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§ 1. INTRODUCTION

The notfon of k -trees (k-dimensional trees) for k 2 2, whichis a
natural generalization of the notion of an ordinary (one-dimensional) tree (a
"{-tree"), has been introduced by F. HARARY and E.M, PALMER [1]. A k-
tree can be defined either as a k-dimensional simplicial complex with certain

properties, or as a graph; in what follows, we take the second point of view.

The simplest way to define a k-tree of order n (k=12,...;n2k+1)

The results of this paper have been obtained during June and July 1969, The results of
§ 2 - on which everything else in this paper is based - are due almost exclusively to
Catherine Rényi. Alas, Catherine Rényi died on August 23, 1969, It remained the
duty of the author named second to prepare the final text of the present paper; thus
all possible shortcomings of the paper are his responsibility.
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is to do this recursively. A k-tree of order k+1 is a complete graph of order
k+1 . A k-tree GS:_),, od order n+1 (n2k+1) is obtained by taking an arbitrary
k-tree G;k) of order n and 'selecting any of its points which form a complete
k-graph in G,(..k) and by connecting these k points with a new point*. Thus a k-
+1)+k (n-k-1) edges and, in

2
5 1 k
general, for every j with 12 jS k+{ containing (k; )+(n-k-1).(j_',j)

tree of order n is a graph having n points, (k

complete j-graphs: thus in particular it contains n-k complete (k+1) -graphs

and k(n-k)+1 complete k-graphs.

A point of a k-tree is called an endpoint if it belongs only to a
single complete (k+1)-graph of the k-tree. Clearly each of the k+1 points of
a k-tree of order k+1 is an endpoint. It is easy to see that every k-tree of
order nz k+2 contains at least 2 and at most n~k endpoints; this follows
immediately from the recursive definition, because a k-tree of order k+2
contains evidently 2 endpoints, and by forming from a given k-tree Gf‘k)
of order n, a k-tree of order n+1 by adding to Gf,k) a new point, and joining

(k
it to the points of a complete k-graphin G, ), the number of endpoints is

never decreased.

In what follows we shall consider labelled k -trees, i.e. we
suppose that the n points of a k-tree of order n are labelled by the numbers
1,2,...,n. For the sake of brevity we shall call the point labelled by the
ﬁumber j 'the point j". We shall deal mainly with ﬂ)@_ k -trees; a k-tree
of order n is called rooted at the root (91, Qo2 ?k) where (91,92, ""?k)
is an unordered k-tuple of different integers chosen from the integers 1,2,...,n,
if the complete k-graph consisting of the points ¢, ,..., ¢ is contained in the
k -tree in question, Notice that a 1 -tree is rooted at any one of its points;
however a k-tree with k22 is rooted only at k(n-k)+1 k-tuples among the
possible (D k ~tuples which can be forxﬁed from the integers 1,2,.-.,n.

In the case k =1 the only consequence of looking at a 1-tree as rooted at one of

*In [1] a complete k -graph is called a k-tree of order k; we found it more convenient
not to consider such a graph as a k-tree, i.e. to define k-trees of order n only for
~> ka1,
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its points, say ¢, is that the root ¢ is not considered as an endpoint, even if’
it is connected with a single point., Similarly for k22 the k points belonging to
the root are not considered as endpoints even if they belong to a single complete

(k+1) -graph.

Notice that every rooted k -tree contains at least one endpoint (not
belonging to the root). This is trivial for k =1 because every 1 -tree contains .
at least 2 endpoints, of which at least one is different from the root. For k22,
the statement follows from the remark (proved easily by induction) that every
tree contains at least two endpoints which are not contained in the same complete
k -graph, and thus if the k-tree is rooted, at least one of them does not belong

to the root.

The aim of the present paper is to extend to k-trees the method by
which A, PRUFER [2] has coded 1-trees, In what follows we shall define the
Priifer code of a 1-tree of order n for 1-trees rooted at some selected point:

for the sake of simplicity we suppose that the tree is rooted at the point n.

Priifer’ s code is defined for labelled {1 -trees of order n (the n
points of which are labelled by the numbers 1,2,...,n) as follows: we remove
from the tree the endpoint which is labelled by the least number armong all
endpoints of the tree, and write down the number by which the unique point of
the tree, to which the removed endpoint was connected, is labelled; we repeat
the same procedure with the remaining 1-tree of order n-1, and continue this
process until there remains only a single edge (a 1 -tree of order 2 ). In this
way we obtain a sequence of length n-2, each element of which is one of the

numbers 1,2,..., n . It can be shown that each of such n"~2

sequences is the
Priifer codeword of a tree of order n, and this tree can be reconstructed,

given the codeword. In the case k2 2 the Priifer code of a labelled k -tree of
order n (the points of which are labelled by the numbers 1,2,...,n) and rooted
at a given k-tuple (¢,,¢,,...,9,) is defined similarly: we remove from the

k -tree that endpoint which is labelled by the least number among all endpoints

of the k -tree, and write down the (unordered) k -tuple of those numbers by
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which the k points connected to the removed endpoint are labelled. We repeat
the same procedure with the remaining k-tree of order n-1, and continue this
process until there remains only a complete (k+1) -graph (i.e. a k-tree of
order k+1). In this way we obtain a sequence of n-k-{ unordered k-tuples of
the numbers 1,2,..., n; however, if k22 , not all such sequences are the
codewords of a k-tree of order n, but only those which satisfy certain

conditions of admissibility. The problem to be solved consists just in finding

these conditions, i.e. in characterizing those sequences of n-k-{ unordered

k -tuples, formed from the numbers 1,2, ..., n , which are the Priifer codewords
of a k-tree of ordef n; the solution of this characterization problem will lead
also to a decoding procedure by which the k -tree can be reconstructed from its

Priifer codeword,

While the coding procedure can be generalized in a straight-
forward way, it will be seen that the characterization of those sequences which
are the codewords of a k-tree, and the decoding procedure are much more
involved for k 22 . It appeared that to solve this problem, a much more
thorough study of the original Priifer code in the case k=1 was needed than
was done previously. This study involved a certain coding of permutations
which seems not to have been used before, In § 2 we start by discussing this
coding of permutations; § 3 contains a detailed study of the Priifer code for
ordinary trees, based on the introduction of the notion of the "redundant Priifer
code" of a {-tree. In § 4 it will be shown that generalizing for any k 2 2 for
(rooted) k-trees the notion of the redundant Priifer code the problem of
characterization as well as of decoding are solved without encountering any
further difficulty. In § S we show how the Priifer code can be used for counting
all labelled k-trees of order n as well as for enumerating k-trees of order n

satisfying certain conditions,

§ 2, CODING OF PERMUTATIONS

Let @, = (a,.a,,.--,a,) be a permutation of the numbers
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$,2,...,n. We call an element a,,, of the permutation x,, (1£k<n-1)

a weak element, if it is preceded by a larger number, i.e. ifﬁmp:xk Q> Apat;
———— s 2 =)=

otherwise we call a4 a strong element of the permutation T,; @, is always

*
a strong element,

Let ek(srn) denote the number of elements a.j (j=1,2,..., k)
which are larger than ('1,1“_1 (k =1,2,...,n-1);thus for any permutation x,
of order n we have O<e (w )£k anda,, 4 isa weak element if and only

if ek(ﬂ:n) # 0. We now shall prove a series of lemmas,

LEMMA 1, To every sequence €, e, ..., e, , of integers for
which 02e 2k (k=1,2,...,n-1) there corresponds a uniquely determined

permutation wx, of integers 1,2,...,n such that ek(wn)= e, k=1,2,...,n-1),

PROOF. The permutation %, in question can be successively
constructed starting from its last element and working successively backwards.
As a matter of fact, as &, has to be preceded by e,_; larger numbers,
evidently a =n-e, ;. Let us now omit a, from the sequence 1,2,...,n;
evidently a,_4 is obtained by taking the element having the rank n-1- €
in the remaining sequence; similarly, if we have already determined
QpiGp_q2---1 Gy, o, let us omit these numbers from the sequence 1,2,...,n
Op4q (12 k& n-1) will be equal to the element having the rank k+1-e, in the
remaining sequence, while a; will be the unique number of the sequence

1,2,...,n which remains after removing QpsQp gy Qg o

Thus we obtained that any permutation &, of the elements

1,2,...,n can be coded by the sequence e (x,) (k=1,2,...,n-1).

Let this code be called in what follows the CR-code of the per-
mutation T, . This code is closely related to another code, due to M. HALL
(see [4]), which is defined as follows: Let uy () denote the number of those

numbers less than k+1 which follow the number k+1 in 7, ; then we have

*
A strong element is sometimes called an upper record, see e.g. [3].
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OLupm )£k and the permutation %, is uniquely determined by the

codeword W, (™), Wz(®™p),...;Up_4(%,); we shall call this coding the MH-code.

It is easy to show that the CR code of a permutation &, is equal to
the MH code of its conjugate permutation n': s+ as a matter of fact if in ¥,
Qy,q =Jj, thenin 7 a’} = k+1 and if there are in %, e, numbers greater
than o, =] among the numbers a(a.,,.--, 0, thenin®) there are e,

numbers less than k+1 among the numbers O’?” eees a.*n .

It is pointed out in [4] that the coding of permutations is of

importance in computer programming.
Now we prove

LEMMA 2, The number of those permutations (o4, a,,...,a,)

of the numbers 4,2,..., n in which the elements o’hi“ (L=1,2,.c0,r;

1£ hy<hy < ... <h.<n) are weak and all others strong

(rin-1) isequalto hgih, ... hp.

PROOF of LEMMA 2, Let (e,,e5,---,€,_4) be the CR codeword

of a permutation satisfying the requirements of Lemma 2. Then clearly

4<=€hi £h; (i=1,2,...,r) while if j does not belong to the sequence
hyihgooosh, then ej = O Thus the total number of such permutations is
equal to the number of ways in which the numbers eh1 i ehz yeeea €h

@

can be chosen, i.e. is equal to h1 by Mg which was to be proved.

REMARK 1, Let us consider the trivial indentity

n-1{
92,1 nt =T (h+1) = > h,h,...h
( ) h=1 15hy<hy<-<h Sn-1 il r

Lemma 2 furnishes a combinatorial interpretation of the identity
(2. 1): the left-hand side is equal to the total number of permutations of the

elements 1,2,...,n while the term h,h,...h. on the right-hand side gives
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the number of those permutations in which the elements a; ¢ (i =1,2,...,r),
3

and only these, are weak.

REMARK 2, It follows from the proof of Lemma 1, that if we want
to list all permutations satisfying the requifements of Lemma 2, we may
proceed as follows: Qp +1 can take the values 1,2,...,h.. If the value of
Oh, +1 is fixed, remove this value from the sequence 1,2,...,n; Oh,_ +1
can be equal to any of the first h__, elements of the remaining sequence; in
general if the values of Qp a1 Opy 44 (1£i2r-1) are already fixed,
remove these from the sequence 1,2,..., n, and take 0""&*1 to be any one of
the first h; terms of the remaining sequence, Thus working backwards we
find all possible choices of the weak elements. The strong elements are then
uniquely determined, as they are equal to the remaining n-r numbers in

natural order.

REMARK 3. Let us choose at random with uniform distribution one
of the n! permutations of the numbers 1,2,..., n:; let this permutation be
%, = (g, 55, ,) . Let P(n; myumy,...,m.) denote the probability that
gy Amygg oo Xy (1€my<my<-..<mg £n-1)

and only these, are the strong elements (upper records) of the random

permutation ,,. Denote by h1+1,u,,hr+1 (r=h-s-1)
those among the numbers 4,2,...,n which are not contained in the sequence
f,myed, om st Then we have by Lemma 2,
h ... h
2.2) PCnymymyiam,) = 1ha 5 = 1
n! nmym, - mg

This formula can be found in DAVID and BARTON [3]; the proof
given here by means of Lemma 2 is, however, much simpler than the proof
in [3].

REMARK 4. The result of Lemma 2 can be also interpreted as
follows: let us choose at random with uniform distribution one of the

permutations of order n. Let thisbe ®, = (o, &y, -, x,) .
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Put &) =0 if «} 4 is a weak element and &, =1 if &y 4 is a strong

element of ®, (h=0,1,...,n-1).

Then we have

1 ' h
2.3 p(& =1) 2= and P(ﬁ =O) =
@.3) ; h+t g h+1
(h =0,1,.-.,n-1) and the random variables €0,€45.--, &, 4 are independent.

It follows that putting S =€,+&+--+ €,.1 li.e. denoting by Sp the total
number of strong elements of the random permutation x,,, we have, denoting
by E(¥) the expectation and by D2(§) the variance of a random variable ¥,
and by P(A) the probability of an event A,

1

(2.4) E(S,) = 1+.12_+...+?~logn
and
n
2 - o1y
2.5) Dcs,,)_fi(k ) ~ logn

Sp -logn
and it is easy to show that the distribution of e i i tends for n — + o0
Viogn

to the standard normal distribution , i.e.

'S u?
\ Sp-logn { -7 :
(2. 6) lim P ——=—<ux] = J e du
n—+00 ( VLogn ) V2 -

It is interesting to compare this result with a related result on

sequences of independent observations (see [5]).
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§ 3. THE REDUNDANT PRUFER CODE FOR 1-TREES

Let us consider a labelled 1 -tree T,, of order n, rooted at n, and
let us perform the process by which its Priifer codeword is obtained as
described in the introduction. Let the least endpoint of T,, be a,, and the
point with which this endpoint is connected be b1 ; after removing the point o,
let a, be the least endpoint of the remaining tree, and b, the point to which
it is connected; in general, after removing j-1 points, let Q; be the least
endpoint, and bj the point with which a; is connected (1£j€n-2);
after removing n-2 points only a single edge remains, one of the endpoints of

which is the root n; let a,_4 be its other endpoint and put bpq=n.

Let us consider the matrix consisting of two rows and n-{1 columns

By v 0 Bgd
(3.1) _
b1, b27 il | bn_4

We call the matrix (3. 1) the redundant Priifer codeword of the 1-

tree T, rooted.at n, clearly (b,,b,,...,b, ) is the usual Priifer codeword
which we call the primitive Priffer codeword of the tree T,,. We shall prove a

series of lemmas about the redundant Priifer code,

LEMMA 3, The redundant Priifer codeword (3. 1) is uniquely de-
termined by the primitive Prifer codeword (b,,b,,..;b,_,) and can be

obtained from the latter in the following way:
l) bn_1 =n,

2) a, is the least integer not contained in the sequence
byabyseis by _q

3) for every ] with 12 j< n-{ aj is the least integer not

contained among the numbers Oqr Qe Qi g bj, ij i bn_1 :

J
PROOF., Lemma 3 follows immediately from the rule of con-
struction of the primitive Priifer code and the definition of the redundant
Priifer code.
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REMARK. Lemma 3 contains the rule for decoding the primitive
Priffer code, i.e. the algorithm for reconstructing the tree, given its primitive
Priiffer code. We first constfuct the redundant Priifer code according to Lemma
3; as clearly (o.j,bj) (j=1,2,...,n-4) are all the edges of the tree in
question, once the redundant Priifer code is given, the tree can be immediately

obtained from it.

As usual, we define the degree of a point of a graph as the number

of other points of the graph to which it is connected by an edge. We prove now

LEMMA 4, Every number j (12j2n) occurs d;j times in the
redundant Priifer code of a tree, where d i denotes the degree of the point
in the tree. If 15j £ n-41 then j occurs just once in the upper row and
dj—1 times in the lower row, at places with indices less than the index of its

occurrence in the upper row., The number n occurs d, times in the lower row.

PROOF, Lemma 4 follows from Lemma 3, and from the definition

of the redundant Priifer code.

REMARK. As b, ;=n, Lemma 3 implies the well known fact that
every number | (1£j£n) occurs dj-1 times in the primitive Priifer code

g, By 15 Bl 2 Y-

LEMMA 5. The upper row (a4,a,,..-,a,_4) of the redundant
Priifer code of a 1-tree of order n rooted at the point n, is a permutation of
the numbers 1,2,...,n-1. If Op,q is a weak element of this permutation,

then we have
(3-1) bh= Q.h+1 (45_-hén-2)

PROOF. The first statement of Lemma 5 follows immediately from
Lemma 4. As regards the second statement let o, 4 be a weak element of the
permutation (a,,a5,..-,&,_4) and let j be the largest natural number not

exceeding h such that oj>ap,q. We shall prove the statement a4 = by,
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by induction on the value of t = h+{-j. If t =1, i.e, if By, ¥ Chad 3

let us put ., 4=v and Qp = W,

According to Lemma 3, u is the least number not occurring among

the numbers a4, @z, @y 4r byl 4y b, {5 b,_y 3 and v the least
number not occurring among Qgs®gse ) Qs Wy bp faeab, 4.

It follows that v occurs among the numbers Qqoen O yabyy by by
but it does not occur among Qg Qg by -ooh by g |

this is possible only if b, = v = Q.4+ Thus our statement holds for t =1.
Suppose it holds for t =1,2,...,m; we shall show that it holds for t = m+1

too. Suppose that a _, >a, 4 and A<,y for j = h-m+1,...,h.

It follows that ay,ap_4,.--;0h et are all weak elements of the

permutation (a4,0.49 ..., o, ) and by the induction hypothesis it follows that
bj=aj,q for j=h-1,...,h-m. Now the value @, 4=V has to occur among
the numbers Q. ,.-->Qp_m.4 2O _mr2b,_4 because otherwise s AT

would have the value v and not a larger value; as, however, the numbers a;
are all different, v can be equal only to b‘h, i.e. by =V=0Qp,4; this means
that bh =0pyq holds for £ = m+1 too, and thus the second statement of Lemma

5 follows by induction,

REMARK 1. Notice that the converse of the second statement of
Lemma 5 does not hold: bh = 0,4 does not imply that @, ¢ is a weak element

of the permutation (a4,0Q,,..,a,_,).

REMARK 2, Clearly Qpq= J is a weak element of the permutation
(ay,...,a,_4) if and only if there exists in the tree a path starting from the
root, passing through the point | and arriving to a point k >j. In this case we

call the point | a weak point of the tree.

Now we are in the position to prove

LEMMA 6, Let Toq = (a1,a7_,...,an_1) be a permutation of the
numbers 4,2,...,n-1. Let Ty(n,x,_,) denote the number of those labelled

1 -trees of order n, rooted at n, the upper row of the redundant Priifer

- 955 -



codeword of which is equal to the sequence =, 4. Let Qpsd 2 Oy g g2 oo
: 2

s Oy 4q be the weak elements of the permutation ®,_4.Then we have

n-2
(3.2) Tyln, %, ) = T (n-h)
h=1
hth; (1sizr)

PROOF, According to Lemma 5 we have bh,-_= Oho+1 for

{ =1,2,...,r further we have by definition b, _4 = n.

If h (1€hZn-2) is not one of the numbers h,,...,h  then by,
can take on any value different from a4,Q,,...,a because according to Lemma
4 the value o j canoccur in the lower row of the redundant Priifer code only at
a place with index h<j, i.e. we have by # 0 if j<'n. Thus there are n-h
possible choices for the value of by, if h is not one of the numbers h1,h2,...,hr;

this implies that (3.2) holds,

REMARK. Evidently one has, denoting by S _4 the set of all
(n-1)! permutations of the numbers 1,2,...,n-1 and by T,(n) the total
number of labelled 1 -trees of order n,

(3.3) T,(m = 2 Tiln=x, .
gtn-1':'sn-1

According to Lemma 2 the total number of permutations is
K, 1€S,_4 in whichthe weak elements are Q4o Oh 44

(1€ hycshy<...<h £n-2) s hyhg.ohpe Thus it follows that

T,(n) = 2 hehgo.h, T (n-h) =
1€ hy<hy<.-<ch gn-1 h=1
(3.4) h+h; (4Sitm)

n-2 2
T (hen-h) = n"".

4
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i.e. we obtain in this way a proof of Cayley’ s well-known formula

(3.5) T,(n) = n"?
for the total number of labelled trees of order n. Of course, for 1-trees this
proof of (3.5) is unnecessarily complicated, and it is much easier to enumerate
trees of order n by remarking that each element of the primitive Priifer
codeword can be chosen in n ways, and thus there are w4 possibilities;
however, it will be seeﬁ in § 4 that in counting k-trees of order n in the case
k2 2. this simple method of counting cannot be easily generalized, while
Lemma 6 can be easily generalized for k-trees for every k (see Lemma 6*)
and this leads to a method for enumerating all k-trees of order n as well for

counting the number of k-trees having certain prescribed properties. ™

From what has been said we get immediately the following result
on the number of weak points of a random 1-tree., As usual, a random 1-tree
of order n is defined as a 1-tree chosen at random, with uniform distribution,
among the nn-? possible labelled 1 -trees of order n. (For the definition of

weak points, see Remark 2 to Lemma 35.)

THEOREM 1, Let W(n,r) denote the probability that a random
labelled 1-tree of order n, rooted at the point n, should contain exactly r

weak points; then we have

n-2 n-2 h
2 Win,m)x" = T (1+—;’-(x-1)).
r=0 h=1

Thus if V,, is the number of weak points in a random labelled

tree of order n we have

n 1 2
E(Vy) = _2_(1-—'1-)(1-7)

2 1 2 3
DA(V,) = (4__;)(1__?)(”-“—)

i
6
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and

B oW
lim P( no2 <x) = ! je Zdu,
o0

n—+ o V_"_
6

i.e. the number of weak points of a random 1-tree of order n (rooted at the

point n) is for large n approximately normally distributed around —2— with

variance % .

REMARK 1, It is interesting to compare Theorem 1 with previous
results on the number of inversions of a random 1-tree (see [8] and [9]).
The points j, and j, of a random 1-tree are said to be in inversion if j1 <l

and the path from the point jz to the point n passes through the point j4.

REMARK 2, Notice that an endpoint of a 1 -tree is never weak,
As it is known (see [10]) that the number of endpoints of a random 1 -tree of
order n is for large n approximately normally distributed with mean value %—
and variance % L4 %), it follows e.g. that the expected number of points of a
random 1 -tree, which are neither endpoints nor weak points, is asymtptotically

equal to n(-%——ie-) for n —+ oo .

§ 4. THE CHARACTERIZATION OF PRUFER CODEWORDS FOR
k -TREES '

Let us now generalize the results of the previous § for k-trees
with kZ2, We consider labelled k-trees of order n rooted at a given complete
k-graph, which can be taken without restricting the generality as consisting of
the points labelled by the numbers n-k+1,n-k+2,...,n. In other words, we
consider the set of all k-trees of order n, the points of which are labelled by
the numbers 1,2,...,n and which contain the complete graph formed by the
points n-k+1,n-k+2,...,n. First we define the redundant Priifer codeword of

such a tree., This codeword is a matrix
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( QqrQgyeeey Oy ]

@D BBy B,

where (a,;Q9,--:0, ) is a permutation of the numbers 1,2,...,n-k,
while B; (1£isn-k) isa k-tuple of different integers taken from the
numbers 1,2,..-,» n. The redundant Priifer codeword of a k-tree T, rooted
at the k-tuple (n-k+1,n-k+2,...,n), is obtained as follows: a, is the least
endpoint of the tree, and B, is the k-tuple of those points to which a, 'is
connected; @, is the least endpoint of the tree TU obtained after removing
from T the point a, (and of course all k edges connecting o with a point
belonging to By) and B, is the k-tuple of those points of T® which are
connected in T to a,; in generala j+1 is the least endpoint of the tree
TG obtained by removing from T the points 04,05,/ Q; and all edges
starting at these points, while Bj44 is the k-tuple of those points in TGy
which are connected to 0.j,4 (in TUY (j =1,2,..., n-k+4).
(Remember that the points of the root are not endpoints. ) It is easy to see that
Lemmas 3, 4 and 5 can be generalized to K-trees for any k; the

corresponding statements are as follows:

Lemma 3*. The redundant Priifer codeword (4. 1) of a k-tree
is uniquely determined by the primitive Priifer codeword (By.Bgs- By 1)

and can be obtained from the latter in the following way:

1)B, _ isthe k-tuple (n-k+4, n-k+2,..,n)

(i.e. the root);

2) a4 is the least integer not contained among the elements of the

k -tuples B; (i=1,2,..,n-k);

3) For every j, with 1<jSn-k, Q; is the least integer different
from the numbers a4, a4, ...,o.j_1 and not contained among the elements of

the k -tuples B, Bj,q,2 By -

In the same way as in the special case k=1 Lemma 3* contains
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the algorithm for decoding the primitive Priifer code of a k-tree: first one has
to construct from the primitive codeword the redundant codeword according to
the rules laid down in Lemma 3*; if this is done, the k-tree in question is
already defined because evidently the edges of the k-tree are those connecting
two points belonging to at least one (k+1)-tuple Cj where Cj consists of a;
and of the k points forming the k-tuple Bj (j = 12,00 n-Kk) . (Notice that the
Cj (j=1,2,...,n-k) are all complete (k+1)-graphs contained in the k -tree in
question, and the same edge may belong to several of these complete (k+1) -

graphs.)

Before generalizing Lemma 4 for k2 2, we introduce a definition:
the degree of a complete k-graph G formed by k of the points 1,2;...,n ina
k-tree T, is defined as the number of those complete (k+1)-graphs contained

in T which contain G.
Now we can formulate

Lemma 4%, Every k-tuple B of k of the integers 1,2,...,n
belongs to d(B) of the (k+1)-tuples C; = (aj,Bj) (j=1,2,....n-k)
where d(B) is the degree of the complete k-graph consisting of the k points
of B. The root R = (n-k+1,n-k+2,..,n) occurs d(R) times among the k-tuples
By:Bgas By i while every other k -tuple B for which d(B)21 occurs just
once as the subset of a (k+1) -tuple Cj = (o,J-,BJ-) such that B is not identical
with B; (i.e. such that a; e B), and B occurs d(B)-1 times among the k-

tuples B; with i<j.
Finally the generalization of Lemma 5 for k22 is as follows:

Lemma 5%, The upper row (04,0,,., @, _}) of the redundant
Priifer codeword of a k-tree, rooted at the k-tuple (nh-k+1,...,n) isa
permutation of the numbers 1,2,...,n-k. Ifa,, 4 is a weak element of the
permutation (a4,...,a,_}) thena, 4 is contained in the k -tuple

B, (1£h&n-k-1).
The proofs of Lemmas 3*, 4%, 5% are almost word for word the
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same in the case kZ2 as for k=1; therefore there is no need to go into details,
except for the second statement of Lemma 5%, the proof of which in the general
case is slightly more involved. This proof is as follows: let a.,,4 be a weak
element of the permutation (a4, ..., Q:n—-k) and let j be the largest number
not exceeding h such that Qj>Qhets and put t = h+1-j; we apply induction
on t as we have done for the special case k =1. If t=1, i.e. if ap > a1

put @, 4=V and ap=w>v. According to Lemma 3%, u is the least number
different from a4...,ay_4 and not belonging to any of the k-tuples
BhsBhsts--2Bp_k and v the least number different from a,,a,,,a, 4 ,u
and not occurring among the elements of the k-tuples By _4,.--»B;_,; as v<u
this is possible only if v belongs to B}, . Thus our statement holds for t=1.
Suppose our statement holds for t =1,2,..., m ; we show that it holds for t=m+1
too. Suppose that a;  >a, .4 and Qj<Qpyq for j=h-m+d,...5h.

It follows that @}, Qp_q>10p_m4+q are all weak elements of the permutatior
(0,1-, Q. Qp ) and thus by the induction hypothesis it follows that Q1€ Bj

for j=h-1,..., h-m.

Now the value @ 4 =v has to occur among the elements of at least
one of the k -tuples By, _ i Bp_m4et---» By let j be the largest integer such
that ve Bj (j£h) if we would have j£ h-1 then bothaj,q and v would
belong to Bj. Now the k-tuple BJ- has to occur in just one (k+1)-tuple
Ci=(ai,By) (i>j) sothat B; #B;, il.e. a;€B;; if this would happen for
i=h+1 in whichcase a;=ap,q =V, we would have Qg €Bpay which is
however impossible as a;, 4 cannot be an element of By, 4 because het>j+1;
or we may have {2 h in which case veB; with i>j, but this again contra-
dicts the definition of j as the larggst index € h suchthat veB i thus the
supposition j£ h-1 is impossible; thus j = h thatis, v=0ap,4€ By

which was to be proved.

Lemmas 3*, 4*, 5% contain a complete characterizatioa of those

sequences B,,8,,..,B,_,_4 of n-k-1 k -tuples, which are the primitive
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Priifer codewords of a k-tree rooted-at the k-tuple n-k+1, n-k+k,...,n.

This characterization is as follows:

THEOREM 2, A sequence (By,Bg,---»By_y ) ofn-k-1 k -tuples
ﬁrofn the integers 1,2,...,n is the primitive Priifer code of a k-tree of order
n, labelled by the numbers 1,2,..., n and rooted at the k-tuple (h-k+1,...,n),
if and only if it has the following properties: | )

a) Putting B, | = (n-k+1,n-k+2,...,n), denoting by a, the least
natural number not contained in any of the k-tuples By, Bj,...,B,_, and for
every j£n-k denoting by a i the least natural number different from
Oy Gy and not contained in any of the k-tuples Bj; 5j+1 vy BAk

the numbers a,,...,a,_j form a permutation of the numbers 14,2,...,n-k.

b) Denoting by Cj the (k+1) -tuple consisting of a; and the k
elements of the k-tuple B;, each B; is the subset of at least one Cj with

i<j % n-k.

PROOF of THEOREM 2, The conditions a) and b) are necessary
because of Lemmas 3%, 4* and 5*. To see that they are sufficient it is enough
to point out that if these conditions are satisfied the corresponding k -tree can
be recursively constructed starting from the complete (k+1) -graph the points
of which are the elements of C,_y and working backwards: at the j-th step the
new point is an—k—j +4 and the k-tuple of points to which it is connected is

Bn—k-j+1’
L>n__k_j+1 (j=1,2,...,n—k)'

this k-tuple being a subset of a (k+1)-tuple C; such that

We give now some examples which may help tc familiarize the

reader with the meaning of Theorem 2.

EXAMPLE 1. Let us have n=7, k=2 and consider the sequence of

n-k-1=4 pairs of the integers 1,2,3,4,5,6,7 ;
(6,7),(6,7),(1,0), (5,6).

We shall verify that this is the primitive Priifer codeword of a 2-
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tree of order 7, rooted at the edge (6,7). As a matter of fact condition a)

is satisfied with a,= 2, a,=3, a3=4, a,=1 and 0.5=5. Further the matrix

( 2 3 L4 i 5 )
(6,7) (6,7) (4,6) (5,6) (6,7
clearly satisfies condition b).

EXAMPLE 2, Let us have n=5, k=2 .The sequence (4, 2), (4,5)
is not the primitive Priifer codeword of a 2-tree of order 5 rooted at the
edge (4,5). As a matter of fact while condition a) is satisfied with a,=3,

ap;=1, az=2 the matrix

( 3 1 2 ]
(1,2) (4,5) (4,5)

does not satisfy condition b) because the pair (1,2) is not a subset of either’
of the triples (1,4,5) and (2,4,5).

In connection with this example it should be pointed out that a
sequence of n-k-1 k-tuples of the numbers 1,2,...,h which satisfies condition

a) but violates condition b) of Theorem 2 corresponds to a graph the edges of
which are the edges of n-k such complete (k+1) -graphs which do not form a

k -tree

REMARK. It is easy to obtain from Theorem 2 a characterization of
the primitive Priifer codewords of k-trees of order n rooted at any k-tuple.

The obvious modification of Theorem 1 for this case is as follows:

THEOREM 2b. A sequence (B1,BZ,..., Bna_yk-1) ofn-k-1 k-
tuples of the integers 1,2,..., n is the primitive Priifer codeword of a k-tree
of order n the points of which are labelled by the numbers 1,2,...,n and which

is rooted at some k -tuple B of the numbers 1,2,...,n if it has the following

properties:
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a)Put B, _, = B; let a, be the least natural number not contained
in any of the k-tuples B;,B,,...B, _, and for every j with 1<jSn-k;
let a; be the least natural number different from Qqreeey Oy and not contained

]

in any of the k-tuples BJ-, Bj+1 1B _i+ Then a4, a0, »--»Q,_| 18 a permutation
of the n-k numbers obtained by omitting from the sequence 1,2,... ,h the

elements of the k-tuple B.

b) Denoting by Cj the (k+1) -tuple consisting of aj and the
elements of the k-tuple B i each B; (15¢2n-k-1) is contained in at least one

Cj with t<j< n-k.

REMARK. The same sequence By Byy-s B4 may be the pri-
mitive Prifer code of different k-trees rooted at different roots, as is shown

by the following.

EXAMPLE 3. The sequence (3,4),(3,5),(4,5) is.the primitive
Priifer code of a 2-tree of order 6, rooted at the edge (4,6 ), the

corresponding redundant Priifer code being

[ 1 2 3 5 )
(3,4) (3,5) (4,5) (4,6)7 "

At the same time, the sequence (3,4),(3,5), (4,5) is also the
primitive Priifer code of an other 2-tree of order 6 rooted at the edge (1,5)

the corresppnding redundant Priifer code being

( 2 6 3 4 \)
(3.4) (3,5) (4,5 (1,5)/:-

§ 5. ENUMERATION OF k -TREES

We first prove the generalization of Lemma 6 to the case of k -

' trees for k2 2.,
LEMMA 6F Let T,_1=(apag,,a, i) bea permutation of
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the numbers 4,2,..., n-k. Let Ry (n,x,_,) denote the number of those ‘
labelled k-trees of order n, rooted at the k-tuple (n-k+1,n-k+2,...,n),

the upper row of the redundant Priifer codeword of which is equal to the

’ sequence %, _| . Let Op 4110k 4 be the weak elements of the permutation

X,_| . Then we have
(5.1) R Cnm, ) = k' T [k(n-k-h)+1]

PROOF. According to Lemma 5* we have aj, .4 € By, for
i=1,2,...,r. As by Lemma 4%, Bhf. has to be a subset of some (k+1)-tuple
C; with j>h;, and Qp,+1 isnotan element of C; with j>h;+1, it follows
that B, has to be a subset of Ch;,+1 . As the number of k-tuples contained in
the (k+1) -tuple chi+1 and containing ah£+1 is equal to k, the number of
choices of By; is equal to k. If h is not one of the numbers h,, h,,..., h,
then the number of possible choices of By, is equal to the number of all k -
tuples contained in at least one of the (k+1) -tuples C j Wwith j>h. Itiseasy
to see that this number is equal to k (n-k-h)+1; this statement is most
easily shown by induction on the value of t=n-k-h. If t=0, i.e. if h=n-k,
then By, =B, _, is the root (n=k+1,.., ) , i.e. the number of choices is one,
Supposé our statement holds for some value of t=n-k-h, i.e. we know already
that the (k+1) -tuples Ch+1 5 ""Cn-k contain together kt+1 k -tuples. As
By, is one of these, Cy, contains k such k -tuples which are not contained in
any of the (k+1) -tuples C} 15, C,_k i.e. the number of choices for By,_q
is k(t+1)+1 = kCn-k-(h-1)) +4, thus our statement is proved by

induction. It follows that the total number of choices of the lower row of the

redundant Priifer codeword with the given upper row T, _, is
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n-k-1

(5.2) Ryln,m,_ ) = k" T (k(n-k-h)+1)
h=1

hih; (1€i5r)

Thus Lemma 6* is proved.

We now deduce from Lemma 6 the following result which has been
proved first by BEINEKE and PIPPERT [6] and also by MOON [7] ; our proof

is essentially different from both of these proofs.

THEOREM 3. The total number R (n) of labelled k -trees of order

n rooted at a given k-tuple is given by the formula

k-1
5.3) Re(n) = [k(n-ky+1]" ;

while the total number T, (n) of labelled (unrooted) k-trees of order n is
given by
n n-k~2
(5.4) T () =(k)[k(n-k)+1]
PROOF. In proving (5.3) we may suppose without restricting the
generality that the k-trees in question are rooted at the k-tuple

(n-k+1,n-k+2,...,n), We have evidently

(5.5) Re(nm) = 2. Ryn,m, )
xn-kesn—k
where S,,_,, denotes the set of all permutations of the numbers 4,2,...,n-k.

Using Lemma 6% and Lemma 2 we obtain from (5. 5)
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n-k-1 k1
(5:6) Ry(n)= > hyhgeh K T [k(nekeh)+1] = [k(n-k)+1)"
1§h1<h2<...<hr§n-k-1 h=1
hh U5i<r)

Thus (5. 3) is proved.

As has been remarked both in [6] and [7], knowing the total
number R, (n) of rooted labelled k -trees of order n, it is very easy to get
the total number Tk'(n) of labelled unrooted k-trees of order n,‘ using the

obvious identity
n
G.7 Tk(n)[kcn-k)m]:[k)ak(n)

(5. 7) follows from the remark that every (unrooted) k-tree of order n contains
k(n-k)+1 complete k-graphs and thus it can be rooted at any of these; on the
other hand one can choose k points out of n in (:) ways, and for each such
choice by definition the total number of k-trées of order n rooted at this k -

tuple is Ry (n).
From (5.3.) and (5.7) we obtain immediately (5. 4).

REMARK. Notice that Ry(n) = T,(n) and thus for k=1 both (5.3)

and (5.4) reduce to Cayley’s formula

In [7] MOON has also determined the number Ry 4(n) of k-
trees of order n .in which a selected k-tuple of points has the degree d . We

shall now deduce this result by our method, i.e. we prove

THEOREM 4. Denoting by Ri.d(n (kz1, n2k+1,d21)
the number of labelled k-trees of order n in which a selected k -tuple has the

degree d, we have

k=1 wked
(5.8) Ri.d(m =(md‘_1 )[ k(n-k)]n

PROOF. It is no restriction to suppose that the selected k-tuple is
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B=(n-k+1,n-k+2,...,n). We consider the redundant Priifer codewords of
those k -trees which are rooted at B and in which B has the degree d21.
Clearly.B occurs in the lower row of the redundant Priiffer codeword d times,
one of these being'the last place. If the other d-1 places have the indices
§ardga-ees id-1 then clearly the elements O+ (i=4125:05d-1)

of the permutation f__, in the upper row of the redundant Priifer codeword

cannot be weak. It follows in the same way as in the proof of Lemma 6* that if

both the places j4 »--+1)d-1 and the weak elements. Qpy 4700 Q41
of W,_x are fixed, the total numbex of choices of the k -tuples in the lower row
is equal to

n-k~1' ‘

k" T (k(n-k-h?)

h=1

G.9) htj, (1242d-1)
heh; (1202r)

(Notice that we had to replace k(n-k-h)+1 by k(n-k-h) because B is now not
an admissible choice for By, if h#j, j,=12,.,d-1,and h + n-k.)

Multiplying (5. 9) by the number h4h, ... h,. of permutations x,_

having their weak elements at the places with indices h;+1 (12{<r) and by

summation over all admissible choices of the indices h1 y-oo2 h,, we obtain
that to any choice of the indices j,,..., j4 4 there correspond [k(n-k)]n—k-d
k-trees; as the indices j,,...,j4_4 can be chosen in ("7 4. 1—1) ways, (5.8)
follows.

REMARK. Notice that

n-k
(5.10) Ry(n) = Z Ry.g(n)
1

thus (5. 3) can be deduced from (5. 8); as a matter of fact Moon proved (5. 3) by
proving first (5.8) - in a rather complicated way - and then carrying out the
summation over d.
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One can easily generalize Theorem 1 to k-trees for any kz2.
We call the point j£n-k of alabelled k-tree T of order n a weak point if
there exists in T a point h>j such that the unique "path" from the point h to
the root (i.e. the shortest sequence of different complete (k+1)-graphs
C gren Cs » the first of which contains the point h and the last the root, and
the intersection of C; and C;, 4 is a complete k -graph) passes through the
point j (i.e. | belongs to one of the (k+1)-tuples C,,...,Cg).

With this definition we obtain the following generalization of

Theorem 1.

THEOREM 1%. Let W, (n,r) denote the probability that a random*
labelled k-tree of’ordei- n, rooted at the K-tuple (n-k+1,n-k+2,..., n)

contains r weak points. We have

n-k-1 n-k-1

hk (%1
RO S Tl NN CRLLAS SRR I
r=0 h=1 k(h—k)+1

Thus if V,(,k) denotes the number of weak points of a random k -

tree of order n, we have

E(v

~

)y _ k(n=kd(n-k-1) _ n
2[k(n-k)+1] 2

n

and
: (kj - ~k-= (n-k+1)+3 n
pP(y®y o kin-kdCn-k 1 [k d Y+3)  n
6 (k(n-k)+1) 6
* A random k-tree of order n rooted at the k-tuple n-k+1,.., n means a k-tree chosen

at random, with uniform distribution among the [k (n-k) +1 ]n—k_1‘ trees.
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further

REMARK. Notice that asymptotically the mean and variance of

Vr(‘k) do not depend on k. It has been proved by the second author (see [11])

(k)

that the same is true as regards the number &

of endpoints of a random

k -tree of order n. k)
E’l"l

fra-2)

has in the limit for n—s +c a standard normal distribution independently of the

—
e

value of k. Thus it follows that for the majority of labelled k-trees of order n
the number of points which are neither endpoints nor weak points is
1 1

asymptotically equal to n (—2— — g

Other enumeration problems concerning k-trees can also be solved

by the method of the present paper.
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