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Abstract. Let G be a finite group and π be a set of primes. We study finite groups with
a large number of conjugacy classes of π-elements. In particular, we obtain precise lower
bounds for this number in terms of the π-part of the order of G to ensure the existence of
a nilpotent or abelian Hall π-subgroup in G.

1. Introduction

Let G be a finite group. The number k(G) of conjugacy classes of G is an important
and much investigated invariant in group theory. It is equal to the number of complex
irreducible representations of G. The probability Pr(G) that two uniformly and randomly
chosen elements from G commute is given by k(G)/|G| where |G| denotes the order of
G. This is called the commuting probability or the commutativity degree of G and it has
a large literature, see [Gus73, Neu89, Les01, GR06, Ebe15] and references therein. The
commuting probability has also been studied for infinite groups, see [Toi20].

A starting point of our work is a much cited theorem of Gustafson [Gus73] stating that
Pr(G) > 5/8 for a finite group G if and only if it is abelian. Let p be the smallest prime
divisor of the order of a finite group G. It was observed by Guralnick and Robinson [GR06,
Lemma 2] that if Pr(G) > 1/p, then G is nilpotent. Moreover, Burness, Guralnick, Moretó

and Navarro [BGMN22, Lemma 4.2] recently showed that if Pr(G) > p2+p−1
p3

, then G is

abelian. An aim of this paper is to give a generalization of all three of these results.
Let π be a set of primes. A positive integer is called a π-number if it is not divisible by

any prime outside π. The π-part nπ of a positive integer n is the largest π-number which
divides n. An element of a finite group is called a π-element if its order is a π-number.
The set of all π-elements in a finite group is a union of conjugacy classes of the group. Let
kπ(G) be the number of conjugacy classes of π-elements in a finite group G and let

dπ(G) := kπ(G)/|G|π.
This invariant is always at most 1 by an old result of Robinson, see [MNR21, Lemma 3.5].
The main theorem of the paper [MN14] is that if dπ(G) > 5/8 for a finite group G and a
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set of primes π, then G possesses an abelian Hall π-subgroup. The following result is a far
reaching generalization of this statement.

Theorem 1.1. Let G be a finite group and let π be a set of primes. Let p be the smallest
member of π. If dπ(G) > 1

p , then G has a nilpotent Hall π-subgroup, whose derived subgroup

has size at most p. Moreover, if dπ(G) > p2+p−1
p3

, then G has an abelian Hall π-subgroup.

A well-known theorem of Wielandt [Wie54] states that if a finite group G contains a
nilpotent Hall π-subgroup for some set of primes π then all Hall π-subgroups of G are
conjugate and every π-subgroup of G is contained in a Hall π-subgroup. Therefore, the π-
subgroups of a group satisfying the hypothesis of Theorem 1.1 behave like Sylow subgroups.

There are several results in the literature on the existence of abelian or nilpotent Hall
subgroups in finite groups. For example [BFMMNSST16, Theorem B] states that if G is a
finite group and π a set of primes, then G has nilpotent Hall π-subgroups if and only if for
every pair of distinct primes p, q in π the class sizes of the p-elements of G are not divisible
by q.

For certain sets π, Tong-Viet [TV20] proved some nice results on the existence of normal
π-complements in finite groups G under the condition that dπ(G) is large. For example,
[TV20, Theorem E] states that if p > 2 is the smallest prime in π and dπ(G) > (p+ 1)/2p,
then G contains not only an abelian Hall π-subgroup but also a normal π-complement.
Another is [TV20, Theorem A], which states that if d2(G) > 1/2 then G has a normal
2-complement. We in fact make use of this result to prove Theorem 1.1 in the case 2 ∈ π.
As a consequence, the proof for this case does not depend on the classification of finite
simple groups. The other case 2 /∈ π, however, is more challenging and our proof has to
rely on the classification.

The paper is organized as follows. In Section 2 we prove some preliminary results on the
commuting probability Pr(G). In Section 3 we prove some basic properties of the π-class
invariant dπ(G) and, in particular, we show in Theorem 3.4 that in order to prove the main
result, it suffices to show the existence of a nilpotent Hall π-subgroup under the hypothesis
dπ(G) > 1

p . We then establish this statement in Section 4, modulo a result on finite simple

groups (Theorem 4.9) that will be proved in Section 5. Finally, in Section 6, we present
examples showing that the converse of Theorem 1.1 is false and that the obtained bounds
are sharp in general.

2. Commuting probability

In this section we recall and prove some results about the commuting probability Pr(G)
that will be needed later.

The first lemma is a generalisation of Gustafson’s result [Gus73] mentioned earlier. The
inequality part is due to Burness, Guralnick, Moretó, and Navarro [BGMN22].

Lemma 2.1. Let G be a finite group and p the smallest prime dividing |G|. If G is not

abelian, then Pr(G) ≤ p2+p−1
p3

with equality if and only if G/Z(G) = Cp × Cp.

Proof. The first part of the lemma is [BGMN22, Lemma 4.2]. Following its proof, we see

that the equality Pr(G) = p2+p−1
p3

holds if and only if G/Z(G) = Cp × Cp and |xG| = p for
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every x ∈ G \Z(G). It suffices to prove that if G/Z(G) = Cp ×Cp, then |xG| = p for every
x ∈ G \ Z(G).

Assume that G/Z(G) = Cp×Cp and let x ∈ G \Z(G). Since x ∈ CG(x) \Z(G), we have

that Z(G) < CG(x). Therefore, |xG| = |G|
|CG(x)| is a proper divisor of |G|

|Z(G)| = p2. On the

other hand, since x is not central, |xG| > 1. Thus, |xG| = p, and the claim follows. �

Note that if G is an extraspecial p-group of order p3 with p odd or if G is a dihedral
group when p = 2, then G/Z(G) = Cp × Cp. Therefore, the bound in Lemma 2.1 is sharp
for all p.

We next give a bound for Pr(G) in terms of the smallest prime factor of the order of G
and the order of its derived subgroup G′.

Lemma 2.2. If p is the smallest prime dividing the order of a finite group G, then

Pr(G) ≤ 1 + (p2 − 1)/|G′|
p2

.

Proof. Let Irr(G) denote the set of all irreducible complex characters of G. We have

|G| =
∑

χ∈Irr(G)

χ(1)2 ≥ |G/G′|+ p2(k(G)− |G/G′|),

since χ(1) divides |G| for every χ ∈ Irr(G). After dividing both sides of the previ-
ous inequality by |G|, we obtain 1 ≥ 1/|G′| + p2(Pr(G) − 1/|G′|). This yields Pr(G) ≤
(1 + (p2 − 1)/|G′|)/p2, as we claimed. �

Lemma 2.3. Let G be a finite group and p the smallest prime dividing |G|. Suppose that
|G′| ≤ p. Then G′ ≤ Z(G), and thus G/Z(G) is abelian. In particular, G is nilpotent.

Proof. The case |G′| = 1 is obvious, so we assume |G′| = p. Since G′ is normal and its
order is the smallest prime dividing |G|, we deduce that G′ is central in G, and the result
follows. �

Next we refine Lemma 2.1. It follows from [GR06, Lemma 2(xiii)] of Guralnick and
Robinson that if Pr(G) > 1

p , where p is the smallest prime dividing |G|, then G is nilpotent.

Theorem 2.4. Let G be a finite group and p the smallest prime dividing |G|. Then 1
p <

Pr(G) ≤ p2+p−1
p3

if and only if |G′| = p. Moreover, in such case,

Pr(G) =
1

p
+

p− 1

p|G : Z(G)|
.

Proof. By Lemma 2.1 we may assume that G is non-abelian. Assume that |G′| > p. Then
|G′| ≥ p + 1 and hence, applying Lemma 2.2, we have Pr(G) ≤ 1

p . The only if part is

therefore done.
Conversely, assume that |G′| = p. Then G′ ≤ Z(G) by Lemma 2.3. By [Isa76, Problem

2.13], we have χ(1)2 = |G : Z(G)| for every χ ∈ Irr(G) with χ(1) > 1. We deduce that

|G| =
∑

χ∈Irr(G)

χ(1)2 = |G|/p+ |G : Z(G)|(k(G)− |G|/p),
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and it follows that

Pr(G) =
1

p
+

p− 1

p|G : Z(G)|
>

1

p
,

as stated. �

Remark 2.5. It is worth noting that if G/Z(G) ∼= Cp × Cp, then, by Lemma 2.1, we have

Pr(G) = p2+p−1
p3

> 1
p , and hence |G′| = p by Theorem 2.4.

Let us denote

gp(x) :=
1 + (p2 − 1)/x

p2
.

We note that the function gp(x) is decreasing in terms of x. Also, gp(1) = 1, gp(p) = p2+p−1
p3

,

and gp(p+1) = 1
p . These values of gp, that appear in our main result, explain the relevance

of gp.
The next theorem could be compared with a result of Lescot [Les01] stating that Pr(G) =

1
2 if and only if G is isoclinic to the symmetric group Σ3.

Theorem 2.6. Let G be a finite group and p the smallest prime dividing |G|. If |G′| > p,
then

Pr(G) ≤ n(p) + p2 − 1

p2n(p)
≤ 1

p
,

where n(p) denotes the smallest prime larger than p. Moreover, Pr(G) = 1
p if and only if

p = 2 and G/Z(G) ∼= Σ3.

Proof. By Bertrand’s postulate, we know that n(p) < 2p ≤ p2. Therefore, if |G′| > p then
|G′| ≥ n(p) and hence, applying Lemma 2.2, we have

Pr(G) ≤ gp(n(p)) =
n(p) + p2 − 1

p2n(p)
.

The second inequality holds because gp(n(p)) ≤ gp(p+ 1) = 1
p .

Suppose that Pr(G) = 1
p . This forces n(p) = p+1, which implies that p = 2 and |G′| = 3.

We claim that Pr(G) = 1
2 if and only if G/Z(G) = Σ3. Assume first that G/Z(G) = Σ3.

Let q be a prime dividing |G| and let Q ∈ Sylq(G). Since G/Z(G) = Σ3, we deduce that
|Q : Z(Q)| ≤ q and hence Q is abelian. It follows that G possesses an abelian Sylow
q-subgroup for every prime q dividing |G|. Thus, by [GR06, Lemma 2(xiii)], we have

Pr(G) = Pr(G/Z(G)) = Pr(Σ3) =
1

2
.

The other direction of the claim follows from the above-mentioned theorem of Lescot [Les01]
since if G is isoclinic to Σ3, then G/Z(G) = Σ3. �
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3. Hall π-subgroups

In this section we prove that the second statement of Theorem 1.1 follows from the first.
Let Dπ be the collection of all finite groups G such that G has a Hall π-subgroup, any

two Hall π-subgroups of G are conjugate, and any π-subgroup of G is contained in a Hall
π-subgroup. Of course Dπ is everything when π is a single prime by Sylow’s theorems.
Also, Dπ contains all π-separable groups. The following easy observation is useful to bound
dπ(G) in the case G ∈ Dπ.

Lemma 3.1. Let G be a finite group in Dπ. If H is a Hall π-subgroup of G, then

dπ(G) ≤ Pr(H).

Proof. Since |H| = |G|π, it suffices to see that kπ(G) ≤ k(H). If x, y ∈ H are not conjugate
in G, then they cannot be conjugate in H. Since G ∈ Dπ, every G-class of π-elements has
a representative in H. �

From this, we can easily prove Theorem 1.1 in case G ∈ Dπ.

Theorem 3.2. Let π be a set of primes and G a finite group in Dπ. Then Theorem 1.1
holds for G.

Proof. By hypothesis, G has a Hall π-subgroup H and all the Hall π-subgroups of G are
G-conjugates of H. Thus, by Lemma 3.1, we have dπ(G) ≤ Pr(H). Let p be the smallest
prime in π. Assume that dπ(G) > 1

p . We then have

Pr(H) >
1

p
.

Theorem 2.4 and Lemma 2.3 then imply that |H ′| ≤ p and H is nilpotent, as claimed.

Moreover, if dπ(G) > p2+p−1
p3

then H is abelian by Lemma 2.1. �

As a consequence of Theorem 3.2, we have that Theorem 1.1 holds if π = {p} or if G is
π-separable.

We also recall some facts on the groups in Dπ. The first one is a result of Wielandt
[Wie54] mentioned in the Introduction and the second one is due to Hall [Hal56, Theorem
D5].

Lemma 3.3. Let G be a finite group and π a set of primes.

(i) If G possesses a nilpotent Hall π-subgroup, then G ∈ Dπ.
(ii) If N possesses nilpotent Hall π-subgroups, G/N possesses solvable Hall π-subgroups,

and G/N ∈ Dπ, then G ∈ Dπ.

Theorem 3.4. The second statement of Theorem 1.1 follows from the first.

Proof. Let G be a group with dπ(G) > p2+p−1
p3

> 1
p . By hypothesis, G possesses a nilpotent

Hall π-subgroup. It then follows that G ∈ Dπ by Lemma 3.3. The result follows by Theorem
3.2. �

The rest of the paper is therefore devoted to prove that G has a nilpotent Hall π-subgroup
under the condition dπ(G) > 1

p .
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4. Reducing to a problem on simple groups

In this section we prove Theorem 1.1, assuming a result on finite simple groups.

4.1. Reducing to simple groups. We begin by recalling two properties of dπ(G). The
first one is [MN14, Proposition 5], essentially due to Robinson. The second is due to Fulman
and Guralnick [FG12, Lemma 2.3].

Lemma 4.1. Let G be a finite group and π a set of primes.

(i) Let µ ⊆ π. Then dπ(G) ≤ dµ(G).
(ii) dπ(G) ≤ dπ(N) dπ(G/N) for any normal subgroup N of G.

Lemma 4.2. Let G be a finite group, π a set of primes, and p the smallest prime in π.
Let q ∈ π and Q ∈ Sylq(G). Suppose dπ(G) > 1

p . We have

(i) Q/Z(Q) is abelian and |Q′| ≤ q.
(ii) If q ∈ π \ {p}, then Q is abelian.

Proof. By Sylow’s theorems and Lemma 3.1 we have dq(G) ≤ Pr(Q). On the other hand,
by Lemma 4.1(i), we have dπ(G) ≤ dq(G). We deduce that

1

q
≤ 1

p
< Pr(Q).

Theorem 2.4 and Lemma 2.3 now imply that Q/Z(Q) is abelian and |Q′| ≤ q.
Suppose q > p. Then q ≥ p + 1, and one can easily check that q2+q−1

q3
< 1

p . Now

Pr(Q) > q2+q−1
q3

, and thus Q must be abelian by Lemma 2.1. �

The next lemma is [Mor13, Lemma 3.1], which allows us to work with a set of two primes
instead of an arbitrary set.

Lemma 4.3 (Moretó). Let G be a finite group and let π a set of primes. If G possesses a
nilpotent Hall τ -subgroup for every τ ⊆ π with |τ | = 2, then G possesses a nilpotent Hall
π-subgroup.

Proposition 4.4. Suppose that Theorem 1.1 is false for a group G. Then there exists
π = {p, q}, where p < q are two primes, such that G does not possess nilpotent Hall π-
subgroups and for all P ∈ Sylp(G) and Q ∈ Sylq(G) such that P/Z(P ) is abelian, |P ′| ≤ p,
and Q is abelian.

Proof. By Theorem 3.4, we may assume that there exists π, a set of primes, such that
dπ(G) > 1

p , but G does not possess nilpotent Hall π-subgroups, where p is the smallest

member of π.
If G has a nilpotent Hall τ -subgroup for every τ ⊆ π with |τ | = 2, then by Lemma

4.3, G has nilpotent Hall π-subgroups. Thus, there exists {q, r} ⊆ π with q < r such
that G does not possess a nilpotent Hall {q, r}-subgroup. By Lemma 4.1(i), we also have
dπ(G) ≤ d{q,r}(G), and it follows that

1

q
≤ 1

p
< dπ(G) ≤ d{q,r}(G).
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Therefore, Theorem 1.1 fails for G and the set {q, r}, and hence we may assume that |π| = 2,
that is π = {p, q} with p < q.

Finally, the assertion on the Sylow subgroups follows from Lemma 4.2. �

Proposition 4.5. Let G be a finite group with minimal order subject to the conditions
that dπ(G) > 1

p and G does not possess nilpotent Hall π-subgroups. Then G is non-abelian

simple.

Proof. We may assume that G is non-abelian and not simple. Let N be a nontrivial proper
normal subgroup in G. By Lemma 4.1(ii), we have

1

p
< dπ(G) ≤ dπ(G/N) dπ(N).

It follows that 1
p < dπ(G/N) and 1

p < dπ(N), as both dπ(N) and dπ(G/N) are at most one

(see [MNR21, Lemma 3.5]). By the minimality of G, N and G/N possess nilpotent Hall
π-subgroups. Applying Lemma 3.3, we then deduce that both N and G/N are members of
Dπ. It follows that G/N ∈ Dπ, G/N possesses solvable Hall π-subgroups and N possesses
nilpotent Hall π-subgroups. By Lemma 3.3(ii), we have G ∈ Dπ. Therefore, by Theorem
3.2, we have that G possesses nilpotent Hall π-subgroups, which is a contradiction. We
conclude that G is non-abelian simple. �

4.2. Reducing to a question on simple groups. The following is a consequence of a re-
sult of Tong-Viet, which asserts that if d2(G) > 1

2 then G possesses a normal 2-complement.

Lemma 4.6. Let S be a non-abelian simple group and π be a set of primes containing 2.
Then dπ(S) ≤ 1

2 .

Proof. Suppose that dπ(S) > 1
2 . Then 1

2 < dπ(S) ≤ d2(S). By [TV20, Theorem A], S
possesses a normal 2-complement, which is impossible. �

Proposition 4.7. Let G be a group and π a set of primes such that dπ(G) > 1
p , where p

is the smallest prime in π. Let q ∈ π but q 6= p. Then q does not divide |NG(P ) : CG(P )|
where P ∈ Sylp(G).

Proof. Assume by contradiction that q divides |NG(P )/CG(P )|. Let x be an element of
order q in NG(P )/CG(P ) where P ∈ Sylp(G). Consider the action of X = 〈x〉 on P . Let r
be the number of elements of P fixed by X.

We claim that r > |P |
p2

. Assume to the contrary that r ≤ |P |
p2

. We have |P | = r + t · q,
implying that t = |P |−r

q . Since each X-orbit on P is contained in a conjugacy class of

p-elements it is easy to see that kp(G) ≤ r + t. Now we have

1

p
< dπ(G) ≤ dp(G) =

kp(G)

|P |
≤ r + t

|P |
=

1

q

(
(q − 1)

r

|P |
+ 1

)
≤ 1

q

(
(q − 1)

1

p2
+ 1

)
.

It is not hard to see that this implies q ≤ p, which is a contradiction. We have shown that

r > |P |
p2

.

Since r divides |P |, it follows that

r ∈ {|P |, |P |/p}.
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If r = |P | then X centralises P , which is impossible. Thus r = |P |/p and hence there exists
a subgroup H of order |P |/p that is centralised by X. That is,

H = CP (X) = {z ∈ P | zx = z for all x ∈ X}.

Let L := X n P . Then L/H ∼= X n C for some C ∼= Cp. Since H is maximal in P , the
subgroup H is normal in P , and it is X-invariant, applying [Isa08, Corollary 3.28], we have

CP/H(X) = CP (X)H/H = H/H,

and hence X acts nontrivially on C. Let O be a nontrivial orbit of the action of X on C.
We now have q = |X| = |O| ≤ |C| = p, which is a contradiction. �

Corollary 4.8. Let G be a group and π = {p, q} a set of primes with p < q such that
dπ(G) > 1

p . Let P ∈ Sylp(G). Then q divides | Sylp(G)| = |G : NG(P )| or G possesses a

nilpotent Hall π-subgroup.

Proof. We know that |G|q divides

|G| = |G : NG(P )||NG(P ) : CG(P )||CG(P )|

but q cannot divide |NG(P ) : CG(P )| by Proposition 4.7. Assume that q does not divide
|G : NG(P )|. Then |G|q divides |CG(P )|. Therefore, there exists Q ∈ Sylq(G) with
Q ≤ CG(P ). Now PQ is a nilpotent Hall π-subgroup of G. �

Now we can prove Theorem 1.1, modulo the following statement about simple groups
whose proof is deferred to the next section.

Theorem 4.9. Let G be a non-abelian simple group and π = {p, q} be a set of two odd
primes with p < q. Assume that there exist P ∈ Sylp(G) and Q ∈ Sylq(G) such that P/Z(P )

is abelian, |P ′| ≤ p, Q is abelian, and q divides |G : NG(P )|. Then dπ(G) ≤ 1
p .

Observe that in Theorem 4.9 we may assume that both p and q divide the order of G.

Theorem 4.10. Let G be a finite group, π be a set of primes, and p be the smallest prime
in π. Assume Theorem 4.9. If dπ(G) > 1

p then G has a nilpotent Hall π-subgroup.

Proof. Assume that the theorem is false and let G be a minimal counterexample. In par-
ticular, dπ(G) > 1

p but G has no nilpotent Hall π-subgroups. By Proposition 4.5, we know

that G is non-abelian simple. Using Lemma 4.6, we know furthermore that p 6= 2.
By Proposition 4.4, there exists π = {p, q} with (odd) p < q such that dπ(G) > 1

p ,

P/Z(P ) is abelian, |P ′| ≤ p, and Q is abelian, where P ∈ Sylp(G) and Q ∈ Sylq(G). We
also have that q divides |G : NG(P )|, by Corollary 4.8. We now have all the hypotheses of
Theorem 4.9, and therefore deduce that dπ(G) ≤ 1

p . This is a contradiction. �

Remark that we have indeed proved Theorem 1.1 when the set π contains the prime 2,
and this result does not rely on the classification of finite simple groups.
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5. Simple groups

In this section we prove Theorem 4.9, by using the classification. We begin with the
alternating groups.

Lemma 5.1. Let p be an odd prime, n ≥ 5 be an integer and P ∈ Sylp(An).

(i) If n ≥ p2, then P/Z(P ) is not abelian.
(ii) If n < p2, then P is elementary abelian.

Proof. For (i) it is sufficient to exhibit a subgroup H of P such that H/Z(H) is not abelian.
If n ≥ p2, then H = Cp o Cp is such a subgroup of P . Statement (ii) follows from the
description of the Sylow p-subgroups of An found in [Hup67, Satz III.15.3]. �

Theorem 5.2. Let n ≥ 5, π = {p, q} be a set of two odd primes with p < q, and P ∈
Sylp(An). Assume that both p and q divide the order of An. If P/Z(P ) is abelian, then

dπ(An) ≤ 1
p . In particular, Theorem 4.9 holds for alternating groups.

Proof. Let P ∈ Sylp(An) and Q ∈ Sylq(An). Since P/Z(P ) is abelian, n < p2 by Lemma
5.1. Let n = rp+ s = lq + t, where r, s ∈ {0, 1, . . . , p− 1} and l, t ∈ {0, 1, . . . , q − 1}. Then
P = (Cp)

r and Q = (Cq)
l with both r and l at least 1.

It is easy to see that every π-element of An can be expressed as a product of the form
xy = yx, where x is a product of cycles of length p and y is a product of cycles of length
q. Since n < p2, the supports of x and y are disjoint.

Assume first that n ≥ p + q + 2. In this case we have that kp(An) = 1 + r ≤ p,

kq(An) = 1 + l ≤ q and |An|π = prql. Thus we have

dπ(An) =
kπ(An)

|An|π
≤ pq

prql
.

If (r, l) 6= (1, 1), then dπ(An) ≤ 1
p . Assume now that r = l = 1. Then kπ(An) ≤

kp(An)kq(An) = 4 and hence dπ(An) ≤ 4
q

1
p <

1
p , where the last inequality holds because

q ≥ 5.
Assume now that n ≤ p + q + 1 and so l = 1. In this case it may happen that a Σn-

conjugacy class of π-elements splits in two different An-conjugacy classes. We thus have
kπ(An) ≤ (1 + r)(1 + l) + 1 = 2(1 + r) + 1 = 2r+ 3. It follows that dπ(An) ≤ 2r+1

prq . If r ≥ 2,

then 2r+3
prq < 1

q <
1
p . If r = 1, then 2r + 3 = 5 ≤ q and so once again dπ(An) ≤ 1

p . �

For convenience, we will consider the Tits group 2F4(2)′ as a sporadic simple group.

Theorem 5.3. Let S be a sporadic simple group and π = {p, q} where p < q are odd primes
dividing |S|. If (S, π) 6= (J1, {3, 5}) then dπ(S) ≤ 1

p . In particular, Theorem 4.9 holds for

S.

Proof. In what follows we use information in [Atl] without further notice. We may assume
that π is a set of primes such that kπ(S) ≥ 6, for otherwise

dπ(S) =
kπ(S)

|S|π
≤ 5

pq
≤ 1

p
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There is no such π for the four smallest Mathieu groups. For each of the groups M24, HS,
J2 there are two possibilities for π. In each of the six cases kπ(S) is at most |S|p or |S|q
and this is sufficient to obtain the bound dπ(S) ≤ 1

p .

So we assume that S is not one of the groups already analyzed. If S is different from
Fi23, Fi′24 and J1, then we count the total number of conjugacy classes of S of elements of
odd order. These numbers are usually less that |S|r for a given prime divisor r of |S|. If
this is the case for a prime r, then we can assume that r does not lie in π (otherwise we
would be done). These give strong restrictions on the set π. In fact, given that kπ(S) ≥ 6,
we find this way that S must be J4 and π is either {3, 7} or {5, 7}. In each of these two
cases we count the number of π-classes in S to obtain our bound of 1

p for dπ(S).

If S is Fi23 or Fi′24, then we again count the number of conjugacy classes of S of elements
of odd order. This allows us to conclude that 3 cannot lie in π. We then count the number
of conjugacy classes of S whose elements have orders divisible neither by 2 nor 3. This
number is 8 in the first case and 14 in the second. By looking at the prime factorization of
|S|, the only case to consider is S = Fi′24 and π = {11, 13}. But it turns out that kπ(S) = 3
in this case.

The only group remaining is S = J1. The number of conjugacy classes of S of elements
of odd order is 11 forcing π to be a subset of {3, 5, 7}. Then kπ(S) = 3 or π = {3, 5} and
kπ(S) = 6, giving dπ(S) = 2

5 .
The last assertion follows from the fact that if P ∈ Syl3(J1), then 5 does not divide

|J1 : NJ1(P )|. �

We are left with the case of simple groups of Lie type S 6= 2F4(2)′. For the sake of
convenience, we rename the prime q in Theorem 4.9 to s in order to reserve q for the size
of the underlying field of S.

The proof of Theorem 4.9 for groups of Lie type is divided into two fundamentally
different cases: π contains the defining characteristic of S and π does not. The former case
is fairly straightforward.

Theorem 5.4. Let S be a finite simple group of Lie type in characteristic p > 2 and
π = {p, s}, where s is an odd prime dividing |S|. Then,

dπ(S) ≤ 1

s
.

In particular, Theorem 4.9 holds for simple groups of Lie type when π contains the defining
characteristic of S.

Proof. First we observe that the desired inequality is satisfied if kπ(S) ≤ |S|p. We shall make
use of well-known bounds of Fulman and Guralnick [FG12] for the numbers of conjugacy
classes of finite Chevalley groups to show that, when S has high enough rank, even the
stronger inequality k(S) ≤ |S|p holds true.

Let S = PSL(n, q). Then k(S) ≤ min{2.5qn−1, qn−1 + 3qn−2} by [FG12, Proposition

3.6]. This is certainly smaller than |S|p = qn(n−1)/2 if n ≥ 4. Therefore, we just need to
verify the theorem for n = 2 or 3. The theorem is in fact straightforward to verify for these
low rank cases, using the known information on conjugacy classes of the group (see [Dor71,
Chapter 38] for n = 2 and [SF73] for n = 3). The case S = PSU(n, q) is entirely similar.
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Next, we consider PSp(2n, q) with n ≥ 3. Then k(S) ≤ 10.8qn for odd q, and it easily

follows that k(S) ≤ |S|p = qn
2
. The case of orthogonal groups is similar, with a remark

that k(Ω(2n+ 1, q)) ≤ 7.3qn for n ≥ 2 and k(PΩ±(2n, q)) ≤ 6.8qn for n ≥ 4.
Now we turn to exceptional groups. Recall that the defining characteristic p of S is odd,

so we will exclude the types 2B2 and 2F4. By [FG12, Table 1] (or [Lüb] for more details),
we observe that k(S) is bounded above by a polynomial with positive coefficients, say gS ,
evaluated at q. Suppose S is one of 3D4(q), F4(q), E6(q), 2E6(q), E7(q), or E8(q). We then
have

k(S) ≤ gS(1)qdeg(gS) ≤ 252qdeg(gS) and
qdeg(gS)

|S|p
≤ 1

q8
.

Therefore,

dπ(S) ≤ k(S)

|S|p|S|s
≤ 252

sq8
<

1

s
,

as wanted. The remaining cases of the types G2 and 2G2 are even easier, using the more
refined bounds k(G2(q)) ≤ q2 + 2q + 9 and k(2G2(q)) ≤ q + 8. �

Lemma 5.5. Let G be a finite group and let π be a set of primes such that |Z(G)|π = 1.
Then, kπ(G) = kπ(G/Z(G)).

Proof. Let Z := Z(G). Every coset gZ of Z in G contains at most one π-element of G since
|Z|π = 1. The π-elements of G/Z are gZ where g runs through the π-elements of G. If g
is a π-element, then the conjugacy class of gZ in G/Z consists of hZ where h ∈ gG. Thus,
there is a bijection between the π-conjugacy classes of G and the π-conjugacy classes of
G/Z. �

In the case when π does not contain the defining characteristic of S, the conjugacy classes
of π-elements of S will be semisimple classes, which can be conveniently described via an
ambient algebraic group of S and its Weyl group.

It is well-known that every simple group of Lie type S 6= 2F4(2)′ is of the form S =
GF /Z(GF ) for some simple algebraic group G of simply connected type and a suitable
Steinberg endomorphism F on G, see [MT11, Theorem 24.17] for instance.

Theorem 5.6. Let S be a finite simple group of Lie type and G, F as above. Let π = {p, s}
with p < s be a set of primes not containing the defining characteristic of S. Suppose that
s divides |Sylp(S)|. Then

dπ(GF ) ≤ 1

p
.

In particular, if |Z(GF )|π = 1, then dπ(S) ≤ 1
p .

Proof. LetG := GF . We first claim that a Hall π-subgroup ofG, if exists, cannot be abelian.
Assume by contradiction that G does have such subgroup, say H. Then H := HZ(G)/Z(G)
would be an abelian Hall π-subgroup of S, implying that NS(P ) contains H, where P is a
Sylow p-subgroup of S that is contained in H. It follows that s does not divide |S : NS(P )|,
violating the hypothesis.

Let T be an F -stable maximal torus of G, and let W = NG(T)/T be the Weyl group
of G. Since π does not contain the defining characteristic of S, the conjugacy classes of
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π-elements of G are semisimple classes. According to [Car85, Proposition 3.7.3] and its
proof, there is a well-defined bijection

τ : Clss(G)→ (T/W )F

between the set Clss(G) of semisimple conjugacy classes of G and the set (T/W )F of F -
stable orbits of W on T. Malle, Navarro, and Robinson showed in [MNR21, Theorem 3.15]
that this bijection τ preserves element orders, and therefore the counting formula (and its
proof) for the number of F -stable orbits of W on T in [Car85, Proposition 3.7.4] implies
that

kπ(G) =
1

|W |
∑
w∈W

|Tw−1F |π.

It follows that

dπ(G) =
1

|W |
∑
w∈W

|Tw−1F |π
|G|π

.

Now, if |Tw−1F |π = |G|π for some w ∈ W then a Hall π-subgroup of Tw−1F , which is
abelian, would be a Hall π-subgroup of G, and this contradicts the above claim. Thus

|Tw−1F |π
|G|π

≤ 1/p

for every w ∈W . It then follows that

dπ(G) ≤ 1

p
,

proving the first part of the theorem.
For the second part, assume that |Z(G)|π = 1. By Lemma 5.5, we then have

dπ(S) = dπ(G/Z(G)) = dπ(G) ≤ 1

p
,

as stated. �

Theorem 5.6 already proves Theorem 4.9 in several cases, as seen in the next result. In
what follows, to unify the notation, we use GLε, SLε and PSLε for linear groups when ε = +
and for unitary groups when ε = −. We also use E+

6 for E6 and E−6 for 2E6.

Theorem 5.7. Let S be a simple group of Lie type, π be a set of two odd primes not
containing the defining characteristic of S, and p be the smaller prime in π. Assume that
we are not in one of the following situations:

(i) S = Eε6(q) and 3 ∈ π.
(ii) S = PSLε(n, q) with n ≥ 3 and gcd(n, q − ε)π 6= 1.

Then dπ(S) ≤ 1
p .

Proof. Let G and F be as in Theorem 5.6. According to [MT11, Table 24.12], if we are not
in one of the stated situations, then |Z(GF )|π = 1. The result then follows from Theorem
5.6. �

Next we prove Theorem 4.9 for case (i) in Theorem 5.7.
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Proposition 5.8. Let S = Eε6(q) with (3, q) = 1 and P ∈ Syl3(S). Then |P ′| > 3. In
particular, Theorem 4.9 holds in the case S = Eε6(q) and 3 ∈ π.

Proof. Let G be a simple algebraic group of simply connected type and F : G → G a
Frobenius map such that S = GF /Z(GF ). By [MT11, Theorem 25.17], we know that
every Sylow 3-subgroup of GF lies in NGF (T) for some maximal F -stable torus T of
G. Therefore Sylow 3-subgroups of NGF (T)/TF = SO(5, 3) (the Weyl group of E6) are
homomorphic images of Sylow 3-subgroups of S = GF /Z(GF ). Since the size of the derived
subgroup of Sylow 3-subgroups of SO(5, 3) is 9, we deduce that |P ′| > 3. �

For the rest of this section, we will prove Theorem 4.9 for case (ii) in Theorem 5.7.

Lemma 5.9. Let p be an odd prime and S = PSLε(n, q). Assume that p divides gcd(n, q−ε)
and Sylow p-subgroups of S are abelian. Then n = p = 3. Furthermore, q − ε is divisible
by 3 but not 9.

Proof. It is argued in Lemma 2.8 of [KS21] that if Sylow p-subgroups of S are abelian and
p ≥ 5 then p cannot divide |Z(SLε(n, q))|. Therefore our hypotheses imply that p = 3.

We first prove that n = 3. The condition p = 3 divides gcd(n, q− ε), implies that n ≥ 3.
Assume by contradiction that n > 3. Let w be the (unique) element of order 3 of F×

q2
, and

consider the element g := diag(In−2, w, w
−1). We have

CGLε(n,q)(g) = GLε(n− 2, q)×GLε(1, q)2,

and so

|GLε(n, q) : CGLε(n,q)(g)| = q2n−1 (qn − εn)(qn−1 − εn−1)

(q − ε)2
.

Since 3 divides gcd(n, q − ε), we have that 3 must divide |GLε(n, q) : CGLε(n,q)(g)|. In
fact, we also have 3 divides |SLε(n, q) : CSLε(n,q)(g)|. On the other hand, as 1 is the only
eigenvalue of g with multiplicity larger than 1 (recall that n > 3), it is easy to see that
CSLε(n,q)(g) is the full pre-image of CPSLε(n,q)(g) under the natural projection from SLε to
PSLε, where g is the image of g in PSLε(n, q). In particular, | SLε(n, q) : CSLε(n,q)(g)| =
|PSLε(n, q) : CPSLε(n,q)(g)|, and hence 3 divides |PSLε(n, q) : CPSLε(n,q)(g)|, implying that
Sylow 3-subgroups of S = PSLε(n, q) are not abelian. We have shown that n = 3.

Finally, assume that 9 divides q− ε. Let λ be the element of order 9 in F×
q2

and consider

h := diag(λ, λ3, λ5) ∈ SLε(3, q), also of order 9. We then have CGLε(3,q)(h) = GLε(1, q)3,

so that |CSLε(3,q)(h)| = (q − ε)2. Moreover, as {λ, λ3, λ5} = {aλ, aλ3, aλ5} if and only if

a = 1, CSLε(3,q)(h) is the full pre-image of CPSLε(3,q)(h). We deduce that |CPSLε(3,q)(h)| =
(q − ε)2/3. This is smaller than the 3-part of |PSLε(3, q)|, and thus Sylow 3-subgroups of
PSLε(3, q) are not abelian, violating the hypothesis. So 9 cannot divide q−ε, as stated. �

Theorem 5.10. Let p be an odd prime, n ≥ 4, and (n, p) 6= (6, 3). Let G := SLε(n, q)
defined in characteristic not equal to p, S := G/Z(G) = PSLε(n, q), and P ∈ Sylp(S).
Suppose that P/Z(P ) is abelian. Then p does not divide |Z(G)|.

Proof. Assume by contradiction that p | |Z(G)| = gcd(n, q − ε). Lemma 5.9 already shows
that P is non-abelian, but we need to work harder to achieve that P/Z(P ) is non-abelian.
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Let λ ∈ F×
q2

be an element of order p and consider the p-element

x := diag(λ, λ−1, In−2) ∈ G.

Let V = Fnq , respectively Fnq2 , denote the natural G-module for ε = +, respectively ε = −.

Fix a basis B = {v1, v2, ..., vn} of V , and consider the permutation y on B defined by

y := {v1 7→ v2, v2 7→ v3, ..., vp−1 7→ vp, vp 7→ v1, vi 7→ vi for p < i ≤ n},

which is well-defined as p ≤ n. Note that, as p > 2, we have y ∈ G and ord(y) = p. Direct
calculation shows that

[x, y] = diag(λ−1, λ2, λ−1, In−3) =: s.

Suppose that the p-part of q− ε is pa and let C be the (unique) cyclic subgroup of order
pa of F×

q2
. As y permutes the diagonal matrices in G with diagonal entries in C, one can

form the corresponding semidirect product that is then a p-group. It follows that x and y

both belong to a Sylow p-subgroup, say P̂ , of G. We deduce that s = [x, y] ∈ P̂ ′, which

implies that sZ(G) ∈ P ′, where P ∈ Sylp(S) is the image of P̂ under the natural projection
SLε → PSLε.

We will show that sZ(G) does not belong to Z(P ), which is enough to conclude that
P/Z(P ) is not abelian.

Let G̃ := GLε(n, q). We have

C
G̃

(s) =

{
GLε(3, q)×GLε(n− 3, q) if p = 3

GLε(1, q)×GLε(2, q)×GLε(n− 3, q) if p > 3.

It is easy to see that |S : CS(sZ(G))| = |G : CG(s)| = |G̃ : C
G̃

(s)|. Hence,

|S : CS(sZ(G))| =


|GLε(n, q)|

|GLε(3, q)||GLε(n− 3, q)|
if p = 3

|GLε(n, q)|
|GLε(1, q)||GLε(2, q)||GLε(n− 3, q)|

if p > 3.

It follows that, if ` is the defining characteristic of S, then

|S : CS(sZ(G))|`′ =


(qn − εn)(qn−1 − εn−1)(qn−2 − εn−2)

(q − ε)(q2 − 1)(q3 − ε3)
if p = 3

(qn − εn)(qn−1 − εn−1)(qn−2 − εn−2)

(q − ε)2(q2 − 1)
if p > 3.

Using the condition p | gcd(n, q − ε) and the assumption (n, p) 6= (6, 3), we see that this
is divisible by p. It follows that sZ(G) does not belong to Z(P ), and this finishes the
proof. �

Lemma 5.11. Let S = PSLε(n, q) with n ≥ 4. If 3 divides q − ε, then d3(S) ≤ 1
3 . In

particular, if 3 divides q − ε and 3 ∈ π, then dπ(S) ≤ 1
3 .

Proof. Assume, to the contrary, that d3(S) > 1/3. Then d3(P ) > 1/3, and thus |P ′| ≤ 3 by
Theorem 2.4. The proof of Theorem 5.10 shows that P ′ contains two elements sZ(G) and
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tZ(G), where s = diag(λ−1, λ2, λ−1, In−3) and t = diag(1, λ−1, λ2, λ−1, In−4). Obviously
these elements generate a group of order greater than 3, a contradiction. �

Lemma 5.12. Let S = PSLε(3, q) and π a set of odd primes with 3 ∈ π. Then dπ(S) ≤ 1
3 .

Proof. If 3 does not divide q − ε, then the result follows by Proposition 5.6. We therefore

assume that 3 divides q − ε. In particular, 3 divides q2 + εq + 1. Denote t := (q−ε)3
3 . We

have

|S|3 =
((q − ε)2(q + ε)(q2 + εq + 1))3

3
≥ (q − ε)2

3 = 9t2.

On the other hand, counting the number of conjugacy classes of 3-elements in PSLε(3, q)
(see for example [SF73]) we have k3(S) = (t2 + t+ 2)/2 ≤ 2t2. Therefore,

dπ(S) ≤ d3(S) =
k3(S)

|S|3
≤ 2t2

9t2
<

1

3
,

as wanted. �

Proposition 5.13. Theorem 4.9 holds for S = PSLε(n, q) with n ≥ 3 and π = {p, s} with
p < s be odd primes such that q is not divisible by neither p nor s.

Proof. The result follows by Theorem 5.6 in the case gcd(n, q − ε)π = 1. So assume that
gcd(n, q − ε)π > 1, so that there exists r ∈ π such that r divides gcd(n, q − ε). The case
n = 3 is then done by Lemma 5.12. So we assume furthermore that n ≥ 4.

Let R ∈ Sylr(S). We have that R/Z(R) is abelian by hypothesis. This and the condition
r divides gcd(n, q − ε) contradict Theorem 5.10 if r ≥ 5. The remaining case r = 3 is
handled by Lemma 5.11. �

We have completed the proof of Theorem 4.9, by combining Theorems 5.2, 5.3, 5.4, 5.7
and Propositions 5.8 and 5.13.

As mentioned before, Theorem 1.1 follows from Theorem 4.9 and Theorem 4.10 together
with Theorem 3.4.

6. Examples and further discussion

In this section, we present examples showing that the converses of both statements of
Theorem 1.1 are false and the bounds are generically sharp.

Consider the converse of the first sentence of Theorem 1.1. Assume first that 2 ∈ π and
3 6∈ π. If G is the direct product of Σ4 and an abelian group, then dπ(G) = 1

6 . Now, let π
have size at least 2 and p > 2. Let P be a finite p-group with |P ′| = p. Let C be the cyclic
group which is the direct product of the groups Cq where q runs over all primes in π except
for p. Let T be the elementary abelian 2-group of rank |π| − 1. Let G = P × (C : T ) where
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C : T =
∏
p 6=q∈π(Cq : C2). In this case

dπ(G) ≤
(p2 + p− 1

p3

)( ∏
p 6=q∈π

q + 1

2q

)
≤
(p2 + p− 1

p3

)
·
(p+ 1

2p

)|π|−1

≤
(p2 + p− 1

p3

)
·
(p+ 1

2p

)
.

Since p ≥ 3, this is less than 5
6p , so the converse of the first statement is false.

Consider the converse of the second statement. Assume first that 2 ∈ π and 3 6∈ π. If G
is the direct product of A4 and an abelian group, then dπ(G) = 1

6 . Now, let p 6= 2 and let

|π| ≥ 3. Let C =
∏
q∈π Cq. Let T = Cp−1 × (C2)|π|−1 and set G = C : T . Then

dπ(G) =
2

p
·
∏

p 6=q∈π

q + 1

2q
.

Since |π| ≥ 3, q ≥ p+ 2 and all primes q in π are odd, we get

dπ(G) ≤
(2

p

)
·
((p+ 2) + 1

2(p+ 2)

)
·
((p+ 4) + 1

2(p+ 4)

)
≤ 24

35p
.

Thus the converse of the second statement of Theorem 1.1 is also false.
The inequality dπ(G) > p2+p−1

p3
in the second statement of Theorem 1.1 is sharp for every

set of primes π. Take G to be the direct product of a finite non-abelian p-group P such

that P/Z(P ) is isomorphic to Cp×Cp with an abelian group. In this case dπ(G) = p2+p−1
p3

and G does not contain an abelian Hall π-subgroup.
Let us consider now the inequality dπ(G) > 1/p of the first sentence. This condition is

best possible when p = 2 and 3 ∈ π, for if G is a direct product of Σ3 and an abelian group,
then dπ(G) = 1/2 and G does not contain a nilpotent Hall π-subgroup. However the bound
is certainly not best possible when p is odd. In fact, following our proofs closely, it can be
seen that in such case, the group G still possesses a nilpotent Hall π-subgroup even when
dπ(G) = 1/p.

Now let p be odd. We will show that in certain cases the inequality dπ(G) > 1/2p
does not imply that G has a nilpotent Hall π-subgroup. To see this let π = {p, q} where
q = 2p + 1; that is, p is a Sophie Germain prime. Let G be the direct product of Cq : Cp
and an abelian group. Elementary character theory gives kπ(Cq : Cp) = p+(q−1)/p. Thus

dπ(G) = dπ(Cq : Cp) =
1

2p+ 1

(
1 +

2

p

)
,

which is strictly larger than 1/2p.
The last example naturally raises the following question: for π a set of odd primes, what

is the exact (lower) bound for dπ(G) to ensure the existence of a nilpotent Hall π-subgroup
in G? This seems nontrivial to us at the time of this writing.
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Let G be a finite group and let p be the smallest prime dividing |G|. If n(p) denotes the
smallest prime larger than p and

Pr(G) >
n(p) + p2 − 1

p2n(p)
=: f(p),

then |G′| ≤ p and thus G is nilpotent by Theorem 2.6 and Lemma 2.3. Note that f(p) ≤ 1/p
and equality occurs if and only if p = 2.

Now let π be a set of primes and p be the smallest member in π. It is perhaps true
that if dπ(G) > f(p) then G possesses a nilpotent Hall π-subgroup, but this would require
significant more effort, especially on the part of simple groups of Lie type in characteristic
not belong to π. We have decided to work with the bound 1/p instead in order to make
our arguments flowing smoothly. We certainly do not claim that f(p) is the (conjectural)
best possible bound for dπ(G) to ensure the existence of a nilpotent Hall π-subgroup in G,
and thus the question we just raised above remains open.
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