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Abstract. Let Gp be the set of p-elements of a finite group G. Do we need all
the Sylow p-subgroups of G to cover Gp? Although this question does not have an
affirmative answer in general, our work indicates that the answer is yes more often
than one could perhaps expect.

1. Introduction

It is an elementary fact that a group cannot be expressed as the union of two proper
subgroups. Let G be a noncyclic finite group. Cohn [8] introduced the invariant
σ(G) as the minimal size of a covering for G which consists of proper subgroups of G.
Tomkinson [39] proved that σ(G) is always a prime power plus 1 for any (noncyclic
and finite) solvable group G. There is a large literature on σ. The numbers σ(G)
were computed (or bounds were given) for various classes of nonsolvable groups G; for
certain symmetric groups [28], [37], [12], for certain linear groups [4], [3], for sporadic
groups [18], for Suzuki groups [26], or for certain wreath products [24, 1]. There are
many positive integers m for which there is no group G with σ(G) = m (see [39],
[22], [23]).

Let p be a prime and let G be a finite group. We write Gp to denote the set of p-
elements of G. Motivated by recent work on the commuting probability of p-elements
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All authors were supported by Ministerio de Ciencia e Innovación (Grants PID2019-103854GB-I00
and PID2022-137612NB-I00 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of
making Europe”) and CIAICO/2021/163. The first author has also received funding from the Eu-
ropean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 741420) and was also supported by the National Research, Devel-
opment and Innovation Office (NKFIH) Grant No. K138596, No. K132951 and Grant No. K138828.
The second author was also supported by CIACIF/2021/228. Last, but not least, we thank the
referee for the careful reading of the paper and helpful comments.

1
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[5] (i.e., a local version of the well-known commuting probability in finite groups), we
study the minimal size of a covering of Gp by proper subgroups in [29]. As one could
expect, this local version lies even deeper than the global problem of studying σ(G).
There is another version of the problem of covering Gp, for a finite group G and a

prime p, that seems very natural and will be considered in this paper: covering Gp

by Sylow p-subgroups. Since every p-element belongs to some Sylow p-subgroup, we
clearly have that Gp can be covered by the set Sylp(G) of Sylow p-subgroups of G.
We say that G has (or possesses) a redundant Sylow p-subgroup if Gp has a cover
which is a proper subset of Sylp(G).

Calculations in GAP [13] suggest that perhaps surprisingly, groups with a redun-
dant Sylow p-subgroup are rare. Among the groups in the SmallGroups library in
[13], there are only examples of groups with a redundant Sylow p-subgroup when
p = 2. The smallest of them have order 108 and are SmallGroup(108,17) and
SmallGroup(108,40).

As we will see in Lemma 2.1, a group G does not have a redundant Sylow p-
subgroup for a prime p if and only if there exists an element of G that belongs to
a unique Sylow p-subgroup of G. This is the case when, for example, a Sylow p-
subgroup P of G is normal in G, or when it is cyclic, or when P ∩ Q = 1 for any
Sylow p-subgroup Q of G but different from P .
Another important case are groups of Lie type in characteristic p. We will see in

Corollary 2.4 that, as pointed out to us by Thomas Weigel, to whom we thank, it
is easy to deduce from Lemma 2.1 that groups of Lie type in characteristic p do not
have a redundant Sylow p-subgroup.

The elementary characterization Lemma 2.1 is fundamental for our work. From this
point of view, this had been studied in [15, 16, 17, 35] and we think that it deserves
further study. Using this characterization, it follows from [16] that symmetric groups
do not have redundant Sylow p-subgroups for any prime p. Similarly, in a Math
StackExchange discussion, J. Schmidt mentioned in [35] that he had constructed
solvable groups with elementary abelian Sylow p-subgroups where every p-element
belongs to more than one Sylow p-subgroup, but unfortunately, this does not seem
to have appeared in print.

Our first result shows that for any prime p there is a wealth of p-groups that can
occur as the Sylow p-subgroup of a solvable group with a redundant Sylow p-subgroup.

Theorem A. Let p be a prime. If P is a non-cyclic finite p-group of exponent p,
then there exists a solvable group G with Sylow p-subgroups isomorphic to P such
that G has a redundant Sylow p-subgroup.

Our proof of Theorem A relies on a deep construction of A. Turull [40].
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Our second main result is a full characterization of groups G isomorphic to a
symmetric group or to an alternating group for which G has a redundant Sylow p-
subgroup. As noted before, it follows from [16] that no symmetric group G has this
property.

Theorem B. Let p be a prime and let G be An or Sn with n ≥ max{6, p}. The
group G has a redundant Sylow p-subgroup if and only if p = 2 and G = An with n =∑k

i=r ai2
i, where ar, ar+1, . . . , ak ∈ {0, 1}, ar = ak = 1 and the following conditions

are satisfied:

•
∑k

i=1 ai ≡ 1 (mod 2) if n is odd.

• r ≥ 2 is even and
∑k

i=r ai ≡ 1 (mod 2) if n is even.

In the case n = 5 it is easy to check that S5 and A5 do not possess a redundant
Sylow p-subgroup for p ∈ {2, 3, 5}. In the case of alternating groups, we prove
Theorem B as a consequence of a characterization of the 2-elements of a symmetric
group that belong to a unique Sylow 2-subgroup. This result seems of independent
interest.

Theorem C. Let n ≥ 2 and let x ∈ (Sn)2. Then x lies in a unique Sylow 2-subgroup
of Sn if and only if x has at most two fixed points and all cycles of x of lengths bigger
than one have different lengths.

We also obtain a full characterization of the groups SL(2, q) and PSL(2, q), where
q is a prime power, with a redundant Sylow p-subgroup.

Theorem D. Let p be a prime and let G be SL(2, q) or PSL(2, q) with q a prime
power. Then G has a redundant Sylow p-subgroup if and only if p = 2 and q is none
of the following: 2k − 1, 2k nor 2k + 1 for k an integer.

As mentioned by the referee, it is interesting to note that q = 9 is the only prime
power of the form 2k±1 that is not a prime. The remaining prime powers of the form
2k ± 1 are the Fermat and Mersenne primes. This follows from elementary number
theory.

Theorems B and D, along with Weigel’s observation, suggest that it is not easy
to find almost quasisimple groups with a redundant Sylow p-subgroup for any odd
prime. For instance, we do not know examples of simple groups with a redundant
Sylow p-subgroup for p > 11. We have to go to the general linear groups of arbitrarily
large rank to find them.

Theorem E. Let p be an odd prime and let q be a prime power such that p is the
p-part of q − 1. Then GL(p, q) has a redundant Sylow p-subgroup.

Note that the Sylow p-subgroups of the groups in Theorem E are Cp ≀ Cp (see
Proposition 7.13 of [33], for instance). In particular, they have exponent p2, unlike our
solvable examples. Theorem B provides examples of simple groups with a redundant
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Sylow 2-subgroup of exponent 2a with a arbitrarily large, but we are not aware of
such examples for odd primes. Our results may suggest that, perhaps, if P is a
non-cyclic finite p-group then there exists a finite group G with Sylow p-subgroups
isomorphic to P such that G has a redundant Sylow p-subgroup.

Furthermore, in Section 7 we study the existence of redundant Sylow subgroups
in sporadic simple groups. In particular, we show that the Monster has a redundant
Sylow 7-subgroup, which is related to work in [16, 17].

In Section 2 we collect several criteria that will be useful to decide whether a given
group has a redundant Sylow p-subgroup or not. Theorem A, on solvable groups,
is proved in Section 3. We prove Theorems B and C, on alternating and symmetric
groups, in Section 4. Then we prove Theorem E in Section 5 and Theorem D in
Section 6. We conclude in Section 8 where we prove some results that relate the
number of Sylow p-subgroups of a finite group G with the existence of a redundant
Sylow p-subgroup. We also raise some questions, partially related to recent work of
Gheri [14] and Sambale-Tărnăuceanu [34], that we think deserve further investigation.

It may also be worth remarking that it seems that Schmidt’s examples [35] were
inspired from the theory of fusion systems. It seems reasonable to think that fusion
systems could be helpful to study the condition provided by Lemma 2.1. We have
not pursued this here, however.

To conclude this Introduction, in this paragraph let G be an infinite group. Recall
that a p-subgroup of G is a subgroup in which every element has p-power order and
a Sylow p-subgroup of G is a p-subgroup which is maximal for inclusion among all
p-subgroups in G. A theorem of Neumann [32] states that if G is the union of m
proper subgroups where m is finite and as small as possible, then the intersection
of these subgroups is a subgroup of finite index in G. This is the reason why one
may assume that G is finite when computing σ(G), the minimal number of proper
subgroups needed to cover G. It would be interesting to know if there is a local
analogue of Neumann’s theorem. Perhaps one should assume that G has only finitely
many Sylow p-subgroups.

2. General criteria for the existence of
a redundant Sylow p-subgroup

Let p be a prime. For a finite group G, let Sylp(G) denote the set of Sylow p-
subgroups of G, let νp(G) = | Sylp(G)|, and let Op(G) denote the largest normal

p-subgroup in G. For an element x in a finite group G, let xG denote the conjugacy
class of x in G. The following fundamental result allows us to interpret the concept
of redundant Sylow p-subgroups in a convenient way.

Lemma 2.1. Let G be a finite group and let p be a prime. Then G does not have a
redundant Sylow p-subgroup if and only if there exists x ∈ Gp such that x belongs to
a unique Sylow p-subgroup.
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Proof. Let Sylp(G) = {P1, P2, . . . , Pn} with n = νp(G). The result is clear for n = 1.
Assume that n > 1. The group G has a redundant Sylow p-subgroup if and only if
Gp =

⋃
i ̸=j Pi for some j. This happens if and only if Pj ⊆

⋃
i ̸=j Pi, which is equivalent

to saying that every element of Pj lies in more than one Sylow p-subgroup. □

This has a number of consequences. Recall that a subgroup H in a finite group
G is called a TI-subgroup (trivial intersection subgroup) if H ∩ Hg is H or {1} for
every g ∈ G. A TI-subgroup which is also a Sylow p-subgroup is called a TI-Sylow
p-subgroup. We have the following.

Corollary 2.2. If G is a group with TI-Sylow p-subgroups, then G does not have a
redundant Sylow p-subgroup.

Proof. If G is a group with TI-Sylow p-subgroups, then every non-identity element
from Gp belongs to a unique Sylow p-subgroup. The result follows from Lemma
2.1. □

A characterization of finite groups possessing TI-Sylow 2-subgroups has been ob-
tained by Suzuki [36]. For a similar but weaker characterization for odd primes, see
the work of Ho [19]. We note that cyclic Sylow p-subgroups of finite simple groups
are TI-subgroups by [2].

Corollary 2.3. Let G be a finite group. Let P be a Sylow p-subgroup of G and suppose
that P/Op(G) is cyclic. Then G does not have a redundant Sylow p-subgroup.

Proof. Observe that Op(G) is contained in every Sylow p-subgroup of G. It follows by
definition that G has a redundant Sylow p-subgroup if and only if G/Op(G) does. We
may thus assume that Op(G) = 1. Now, if x generates a Sylow p-subgroup P , then
P is the unique Sylow p-subgroup that contains x. The result follows from Lemma
2.1. □

Next, we present a proof of Weigel’s observation on groups of Lie type in charac-
teristic p.

Corollary 2.4. A finite group of Lie type in characteristic p does not have a redun-
dant Sylow p-subgroup.

Proof. Let G be a connected reductive algebraic group defined over an algebraically
closed field in positive characteristic p. Let F be a Steinberg endomorphism. The
finite group GF has a Sylow p-subgroup UF such that NGF (UF ) = BF where B is an
F -stable Borel subgroup of G. Each regular unipotent element of G lies in a unique
Borel subgroup. If the unipotent element is F -stable, the Borel subgroup will be also.
Thus each regular unipotent element of GF will lie in just one Borel subgroup (and
also in one Sylow p-subgroup) BF of GF . See [6, p. 131]. Therefore, by Lemma 2.1,
groups of Lie type in characteristic p do not have a redundant Sylow p-subgroup. □
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Note that x ∈ G belongs to a unique Sylow p-subgroup of G if and only if x
does not belong to any intersection of two different Sylow p-subgroups. Since defect
groups are Sylow intersections, this suggests that this is related to block theory. For
instance, there is the following connection with zeros of characters.

Corollary 2.5. Let G be a group without a redundant Sylow p-subgroup. Then there
exists x ∈ Gp such that χ(x) = 0 for every χ ∈ Irr(G) that does not belong to a
p-block of full defect.

Proof. Let B be a p-block with defect group D such that |D| < |G|p. By Lemma
2.1, there exists x ∈ Gp that does not belong to the intersection of any two different
Sylow subgroups. By Corollary 4.21 of [31], x does not belong to any conjugate of D.
Now, Corollary 5.9 of [31], implies that χ(x) = 0 for any χ ∈ Irr(B), as wanted. □

Next, we obtain a characterization of the property “there exists x ∈ G that belongs
to a unique Sylow p-subgroup of G”.

Lemma 2.6. Let p be a prime, let P ∈ Sylp(G) and let x ∈ P . Then

|xG| ≤ |xG ∩ P |νp(G)

with equality if and only if x lies in a unique Sylow p-subgroup. In particular, if x ∈ P
is a p-element lying in a unique Sylow p-subgroup, then

|xG| ≥ νp(G)|xP |.

Proof. We know that xG =
⋃

Q∈Sylp(G) x
G ∩Q. Thus, we deduce that

|xG| ≤
∑

Q∈Sylp(G)

|xG ∩Q| = |xG ∩ P |νp(G),

where the last equality holds because each intersection has the same size. Thus,
the inequality is proved and equality holds if and only if each element in xG lies in
a unique Sylow p-subgroup, or equivalently, if and only if x lies in a unique Sylow
p-subgroup. Now, the final part follows from the fact that xP ⊆ xG ∩ P . □

The converse of the last assertion is not true. The element x = (1, 2, 3, 4)(5, 6, 7, 8)
of the group G = A8 is a counterexample since |xG| = 1260 = 4 · 315 = |xP |ν2(G),
but x lies in more than one Sylow 2-subgroup (we will prove this in Section 4).

We can also deduce the next necessary condition, which was pointed out in [35].

Corollary 2.7. Let G be a finite group that has no redundant Sylow p-subgroups.
Then |Gp| ≥ νp(G).

Proof. By Lemma 2.1, let x be an element of G that belongs to a unique Sylow
p-subgroup. By Lemma 2.6, we know that |xG| ≥ νp(G)|xP | ≥ νp(G) and hence
|Gp| ≥ |xG| ≥ νp(G). □
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Therefore, if G is a group such that |Gp| < νp(G), then G has a redundant Sylow
p-subgroup. This was the basis of the construction in [35]. We remark that the
converse of this result is not true since for G = SmallGroup(108, 17) we have that
G possesses a redundant Sylow 2-subgroup, but |G2| = 28 > 27 = ν2(G). The
condition |Gp| < νp(G) seems very strong and we are not aware of any group with
non elementary abelian Sylow p-subgroups that satisfies this condition.
The next necessary condition was communicated to us by Gabriel Navarro, to

whom we thank.

Lemma 2.8. Let G be a finite group. Suppose that x belongs to a unique Sylow
p-subgroup P of G. Then CG(x) ⊆ NG(P ).

Proof. Let c ∈ CG(x). Then xc = x ∈ P , so x ∈ P c−1
. Since P is the unique Sylow

p-subgroup that contains x, we deduce that P = P c−1
, so c ∈ NG(P ), as wanted. □

This will be useful to study redundant Sylow p-subgroups in sporadic groups.
Again, the converse is not true. We can take G = A8 and x = (1, 2, 3, 4)(5, 6, 7, 8).

3. Solvable groups

Now, we consider solvable groups. We work toward a proof of Theorem A. The
next result proves that the converse of the last assertion of Lemma 2.6 holds for
p-nilpotent groups.

Lemma 3.1. Let p be a prime. Suppose that G = PN where P ∈ Sylp(G), N ⊴ G

and (|P |, |N |) = 1. If x ∈ P , then |xG| ≤ νp(G)|xP | with equality if and only if P is
the unique Sylow p-subgroup containing x.

Proof. By Theorem 5.25 of [21], we know that xG ∩ P = xP for every x ∈ P . For

each Q ∈ Sylp(G) we choose yQ ∈ xG ∩Q. Then we have that yGQ ∩Q = yQQ and that

|yQQ| = |xP |. Thus
xG =

⋃
Q∈Sylp(G)

xG ∩Q =
⋃

Q∈Sylp(G)

yQQ

and hence |xG| ≤
∑

Q∈Sylp(G) |y
Q
Q| = νp(G)|xP | and the first part follows. Now,

equality holds if and only if the union above is disjoint. This happens if and only if
for every y ∈ xG we have that y lies in only one Sylow p-subgroup and this is if and
only if x lies only in one Sylow p-subgroup. □

Corollary 3.2. Let p be a prime. Suppose that G = PN where 1 < P ∈ Sylp(G),
N ⊴ G, (|P |, |N |) = 1 and CN(P ) = 1. Then G has a redundant Sylow p-subgroup if
and only if CN(x) > 1 for every x ∈ Gp.

Proof. By Lemma 2.1 we know that G has a redundant Sylow p-subgroup if and
only if for every x ∈ Gp, x belongs to more than one Sylow p-subgroup of G. By
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Lemma 3.1, this occurs if and only if |xG| < νp(G)|xP | for every x ∈ P . Since
NG(P ) = P × CN(P ) = P , we have that νp(G) = |N |, by Sylow’s theorems. Thus
|xG| < νp(G)|xP | for every x ∈ P if and only if CG(x) ⊃ CP (x) for every x ∈ P ,
which is equivalent to CN(x) > 1 for every x ∈ P . The result follows. □

Now, we can complete the proof of Theorem A. Recall that the Fitting subgroup
F (G) = F1(G) of a finite group G is the largest nilpotent normal subgroup of G. We
define Fi(G)/Fi−1 = F (G/Fi−1(G)) for i > 1. The group G is solvable if and only if
there exists n such that Fn(G) = G. The smallest such n is called the Fitting height
of G.

Theorem 3.3. Let p be a prime and let P be a p-group of order pn, with n > 1, and
exponent p. Then there exists a solvable p′-group N with Fitting height n such that
P acts on N , CN(P ) = 1 and G = PN has a redundant Sylow p-subgroup.

Proof. Let P be a p-group of exponent p of order pn with n > 1. By Theorem B of
[40], there exists a solvable p′-group N of Fitting height n such that P acts on N with
CN(P ) = 1. We claim that the group G = N⋊P has a redundant Sylow p-subgroup.
By Corollary 3.2, this is true if and only if CN(x) > 1 for every 1 ̸= x ∈ Gp. By
the solvable case of Thompson’s theorem (which was known to Higman in 1957, see
Theorem 6.22 of [21]), we cannot have CN(x) = 1, because x has prime order and N
is not nilpotent. The claim follows. □

4. Symmetric and alternating groups

In this section, we prove Theorems B and C. To prove these results we need to
introduce an alternative way to see the Sylow subgroups of Sn (for more information

see [11]). Let n =
∑k

i=0 aip
i be the p-adic expansion of n. We make ak disjoint subsets

of size pk in {1, . . . , n}. Inside each subset of size pk we make p disjoint subsets of
size pk−1. We repeat this process till we get sets of size 1. With the numbers not
lying in the sets of size pk we make ak−1 disjoint subsets of size pk−1 and inside each
of them we make subsets of size pi for i ≤ k − 2 as before. We repeat this process
for each j = k, . . . , 0. Taking all subsets obtained by the previous process we obtain
a block structure for n. Now, given a block structure B and σ ∈ Sn we will say
that σ preserves the structure B if σ(b) ∈ B for every b ∈ B and we will write that
σ(B) = B. We have the following result, which follows from the results in [11].

Theorem 4.1. Let n be an integer and let B be a block structure of n. If we set
P = {σ ∈ (Sn)p|σ(B) = B}, then P ∈ Sylp(Sn). In addition, each Sylow p-subgroup
of Sn can be associated with a unique block structure.

We begin by proving that if p is a prime, then Sn does not possess a redundant
Sylow p-subgroup. As a consequence, we will have that An does not possess any
redundant Sylow p-subgroup for p odd. This proof can be found in [16, Theorem
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5.1], but we include it here for completeness. Given x ∈ Sn we know that x can be
expressed as the product of disjoint cycles and hence we can associate a partition of
n to x, which will be called the type of x.

Theorem 4.2. Let p be a prime and let n ≥ 2. Then there exists x ∈ (Sn)p lying in
a unique Sylow p-subgroup of Sn.

Proof. Let n =
∑k

i=0 aip
i be the p-adic expansion of n. We can write

∑k
i=0 aip

i as∑t
i=1 p

ni , where 0 ≤ n1 ≤ n2 ≤ . . . ≤ nt = k. We choose x ∈ Sn an element
whose cycle structure is (pnt , pnt−1 , . . . , pn1). We use induction on n to prove that
this permutation can only preserve one block structure of n.

Assume first that n = pk. Let y = xp. In this case, x is a cycle of length pk and y
is a product of p disjoint cycles of length pk−1. Let B and B̃ be block structures of n
preserved by x. We know thatB possesses p different blocks, say b1, . . . , bp, of size p

k−1

such that x permutes the bi cyclically, y(bi) = bi and bi = {a, y(a), . . . , ypk−1−1(a)}
for all a ∈ bi. Analogously, B̃ possesses blocks b̃1, . . . , b̃p with the same properties.

For every j ∈ {1, . . . , p} we have that there exists some ij such that bij ∩ b̃j ̸= ∅.

Thus, there exists a ∈ bij ∩ b̃j and hence bij = {a, y(a), . . . , ypk−1−1(a)} = b̃j. Now, we

have that the blocks of B and B̃ lying under b̃j(=bij) are two block structures of pk−1

preserved by a cycle of length pk−1 of y. Therefore, the inductive hypothesis implies
that the blocks of B and B̃ lying under bij and b̃j must coincide. Thus B = B̃.

Assume now that n ̸= pk. Let B and B̃ be block structures of n preserved by x.
We know that B possesses ak different blocks, say b1, . . . , bak , of size p

k such that for

all a ∈ bi we have that bi = {a, x(a), . . . , xpk−1(a)}. Analogously, B̃ possesses blocks

b̃1, . . . , b̃ak with the same properties. Now, we know that

|b1|+ . . .+ |bak |+ |b̃1|+ . . .+ |b̃ak | = 2akp
k ≥ pk(ak + 1) > n.

Therefore, there exists a ∈ bi∩b̃j for some i and j and hence bi = {a, x(a), . . . , xpk(a)} =

b̃j. There is no loss to assume that b1 = b̃1 = {1, . . . , pk}. Now, we have that x = cy,
where c is a cycle of length pk on {1, . . . , pk} and y is a permutation whose cycle
structure is (pnt−1 , . . . , pn1) and is disjoint to {1, . . . , pk}. Now, since pk < n, we may
apply the inductive hypothesis to c to deduce that c can only fix a cycle structure on
pk, which implies that the blocks of B and B̃ contained in {1, . . . , pk} must coincide.
Analogously, applying the inductive hypothesis to y, we have that the blocks of B and
B̃ not contained in {1, . . . , pk} must coincide. Thus B = B̃ and the result follows.
Thus, x can preserve only one block structure of n and hence, by Theorem 4.1, we

have that x lies in only one Sylow p-subgroup of Sn. □

Now, it only remains to study the existence of a redundant Sylow 2-subgroup in
An. We begin by reducing the problem to Sn.
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Theorem 4.3. Let n ≥ 6, let P ∈ Syl2(Sn) and let T ∈ Syl2(An). Then NSn(P ) = P
and NAn(T ) = T . In particular, ν2(Sn) = ν2(An) and the map φ : Syl2(Sn) →
Syl2(An) defined by φ(P ) = P ∩ An is a bijection.

Proof. The assertion on the normalizers can be found in [7, Lemma 4] and [25, The-
orem 2]. It follows trivially that ν2(Sn) = ν2(An). Now, we know that the map φ is
surjective and since | Syl2(Sn)| = | Syl2(An)|, we have that it is a bijection. □

As a consequence, an element x ∈ (An)2 lies in a unique Sylow 2-subgroup of An

if and only if x lies in a unique Sylow 2-subgroup of Sn. Thus, once Theorem C
is proved we will deduce Theorem B simply studying whether the permutations of
Theorem C are even or odd.

Let n =
∑t

i=1 2
ni with 0 ≤ n1 < n2 < . . . < nt be the 2-adic expansion of n. We

define x(n) as the partition of n given by (2nt , . . . , 2n1). We say that x(n) is even if t
is even and n1 ≥ 1 or if t is odd and n1 = 0. Otherwise x(n) is called odd. Note that
x(n) is the partition that we considered in the proof of Theorem 4.2 for p = 2. If n

is even and n− 2 =
∑ℓ

i=1 2
mi with 0 < m1 < m2 < . . . < mℓ, then we define y(n) as

the partition given by (2mℓ , . . . , 2m1 , 1, 1). We say that y(n) is even if ℓ is even and
we say y(n) is odd if ℓ is odd. We define T (n) as the set of partitions {x(n), y(n)} if
n is even and {x(n)} if n is odd.
We observe that the type of x ∈ (Sn)2 lies in T (n) if and only if x fixes at most

2 points and all cycles in the decomposition of x have different sizes. The following
lemma determines whether the permutations in T (n) are even or odd and hence it
will provide the conditions of Theorem B.

Lemma 4.4. Let n be an integer and let n =
∑k

i=r ai2
i, where ar, ar+1, . . . ak ∈ {0, 1},

1 = ar = ak.

i) Assume that n is odd. Then an element of type x(n) is an odd permutation

if and only if
∑k

i=1 ai ≡ 1 (mod 2).
ii) Assume that n is even. Then two elements of types respectively x(n) and

y(n) are both odd permutations if and only if
∑k

i=r ai ≡ 1 (mod 2) and r ≥ 2
is even.

Proof. i) Let n be odd. In this case r = 0, a0 = 1, and n1 = 0. The partition x(n) is

odd if and only if t is even. This is equivalent to saying that
∑k

i=r ai is even, that is,∑k
i=1 ai ≡ 1 (mod 2).
ii) Let n be even. In this case n−2 is also even and n1 ≥ 1. The partitions x(n) and

y(n) are both odd if and only if both t and ℓ are odd. Since n−2 =
∑t

i=2 2
ni+

∑r−1
j=1 2

j

we deduce that ℓ = (t− 1) + (r − 1) = t+ r − 2. Therefore, we deduce that t and ℓ

are both odd if and only if t =
∑k

i=r ai is odd and r is even. □

Now, we restate and prove Theorem C.
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Theorem 4.5. Let n ≥ 2 and let x ∈ (Sn)2 written as a product of disjoint cycles.
Then x lies in a unique Sylow 2-subgroup of Sn if and only if x has at most two fixed
points and all cycles of x of length bigger than one have different lengths.

Proof. Let x be a 2-element of Sn lying in a unique Sylow 2-subgroup of Sn.
Assume first that x fixes at least 3 points. Suppose that n is odd and that x fixes

the points 1, 2 and 3 and that x preserves a block structure of n, say B, such that 1
does not lie in any block of size larger than 1 and {2, 3} ∈ B. Thus, if we take another
block structure, B, which just permutes (non-trivially) 1, 2 and 3, then x preserves B
and B and hence, by Theorem 4.1, x lies in more than one Sylow 2-subgroup of Sn,
which is impossible. Assume now that n is even and that x fixes 4 points. Therefore,
we can repeat the process by permuting four labels of a block structure preserved by
x. Thus, x permutes at least 2 block structures on n, which is again a contradiction.

Now, suppose that x possesses 2 cycles of the same length and let k ≥ 1 be the
largest integer such that x contains 2 cycles of length 2k. Then x preserves a block
structure B with B0, B1, B2, B11, B12, B21, B22 ∈ B such that

B0 = B1 ∪B2, Bi = Bi1 ∪Bi2, x(Bi1) = Bi2

and

2k−1 = |Bij| =
|Bi|
2

=
|B0|
4

.

for i, j = 1, 2. Thus, we can make another block structure B simply replacing the
blocks inside B0 by

B1 = B11 ∪B21 and B2 = B12 ∪B22.

Therefore, x preserves two block structures on n and hence, by Theorem 4.1, lies in
more than one Sylow 2-subgroup, which is impossible.

Now, let x be a permutation whose type lies in T (n).
If the type of x is x(n), then the argument of the proof of Theorem 4.2 shows that

x lies in a unique Sylow 2-subgroup. Assume now that n is even,

n− 2 =
ℓ∑

i=1

2mi

with 0 < m1 < m2 . . . < mℓ and the type of x is y(n) = (2mℓ , . . . , 2m1 , 1, 1) (note that
2mℓ is the largest power of 2 smaller than n). We use induction on n to prove that
y(n) preserves a unique block structure of n. We will distinguish two cases: the case
n < 2mℓ+1 and n = 2mℓ+1.

Assume first that n < 2mℓ+1. In this case, each block structure of n possesses a
unique block of size 2mℓ . Thus, if B and B̃ are block structures preserved by x, then
there exists b ∈ B and b̃ ∈ B such that |b| = 2mℓ = |b̃|. It follows that x(b) = b and

hence {a, x(a), . . . , x2mℓ−1(a)} = b for all a ∈ b, and a similar property holds for b̃.
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Now, we have that n−2mℓ < 2mℓ and hence there exists a ∈ b∩ b̃. Thus, we have that
b = {a, x(a), . . . , x2mℓ−1(a)} = b̃. As in the proof of Theorem 4.2, we may assume

that b = b̃ = {1, . . . , 2mℓ}. Now, we have that x = cy, where c is a cycle of length
2mℓ on {1, . . . , 2mℓ} and y is a permutation whose cycle structure is y(n − 2mℓ) =
(2mℓ−1 , . . . , 2m1 , 1, 1) and is disjoint to {1, . . . , 2mℓ}. Thus, applying the inductive
hypothesis to y, we have that the blocks of B and B̃ not contained in {1, . . . , 2mℓ}
must coincide. Moreover, the blocks of B and B̃ contained in {1, . . . , 2mℓ} must
coincide since the type of c is x(2mℓ). Thus, the result follows in this case.

Assume now that n = 2mℓ+1. Let B be a block structure on n. Then there exist
b0, b1, b2 ∈ B such that |b1| = |b2| = 2mℓ , b0 = b1 ∪ b2 and b0 ̸= b1. If x preserves
the structure B, then x(b1) = b1, x(b2) = b2 and b1 = {a, x(a), . . . , x2mℓ−1(a)} for all

a ∈ b1. If B̃ is another block structure preserved by x, then there exist b̃0, b̃1, b̃2 ∈ B̃
satisfying the same conditions as above.

If b1∩ b̃1 = ∅, then b1 = b̃2. Thus, if a ∈ b1 we have that {a, x(a), . . . , x2mℓ−1(a)} =

b1 = b̃2 and hence both b̃1 and b̃2 contain a cycle of length 2mℓ of x, which is impossible.
Hence, b1 ∩ b̃1 ̸= ∅ and we can finish as in the case n < 2mℓ+1.
Thus, x preserves a unique block structure of n and therefore, by Theorem 4.1, we

have that x lies in a unique Sylow 2-subgroup of Sn. □

Theorem B now follows from Theorem C and Lemma 4.4.

5. General linear groups

In this section, we prove a more precise version of Theorem E.

Theorem 5.1. Let p be an odd prime and let q be a prime power such that p divides
q − 1 but p2 does not divide q − 1. If 1 < n < p, then GL(n, q) does not possess a
redundant Sylow p-subgroup and GL(p, q) possesses a redundant Sylow p-subgroup.

We begin with a few lemmas. The first one follows from Proposition 7.13 of [33].

Lemma 5.2. If p is an odd prime and q is a prime power such that the p-part of q−1
is p, then the Sylow p-subgroups of GL(p, q) are isomorphic to Cp ≀Cp and the Sylow
p-subgroups of GL(n, q) are isomorphic to (Cp)

n for every integer n with 1 < n < p.

We need a property of the groups Cp ≀ Cp.

Lemma 5.3. For every odd prime p, the base group B of Cp ≀Cp is the unique abelian
maximal subgroup of Cp ≀ Cp and, in particular, B is characteristic in Cp ≀ Cp.

Proof. Assume that A is another abelian maximal subgroup in G = Cp ≀ Cp. We
have G = AB and A ∩ B ≤ Z(G) which is thus of order at most p. It follows that
pp+1 = |G| = |AB| = |A||B|/|A ∩B| ≥ p2p−1, which is a contradiction. □
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Lemma 5.4. Let p be a prime, let n ≤ p, let q be a prime power such that p divides
q − 1 and let

R = {diag(x1, . . . , xn)|x1, . . . , xn ∈ (F×
q )p} ≤ GL(n, q).

If A ∈ GL(n, q) normalizes R, then there exists a unique non-zero entry in each row
and column of A.

Proof. Since A normalizes R, we have that for each x1, . . . , xn ∈ (F×
q )p there exist

y1, . . . , yn ∈ (F×
q )p such that

diag(x1, . . . , xn) · A = A · diag(y1, . . . , yn).
Let us take x1, . . . , xn such that all xi are different. Looking at the first row of the

matrix equality, we have that a1jx1 = a1jyj for all j with 1 ≤ j ≤ n. There exists
j1 with 1 ≤ j1 ≤ n such that a1j1 ̸= 0 and hence x1 = yj1 . Now, looking at column
j1, we have that aij1xi = aij1yj1 = aij1x1 for all i with 1 ≤ i ≤ n. Since all xi are
different, we have that aij1 = 0 for all i ̸= 1.

Now, looking at the second row, we can repeat the argument to find j2 ∈ {1, . . . , n}\
{j1} such that a2j2 ̸= 0 and aij2 = 0 for all i ̸= 2. Thus, repeating the process n
times, we can rearrange the numbers {1, . . . , n} as {j1, . . . , jn} such that the only
non-zero entry in the column ji is aiji . Thus, A has the desired form. □

Lemma 5.5. Let n ≤ p and let q be a prime power such that p divides q − 1 and
let P ∈ Sylp(GL(n, q)). Then there exists a unique set of 1-dimensional subspaces
{V1, . . . , Vn} such that Fn

q = V1 ⊕ . . .⊕ Vn and x(Vi) ∈ {V1, . . . , Vn} for all 1 ≤ i ≤ n
and all x ∈ P .

Proof. We define

Rn = {diag(x1, . . . , xn)|x1, . . . , xn ∈ (F×
q )p} ≤ GL(n, q)

and we also define Pn = Rn if n < p and Pp = Rp⟨B⟩, where B = (bi,j) ∈ GL(p, q) is
the matrix defined by bi+1,i = 1 for i < n, b1,n = 1 and 0 in the rest of the entries.
Thus, Pn ∈ Sylp(GL(n, q)) and Rn is characteristic in Pn for all n ≤ p by Lemma
5.3. Thus, P possesses a characteristic subgroup R which is conjugate to Rn. In
particular, R determines a unique set of 1-dimensional spaces {V1, . . . , Vn} such that
Fn
q = V1 ⊕ . . . ⊕ Vn and x(Vi) = Vi for all x ∈ R and all i with 1 ≤ i ≤ n. Thus,

x(Vi) ∈ {V1, . . . , Vn} for all x ∈ P and all i with 1 ≤ i ≤ n. It only remains to prove
that it is the unique set of 1-dimensional spaces satisfying these properties.

Suppose that there exist two sets {V1, . . . , Vn} and {W1, . . . ,Wn} consisting of 1-
dimensional spaces such that x(Vi) ∈ {V1, . . . , Vn} and x(Wi) ∈ {W1, . . . ,Wn} for
all i with 1 ≤ i ≤ n and all x ∈ P . Let v1, . . . , vn and w1, . . . , wn be vectors such
that Vi = ⟨vi⟩ and Wi = ⟨wi⟩ for all i with 1 ≤ i ≤ n and let A be the matrix of
change of base from the base {w1, . . . , wn} to the base {v1, . . . , vn}. It follows that
A normalizes P and since R is characteristic in P by Lemma 5.3 we deduce that A
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normalizes R. Therefore, by Lemma 5.4, each row and column of A possesses exactly
one non-zero entry and hence {V1, . . . , Vn} = {W1, . . . ,Wn}. □

Proof of Theorem 5.1. By Lemmas 5.5 and 2.1, we only have to study whether there
exists a p-element x such that x admits a unique decomposition Fn

q = V1 ⊕ . . . ⊕ Vn

with each Vi of dimension 1 and x(Vi) ∈ {V1, . . . , Vn} for every i with 1 ≤ i ≤ n.
Assume first that n < p. Let P ∈ Sylp(GL(n, q)) and let {V1, . . . , Vn} be the set

of 1-dimensional subspaces associated to P . Any x ∈ P permutes the subspaces in
{V1, . . . , Vn}, but since n < p, the only possibility is that x(Vi) = Vi for every i with
1 ≤ i ≤ n. Let us take x ∈ P such that the Vi are eigenspaces of x associated to
different eigenvalues. If x admits another decomposition with {W1, . . . ,Wn}, then
the Wi must again be eigenspaces of x and since the Vi are all different eigenspaces,
we have that {V1, . . . , Vn} = {W1, . . . ,Wn}. Therefore, this x lies in a unique Sylow
p-subgroup of GL(n, q) by Lemma 2.1.
Assume now that n = p. Let P ∈ Sylp(GL(n, q)) and let {V1, . . . , Vn} be the set

of 1-dimensional subspaces of Fn
q associated to P . Let v1, . . . , vn be vectors with

Vi = ⟨vi⟩ for every i with 1 ≤ i ≤ n. The group P acts on {V1, . . . , Vn}. Let x ∈ P .
There are two possibilities for the action of x on {V1, . . . , Vn}.

a) Each Vi is an eigenspace of x associated to an eigenvalue ϵi, for some ϵi ∈
(F×

q )p.
b) x permutes the subspaces Vi cyclically.

Assume that we are in case a). Assume first that we have an eigenvalue of x with
multiplicity at least 2. In this case we may assume that ϵ1 = ϵ2 and take w1 = v1+v2
and wi = vi for every i > 1. For each i with 1 ≤ i ≤ n, let Wi = ⟨wi⟩. We have that
Fn
q = W1 ⊕ . . .⊕Wn and x(Wi) = Wi for all i ∈ {1, . . . , n}. Apply Lemma 2.1.

Assume now that all eigenvalues ϵi are different. Since p
2 does not divide q− 1, we

have that ϵpi = 1 for all i (in fact {ϵ1, . . . , ϵp} = (Fq)p). Now, we take wi = (ϵ1)
i−1v1+

. . .+ (ϵi−1
p )p−1vp and Wi = ⟨wi⟩ for i ∈ {1, . . . , p}. Therefore, the coordinates of vi in

the base wi is the transpose of the Vandermonde matrix with powers of the ϵi. As a
consequence, {w1, . . . , wp} is a base of Fp

q . Therefore, we have that Fp
q = W1⊕. . .⊕Wp

and, by definition, we also have that x(Wi) = Wi+1 if i < p and x(Wp) = W1. Apply
Lemma 2.1.

Assume now that we are in case b). We may assume that x(vi) = vi+1 for i < p
and x(vp) = v1. Let the matrix of x in the base {v1, . . . , vp} be B. Since the
characteristic polynomial of B is xp − 1, we deduce that the set of eigenvalues of B
is {1, ϵ, . . . , ϵp−1}, where ϵ ∈ Fp

q is an element of order p. In particular, we deduce
that B may be diagonalized and that for all i ∈ {0, 1, . . . , p−1} the dimension of the
eigenspace associated to ϵi is 1. Now, for i ∈ {1, . . . , p}, we take an eigenvector wi

associated to ϵi−1 and set Wi = ⟨wi⟩. We have Fp
q = W1 ⊕ . . .⊕Wp and x(Wi) = Wi

for all i with 1 ≤ i ≤ p. Apply Lemma 2.1.
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We conclude that every p-element x in GL(p, q) lies in more than one Sylow p-
subgroup of GL(p, q). □

6. The groups SL(2, q) and PSL(2, q)

Our goal in this section is to study the existence of a redundant Sylow p-subgroup
in the groups SL(2, q) and PSL(2, q). That is, our goal is to prove Theorem D, which
we restate here.

Theorem 6.1. Let p be a prime and let G be SL(2, q) or PSL(2, q) with q a prime
power. The group G possesses a redundant Sylow p-subgroup if and only if p = 2 and
q is none of the following.

a) q = 2k for an integer k.
b) q = 2k + 1 for an integer k.
c) q = 2k − 1 for an integer k.

If p divides q, then the Sylow p-subgroups of SL(2, q) and of PSL(2, q) intersect
trivially and hence, applying Corollary 2.2, we have that none of SL(2, q), PSL(2, q)
can possess a redundant Sylow p-subgroup. Thus, in the remaining, we will assume
that p does not divide q. Moreover, if p is odd and does not divide q, then by
Dickson’s classification of subgroups of SL(2, q) and PSL(2, q) (see [9, Chapter XII]),
we have that both SL(2, q) and PSL(2, q) possess cyclic Sylow p-subgroups and hence,
by Corollary 2.3, none of them can have a redundant Sylow p-subgroup.

It only remains to consider the case when p = 2 and q is odd. In this case, we know
that |Z(SL(2, q))| = 2 and that Z(SL(2, q)) = O2(SL(2, q)). Let · denote the quotient
by Z(SL(2, q)). The following result relates the Sylow 2-subgroups of SL(2, q) with
the Sylow 2-subgroups of PSL(2, q).

Theorem 6.2. Let q > 13 be an odd prime power, let P ∈ Syl2(SL(2, q)) and let
T ∈ Syl2(PSL(2, q)). Then NSL(2,q)(P ) = P and NPSL(2,q)(T ) = T . In particular,
ν2(SL(2, q)) = ν2(PSL(2, q)) and the map φ : Syl2(SL(2, q)) → Syl2(PSL(2, q)) de-
fined by φ(P ) = P is a bijection.

Proof. The assertion on the normalizers can be deduced from Dickson’s classification
of subgroups of SL(2, q) and PSL(2, q). Now, we know that the map φ is surjective
and since | Syl2(SL(2, q))| = | Syl2(SL(2, q))|, we have that it is a bijection. □

As a consequence, we have that an element x ∈ (SL(2, q))2 lies in a unique Sylow
2-subgroup of SL(2, q) if and only if x lies in a unique Sylow 2-subgroup of PSL(2, q).
Therefore, it suffices to prove Theorem D in the case SL(2, q).

Theorem 6.3. Let q = 2k ± 1 be a prime power for an integer k. Then G = SL(2, q)
does not possess redundant Sylow 2-subgroups.
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Proof. If q ∈ {3, 5, 7, 9}, then the result can be checked by GAP [13]. Thus, we may
assume that q = 2k ± 1 with k ≥ 4. Thus, if P ∈ Syl2(G), then by Theorem 6.2, we
have that P = NG(P ). By Dickson’s classification of subgroups of SL(2, q), we know
that P is isomorphic to the generalized quaternion group of order 2k+1. Let x ∈ P
be an element of order 2k. Looking at the character table and the description of the
elements of SL(2, q) given in [10, Chapter 38], we deduce that if y ∈ SL(2, q) has
order 2k, then y is conjugate to xt for some odd t with 1 ≤ t ≤ 2k−1 − 1. Therefore,
we have that there exist 2k−2 different conjugacy classes whose elements have order
2k and that

|xG ∩ P | = |yG ∩ P |
for every element y of order 2k. Now, since P possesses 2k−1 elements of order 2k we
deduce that |xG ∩ P | = 2 (in fact, xG ∩ P = {x, x−1} = xP ). Finally, it is possible to
prove that CG(x) = ⟨x⟩ and hence

|xG| = 2
|G|
|P |

= 2| Syl2(G)| = |xG ∩ P || Syl2(G)|.

Thus, by Lemma 2.6, x lies in a unique Sylow 2-subgroup of SL(2, q) and the result
follows. □

Thus, it only remains to prove that if q does not have the form 2k±1, then SL(2, q)
possesses redundant Sylow 2-subgroups.

Theorem 6.4. Let q be a power of a prime such that {q−1, q, q+1}∩{2k|k ∈ N} = ∅
and let G = SL(2, q). If x is a 2-element of G, then CG(x) is not a 2-group.

Proof. Let x be a 2-element of G, let C = ⟨x⟩, let Fq be the field of q elements and
let V be the vector space of dimension 2 over Fq. We have that C acts naturally
on V and since the characteristic of the field defining V is odd, V is a completely
reducible C-module by Maschke’s Theorem (see [20, Theorem 1.9]). Thus, either C
may be diagonalized over V or C acts irreducibly on V .
Assume first that C can be diagonalized over V . Therefore, we can identify x with

a matrix diag(e, e−1) for some e ∈ F×
q . We observe that diag(a, a−1) centralizes x for

every a ∈ Fq. Now, since q − 1 is not a power of 2, we have that there exists a ∈ Fq

of odd order and hence diag(a, a−1) is an element of odd order centralizing x.
Assume now that C acts irreducibly on V . We claim that CG(x) contains a cyclic

group of order q+1. Let K be the centralizer of C in End(V ). It follows from Schur’s
lemma (see [20, Lemma 1.5]) that K is a division ring. Wedderburn’s theorem says
that a finite division ring is a field. The multiplicative group K× of K is cyclic of
order k. We know that Fq is contained in K. Since C acts irreducibly on V (and is
contained in K), K must be a proper field extension of Fq. So k ≥ q2. Since K× is
cyclic and it acts faithfully on V , its order k − 1 must be at most |V | − 1 = q2 − 1.
It follows that K× is a cyclic group of order |V | − 1 moving the non-zero elements of
V in one cycle. Such a group is called a Singer cycle. This is the centralizer of C in
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GL(V ). Take T = K×∩SL(V ). This group centralizes C. The order of T is divisible
by (q2 − 1)/(q− 1) = q+1 and the claim follows. Since q+1 is not a power of 2, we
deduce that there exists an element of odd order centralizing x. □

The following result completes the proof of Theorem D.

Theorem 6.5. Let q be a power of a prime such that {q−1, q, q+1}∩{2k|k ∈ N} = ∅.
Then SL(2, q) possesses redundant Sylow 2-subgroups.

Proof. Let G = SL(2, q) and let P ∈ Syl2(G). Since the cases q ∈ {11, 13} can be
checked by GAP [13], we may assume that q > 13 and hence we may assume that
P = NG(P ). By Lemma 2.6, it suffices to prove that |xG| < νp(G)|xP | for all x ∈ P .
Since we know that P = NG(P ), this is equivalent to prove that |CG(x)| > |CP (x)|
for all x ∈ P . Thus, it suffices to prove that CG(x) is not a 2-group for all x ∈ P .
Thus, the result follows by Theorem 6.4. □

7. Sporadic groups

In this section, we collect the results on the sporadic groups which we have obtained
using GAP [13]. For the smallest sporadic groups we used Lemma 2.6 to study
whether there is a redundant Sylow p-subgroup.

-Fully Checked Groups: ["M11","M12", "M22", "M23", "M24", "J1", "J2",

"J3", "HS", "McL", "He", "Co3", "Ru", "Suz"];

-Groups and primes for which there are redundant Sylow p-subgroups:

[ [ "M12", 3 ], [ "M22", 3 ], [ "M23", 3 ], [ "M24", 3 ], [ "J1", 2 ],

[ "J2", 3 ], [ "HS", 3 ], [ "He", 3 ], [ "He", 5 ], [ "Co3", 2 ],

[ "Ru", 3 ], [ "Ru", 5 ], [ "Suz", 5 ] ].

It does not seem possible with our hardware to decide the existence of a redun-
dant Sylow p-subgroup for the larger sporadic groups using Lemma 2.6. For these
groups, we have used the sufficient condition for the existence of a redundant Sylow
p-subgroup provided by Lemma 2.8. Using the character table and the second orthog-
onality relation, we can compute |CG(x)| for any sporadic group and any p-element
x ∈ G. If for any p-element x ∈ G, |CG(x)| does not divide |NG(P )|, where P is
a Sylow p-subgroup of G, then it follows from Lemma 2.8 that G has a redundant
Sylow p-subgroup. The structure of the Sylow normalizers of the sporadic groups
can be found in [41]. Using this criterion, we have checked the following.

-Groups studied with this criterion: [ "J4", "Co1", "Co2", "Fi22",

"Fi23", "Fi24","ON", "HN", "Ly", "Th" "B", "M" ];

-Groups and primes for which there are redundant Sylow p-subgroups:

[ ["J4",3], ["Co1", 5], ["Fi23", 5], ["Fi24’", 5], ["Fi24’", 7],

["Ly’", 2], ["Th’", 2], ["B", 7], ["M", 5], ["M", 7], ["M", 11] ].
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Since Lemma 2.8 is not a sufficient condition for the existence of redundant Sylow
subgroups, there may exist some other pairs (G, p) with G sporadic and p prime such
that G has a redundant Sylow p-subgroup.

It is worth remarking that the Monster has a redundant Sylow 7-subgroup. This
is related to the work in [16, 17].

8. On the number of Sylow p-subgroups

We have conjectured in [29] that if G is a finite group generated by its p-elements,
then Gp cannot be covered by p proper subgroups. Our next goal is to prove that if
G does not have a normal Sylow p-subgroup, then Gp cannot be covered by p Sylow
p-subgroups. The following lemma is proved in [30, p. 79-80]. For the convenience
of the reader, we present a proof in modern language and notation.

Lemma 8.1. Let G be a group with non-normal Sylow p-subgroups of order pn. Then
|Gp| ≥ pn+1.

Proof. Let P,Q ∈ Sylp(G) such that P ̸= Q and P ∩Q has order as large as possible.
Write D = P ∩Q. Since D is a p-group, there exists g ∈ NP (D)−D. In particular,

g ̸∈ Q. Since g is a p-element, g ̸∈ NG(Q), and we deduce that Q,Qg, . . . , Qgp−1
are

p pairwise different Sylow p-subgroups of G. Note that

D = P ∩Q = (P ∩Q)g = P ∩Qg,

so D = P ∩ Qgi for any i = 0, . . . , p − 1. On the other hand, since g normalizes D,
D is contained in Qgi ∩ Qgj for any 0 ≤ i < j ≤ p − 1. By the maximality of D,
we conclude that D = Qgi ∩ Qgj for any 0 ≤ i < j ≤ p − 1. Thus, we have found
p+1 Sylow p-subgroups of G such that the intersection of any two of them is D. Put
|D| = pm. It follows that

|Gp| ≥ |P ∪
p−1⋃
i=0

Qgi | ≥ (p+ 1)(pn − pm) + pm = pn+1 + pn − pm+1 ≥ pn+1.

□

Theorem 8.2. Let G be a group with non-normal Sylow p-subgroups. Then Gp

cannot be covered by p Sylow p-subgroups. In particular, if νp(G) = p + 1, then G
does not have a redundant Sylow p-subgroup.

Proof. Write |G|p = pn. We have |Gp| ≥ pn+1 by Lemma 8.1. On the other hand, the
union of p Sylow p-subgroups has less than pn+1 elements since the identity belongs
to every Sylow subgroup. The result follows. □

We can improve the second part of this result. We need the following, which was
essentially proved by Richard Lyons in [27].
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Lemma 8.3. If G is a group with at most p2 Sylow p-subgroups, then |G : Op(G)|p =
p.

Proof. Write |G|p = pn. Let P , Q ∈ Sylp(G) be two different Sylow p-subgroups.
We claim that |P ∩ Q| = pn−1. Consider the conjugation action of P on the set
Sylp(G) \ {P} of cardinality less than p2. Each orbit must have size p. In particular,
|NP (Q)| = pn−1. Since NP (Q)Q is a p-group, it follows that NP (Q) ≤ Q∩P , whence
|P ∩Q| = pn−1.

Let P ∈ Sylp(G). The Frattini subgroup Φ(P ) of P is contained in every Sylow
p-subgroup of G by the previous paragraph. Since the intersection of all Sylow p-
subgroups of G is Op(G), we find that Φ(P ) ≤ Op(G).
The group G = G/Op(G) has elementary abelian Sylow p-subgroups. By Brodkey’s

theorem [21, Theorem 1.37], there exist P , Q ∈ Sylp(G) such that P ∩ Q = 1, so
P ∩Q = Op(G). It follows from the first paragraph that |P : Op(G)| = p. □

Theorem 8.4. Let G be a finite group with at most p2 Sylow p-subgroups. Then G
does not have a redundant Sylow p-subgroup.

Proof. This follows from Lemma 8.3 and Corollary 2.3. □

We think that it should be possible to weaken the hypothesis that G has at most
p2 Sylow p-subgroups in the previous theorem. This result suggests the following
question.

Question 8.5. What is the smallest value of n = n(p) such that there exists a group
G with a redundant Sylow p-subgroup and νp(G) = n?

It also seems interesting to study the minimal size of a covering set by Sylow
p-subgroups of a group with a redundant Sylow p-subgroup. One of the smallest
such examples, SmallGroup(108,17), has 27 Sylow 2-subgroups and we have checked
with GAP [13] that the smallest size of a covering of Gp by Sylow p-subgroups is
at most 12. It would be interesting to see if when G is a group with a redundant
Sylow p-subgroup it is necessarily the case that there are “many” redundant Sylow
p-subgroups. For instance, we have the following question.

Question 8.6. Is it true that there exists c < 1 (possibly depending on p) such that
if p is a prime and G is a finite group with a redundant Sylow p-subgroup, then Gp

can be covered by at most cνp(G) Sylow p-subgroups?

In other words, this question is asking whether in case that there is a redundant
Sylow p-subgroup, there necessarily exists a positive proportion of redundant Sylow
p-subgroups. The following dual question seems also of interest.

Question 8.7. Is it true that there exists c > 0 (possibly depending on p) such that
if p is a prime and G is a finite group, then Gp cannot be covered by less than cνp(G)
Sylow p-subgroups?
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Note that Conjecture A of [14] implies that Gp cannot be covered by less than

νp(G)1−
1
p Sylow p-subgroups. These questions are partially inspired by a theorem of

Sambale and Tărnăuceanu [34]. They proved in [34] that there exists c = c(n) > 0
such that if a finite group G is not covered by H1, . . . , Hn then the proportion of
elements of G in G \ (H1 ∪ · · · ∪ Hn) is at least c. (Actually, they proved stronger
and more precise results.) We conclude with a possible p-version of this.

Question 8.8. Does there exist c = c(n) > 0 (possibly depending on p too) such that
if G is a finite group and Gp is not covered by P1, . . . , Pn ∈ Sylp(G) then

|Gp \ (P1 ∪ · · · ∪ Pn)|/|Gp| ≥ c?
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[28] A. Maróti, Covering the symmetric groups with proper subgroups. J. Combin. Theory Ser A.
110 (2005), 97–111. 1
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Spain

Email address: alexander.moreto@uv.es


	1. Introduction
	2. General criteria for the existence of  a redundant Sylow p-subgroup
	3. Solvable groups
	4. Symmetric and alternating groups
	5. General linear groups
	6. The groups SL(2,q) and PSL(2,q)
	7. Sporadic groups
	8. On the number of Sylow p-subgroups
	References

