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Abstract. In this survey article, we discuss the minimal degree, the base size,

and the order of a finite primitive permutation group, along the lines of an

article by Martin W. Liebeck.

1. Introduction

It has been forty years since Martin W. Liebeck’s article “On minimal degrees
and base sizes of primitive permutation groups” was published in Archiv der Math-
ematik. We take the opportunity to give a short survey of selected topics on the
effects of this influential paper.

Let G be a finite permutation group acting on a set Ω. This is said to be
transitive if for every α and β in Ω there is a permutation g in G such that αg = β.
A nonempty subset ∆ of Ω is called a block for G if for every g ∈ G the set ∆g ∩∆
is either equal to ∆ or is the empty set. A block is trivial if it has size 1 or if
it is Ω. If there is no nontrivial block for a transitive permutation group G, then
G is called a primitive permutation group. For an element α ∈ Ω, let Gα denote
the point-stabilizer of α in G defined to be the subgroup of G consisting of those
elements g such that αg = α. (A transitive permutation group G is primitive if
and only if Gα is a maximal subgroup in G for some (any) α ∈ Ω.)

Let µ(G) be the smallest number of elements of Ω moved by any non-identity
permutation in G. This invariant is called the minimal degree of G. A nonempty
subset ∆ of Ω is called a base for G if ∩α∈∆Gα = 1. The minimal size of a base for
G is denoted by b(G). The third invariant which is discussed in this paper is the
order |G| of G.

The degree of G is defined to be |Ω|, which we denote by n. Knowledge of
the minimal size b(G) of a base for G provides lower and upper bounds for |G|.
It is easy to see that 2b(G) ≤ |G| ≤ n(n − 1) · · · (n − b(G) + 1) ≤ nb(G). The
relationship between the minimal size of a base for G and the minimal degree of G
is the following. If G is a transitive permutation group, then n ≤ b(G)µ(G) (see
[19, Exercise 3.3.7]).
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Martin Liebeck’s article [28] contains three main results about a finite primitive
permutation group G and these concern the invariants |G|, µ(G), and b(G). We
restate these groundbreaking theorems and discuss the three invariants in three
separate sections. The survey could be considered as an account of existing results
in the selected areas. Liebeck’s paper [28] appeared soon after the classification of
finite simple groups was announced. We give a brief history, with some relevant
references for the interested reader, of work done on these topics before 1984. We
then describe (in our point of view) the most direct influence of Liebeck’s theorems.
Many references are given on our selected topics. The reader is advised to consult
these for more information and motivation. There is new progress (in different
directions) and there are new questions and problems. These are not discussed
here since we tried to keep the survey as coincise as possible, however we hope
that the reader will become interested and can get acquainted with the most recent
topics influenced by Martin Liebeck’s paper [28].

2. Orders

Let G be a primitive permutation group of degree n different from the symmetric
group Sn and the alternating group An. How large can the order |G| of G be? This
question was raised in the 19th century. For interesting historical accounts see [17,
Section 4.10] and [1]. Apart from some early results of Jordan, probably the first
successful estimate for the order of G was obtained by Bochert [6] (see also [19] or
[41]): if G is a primitive permutation group of degree n and different from Sn and
An, then (Sn : G) ≥ [ 12 (n+ 1)]!. This bound is good for very small degrees n.

Based on Wielandt’s method [42] of bounding the orders of Sylow subgroups,
Praeger and Saxl [36] obtained an exponential estimate, 4n. Using entirely different

combinatorial arguments, Babai [1] obtained an e4
√
n ln2 n estimate for uniprimitive

(primitive but not doubly transitive) groups. (A permutation group G acting on
a set Ω is doubly transitive if for any two tuples (α1, β1) and (α2, β2) from Ω × Ω
such that α1 ̸= β1 and α2 ̸= β2 there exists a permutation g ∈ G with α1g = α2

and β1g = β2. Doubly transitive groups are primitive.) For the orders of doubly

transitive groups not containing An, Babai [2] obtained the bound exp(exp(c
√
lnn))

for some universal constant c. This was improved by Pyber [37] to an nc·ln2 n bound
by an elementary argument (using some ideas of [2]). Apart from O(lnn) factors
in the exponents, the estimates in [1] and [37] are asymptotically sharp.

To do better, one may want to use the O’Nan-Scott theorem and the classification
of finite simple groups. If H is a permutation group acting on a set Γ, then the
wreath product H ≀Sr acts in a natural way on the set Γr. This action is a product
action. In 1981 Cameron [15] proved the following theorem.

Theorem 2.1 (Cameron [15]). There is a (computable) constant c with the property
that, if G is a primitive permutation group of degree n, then at least one of the
following holds.

(1) G has an elementary abelian regular normal subgroup.
(2) G is a subgroup of Aut(T ) ≀ Sr, containing T r, where T is either an alter-

nating group acting on k-element subsets, or a classical simple group acting
on an orbit of subspaces or (in the case T = PSLd(q) where d is an integer
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and q is a prime power) pairs of subspaces of complementary dimension,
and the wreath product has the product action.

(3) |G| ≤ nc ln lnn.

Groups in (1) of Theorem 2.1 have size at most n1+logn. (The bases of our
logarithms will be 2.) It follows from Liebeck’s paper [28] that if G is a group
satisfying (2) with T a classical simple group, then |G| < 9 log n. In this context
see also [17, Theorem 4.13] and its proof.

A primitive permutation group is said to be almost simple if it has a unique
minimal normal subgroup and that is nonabelian and simple. The class of almost
simple primitive permutation groups plays a fundamental role in bounding the
orders of primitive groups. The previously mentioned general upper bound 9 log n
of Liebeck, with known exceptions, for the order of a primitive permutation group
of degree n was obtained from the following theorem.

Theorem 2.2 (Liebeck [28]). Let G be an almost simple primitive permutation
group of degree n with minimal normal subgroup T . At least one of the following
holds.

(1) T = Am acting on k-subsets of {1, . . . ,m} or on partitions of {1, . . . ,m}
into a subsets of size b, where ab = m, a > 1, b > 1, n =

(
m
k

)
or m!/(b!)aa!,

respectively.
(2) T is a classical simple group acting on an orbit of subspaces of the natural

module, or (in the case T = PSLd(q) where d is an integer and q is a prime
power) pairs of subspaces of complementary dimensions.

(3) |G| < n9.

The bound |G| < n9 in part (3) of Theorem 2.2 may be replaced by |G| ≤ nc

where c = 6.077948094 is adjusted to the Mathieu group M24 (Martin Liebeck,
unpublished). For more on this comment, see [17, p. 116]. See also Theorem 4.2.

Let us close this section by recording the following theorem.

Theorem 2.3 (M [34]). Let G be a primitive permutation group of degree n. Then
at least one of the following holds.

(1) G is a subgroup of Sm ≀ Sr containing (Am)r, where the action of Sm is
on k-element subsets of {1, . . . ,m} and the wreath product has the product

action of degree n =
(
m
k

)r
.

(2) G = M11, M12, M23 or M24 with their 4-transitive actions.

(3) |G| ≤ n ·
∏[log2 n]−1

i=0 (n− 2i) < n1+[log2 n].

3. Minimal degree

One of the classical problems in the theory of permutation groups was to classify
the permutation groups whose minimal degree is small. Let G be a primitive
permutation group of degree n. If G contains a transposition or a 3-cycle, then G
must be Sn or An. This means that if G does not contain An, then its minimal
degree, µ(G), is at least 4. There are many classical results on minimal degrees
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of primitive permutation groups. For example, see Bochert [7], Jordan [26], and
Manning [33]. A summary can be found in Wielandt’s book [41]. See also [19].

The best result on the minimal degree of a primitive permutation group obtained
prior to the classification of finite simple groups is due to Babai [1, Theorem 6.14].
He claims that this is the central result of his paper [1].

Theorem 3.1 (Babai [1]). If G is a primitive permutation group of degree n and
not containing An, then µ(G) > (

√
n− 1)/2.

The following stronger bound was proved using the classification of finite simple
groups.

Theorem 3.2 (Liebeck [28]). Let G be a primitive permutation group of degree n.
At least one of the following holds.

(1) G is a subgroup of Sm ≀ Sr containing (Am)
r
, where the action of Sm is

on k-element subsets of {1, . . . ,m} and the wreath product has the product

action of degree n =
(
m
k

)r
.

(2) µ(G) > n/(9 log n).

Liebeck and Saxl [32] improved the bound µ(G) > n/(9 log n) in part (2) of
Theorem 3.2 to µ(G) ≥ n/3. This result is deduced from the stronger result [32,
Theorem 6.1] where the n/3 is replaced by n/2 at the cost of further exceptions in
part (1) of Theorem 3.2. It is noted in [32, p. 268] that in all cases the minimal
degrees of the groups Sm ≀ Sr in Theorem 3.2 are realized by a transposition in
one of the factors Sm of the base group. A useful consequence [32, Corollary 3] of
these results is an improvement of Babai’s general bound (Theorem 3.1) to µ(G) >
2(
√
n − 1). Later Guralnick and Magaard [22] classified all primitive permutation

groups of degree n with µ(G) ≤ n/2. All examples are essentially variants on
alternating or symmetric groups acting on the set of subsets of some cardinality k
or from orthogonal groups over the field of two elements acting on some collection
of 1-spaces or hyperplanes.

The strongest theorem to date on the minimal degree of a primitive permutation
group is due to Burness and Guralnick [9, Theorem 4].

Theorem 3.3 (Burness, Guralnick [9]). Let G be a primitive permutation group
acting on a finite set Ω of size n. Let a point-stabilizer be H. Either µ(G) ≥ 2n/3
or one of the following holds (up to permutation isomorphism).

(1) G = Sm or Am acting on k-element subsets of {1, . . . ,m} with 1 ≤ k <
m/2.

(2) G = Sm, H = Sm/2 ≀ S2, and µ(G) = (1 + 1/(m− 1))(n/2).
(3) G = M22 : 2 or G = L3(4).22 with n = 22 and µ(G) = 14.
(4) G is an almost simple classical group in a subspace action and the few

possibilities are listed in [9, Table 2].
(5) G = V : H is an affine group with unique minimal normal subgroup V =

(C2)
d
and H ≤ GLd(2) contains a transvection and µ(G) = 2d−1 = n/2.

(6) G ≤ L ≀ Sr is a product type primitive group with its product action on
Ω = Γr where r ≥ 2 and L ≤ Sym(Γ) is one of the almost simple groups in
(1)-(4).
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4. Base size

The minimal size of a base of a primitive permutation group has been much
investigated. Already in the nineteenth century Bochert [6] showed that b(G) ≤ n/2
for a primitive permutation group G of degree n not containing An. This bound
was substantially improved by Babai to b(G) < 4

√
n lnn, for uniprimitive groups

G, in [1], and to the estimate b(G) < 2c
√
logn for a universal constant c, for doubly

transitive groups G not containing An, in [2]. The latter bound was improved by

Pyber [37] to b(G) < c(log n)
2
where c is a universal constant. These estimates are

elementary in the sense that their proofs do not require the classification of finite
simple groups.

Using the classification, Liebeck [28] classified all primitive permutation groups
G of degree n with b(G) ≥ 9 log n.

Theorem 4.1 (Liebeck [28]). Let G be a primitive permutation group of degree n.
At least one of the following holds.

(1) G is a subgroup of Sm ≀ Sr containing (Am)
r
, where the action of Sm is

on k-element subsets of {1, . . . ,m} and the wreath product has the product

action of degree n =
(
m
k

)r
.

(2) b(G) < 9 log n.

In 1981 Babai conjectured (see [38, p. 207]) that there is a function f : N → N
such that any primitive group that has no alternating or classical composition factor
of degree or dimension greater than d has base size less than f(d). An important
special case was a famous theorem of Seress [39]: if G is a (finite) solvable primitive
permutation group then b(G) ≤ 4. Babai’s conjecture was proved by Gluck, Seress,
Shalev [21] with f a quadratic function and improved to a linear function f by
Liebeck and Shalev [29].

In order to state a second conjecture on base sizes of primitive permutation
groups, we return to Theorem 2.2 (and to the comment that follows it). If G is a
primitive permutation group satisfying part (1) or part (2) of Theorem 2.2, then
(the action of) G is called standard. Otherwise the action is said to be nonstandard.
A well-known conjecture of Cameron and Kantor (see [16] and [18]) asserted that
there exists an absolute constant c such that b(G) ≤ c for all almost simple primitive
permutation groups G in nonstandard actions. Referring to c, Cameron wrote (see
[17, p. 122]), ‘Probably this constant is 7, and the extreme case is the Mathieu
group M24’. The Cameron-Kantor conjecture was proved by Liebeck and Shalev
[29] and in the strong form with c = 7 by Burness [8], Burness, Guralnick, Saxl
[10], Burness, Liebeck, Shalev [12], and Burness, O’Brien, Wilson [13].

Theorem 4.2 (Burness, Liebeck, Shalev [12]; Burness, O’Brien, Wilson [13]). If
G is an almost simple primitive permutation group in nonstandard action, then
b(G) ≤ 7, with equality if and only if G is the Mathieu group M24 in its natural
action of degree 24.

For primitive permutation groups G in standard actions, the minimal base size
b(G) cannot be bounded from above by an absolute constant. This is because, in
general, the orders of the permutation groups in standard actions are not bounded
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from above by a fixed polynomial function of their degree and thus b(G) is un-
bounded by the observation that b(H) > log |H|/ log n for any finite permutation
group H of degree n. Bounds (and formulas) for b(G) for groups G satisfying part
(1) of Theorem 2.2 were obtained by Halasi [23], Bailey, Cameron [3], [14], [5] and
James [25]. For bounds and calculations for b(G) in case G satisfies part (2) of
Theorem 2.2, see [35], [24], and [11, Section 4].

A well-known conjecture of Pyber [38, Page 207] stated that there exists a uni-
versal constant c such that b(G) < c(log |G|/ log n) for all primitive permutation
groups G of degree n. For a collection of results towards this conjecture, see the
survey article [31]. See also the important paper [30] of Liebeck and Shalev. The
proof of Pyber’s conjecture was completed by Duyan, Halasi and the author [20].
It was shown in [20] that there exists a universal constant c such that, for every
primitive permutation group G of degree n, we have b(G) < 45(log |G|/ log n) + c.
The theorem was made effective by Halasi, Liebeck and the author [24] (where the
multiplicative constant 2 is best possible).

Theorem 4.3 (Halasi, Liebeck, M [24]). If G is a primitive permutation group of
degree n, then b(G) ≤ 2(log |G|/ log n) + 24.

We continue this section with a beautiful improvement of Theorem 4.1 due to
Moscatiello and Roney-Dougal [35]. The next theorem should also be compared
with Theorem 2.3.

Theorem 4.4 (Moscatiello, Roney-Dougal [35]). Let G be a primitive permutation
group of degree n and not satisfying part (1) of Theorem 4.1. Then b(G) ≥ 1+log n
if and only if G is one of the following.

(1) A subgroup of AGLd(2) for some integer d and b(G) = 1 + d = 1 + log n.
(2) The group Spd(2), acting on the cosets of GO−

d (2) with d ≥ 4, in which
case 1 + log n < b(G) = 1 + ⌈log n⌉.

(3) A Mathieu group Mn in its natural permutation representation with n in
the set {12, 23, 24}. If n = 12 or 23 then b(G) = 1+⌈log n⌉, while if n = 24
then b(G) = 7 > 1 + ⌈log n⌉.

Concerning the groups satisfying part (1) of Theorem 4.1, we remark that if
G is a primitive permutation group of degree n not containing An then b(G) ≤
max{

√
n, 25} by [24, Corollary 1.3].

The base size has important applications in computational group theory. See
for example [40]. Blaha [4] proved that the problem of computing a minimal base
for a permutation group is NP-hard. However, an irredundant base (see the next
paragraph) can be computed in polynomial time (see [40]).

Let G be a permutation group acting on a finite set Ω. A nonempty subset ∆
of Ω is called an irredundant base for G if it is a base for G but no proper subset
of ∆ is a base for G. The maximal size of an irredundant base for G (acting on Ω)
is denoted by I(G). Another nice improvement of Theorem 4.1 was obtained by
Kelsey and Roney-Dougal [27]. Let G be a primitive permutation group of degree
n not satisfying part (1) of Theorem 4.1. Then I(G) < 5 log n. It follows from
this and the previous paragraph that a base for G of size at most 5 log n can be
constructed in polynomial time (see [27]).
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