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Abstract. If A, B, C are subsets in a finite simple group of Lie type G at

least two of which are normal with |A||B||C| relatively large, then we establish
a stronger conclusion than ABC = G. This is related to a theorem of Gowers

and is a generalization of a theorem of Larsen, Shalev, Tiep and the second

author and Pyber.

1. Introduction

Let A, B, C be subsets of a finite group G. Let Prob(A,B,C) be the probability
that if a and b are uniformly and randomly chosen elements from A and B respec-
tively, then ab ∈ C. Recall that a subset of G is normal if it is invariant under
conjugation by every element of G.

Theorem 1.1. There exists a universal constant δ > 0 such that whenever G is a
finite simple group of Lie type and whenever A, B, C are subsets in G such that

(1) at least two of the three subsets A,B,C are normal in G and
(2) |A||B||C| > |G|3−δ/η2 for some given η with 0 < η < 1/4,

then

(1− η)
|C|
|G|

< Prob(A,B,C) < (1 + η)
|C|
|G|

and, for any g ∈ G, the number N of triples (a, b, c) ∈ A×B×C such that abc = g
satisfies

(1− η)
|A||B||C|

|G|
< N < (1 + η)

|A||B||C|
|G|

.

Larsen, Shalev, Tiep [7, Theorem 7.4] and the second author and Pyber [11,
Theorem 1.3] proved that there exists a universal constant δ > 0 such that whenever
A, B, C are normal subsets in a finite simple group of Lie typeG, each of size at least
|G|1−δ, then ABC = G. Theorem 1.1 is an improvement of this result. Theorem
1.1 is also related to a theorem of Gowers. See the next section.
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2. A theorem of Gowers and the Gowers trick

Let G be a finite group and let A, B, C be subsets of G. As in the Introduction,
let Prob(A,B,C) be the probability that if a and b are uniformly and randomly
chosen elements from A and B respectively, then ab ∈ C. Let k be the minimal
degree of a non-trivial complex irreducible character of G. Gowers proved the
following stronger form of [5, Theorem 3.3], which is implicit in its proof and which
may be considered as the main result of [5].

Theorem 2.1 (Gowers). If η > 0 is such that |A||B||C| > |G|3/η2k, then

(1− η)
|C|
|G|

< Prob(A,B,C) < (1 + η)
|C|
|G|

.

The Gowers trick was obtained by Nikolov and Pyber [12, Corollary 1]. We state
it in the following form.

Theorem 2.2. If η > 0 is such that |A||B||C| > |G|3/η2k, then for any g ∈ G, the
number N of triples (a, b, c) ∈ A×B × C such that abc = g satisfies

(1− η)
|A||B||C|

|G|
< N < (1 + η)

|A||B||C|
|G|

.

In the next paragraph we will show that, in the statement of Theorem 1.1, we
may assume that G is a classical simple group Cl(n, q) where n is the dimension
of the natural module for the lift of G over the field of size q unless G is a unitary
group when the field has size q2. Furthermore, we will show that we may also
assume that in the statement of Theorem 1.1 this n is sufficiently large.

Let G be a finite simple group of Lie type of rank r. We have k > |G|1/8r2 by
[4, Proposition 2.3]. Choose δ to be less than 1/8r2. In this case k > |G|δ and
so |G|3−δ/η2 > |G|3/η2k for any given η > 0. Thus Theorem 1.1 follows from
Theorem 2.1 and Theorem 2.2 when r is bounded. Therefore we may assume that
r is unbounded, that is, G is a finite simple classical group Cl(n, q), where n is
unbounded.

3. Sets permuted

The aim of this section is to reduce the proof of Theorem 1.1 to the case when
A and B are normal in G (see Proposition 3.4).

Let G be an arbitrary group. For arbitrary subsets X, Y , Z of G, let N (X,Y, Z)
be {(x, y) ∈ X × Y |xy ∈ Z} and let X−1 = {x−1|x ∈ X}.

Lemma 3.1. For arbitrary subsets X, Y , Z of a group G, the three sets N (X,Y, Z),
N (Y,Z−1, X−1), N (Z−1, X, Y −1) have the same cardinality.

Proof. Let ϕ1 be the map from the set N (X,Y, Z) to the set N (Y,Z−1, X−1)
defined by ϕ1(x, y) = (y, (xy)−1), for every (x, y) ∈ N (X,Y, Z). Let ϕ2 be the
map from N (Y,Z−1, X−1) to N (X,Y, Z) defined by ϕ2(y, z

−1) = (zy−1, y), for
every (y, z−1) ∈ N (Y,Z−1, X−1). We claim that both ϕ1 and ϕ2 are bijections and
that they are inverses of one another. For this it is sufficient to see that the maps
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ϕ2 ◦ ϕ1 and ϕ1 ◦ ϕ2 are the identity maps on N (X,Y, Z) and on N (Y,Z−1, X−1)
respectively. Indeed, for arbitrary (x, y) ∈ N (X,Y, Z), we have

(ϕ2 ◦ ϕ1)(x, y) = ϕ2(ϕ1(x, y)) = ϕ2((y, (xy)
−1)) = ((xy)y−1, y) = (x, y)

and for arbitrary (y, z−1) ∈ N (Y,Z−1, X−1), we have

(ϕ1 ◦ ϕ2)(y, z
−1) = ϕ1(ϕ2(y, z

−1)) = ϕ1((zy
−1, y)) = (y, (zy−1y)−1) = (y, z−1).

This shows that N (X,Y, Z) and N (Y,Z−1, X−1) are in bijection.

Finally, to prove that N (Y,Z−1, X−1) is in bijection with N (Z−1, X, Y −1), it is
enough to repeat the argument above with (Y,Z−1, X−1) in place of (X,Y, Z). □

A consequence of Lemma 3.1 is the following.

Corollary 3.2. Let G be a finite group and let A,B,C be non-empty subsets of G.
Then

(1) N(B,C−1, A−1) = N(A,B,C) = N(C−1, A,B−1)

and

(2)
|C|
|A|

· Prob(B,C−1, A−1) = Prob(A,B,C) =
|C|
|B|

· Prob(C−1, A,B−1).

Proof. Recall that for arbitrary non-empty subsets X, Y , Z in a finite group G, we
defined N(X,Y, Z) to be |N (X,Y, Z)| and Prob(X,Y, Z) to be N(X,Y, Z)/|X||Y |.
Conclusion (1) is a direct consequence of Lemma 3.1 and (2) follows from (1). □

We introduce some more notation. Fix g ∈ G. For subsets X,Y, Z of G, set

N (X,Y, Z, g) = {(x, y, z) ∈ X × Y × Z|xyz = g}.

Lemma 3.3. Let G be a group, let X,Y, Z be subsets of G and let g ∈ G. Let Z
be normal in G. The following hold.

(i) The sets N (X,Y, Z, g) and N (X,Z, Y, g) have the same cardinality.
(ii) If Y is a normal subset in G, then the sets N (X,Y, Z, g) and N (Y,Z,X, g)

have the same cardinality.

Proof. (i) Let η1 be the map from the set N (X,Y, Z, g) to the set N (X,Z, Y, g)
defined by η1(x, y, z) = (x, yzy−1, y) for every (x, y, z) ∈ N (X,Y, Z, g) and let η2 be
the map from N (X,Z, Y, g) to N (X,Y, Z, g) defined by η2(x, z, y) = (x, y, y−1zy)
for every (x, z, y) ∈ N (X,Z, Y, g). We claim that η2 ◦ η1 is the identity map on
N (X,Y, Z, g) and that η1 ◦ η2 is the identity map on N (X,Z, Y, g). For arbitrary
(x, y, z) ∈ N (X,Y, Z, g), we have

(η2 ◦ η1)(x, y, z) = η2(η1(x, y, z)) = η2((x, yzy
−1, y))

= (x, y, y−1(yzy−1)y) = (x, y, z)

and for arbitrary (x, z, y) ∈ N (X,Z, Y, g), we have

(η1 ◦ η2)(x, z, y) = η1(η2(x, z, y)) = η1((x, y, y
−1zy))

= (x, y(y−1zy)y−1, y) = (x, z, y).
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(ii) Let θ1 be the map from the set N (X,Y, Z, g) to the set N (Y, Z,X, g) defined
by θ1(x, y, z) = (xyx−1, xzx−1, x) for every (x, y, z) ∈ N (X,Y, Z, g) and let θ2 be
the map from the set N (Y,Z,X, g) to the set N (X,Y, Z, g) defined by θ2(y, z, x) =
(x, x−1yx, x−1zx) for every (y, z, x) ∈ N (Y,Z,X, g). We claim that θ2 ◦ θ1 is the
identity map on the set N (X,Y, Z, g) and that θ1 ◦ θ2 is the identity map on the
set N (Y,Z,X, g). For arbitrary (x, y, z) ∈ N (X,Y, Z, g), we have

(θ2 ◦ θ1)(x, y, z) = θ2(θ1(x, y, z)) = θ2((xyx
−1, xzx−1, x))

= (x, x−1(xyx−1)x, x−1(xzx−1)x) = (x, y, z)

and for arbitrary (y, z, x) ∈ N (Y, Z,X, g), we have

(θ1 ◦ θ2)(y, z, x) = θ1(θ2(y, z, x)) = θ1((x, x
−1yx, x−1zx))

= (x(x−1yx)x−1, x(x−1zx)x−1, x) = (y, z, x).

□

Note that if G is finite, then |N (X,Y, Z, g)| = N(X,Y, gZ−1).

Proposition 3.4. If Theorem 1.1 is true in the special case when A and B are
normal, then Theorem 1.1 is true in general.

Proof. Let A, B, C be subsets of G satisfying conditions (1) and (2) of Theorem
1.1. We have two cases to consider: (i) A and C are normal in G and (ii) B and C
are normal in G. Observe that if X is a normal set in G then X−1 is also normal
in G.

If A and C are normal in G, then our hypothesis gives

(3) (1− η)
|B|
|G|

< Prob(C−1, A,B−1) < (1 + η)
|B|
|G|

.

Applying (2), we deduce that

(1− η)
|C|
|G|

< Prob(A,B,C) < (1 + η)
|C|
|G|

,

which is the first conclusion of Theorem 1.1. Fix g in G. Let N = |N (A,B,C, g)|.
This is equal to N(A,B, gC−1). By applying our hypothesis to the triple (A,C,B),
we deduce that

(1− η)
|A||B||C|

|G|
< |N (A,C,B, g)| < (1 + η)

|A||B||C|
|G|

.

But

|N (A,C,B, g)| = |N (A,B,C, g)| = N

by Lemma 3.3, and this proves the second conclusion of Theorem 1.1 in this special
case.

If B and C are normal in G, then by applying our hypothesis to the triple
(B,C−1, A−1) in place of (A,B,C), we deduce that

(4) (1− η)
|A|
|G|

< Prob(B,C−1, A−1) < (1 + η)
|A|
|G|

.
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We get

(1− η)
|C|
|G|

< Prob(A,B,C) < (1 + η)
|C|
|G|

,

by applying (2). Fix g ∈ G. Our hypothesis for the triple (B,C,A) implies that

(1− η)
|A||B||C|

|G|
< |N (B,C,A, g)| < (1 + η)

|A||B||C|
|G|

.

But

|N (B,C,A, g)| = |N (A,B,C, g)| = N

by Lemma 3.3, and this proves the second conclusion of Theorem 1.1 in this special
case too. □

From now on, in order to prove our main result, we may assume that in the
statement of Theorem 1.1, A and B are normal.

4. The second conclusion of Theorem 1.1

We claim that the second conclusion of Theorem 1.1 follows from the first. For
this we may assume that A and B are normal in G. Fix g ∈ G. The number N of
triples (a, b, c) ∈ A×B ×C such that abc = g is equal to N(A,B, gC−1). Observe
that |gC−1| = |C| (and C need not be normal). We get

(1− η)
|C|
|G|

< Prob(A,B, gC−1) < (1 + η)
|C|
|G|

by the first conclusion. The second conclusion now follows from the fact that
Prob(A,B, gC−1) = N(A,B, gC−1)/|A||B|.

From now on, we focus on the first conclusion of Theorem 1.1.

5. Changing Hypothesis (2)

We will show that we may replace Hypothesis (2) of Theorem 1.1 by (2’) below.
Let A, B, C be subsets in G. Let η > 0 and let δ > 0 be as in the statement of
Theorem 1.1. Hypothesis (2) of Theorem 1.1 states that |A||B||C| is larger than
|G|3−δ/η2. This implies that |A|, |B|, |C| are larger than |G|1−δ/η2. On the other
hand, if |A|, |B|, |C| are larger than |G|1−(δ/3)/η2, then Hypothesis (2) of Theorem
1.1 holds. By changing δ to δ/3, in the rest of the paper we will replace Hypothesis
(2) by the following.

(2’) The subsets A, B, C have size larger than |G|1−δ/η2.

6. Three conjugacy classes

We will prove Theorem 1.1 in the case when A, B, C are conjugacy classes.

Let G be a finite group and let Irr(G) be the set of complex irreducible characters
of G. For an element g ∈ G and a character χ ∈ Irr(G), it is useful to bound |χ(g)|
in terms of a fixed power of χ(1). Such character bounds were first used in the
fundamental paper by Diaconis and Shahshahani [2] where they were applied to
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random walks on symmetric groups. The following is a special case of an important
theorem of Guralnick, Larsen, Tiep [6, Theorem 1.3].

Theorem 6.1 (Guralnick, Larsen, Tiep). There exists a universal constant µ > 0
such that whenever G is a classical simple group and g ∈ G satisfies |CG(g)| ≤ |G|µ,
then |χ(g)| ≤ χ(1)1/10 for every χ ∈ Irr(G).

Let A, B, C be conjugacy classes of a finite group G and let a, b, c be represen-
tatives in A, B, C respectively. We have

(5) N(A,B,C) =
|A||B||C|

|G|
∑

χ∈Irr(G)

χ(a)χ(b)χ(c)

χ(1)

by [1, p. 43-44].

For any positive number x, the well-known Witten zeta function ζG(x) is defined
to be

∑
χ∈Irr(G) χ(1)

−x. A special case of an important theorem of Liebeck and

Shalev [10, Theorem 1.1] is the following.

Theorem 6.2 (Liebeck, Shalev). For any sequence of non-abelian finite simple
groups G ̸= PSL(2, q) (for any prime power q) and any x > 2/3, ζG(x) → 1 as
|G| → ∞.

We are now in the position to prove Theorem 1.1 in the special case when the sets
A, B, C are conjugacy classes in G. For this, we may assume that G is a classical
simple group Cl(n, q) where n is sufficiently large and we may replace Hypothesis
(2) by (2’).

Theorem 6.3. Let G be a classical simple group Cl(n, q). Fix η > 0. There is a δ
with 0 < δ < 1 such that whenever A, B, C are conjugacy classes of G each of size
larger than |G|1−δ/η2, then

(1− η)
|C|
|G|

< Prob(A,B,C) < (1 + η)
|C|
|G|

.

Proof. We may choose n large enough by the last paragraph of Section 2. Let µ be
as in Theorem 6.1. Let A, B, C be conjugacy classes of G each of size larger than
|G|1−δ/η2 > |G|1−µ for some δ. As n may be chosen large enough, we may assume
that ζG(7/10)− 1 < η by Theorem 6.2. Let a ∈ A, b ∈ B and c ∈ C. We have by
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(5) that ∣∣∣∣N(A,B,C)− |A||B||C|
|G|

∣∣∣∣ = |A||B||C|
|G|

∣∣∣∣∣∣
∑

1̸=χ∈Irr(G)

χ(a)χ(b)χ(c)

χ(1)

∣∣∣∣∣∣
≤ |A||B||C|

|G|
∑

1̸=χ∈Irr(G)

|χ(a)||χ(b)||χ(c)|
|χ(1)|

≤ |A||B||C|
|G|

∑
1̸=χ∈Irr(G)

χ(1)−7/10

=
|A||B||C|

|G|
(ζG(7/10)− 1)

<
|A||B||C|

|G|
η.

The result follows. □

7. Three normal sets

We will prove Theorem 1.1 in the case when the subsets A, B, C are normal.

Lemma 7.1. Let G = Cl(n, q). There exists a universal constant c such that

k(G) ≤ |G|c/n.

Proof. We have k(G) ≤ qc1n for some universal constant c1 by [8, Theorem 1.1]
(see also [3, Corollary 1.2]). By the order formulas for finite simple classical groups,

there exists a universal constant c2 > 0 such that |G| = |Cl(n, q)| ≥ qc2n
2

. We get

k(G) ≤ qc1n = (qc2n
2

)
c1/(c2n)

≤ |G|c/n,
where c = c1/c2. □

Lemma 7.2. Let G = Cl(n, q). Fix η > 0 and δ > 0. Let X be a normal subset of
G with |X| > |G|1−δ/η2. For any fixed α > δ, the set X contains a conjugacy class
Y of G with |Y | > |G|1−α/η2, provided that n is sufficiently large.

Proof. If no such conjugacy class Y of G is contained in the normal subset X of G,
then

|G|1−δ/η2 < |X| ≤ k(G)|G|1−α/η2 ≤ |G|1+(c/n)−α/η2

by Lemma 7.1. Thus c/n > α − δ. This is a contradiction since c/n tends to 0 as
n goes to infinity. □

Let G = Cl(n, q). Fix η with 0 < η < 1. Let δ > 0 later to be specified. Let A,
B, C be normal subsets of G each of size larger than |G|1−δ/η2. Let X ∈ {A,B,C}.
Let X1 be the union of all conjugacy classes in G which are contained in X and
each of which have size larger than |G|1−α/η2 for some fixed α > δ soon to be
determined (in the end of the proof we will require δ > 0 to be small and α > 0
such that α > 3δ). Let us call such conjugacy classes large. Since n may be taken
to be sufficiently large, the normal set X1 is non-empty by Lemma 7.2.
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LetKa1
, . . . ,Kar

be the list of (distinct) large conjugacy classes of G contained in
A1. Similarly, let Kb1 , . . . ,Kbs be the list of large conjugacy classes of G contained
in B1, and let Kc1 , . . . ,Kct be the list of large conjugacy classes of G contained in
C1. Let ai, bj , cl be fixed indices such that 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ l ≤ t. There
is a choice of δ > 0 in Theorem 6.3 with η/2 such that

(1− (η/2))
|Kai

||Kbj ||Kcl |
|G|

< N(Kai
,Kbj ,Kcl) < (1 + (η/2))

|Kai
||Kbj ||Kcl |
|G|

.

This immediately implies that

(1− (η/2))
|A1||B1||C1|

|G|
<

r∑
i=1

s∑
j=1

t∑
l=1

N(Kai
,Kbj ,Kcl) < (1 + (η/2))

|A1||B1||C1|
|G|

.

Since

N(A1, B1, C1) =

r∑
i=1

s∑
j=1

t∑
l=1

N(Kai ,Kbj ,Kcl),

it follows that

(6) (1− (η/2))
|A1||B1||C1|

|G|
< N(A1, B1, C1) < (1 + (η/2))

|A1||B1||C1|
|G|

.

For X2 = X \X1, we have, by Lemma 7.1, that

(7) |X2| ≤ k(G)|G|1−α/η2 ≤ |G|1+(c/n)−α/η2 ≤ β|G|1−δ/η2 < β|X|

for any fixed β > 0, provided that n is sufficiently large. It follows that

(8) |X1| > (1− β)|X|.

Let i, j, l ∈ {1, 2}. Observe that N(Ai, Bj , Cl) ≤ |G|min{|Ai|, |Bj |, |Cl|}. We have

N(A,B,C) =

2∑
i=1,j=1,l=1

N(Ai, Bj , Cl) ≤ N(A1, B1, C1)+7|G|max{|A2|, |B2|, |C2|}.

Since 7|G|max{|A2|, |B2|, |C2|} ≤ 7|G|2+(c/n)−α/η2 by (7), it follows from this that

(9) N(A1, B1, C1) ≤ N(A,B,C) ≤ N(A1, B1, C1) + 7|G|2+(c/n)−α/η2.

Formulas (9), (6), and (8) give

N(A,B,C) ≥ N(A1, B1, C1) > (1−(η/2))
|A1||B1||C1|

|G|
> (1−(η/2))(1−β)3

|A||B||C|
|G|

.

For β < 1− (2(1− η)/(2− η))
1/3

, we have (1− (η/2))(1− β)3 > 1− η, that is,

(10) N(A,B,C) > (1− η)
|A||B||C|

|G|
.

On the other hand, (9) and (6) provide

(11) N(A,B,C) < (1 + (η/2))
|A||B||C|

|G|
+ 7|G|2+(c/n)−α/η2.

Now

(12) 7|G|2+(c/n)−α/η2 ≤ |G|2−3δ/(2η) ≤ (η/2)
|A||B||C|

|G|
,
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provided that α > 3δ and n is sufficiently large. Formulas (11) and (12) give

(13) N(A,B,C) < (1 + η)
|A||B||C|

|G|
.

Finally, (10) and (13) provide (the first conclusion of) Theorem 1.1 in the case when
A, B, C are normal subsets in G.

8. Product mixing

For positive numbers ϵ and η, Lifshitz and Marmor [9, Section 2.3] defined a
finite group G to be an (ϵ, η)-mixer if for all subsets A, B, C of G with |A|, |B|,
|C| all at least ϵ|G|, we have

(1− η)
|C|
|G|

< Prob(A,B,C) < (1 + η)
|C|
|G|

.

They also say that G is normally an (ϵ, η)-mixer if the same holds for all such normal
subsets A, B, C. (We remark that these properties were defined for η = 0.01.)
Theorem 2.1 implies that the alternating group An is an (ϵ, η)-mixer for ϵ = Cn−1/3

where C = C(η) is a constant depending only on η. For normal subsets, this result
was improved exponentially. The following may be found in [9, Theorem 2.5].

Theorem 8.1 (Lifshitz, Marmor). For any η > 0, there exists an absolute constant

c > 0, such that An is normally an (n−cn1/3

, η)-mixer.

It is shown in [9, Theorem 8.1] that Theorem 8.1 is best possible in the sense that
there exists an absolute constant C (depending on η) such that An is not normally

an (n−Cn1/3

, η)-mixer.

It would be interesting to extend Theorem 8.1 in the spirit of Theorem 1.1,
however with our current method this is not possible.

In the rest of the paper we will work with the following definition.

Definition 8.2. Let ϵ and η be positive real numbers less than 1. Let i ∈ {1, 2, 3}.
The finite group G is an (ϵ, η, i)-mixer if whenever A, B, C are subsets of G each
of size at least ϵ|G| and i of these subsets are normal in G, then

(1− η)
|C|
|G|

< Prob(A,B,C) < (1 + η)
|C|
|G|

.

For a positive real number ϵ less than 1 and for a finite group G, let kϵ(G) ≥ 1
denote the number of conjugacy classes K of G such that |K| < ϵ|G|.

Proposition 8.3. Let η and ϵ be positive real numbers satisfying the inequalities
η < 1/2 and ϵ < min{1, η · kϵ(G)

−1
(1− η)

−2}. Let G be a finite group which is an

(ϵ, η, 3)-mixer. Let ϵ′ = (ϵ · kϵ(G)/η)
1/2

< 1. If A, B, C are subsets of G each of
size at least ϵ′|G| with A and B normal in G, then

(1− 2η)
|C|
|G|

< Prob(A,B,C) < (1 + 2η)
|C|
|G|

.
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Proof. Let A, B, C be subsets of G each of size at least ϵ′|G| with A and B normal
in G. Since N(A,B,C) =

∑
c∈C N(A,B, {c}), we have

(14) Prob(A,B,C) =
1

|A||B|
∑
c∈C

N(A,B, {c}).

Letm be the number of conjugacy classes of G. Let the list of conjugacy classes of G
be K1, . . . ,Km arranged in such a way that the conjugacy classes K1, . . . ,Kt have
sizes at least ϵ|G| and the conjugacy classes Kt+1, . . . ,Km have sizes less than ϵ|G|.
Let K be the union of the conjugacy classes Kt+1, . . . ,Km. For each i ∈ {1, . . . ,m},
let ci be an element from Ki.

Since A and B are normal in G, the number N(A,B, {ci}) is independent from
the choice of ci in Ki. This gives

(15)
∑
c∈C

N(A,B, {c}) =
m∑
i=1

|C ∩Ki| ·N(A,B, {ci}) =
m∑
i=1

|C ∩Ki| ·
N(A,B,Ki)

|Ki|
.

From (14) and (15) we get

Prob(A,B,C) =
1

|A||B|

( m∑
i=1

|C ∩Ki| ·
N(A,B,Ki)

|Ki|

)
=

=
1

|A||B|

( t∑
i=1

|C ∩Ki| ·
N(A,B,Ki)

|Ki|
+

m∑
i=t+1

|C ∩Ki| ·
N(A,B,Ki)

|Ki|

)
.(16)

Since N(A,B,Ki) ≤ |A||Ki| for every i in {1, . . . ,m} and |B|, |C| ≥ ϵ′|G|, we have

1

|A||B|

m∑
i=t+1

|C ∩Ki| ·
N(A,B,Ki)

|Ki|
≤ 1

|B|

m∑
i=t+1

|C ∩Ki|

≤ |C ∩K|
|B|

≤ |C ∩K|
ϵ′|G|

≤ |K|
ϵ′|G|

≤ kϵ(G)ϵ|G|
ϵ′|G|

= kϵ(G)(ϵ/ϵ′) = ηϵ′

≤ η
|C|
|G|

.(17)

Formulas (16) and (17) give

0 ≤ Prob(A,B,C)−
( t∑

i=1

|C ∩Ki|
|Ki|

· Prob(A,B,Ki)
)
≤ η

|C|
|G|

.(18)

Observe that ϵ′ ≥ ϵ (since kϵ(G) ≥ 1 > η/(1− η)). Since G is an (ϵ, η, 3)-mixer, we
have

(19) (1− η)
|Ki|
|G|

< Prob(A,B,Ki) < (1 + η)
|Ki|
|G|
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for every i ∈ {1, . . . , t}. Inequalities (18) and (19) give the required upper bound

Prob(A,B,C) < (1 + η)
( t∑

i=1

|C ∩Ki|
|G|

)
+ η

|C|
|G|

= (1 + η)
|C ∩ (G \K)|

|G|
+ η

|C|
|G|

≤ (1 + 2η)
|C|
|G|

.

Inequalities (18) and (19) also give

Prob(A,B,C) ≥
t∑

i=1

|C ∩Ki|
|Ki|

· Prob(A,B,Ki)

> (1− η)

t∑
i=1

|C ∩Ki|
|G|

= (1− η)
|C ∩ (G \K)|

|G|

≥ (1− η)
( |C| − |K|

|G|

)
.(20)

Since |K| ≤ kϵ(G)ϵ|G|, inequality (20) gives

Prob(A,B,C) > (1− η)
|C|
|G|

− (1− η)
|K|
|G|

≥ (1− η)
|C|
|G|

− (1− η)kϵ(G)ϵ.(21)

Since |C| ≥ ϵ′|G|, we have η|C|/|G| ≥ ηϵ′. Since ϵ′ = (ϵkϵ(G)/η)
1/2

, we get

η|C|/|G| ≥ (ηϵkϵ(G))
1/2

. In view of this and (21), in order to complete the proof

of the lemma, it is sufficient to show that (ηϵkϵ(G))
1/2 ≥ (1 − η)kϵ(G)ϵ. This

inequality is equivalent to the inequality ϵ ≤ η(1 − η)−2kϵ(G)−1. But this is part
of the conditions of our lemma. □

We deduce the following consequence of Proposition 8.3. This is not needed for
the proof of Theorem 1.1.

Theorem 8.4. Let η and ϵ be positive real numbers satisfying the inequalities
η < 1/2 and ϵ < min{1, η · kϵ(G)

−1
(1− η)

−2}. Let G be a finite group which is

an (ϵ, η, 3)-mixer. Let ϵ′ = (ϵ · kϵ(G)/η)
1/2

< 1. If a finite group G is an (ϵ, η, 3)-
mixer, then it is also an (ϵ′, 2η, 2)-mixer.

Proof. Let G be an (ϵ, η, 3)-mixer. Let A, B, C be subsets of G each of size at
least ϵ′|G|. Assume that two of the sets A, B, C are normal in G. If A and B are
normal in G, then the result follows by Proposition 8.3. Let A and C be normal in
G. Then

(1− 2η)
|B−1|
|G|

< Prob(C−1, A,B−1) < (1 + 2η)
|B−1|
|G|

by Proposition 8.3. Thus

(1− 2η)
|C|
|G|

<
|C|
|B|

· Prob(C−1, A,B−1) < (1 + 2η)
|C|
|G|

.
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Since
|C|
|B|

· Prob(C−1, A,B−1) = Prob(A,B,C)

by Corollary 3.2, the result follows. Finally, let B and C be normal in G. Then

(1− 2η)
|A−1|
|G|

< Prob(B,C−1, A−1) < (1 + 2η)
|A−1|
|G|

by Proposition 8.3. Thus

(1− 2η)
|C|
|G|

<
|C|
|A|

· Prob(B,C−1, A−1) < (1 + 2η)
|C|
|G|

.

Since
|C|
|A|

· Prob(B,C−1, A−1) = Prob(A,B,C)

by Corollary 3.2, the result follows in this case too. The proof is complete. □

9. Proof of Theorem 1.1

In Section 2 we showed that, in order to prove Theorem 1.1, we may assume
that G is a finite simple classical group Cl(n, q) with n large enough. Given η with
0 < η < 1/4 and δ > 0, we may also replace Hypothesis (2) by (2’). In Section 4
we also showed that it is sufficient to establish the first conclusion of Theorem 1.1.
We may assume that A and B are normal in G by Proposition 3.4. If C is normal
in G, Theorem 1.1 follows from Section 6. In the language of Definition 8.2, G is
an (ϵ, η, 3)-mixer where ϵ = |G|−δ/η2. By changing η to η/2, we also have that G
is an (ϵ, η/2, 3)-mixer where ϵ = 4|G|−δ/η2. Finally, assume that C is not normal
in G. Observe that kϵ(G) ≥ 1 since ϵ|G| = 4|G|1−δ/η2 > 1 for n large enough. We
have kϵ(G) ≤ k(G) ≤ |G|c/n by Lemma 7.1. It follows that

ϵ = 4|G|−δ/η2 < min{1, η(1− η)
−2|G|−c/n},

for any given δ > 0, provided that n is sufficiently large. Now G is an (ϵ′, η, 2)-mixer
by Proposition 8.3, where

ϵ′ = (ϵ · kϵ(G)/η)
1/2 ≤ (2/η3/2)|G|((c/n)−δ)/2.

This is at most |G|−δ/3/η2 provided that n is sufficiently large. In this case the
first conclusion of Theorem 1.1 holds with δ/3 in place of δ.
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