp,1'

p = 1, ..., d. Omitting for every p exactly mNt/v(Tp,l ) symmetric sub
graphs from these ones, we obtain always the same graph up to an iso
morphism and consequently, just u" . Therefore we can describe how
to reconstruct from o*m (Uh ) the original graph u" in terms, invariant
of isomorphisms: maximal set of symmetric subgraphs, omitting a given
number of these subgraphs. Therefore the isomorphism of graphs
o*m (u") and o*m (Vh) implies Uh ~ viz.

Now we can prove Theorem 2 very easily:
Let u" and viz be given extremal graphs, h be large enough and let us
consider o*m (Uh ) and o*m (Vh). They are extremal graphs and either
they are not isomorphic for all sufficiently large m, then there is nothing
to prove (ro = h), or they are, and then r.Jz and viz are also isomorphic
graphs. (Notice that o*m (u"), o*m (viz) E G(n, h, d),!)

Appendix

(A) The outline of the proofofLemma 3.1.1

Let G" be a graph satisfying the conditions of Lemma 3.1.1. Theorem
B is applicable to G" for every e > 0, thus G" can be obtained from
a product X Gnp by omitting o(n2 ) edges. Here

Inp - nidi = o(n) .

Let

Ap = {x: x E Gnp, a(x) < e2n, (3(x) < en} ,

Bp = {x:xE Gnp,a(x)~e2n},

Cp = {x: x E Gnp, a(x) < e2n, (3(x) ~ en} .

Since

0(n2)=e(Gnp)=! E a(x)~! E a(x)~IBple2n,
XEGnp XEBp

thus IBp I = o(n). Similarly, (3(Gnp) = 0(n2) implies that ICp I = o(n).

Therefore the proof of IBpi = De (1) (see [12, p.316] ) remains valid
without any essential change. Thus IBpl =De(l). Now, if e < to then
Cp contains only vertices of valence < (l-(lld)-!e)n. This will imply
ICp 1=De(l). Indeed, if xl' ..., Xv are in Cp ' let G":" = G"-{xl' ... , Xv},
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(AI) e(Gn-v) ~ e(Gn)-n(l-(l/d»-!e vn+(~).

If we knew

(A2) f(n;L 1• ... . L,)-f(n-v;L 1, ...• L,.) ~ vn(1-(1/d)+o(l»

for v < n 1/4 , then we should have

(A3) e(Gn-v)~ f(n; L 1, ..., L,)-Kn-n v(1-(l/d)-~e)+(2)

~ f(n-v; L 1, ... , L~)-o(n) + (!ev-K)n .

On the other hand,

Thus (!ev-K)n =O(n), l.e, v =0(1). This proves that

Let U C G(Ap ) be a subgraph of $ T vertices. We can determine recur
sively T vertices in each G(A j ) U:I= p), determining a

UX Kd _ 1(T, ... ,T)C Gn.

Therefore G(A p) does not contain T. One can easily prove that f(n; T) ==

O(n). Therefore

e(Gnp) $ e(G(A p )) + D(n) =D(n).

This means that (supposing (A2» we have proved already (iv), (ii) and
(v). In order to prove (i) we choose a K" such that e(G(Ap» < K"n (for
every p) and suppose that at least 2Kn + K" dn edges were omitted from
the product X Gnp. Then

fen; L 1, ..., Lx) - Kn ~ e(Gn) ~ e(Kd(n1' ... , nd»+ K" dn-K" dn- 2Kn

=f(n;L 1,· ... Lx)-2Kn.
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This contradiction proves (i). The proof of (iii) is the same as in [12] ,
(iii) is an immediate consequence of [ 14, Lemma 1] . Therefore the
only thing we have to prove is (A2).

Let now G" be an extremal graph for L l' .... L.x. There exist in A l'

Y l' .... Y 7' such that

We "quasisyrnmetrize" v new vertices, i.e. Z i- ...• Zv ~ G" are joined
just to the vertices ofni =5. v stYi' The proof of Lemma 3.4.1 nowgives
that the obtained G''?" does not contain any L i . Thus

f(n + v; L i- .... L'l.J~ e(Gn+V)~ e(Gn) +vn(1-(1{d) 0(1)) + vO( 1)

= f(n; L 1, ... , L'l.) +vn(1-(1{d) +0(1)).

This proves (A2).

(B) On the chromatic conditions

First of all, why are the chromatic conditions called so? Because of
the first example after Definition 1.5.

Now we prove that the first and second examples are really chromatic
conditions according to our definition. It is enough to consider only the
second case. (i) is trivial. In order to prove (ii), let us consider a graph
of chromatic number t + U each circuit of which is longer than w. (Ac
cording to [10] there exist such graphs.) This proves (ii). Now, if G is an
arbitrary graph and T1 • .. . . Tp are symmetric subgraphs in it and omit
ting xl' .... Xu from it we obtain a < r-chrornatlc graph, then we colour
this last graph by t-l colours. If p > u, at least one Ti does not con
tain any xJ' Let us colour all the vertices of the other T/s in the same
way, i.e. let the corresponding vertices have the same colour. This is a
good colouring of the graph G- {x i- .... Xu } by I-I colours. This
proves (iii).

(C) Let Sh be a given graph and let the parameters of 0 be fixed. When
are the graphs o*m (Sh) extremal graphs for some sample graphs

L1• . .. , Lx?
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Definition A.I. If for every k omitting any k d N 1 vertices of o*m (8),
we obtain a graph having at most as many edges as (strictly less edges
than) o*m -k (8) has, then o*m (8) will be called a (strictly) balanced
regular sequence of graphs.

Theorem A.2. The following assertions are equivalent:
(i) o*m (8) is (strictly) balanced;
(ii) there exist sample graphs L l , ... , Lx such that ifm is large enough,

o*m (8) is an (is the only) extremal graph for L l , ... , Lx for the con
sidered numbers of vertices.

This theorem shows that our result, formulated in Theorem I is the
best possible. The proof will be published elsewhere. (ii) -+ (i) is trivial.
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