Regularity Lemma and its applications

Miklós Simonovits

Moscow, 2015
The PLAN (?)

Generalized Random Graph Sequences
- \(\varepsilon \)-regular pairs
- Generalized Quasi-Random Sequences

The Szemerédi Regularity Lemma
Why do we like Szemerédi Regularity Lemma?
- Cluster graph

Applications: \(\text{RT}(n, K_4) \leq \frac{1}{8} n^2 + o(n^2) \)
- Removal Lemma

Ruzsa-Szemerédi Theorem, and its importance

The plan was to prove \(r_k(n) = o(n^2) \), using Extremal Hypergraph Theory
but Tim Gowers cam!
Extensions

- Sparse Regularity Lemmas: Kohayakawa-Rödl
- Weak Hypergraph Regularity Lemmas: Frankl-Rödl
- Strong Hypergraph Regularity Lemmas: Rödl-Nagle-Skokan-Schacht
- and some newer ones, Tao ...
Skipping, among others:

- Algorithmic aspects
- Connections to Property testing
- Weak Regularity Lemma Frieze-Kannan, …
Szemerédi Regularity Lemma

- Origins/connections to the existence of arithmetic progressions in dense sequences
- Connection to the quantitative Erdős-Stone theorem
- First graph theoretic applications
 (Ruzsa-Szemerédi theorem, Ramsey-Turán problems)
- Counting lemma, removal lemma, coloured regularity lemma
Given G, with X and Y, the edge-density between X and Y is

$$d(X, Y) := \frac{e(X, Y)}{|X||Y|}.$$
Regular pairs are highly uniform bipartite graphs, namely ones in which the density of any reasonably sized subgraph is about the same as the overall density of the graph.

Definition (ε-regular set-pairs)

Let $\varepsilon > 0$. Given a graph G and two disjoint vertex sets $A \subset V$, $B \subset V$, we say that the pair (A, B) is ε-regular if for every $X \subset A$ and $Y \subset B$ satisfying

$$|X| > \varepsilon|A| \text{ and } |Y| > \varepsilon|B|$$

we have

$$|d(X, Y) - d(A, B)| < \varepsilon.$$
Generalized random graphs

Given a probability matrix $A := (p_{ij})_{r \times r}$ and integer n_1, \ldots, n_r.

- We choose the subsets U_1, \ldots, U_r and join $x \in U_i$ to $y \in U_j$ with probability p_{ij} independently.

- Regularity Lemma: the graphs can be approximated by generalized random graphs well.
The Regularity Lemma says that

- every dense graph can be partitioned into a small number of regular pairs and a few leftover edges.

- Since regular pairs behave as random bipartite graphs in many ways, the R.L. provides us with an approximation of an arbitrary dense graph with the union of a constant number of random-looking bipartite graphs.
Theorem (Szemerédi, 1978)

For every $\varepsilon > 0$ and m there are $M(\varepsilon, m)$ and $N(\varepsilon, m)$ with the following property: for every graph G with $n \geq N(\varepsilon, m)$ vertices there is a partition of the vertex set into k classes

$$V = V_1 + V_2 + \ldots + V_k$$

such that

- $m \leq k \leq M(\varepsilon, m)$,
- $||V_i| - |V_j|| < 1$, $(1 \leq i < j \leq k)$
- all but at most εk^2, of the pairs (V_i, V_j) are ε-regular.

See → SzemRegu, KomSim
The role of m

is to make the classes V_i sufficiently small, so that the number of edges inside those classes are negligible. Hence, the following is an alternative form of the R.L.

Theorem (Regularity Lemma – alternative form)

*For every $\varepsilon > 0$ there exists an $M(\varepsilon)$ such that the vertex set of any n-graph G can be partitioned into k sets V_1, \ldots, V_k, for some $k \leq M(\varepsilon)$, so that

- $|V_i| \leq \lceil \varepsilon n \rceil$ for every i,
- $||V_i| - |V_j|| \leq 1$ for all i, j,
- (V_i, V_j) is ε-regular in G for all but at most εk^2 pairs (i, j).*

For $e(G_n) = o(n^2)$, the Regularity Lemma becomes trivial.
How to prove Regularity Lemma?

- Use the Defect form of Cauchy-Schwarz.

Index:

$$I(\mathcal{P}) = \frac{1}{k^2} \sum d(V_i, V_j)^2 < \frac{1}{2}.$$
Lemma (Improved Cauchy-Schwarz inequality)

If for the integers $0 < m < n$,

$$
\sum_{k=1}^{m} X_k = \frac{m}{n} \sum_{k=1}^{n} X_k + \delta,
$$

then

$$
\sum_{k=1}^{n} X_k^2 \geq \frac{1}{n} \left(\sum_{k=1}^{n} X_k \right)^2 + \frac{\delta^2 n}{m(n - m)}.
$$
Coloured Regularity Lemma

If we have several colours, say, Black, Blue, Red, then we have a Szemerédi partition good for each colour simultaneously.

How to apply this?
Counting Lemma

Through a simplified example:

- If the Generalized Random Graph corresponding to G_n contains many copies of L, then G_n also contains many (approximately the same number of copies of L)
- If the reduced graph contains an L then G_n contains at least $cn^{\nu(L)}$ copies of L.
The classes V_i will be called groups or clusters. Given an arbitrary graph $G = (V, E)$, a partition P of the vertex-set V into V_1, \ldots, V_k, and two parameters ε, d, we define the Reduced Graph (or Cluster Graph) R as follows: its vertices are the clusters V_1, \ldots, V_k and V_i is joined to V_j if (V_i, V_j) is ε-regular with density more than d.

Most applications of the Regularity Lemma use Reduced Graphs, and they depend upon the fact that many properties of R are inherited by G.
Inheritance

\(G_n \) inherits the properties of the cluster graph \(H_k \).
- sometimes in an improved form!

Through a simplified example:

- If \(H_k \) contains a \(C_7 \) then \(G_n \) contains many: \(cn^7 \).
Ramsey-Turán problems

Theorem (Szemerédi)

<table>
<thead>
<tr>
<th>→ SzemRT</th>
<th>If G_n does not contain K_4 and $\alpha(G_n) = o(n)$ then</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e(G_n) = \frac{n^2}{8} + o(n^2)$.</td>
</tr>
</tbody>
</table>

How to prove this?
- Use Regularity Lemma
- Show that the reduced graph does not contain K_3.
- Show that the reduced graph does not contain

$$d(V_i, V_j) > \frac{1}{2} + \varepsilon$$
Szemerédi–Ruzsa

\(f(n, 6, 3) \)
Removal Lemma

Originally for K_3, Ruzsa-Szemerédi

Generaly: through a simplified example:

For every $\varepsilon > 0$ there is a $\delta = \delta(\varepsilon) \to 0$, $\delta > 0$:
If a G_n does not contain δn^{10} copies of the Petersen graph, then we can delete εn^2 edges to destroy all the Petersen subgraphs.

something similar is applicable in Property testing.
The Cluster graph, illustrated:
Encoding? Logarithm? Generating function?

- Original Graph, satisfying some \mathcal{P}.
- Cluster graph H_k satisfying some \mathcal{P}' and having proportionally many edges.
- Solving the corresponding problem for H_k.
- Translating the result for G_n.
How to prove Erdős-Stone?

- No K_{p+1} in the Reduced graph H_k
- Apply Turán’s theorem
- Estimate the edges of the original graph:

$$e(G_n) \leq e(H_k)m^2 + 3\varepsilon n^2.$$
How to prove Stability?

- No K_{p+1} in the Reduced graph H_k
- Apply Turán’s theorem with stability (Füredi)
- Estimate the edges of the original graph
The largest K_3 subgraph of a Random graph is its largest bipartite subgraph

de Marco–Jeff Kahn
Various Regularity Lemmas

- Original Ugly
- Original Nice
- Weak Regularity Lemma
 - Frieze-Kannan
 - Connections to Statistical approach
- Weak Hypergraph Regularity
- Good Hypergraph Regularity: Rödl, ... Schacht, Gowers
How to get rid of Regularity Lemma?

and why????

The thresholds are too large
But Regularity Lemma often makes the things transparent

— See Luczak: Odd cycle Ramsey
Blowup Lemma

Komlós, G. Sárkőzy, Szemerédi:

Good to prove the existence of spanning subgraphs

Pósa-Seymour conjecture, . . .

(A, B) is (ε, δ)-super-regular if for every $X \subset A$ and $Y \subset B$ satisfying

$$|X| > \varepsilon|A| \text{ and } |Y| > \varepsilon|B|$$

we have

$$e(X, Y) > \delta|X||Y|,$$

and

$$\deg(a) > \delta|B| \text{ for all } a \in A,$$

and $\deg(b) > \delta|A| \text{ for all } b \in B.$
Theorem

Given a graph R_r and $\delta, \Delta > 0$, there exists an $\varepsilon > 0$ such that the following holds. N = arbitrary positive integer,

- replace the vertices of R with pairwise disjoint N-sets V_1, V_2, \ldots, V_r.

- Construct two graphs on the same $V = \bigcup V_i$. $R(N)$ is obtained by replacing all edges of R with copies of $K_{N,N}$, and a sparser graph G is constructed by replacing the edges of R with (ε, δ)-super-regular pairs.

If H with $\Delta(H) \leq \Delta$ is embeddable into $R(N)$ then it is already embeddable into G.
Other Regularity Lemmas

- **Frieze-Kannan**
 Background in statistics, more applicable in algorithms

- **Lovász-B. Szegedy**: Limit objects, continuous version

- **Alon-Fischer-Krivelevich-M. Szegedy**: Used for property testing

- **Alon-Shapira**: Property testing is equivalent to using Regularity Lemma
Szemerédi’s Lemma for the Analyst

This is the title of a paper of L. Lovász and B. Szegedy

Hilbert spaces, compactness, covering
Hypergraph regularity lemmas

- Frankl-Rödl
- Frankl-Rödl 2.
- F. Chung
- A. Steger
- Rödl, Skokan, Nagle, Schacht,…
- Gowers, Tao,…
Many thanks for your attention.