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Abstract. Let p be a prime. In this paper we provide a lower bound for the
number of almost p-rational characters of degree coprime to p in the principal p-
block of a finite group of order divisible by p. We further describe the p-local
structure of the groups for which the above-mentioned bound is sharp.

1. Introduction

Let G be a finite group and let p be a prime dividing |G|. Let ξ be a primitive
|G|th root of unity. Write |G| = pan with (p, n) = 1 and a is a positive integer.
Let σ ∈ Gal(Q(ξ)/Q) be the Galois automorphism that sends p-power roots of unity
to their 1 + p power and fixes roots of unity of order coprime to p. Although the
definition of σ depends on the prime p, it will be clear from context throughout the
article. Given a positive integer k, we will denote by Qk the kth cyclotomic extension
of Q. Following [HMM22], we say that a character χ is almost p-rational if all the
values of χ lie in some cyclotomic extension Qpm where (p,m) = 1. If p is odd, then
Gal(Q|G|/Qpn) = ⟨σ⟩. In particular, a character χ of G is almost p-rational if, and
only if, χ is σ-invariant. If p = 2, then Q2n = Qn, so almost 2-rational characters
are 2-rational. As Gal(Q|G|/Qn) is not generally cyclic, we cannot characterize 2-
rational characters as those invariant under the action of ⟨σ⟩ (for instance, dihedral
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groups of order 2k > 8 have irreducible characters that are σ-invariant but not 2-
rational). However, when dealing with irreducible characters χ of odd degree, it
was first noticed in [VR23] that χ is 2-rational if, and only if, χ is σ-invariant (or
equivalently ⟨σ⟩-fixed).
Let G be a finite group and let p be a prime. For a p-block B of G, let k(B)

denote the number of complex irreducible characters in B. In [HK00], Héthelyi and
Külshammer conjecture that if k(B) > 1 then

k(B) ≥ 2
√
p− 1.

This conjecture remains open even for solvable groups. Recently, Hung and the third-
named author of this article have shown that the Héthelyi–Külshammer conjecture
holds for principal blocks in [HS23]. Our aim in this article is to show that a much
stronger bound is true for principal blocks. More precisely, we show that 2

√
p− 1 is

also a lower bound for the number of almost p-rational characters of degree coprime to
p lying in the principal p-block of groups of order divisible by p. From the discussion
above, this means we are interested in studying

k0,σ(B0(G)),

the size of the set Irrp′,σ(B0(G)) of irreducible characters of degree coprime to p
in principal p-blocks of G fixed by the action of ⟨σ⟩. We care to remark that the
numbers k0,σ(B0(G)) have been recently shown to influence the numbers of generators
of the Sylow p-subgroups in [NT19, RSV20, VR23]. We denote by Φ(G) the Frattini
subgroup of a group G and by ⌈x⌉ ∈ N the ceiling of a real number x. Our main
result is the following.

Theorem A. Let G be a finite group, p a prime and P ∈ Sylp(G). If P > 1, then

k0,σ(B0(G)) ≥ ⌈2
√
p− 1⌉

with equality if, and only if, the following conditions hold:

(i) ⌈2
√
p− 1⌉ = e+ p−1

e
for some divisor e of p− 1;

(ii) P is cyclic; and
(iii) the local quotient group NG(P )/Φ(P )Op′(NG(P )) is isomorphic to one of the

following Frobenius groups Cp ⋊ Ce or Cp ⋊ C p−1
e
.

The statement of Theorem A can be proven to be a consequence of the Alperin–
McKay–Navarro conjecture [Nav04, Conjecture B]. In this sense, Theorem A provides
new evidence of the validity of this conjecture, which as of the writing of this article is
quite far from being proved. (For example, it has not yet been reduced to a problem
on simple groups.) We give further details in Section 7.2, where we also speculate
about the possibility of extending the inequality in Theorem A to arbitrary blocks.

Given any finite group G of order divisible by a prime p, it was proven in [Mar16],
by the first-named author of this article, that the number k(G) of conjugacy classes
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of G (or equivalently the number of irreducible complex characters of G) is bounded
by below by 2

√
p− 1. Moreover, the results of [Mar16] show that the bound k(G) =

2
√
p− 1 is attained only if a =

√
p− 1 ∈ N and G is isomorphic to the Frobenius

group Cp ⋊ Ca. Our proof of the equality in Theorem A ultimately depends on the
analysis of the equality k(G) = ⌈2

√
p− 1⌉ in groups G with a nontrivial normal

elementary abelian Sylow p-subgroup. We carry out this analysis, improving upon
[Mar16, Theorem 1.1], in Section 2. Additionally, our proof of Theorem A depends
on the following statements regarding mostly finite simple groups.

Theorem B. Let S be a finite nonabelian simple group of order divisible by a prime
p ≥ 5. Let A = Aut(S).

(i) There is some X-invariant 1S ̸= θ ∈ Irrp′,σ(B0(S)), where X/S ∈ Sylp(A/S).
(ii) If S has non-cyclic Sylow p-subgroups and S ≤ T ≤ A with p ∤ |T : S| then

(a) k0,σ(B0(T )) > ⌈2
√
p− 1⌉,

(b) the number of T -orbits on Irrp′,σ(B0(S)) is at least 2(p− 1)1/4.
(iii) Suppose that S has cyclic Sylow p-subgroups. Write N = St with t ≥ 2 and

suppose that N ◁ H with p ∤ |H : N |. Then

k0,σ(B0(H)) = k0,σ(B0(NH(P ))) > ⌈2
√
p− 1⌉

where P ∈ Sylp(H).

We note that Theorem B(i) implies that there is a σ-invariant extension of θ to X,
using [Nav18, Cors. 6.2 and 6.4]. With this in mind, we prove a stronger statement
in the case that S is a simple groups of Lie type in non-defining characteristic in
Lemma 4.4 below, which might be useful for related future applications.

Notice also that Theorem B(iii) states that the principal p-block of a group H as
described in its statement satisfies [IN02, Conjecture D]. In [HMM22, Theorem 4.4],
the authors prove a weaker version of the statement of Theorem B(iii) by using the
Classification of Finite Simple Groups (CFSG, for short) when proving that 2

√
p− 1

is a lower bound for the number of almost p-rational irreducible characters of degree
coprime to p in a group of order divisible by p. Remarkably, we prove Theorem B(iii)
without invoking the CFSG in Section 5.

This paper is organized as follows. In Section 2 we show that if G is a finite group
of order divisible by p and k(G) = ⌈2

√
p− 1⌉ then G has cyclic Sylow p-subgroups.

Section 3 contains known results on principal blocks. We prove Theorem B(i) and
(ii) in Section 4 and Theorem B(iii) in Section 5. We complete the proof of Theorem
A in Section 6. In Section 7 we discuss some related problems.

2. An improved bound on the number of conjugacy classes

The aim of this section is to characterize the finite groups G with an elementary
abelian nontrivial Sylow p-subgroup such that k(G) = ⌈2

√
p− 1⌉. By [Mar16], the
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inequality k(G) ≥ ⌈2
√
p− 1⌉ always holds. We will show that k(G) = ⌈2

√
p− 1⌉

implies that |G|p = p, where np is the p-part of the number n. In particular, k(G) =
a+ p−1

a
for some divisor a of p−1, and G is isomorphic to one of the Frobenius groups

Cp ⋊ Ca or Cp ⋊ C p−1
a
.

2.1. Statement of results. Let G be a finite group and p a prime. Let k(G) be
the number of conjugacy classes of G. For a normal subgroup V in G, let n(G, V )
denote the number of orbits of G on V (acting by conjugation).
The purpose of this section is to prove the following.

Theorem 2.1. If G is a finite group having an elementary abelian minimal normal
subgroup V of p-rank at least 2 and |G/V | is not divisible by the prime p, then
k(G) ≥ 2

√
p− 1 + 1.

We make a few remarks on Theorem 2.1.
In order to prove Theorem 2.1, we may assume that G is not nilpotent. For if G

is nilpotent, then k(G) ≥ |V | ≥ p2 ≥ 2
√
p− 1+ 1. In the paper [VLS07] and its pre-

quels, all non-nilpotent finite groups are classified with at most 14 conjugacy classes.
By going through these lists of groups, we see that no group G is a counterexample
to Theorem 2.1 with k(G) ≤ 14. This means that in Theorem 2.1 we can assume
that 2

√
p− 1 + 1 ≥ 15. In other words, p ≥ 53.

Héthelyi and Külshammer [HK03] proved that if X is a finite solvable group whose
order is divisible by the square of a prime p then k(X) ≥ (49p+ 1)/60. Thus if G is
solvable (and p ≥ 53), then k(G) ≥ (49p+ 1)/60 ≥ 2

√
p− 1 + 1. We may assume in

Theorem 2.1 that G is not solvable.
Since k(G) ≥ k(G/V )+n(G, V )−1 by the Clifford-Gallagher formula, it is sufficient

to show that k(G/V ) + n(G, V ) ≥ 2
√
p− 1 + 2. Since k(G/V ) ≥ k(G/CG(V )) and

n(G, V ) = n(G/CG(V ), V ), we may assume that G/V acts faithfully on V , that is,
V is a faithful and irreducible G/V -module.

We find that Theorem 2.1 would be a consequence of the following statement
(where the new G is G/V in Theorem 2.1).

Theorem 2.2. Let V be an irreducible and faithful FG-module for some finite non-
solvable group G and finite field F of characteristic p at least 53. If p does not divide
|G|, then k(G) + n(G, V )− 1 ≥ 2

√
p− 1 + 1.

2.2. Preliminaries. The size of the field F will be denoted by q, the dimension of
V over F by n, and the center of GL(n, q) by Z.

We will use the following trivial observation throughout the paper.

Lemma 2.3. With the notation and assumptions above, |V |/|G| ≤ n(G, V ).

Suppose that G transitively permutes a set {V1, . . . , Vt} of subspaces of V with t an
integer with 1 ≤ t ≤ n as large as possible with the property that V = V1 ⊕ · · · ⊕ Vt.
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Let B be the kernel of this action of G on the set of subspaces. Note that G/B
is a transitive permutation group of degree t. The subgroup B is isomorphic to a
subdirect product of t copies of a finite group T . In other words B is isomorphic to
a subgroup of T1 × · · · × Tt where for each i with 1 ≤ i ≤ t the vector space Vi is
a faithful Ti-module and Ti ∼= T . Let H1 be the stabilizer of V1 in G. Let k be the
number of orbits of H1 on V1.

The following is [Fou69, Lemma 2.6].

Lemma 2.4. With the above notation and assumptions,

max{t+ 1, k} ≤
(
t+ k − 1

k − 1

)
≤ n(G, V ).

We will use the following consequence of a result of Seager [Sea87, Theorem 1].

Proposition 2.5. Let W be a faithful primitive FH-module for a finite solvable
group H not contained in ΓL(1, pm) where F is a field of prime order p ≥ 53 and
|W | = pm. Then pm/2/12m < n(H,W ).

The following is [PP98, Proposition 4].

Proposition 2.6. Let X be any subgroup of the symmetric group Sm whose order is
coprime to a prime p. If m > 1 then |X| < pm−1.

The proof of the next lemma is identical to the proof of [Mar16, Lemma 3.5].

Lemma 2.7. If G has an abelian subgroup of index at most |V |1/2/(2
√
p− 1+1) and

n(G, V ) ≤ 2
√
p− 1 + 1, then k(G) ≥ 2

√
p− 1 + 1.

2.3. The class Cq. Our first aim in proving Theorem 2.2 is to describe (as much as
possible) the possibilities for G and V with the condition that n(G, V ) < 2

√
q − 1+1

where q is the size of the underlying field F . For this we need to introduce a class of
pairs (G, V ) which we denote by Cq.

In this paragraph we define a class of pairs (G, V ) where V is an FG-module.
Let W be a not necessarily faithful but coprime QH-module for some finite field
extension Q of F and some finite group H. We write StabQQ1

(H,W ) for the class
of pairs (H1,W1) with the property that W1 is a Q1H1-module with F ≤ Q1 ≤ Q
where W1 is just W viewed as a Q1-vector space and H1 is some group with the
following property. If φ : H1 → GL(W1) and ψ : H → GL(W ) denote the natural,
not necessarily injective homomorphisms, then φ(H1) ∩ GL(W ) = ψ(H). We write
Ind(H,W ) for the class of pairs (H1,W1) with the property that W1 = IndH1

H (W ) for
some group H1 with H ≤ H1. Finally, let Cq be the class of all pairs (G, V ) with
the property that V is a finite, faithful, coprime and irreducible FG-module so that
(G, V ) can be obtained by repeated applications of StabQ2

Q1
and Ind starting with

(H,W ) where W is a 1-dimensional QH-module with Q a field extension of F .
The main results of this section are Lemmas 2.8 and 2.9.
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Lemma 2.8. Let (G, V ) ∈ Cq and n(G, V ) < 2
√
q − 1 + 1. If q ≥ 53, then |G| <

|V |3/2.

Lemma 2.8 is a slight variation of Lemma 4.1 of [Mar16]. The proof of Lemma 2.8
may be obtained from the proof of Lemma 4.1 of [Mar16] by minor changes in places
(and using Lemma 2.4 and Proposition 2.6).

After minor changes to the proof of Lemma 4.2 of [Mar16], the condition p ≥ 59
may be relaxed to p ≥ 53 in the statement and the two occurrences of 2

√
p− 1 may

be changed to 2
√
p− 1 + 1. We obtain the following.

Lemma 2.9. Let (G, V ) ∈ Cq and n(G, V ) < 2
√
q − 1 + 1. If p ≥ 53, then at least

one of the following holds.

(i) G has an abelian subgroup of index at most |V |1/2/(2
√
p− 1 + 1).

(ii) |F | = p, the module V is induced from a 1-dimensional module, and G has
a factor group isomorphic to An or Sn where n = dimF (V ). In this case we
either have n = 1, or 15 ≤ n ≤ 180 and p < 8192.

2.4. Some absolutely irreducible representations. The following is Proposition
5.1 of [Mar16] with two occurrences of 59 changed to 53 and one occurrence of 2

√
q − 1

changed to 2
√
q − 1 + 1.

Proposition 2.10. Suppose that p is a prime at least 53. Let H be a finite subgroup
of GL(n, q) with generalized Fitting subgroup a quasisimple group where q is a power
of p. Put G = Z ◦H where Z is the multiplicative group of F . Furthermore suppose
that V is an absolutely irreducible FT -module for every non-central normal subgroup
T of G. Suppose also that |G| is not divisible by p. Then n(G, V ) ≥ 2

√
q − 1 + 1

unless possibly if n = 2, q is in the range 53 ≤ q ≤ 14389, it is congruent to ±1
modulo 10, and G = Z ◦ 2.A5.

Suppose that the group G has a unique normal subgroup R which is minimal
subject to being non-central. Suppose that R is an r-group of symplectic type for
some prime r (this is an r-group all of whose characteristic abelian subgroups are
cyclic). Suppose that V is an absolutely irreducible FR-module. Let |R/Z(R)| = r2a

for some positive integer a. Then the dimension of the module is n = ra. Suppose
that Z ≤ G. The group G/(RZ) can be considered as a subgroup of the symplectic
group Sp2a(r). As always, we assume that q ≥ p ≥ 53.

The following is Proposition 5.2 of [Mar16] with the obvious changes (59 became
53 and 2

√
q − 1 is changed to 2

√
q − 1 + 1) together with a relaxed condition, the

bound 2297 is now 2351.

Proposition 2.11. Suppose that V and G satisfy the assumptions of the previous
paragraph. If n(G, V ) < 2

√
q − 1, then n = 2, 59 ≤ q = p ≤ 2351, and |G/Z| ≤ 24.
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2.5. Bounding n(G, V ). The following is Theorem 6.1 of [Mar16] with the following
changes. The occurrence of 59 is changed to 53, the lower bound 2

√
q − 1 is changed

to 2
√
q − 1 + 1, and 2297 is changed to 2351.

Theorem 2.12. Let V be a finite, faithful, coprime and irreducible FG-module.
Suppose that the characteristic p of the underlying field F is at least 53. Put q = |F |
and |V | = qn. Let the center of GL(n, q) be Z. Then n(G, V ) ≥ 2

√
q − 1 + 1 unless

possibly if one of the following cases holds.

(i) (G, V ) ∈ Cq;
(ii) V = IndGH(W ) for some 2-dimensional FH-module W where H is as G in

Proposition 2.10 or Proposition 2.11 satisfying one of the following.
(a) 53 ≤ q ≤ 14389, q ≡ ±1 (mod 10), and 2.A5 ≤ H/CH(W ) ≤ Z ◦ 2.A5;
(b) 53 ≤ q = p ≤ 2351 and |(H/CH(W ))/Z(H/CH(W ))| ≤ 24.

Part of the proof of Theorem 2.12 is Lemma 2.13, which extends Lemma 2.8.

Lemma 2.13. Let (G, V ) be a pair among the exceptions in Theorem 2.12, satisfying
n(G, V ) < 2

√
q − 1 + 1. Then |G| < |V |3/2.

2.6. Bounding k(G). We now also have to take k(G) into account.

Theorem 2.14. Let V be an irreducible and faithful FG-module for some finite group
G and finite field F of characteristic p at least 53. Suppose that p does not divide
|G|. Then we have at least one of the following.

(i) n(G, V ) ≥ 2
√
p− 1 + 1.

(ii) k(G) ≥ 2
√
p− 1 + 1.

(iii) |V | = |F | = p.
(iv) Case (2/a) of Theorem 2.12 holds with p = 59 and 1 < t ≤ 15, or p = 61 and

t = 1, or 61 ≤ p ≤ 119 and 2 ≤ t ≤ 5.
(v) Case (2/b) of Theorem 2.12 holds with t ≤ 4.

Theorem 2.14 is Theorem 7.1 in [Mar16] with the following changes. One occur-
rence of 59 is now 53, in conclusions (1) and (2) the bound 2

√
p− 1 is now 2

√
p− 1+1,

there is a minor change in conclusion (3), and in conclusion (4) the 14 became 15 and
the 4 is now 5. There are minor changes in the proof of Theorem 2.14 with respect
to the proof of Theorem 7.1 of [Mar16].

2.7. Bounding n(G, V ) and k(G). Minor changes were made in the corresponding
section of [Mar16] to complete the proof of Theorem 2.2, using Theorem 2.14 and a
theorem of Hering [HB82, Chapter XII].
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3. Known Results on principal blocks

In the following we will denote by B0(G) the principal p-block of the group G.
Recall that

1G ∈ Irr(B0(G)) = {χ ∈ Irr(G) |
∑
x∈G

(p,o(x))=1

χ(x) ̸= 0} .

We collect useful facts about characters in principal p-blocks.

Lemma 3.1. Let G be a finite group, let N be a normal subgroup of G and let p be
a prime.

(i) Irr(B0(G/N)) ⊆ Irr(B0(G)).
(ii) If N is a group of order coprime to p, then Irr(B0(G/N)) = Irr(B0(G)).
(iii) For any θ ∈ Irr(B0(N)), there is some χ ∈ Irr(B0(G)) lying over θ.
(iv) If B0(G) is the only block covering B0(N), then for any θ ∈ Irr(B0(N)) every

constituent of θG lies in B0(G). This happens, for instance, if G/N is a
p-group or if PCG(P ) ⊆ N for some P ∈ Sylp(G).

(v) For any χ ∈ Irr(B0(G)), every constituent of χN lies in B0(N).

Proof. Part (i) follows from the definition of block domination [Nav98, p. 198], (ii) is
[Nav98, Theorem 9.9(c)], (iii) is [Nav98, Theorem 9.4], (iv) is [Nav98, Theorem 9.6]
and [RSV21, Lemma 1.3], and (v) follows from [Nav98, Theorem 9.2 and Corollary
9.3] by noticing that B0(N) is always G-invariant. □

Lemma 3.2. Assume G = H1 × · · · ×Ht. Then

Irr(B0(G)) = {θ1 × · · · × θt | θi ∈ Irr(B0(Hi))}.

Proof. This follows directly from the definition of principal block. □

Lemma 3.3 (Alperin–Dade). Let N �G and p be a prime. Assume that G/N is a
group of order coprime to p and that G = NCG(P ) for some P ∈ Sylp(N). Then
restriction yields a bijection between Irr(B0(G)) and Irr(B0(N)).

Proof. This is proved by Alperin [Alp76] when G/N is solvable, and by Dade [Dad77]
in general. □

We also collect some results concerning the action of Galois automorphisms of p-
power order on principal blocks. If P is a p-group, then observe that a linear character
λ ∈ Lin(P ) is σ-invariant if and only if it has order p. This happens if and only if
Φ(P ) ⊆ ker(λ).

Lemma 3.4. Let G be a finite group of order divisible by p and assume G has a
normal Sylow p-subgroup P . Then Irrp′,σ(B0(G)) = Irr(G/Op′(G)Φ(P )).

Proof. This is [RSV20, Lemma 2.2(a)]. □
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For a finite group G, let τ be an automorphism of the cyclotomic field Q|G| and
assume that τ fixes all p′-roots of unity in Q|G| and that τ has p-power order. If
p = 2, the p-power order condition is superfluous as the group Gal(Q|G|/Q|G|2′ ) is a
2-group. If p is odd, then τ ∈ ⟨σ⟩, where σ is as defined in the Introduction.

Lemma 3.5. Let p be a prime and let N �G. Assume that G/N is a group of order
coprime to p. If χ ∈ Irr(G) and θ ∈ Irr(N) are such that [χN , θ] ̸= 0, then χ is τ -fixed
if, and only if, θ is τ -fixed

Proof. Let Gθ be the inertia group of θ and ψ ∈ Irr(Gθ|θ) be the Clifford correspon-
dent of χ. If χτ = χ, then τ |Q(ψ) ∈ Gal(Q(ψ)/Q(χ)) has p-power order. By [NT21,
Lemma 2.1(ii)], τ |Q(ψ) = 1 so ψτ = ψ and consequently θτ = θ. The reciprocal
implication follows by direct application of [NT19, Lemma 5.1]. □

Corollary 3.6. Let N �G and p be a prime. Assume that G/N is a group of order
coprime to p.

(i) If χ ∈ Irr(B0(G)) is τ -fixed, then every constituent θ ∈ Irr(B0(N)) of χN is
τ -fixed.

(ii) If θ ∈ Irr(B0(N)) is τ -fixed then some constituent χ ∈ Irr(B0(G)) of θG is
τ -fixed.

Moreover, with the above notation, θ has degree coprime to p if, and only if, χ has
degree coprime to p.

Proof. This follows directly from Lemmas 3.5 and 3.1, together with the fact that
χ(1)/θ(1) divides |G/N | for any χ and θ such that [χN , θ] ̸= 0 by [Nav18, Theorem
5.12]. □

The following is [RSV20, Lemma 2.4]. We give a proof here for completeness.

Lemma 3.7. Let p be a prime and let H ≤ G. Assume that p ∤ |G : H| and
CG(Q) ⊆ H where Q ∈ Sylp(H). Let θ ∈ Irrp′,σ(B0(H)). Then there is some

χ ∈ Irrp′,σ(B0(G)) contained in θG.

Proof. Notice that B0(H) is admissible in the sense of [Nav98, p. 213], so B0(H)G is
defined. By [Nav98, Theorem 6.7], we have thatB0(H)G = B0(G). WriteB0 = B0(G)
and

(θG)B0 =
∑

χ∈Irrp′ (B0)

aχχ+
∑

ψ∈Irr(B0)
p|ψ(1)

aψψ ,

where aχ = [χ, θG]. As p ∤ |G : H|θ(1) = θG(1), [Nav98, Corollary 6.4] implies that∑
χ∈Irrp′ (B0)

aχχ(1) ̸≡ 0 mod p.
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Now let O1, . . . ,Ot be the ⟨σ⟩-orbits on the set of characters in Irrp′(B0) lying over
θ. Since θG is σ-invariant, we have that if two characters χ, η ∈ Irrp′(B0) lying over
θ are ⟨σ⟩-conjugate then aχ = aη. Thus if χi ∈ Oi we have∑

χ∈Irrp′ (B0)

aχχ(1) =
t∑
i=1

|Oi|aχiχi(1)

is not divisible by p. Since ⟨σ⟩ is a p-group, this forces one of Oi to have size 1, as
desired. □

Finally, we give an alternative proof of [RSV20, Lemma 2.5].

Lemma 3.8. Let N � G and p be a prime. Assume N ∼= St is a minimal normal
subgroup of G, where S is a simple nonabelian group, and that G/N is a p-group.
Assume there is some X-invariant α ∈ Irrp′,σ(B0(S)) for X/S ∈ Sylp(Aut(S)/S).
Then there is some χ ∈ Irrp′,σ(B0(G)) not containing N in its kernel.

Proof. Let X be the Aut(S)-orbit of α and Y = {α1 × · · · × αt | αi ∈ X} ⊆
Irrp′,σ(B0(N)), so that |Y| = |X |t is not divisible by p. Since N stabilizes every
element of Y and G/N is a p-group, there is some G-invariant λ ∈ Y . Since N is
perfect, the determinantal order o(λ) is 1. By [Nav18, Corollaries 6.2 and 6.4] there

is an extension λ̂ ∈ Irrp′,σ(G) of λ. Since G/N is a p-group, λ̂ ∈ Irrp′,σ(B0(G)) by
Lemma 3.1(iv). □

4. Simple groups

The aim of this section is to prove parts (i) and (ii) from Theorem B in the
Introduction. Throughout, let G denote the absolute Galois group Gal(Qab/Q) and
given a prime p, let σ ∈ G be the Galois automorphism defined in the Introduction.
We begin with the following observation about sporadic and alternating groups.

Lemma 4.1. Let p be an odd prime, and let S be an alternating group, sporadic simple
group, or the Tits group 2F4(2)

′. Assume (p, S) ̸= (3, J3). Then every χ ∈ Irr(S) is
almost p-rational.

Proof. For the sporadic, Tits, and alternating groups An with n ≤ 6, we can see this
directly from the Character Table Library in GAP [GAP22]. Let S = An with n ≥ 7
and let χ be an irreducible character of Aut(S) = Sn, whose characters take only
rational values. Then χ|S contains at most two irreducible constituents, which must
be acted on by σ. Since σ has p-power order, it follows that σ acts trivially on these
constituents, proving the claim. □

Much of the work will be centered around groups of Lie type, so we begin by fixing
some notation in that situation.
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4.1. Notation for groups of Lie type. Before continuing, we set some notation
for the remainder of this section, surrounding simple groups of Lie type. So for now,
let S be a simple group of Lie type. We will exclude the Tits group 2F4(2)

′ from this
list, instead treating it separately with the sporadic groups.

We have A := Aut(S) = S̃ ⋊ D, where S̃ denotes the set of inner-diagonal au-
tomorphisms and D is an appropriate group of graph-field automorphisms (see, e.g.

[GLS98, Theorems 2.5.12 and 2.5.14]). Note that S̃/S is abelian, and that D is
abelian unless S = D4(q), in which case D = S3 × C for a cyclic group C.
Let G be a simple, simply connected algebraic group over F̄q0 for some prime

q0, and let F : G → G be a Steinberg endomorphism such that S = G/Z(G) with
G = GF . Let G := Gad be a simple algebraic group of adjoint type, of the same

type as G. Then S ∼= [GF ,GF ] and S̃ ∼= GF (see [MT11, Prop. 24.21] and discussion
after). We will make these identifications.

The following is an application of the work of Tiep–Zalesski [TZ04] and will be
useful in the case of defining characteristic.

Lemma 4.2. Let S be as above, with p = q0 ≥ 3. Assume that S ̸= 2B2(q
2). Then

every χ ∈ Irr(S) is σ-invariant.

Proof. This follows from [TZ04, Thm. 1.3 and Prop. 10.12]. □

Now, let (G∗, F ) and (G∗, F ) be dual to (G, F ) and (G, F ), respectively. For each
conjugacy class (s) of semisimple elements (that is, q′0-elements) in (G∗)F , there is a

unique semisimple character χs ∈ Irr(S̃), whose degree is [(G∗)F ,CG∗(s)F ]q′0 . These
characters will play an important role in our proof.

The unipotent characters will also play an important role. Thanks to the work of
Lusztig [Lus88], the unipotent characters of S can simultaneously be viewed as the
deflation of unipotent characters of G or as the irreducible restriction of unipotent

characters of S̃. In particular, the principal series unipotent characters are those that
are constituents of the induced character IndGB(1B), where B = BF is the set of fixed
points of an F -stable Borel subgroup B of G. By a slight abuse of terminology, if
χ ∈ Irr(S) is the deflation of a principal series unipotent character of G, we will refer
to χ itself as a principal series unipotent character.

4.2. Part (i) of Theorem B. Although not completely necessary for our purposes
here, we prove a stronger version of part (i) of Theorem B in the case of groups of Lie
type when p ̸= q0. We hope that this can be useful in future work. This statement
will utilize the principal series unipotent characters.

Lemma 4.3. Let S = G/Z(G) be a simple group of Lie type, where G = GF is of
simply connected type and G ̸= 2F4(q). Let χ ∈ Irr(S) be a principal series unipotent
character. If S ≤ A ≤ Aut(S) is such that A is generated by inner-diagonal and field
automorphisms, then there is an extension χ̂ of χ to A that is Gχ-invariant.
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Proof. First, by [Mal08, Thms. 2.4 and 2.5], every unipotent character extends to its
stabilizer in Aut(S), which includes the inner-diagonal and field automorphisms. If F
is a Frobenius morphism, then the statement follows directly from [RS22, Prop. 2.6]
and its generalization [Joh22, Prop. 8.7]. Otherwise, G = 2G2(q) or

2B2(q), and χ is
either the trivial character or Steinberg character, so the result follows from [Sch92]
in this case. □

Lemma 4.4. Let p be a prime and let S = G/Z(G) be a simple group of Lie type,
where G = GF is of simply connected type defined in characteristic distinct from
p. Then Irrp′(B0(S)) contains a nontrivial rational-valued principal series unipotent
character χ such that if S ≤ A ≤ Aut(S) is an almost simple group generated by
inner-diagonal and field automorphisms, then there is a rational-valued extension of
χ to A.

Proof. If p ∈ {2, 3}, then the Steinberg character StS lies in Irrp′(B0(S)). Similarly,
if p ≥ 5 and S is Sp4(q) with q even, PSL2(q), PSL

ϵ
3(q), D4(q),

3D4(q), or a Suzuki
or Ree group, then, as in the proof of [GRSS20, Props. 4.4 and 4.5], the Steinberg
character StS lies in Irrp′(B0(S)). Further, StS is rational-valued and extends to a
rational-valued character of Aut(S), by [Sch92].
From here, we may assume that p ≥ 5 and F is a Frobenius endomorphism, so

that the extension property will follow from Lemma 4.3 once we have shown that
Irrp′(B0(S)) contains a rational-valued principal series unipotent character.
We next suppose that S is of exceptional type G2(q), F4(q), E6(q),

2E6(q), E7(q),
or E8(q). Here the principal series unipotent characters are rational except for (in
the notation of [Car93, Sec. 13]) the characters ϕ512,11, ϕ512,12 of S = E7(q) and
ϕ4096,11, ϕ4096,12, ϕ4096,, ϕ4096, of E8(q), by [BC72, Thm. 2.9] and [Cur75]. Let d be the
order of q modulo p. If d is a regular number, then B0(S) again contains StS (see,
e.g. [RSV21, Lem. 3.6], which follows directly from [Mal07, Thm. 6.6] and [Eng00,
Theorem A]). Otherwise, we see using the decompositions of d-Harish-Chandra series
in [BMM93, Table 2] and the fact that all characters of such a series lie in the same
block by [Eng00, Theorem A] to see that there is a rational-valued principal series
unipotent character in Irrp′(B0(S)).

Finally, assume G is one of the remaining cases of classical type. In these cases, ev-
ery unipotent character is rational-valued. Here two unipotent members of Irrp′(B0(S))
are illustrated in the proof of [GRSS20, Prop. 4.4], given explicitly in Tables 1-4 of
loc. cit. It suffices to know that at least one of these characters lies in the princi-
pal series. For S = PSLn(q), every unipotent character lies in the principal series.
In the remaining cases, [Car93, Sec. 13.8] describes how to determine, from the
combinatorial description of the unipotent character, whether it lies in the principal
series. From this, we see that, indeed, at least one of the two characters described in
[GRSS20, Tables 1-4] lies in the principal series in each case. □

With this, we are prepared to prove part (i) of Theorem B.
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Proof of Theorem B(i). If S is a sporadic, Tits, or alternating group, then every
character is almost p-rational by Lemma 4.1. Then since p ∤ |Out(S)|, it suffices in
these cases to note that B0(S) contains a nontrivial p′-degree character.

Next, suppose that S is a simple group of Lie type defined in characteristic p. We
may find a simple, simply connected algebraic group G defined over Fp such that
S = G/Z(G), where G = GF for some Steinberg endomorphism F . Here again we
have every character is almost p-rational by Lemma 4.2. In [GRSS20, Props. 4.2 and
4.3] and building off of [GRS20, Prop. 4.3], a nontrivial member of Irrp′(B0(S)) is
exhibited that extends to X.

Finally, assume that S is a simple group of Lie type defined in characteristic distinct
from p. Then since p ≥ 5, we have X such that X/S ∈ Sylp(A/S) can be chosen
to be generated by inner-diagonal and field automorphisms, so the statement follows
from Lemma 4.4. □

4.3. Part (ii) of Theorem B. We will now turn our attention toward part (ii) of
Theorem B. In many cases, we will be able to use the following simplified condition:

Corollary 4.5. Let S ≤ T be as in Theorem B(ii). Then Theorem B(ii) holds for T
if there exist at least 2

√
p− 1+1 characters in Irrp′,σ(B0(S)) that are not T -conjugate.

Proof. This follows from Corollary 3.6, and Clifford theory, as non-T -conjugate mem-
bers of Irr(S) cannot lie under the same character in Irr(T ). □

Lemma 4.2 will continue to be useful in defining characteristic. In the case of
non-defining characteristic, we will use unipotent characters and certain semisimple
characters to obtain the required bounds.

Lemma 4.6. Let p be a prime and assume that p ̸= q0. Let χ̃ ∈ Irr(S̃) be semisimple
corresponding to a semisimple class containing s ∈ G∗ such |s| = p. Then χ̃ ∈
Irrσ(B0(S̃)).

Further, if p ≥ 5 and either S ̸= PSLϵn(q) or p ∤ (q− ϵ), then χ̃ restricts irreducibly

to S and is not D-conjugate to χ̃β for any nontrivial β ∈ Irr(S̃/S).

Proof. Since |s| = p, we have the semisimple character χs ∈ Irr(S̃) corresponding to

s is fixed under σ, by e.g. [ST18, Lem. 3.4]. Further, χs lies in B0(S̃) by [His90, Cor.

3.4], so χs ∈ Irrσ(B0(S̃)).
Now, assume p ≥ 5 and S ̸= PSLϵn(q) or p ∤ (q − ϵ) and suppose that χφs = χsβ

for some φ ∈ D (with the possibility φ = 1) and 1 ̸= β ∈ Irr(S̃/S). Then χφs = χsz
for some 1 ̸= z ∈ Z((G∗)F ). Our conditions on p ensure that p ∤ |z| for any such z,
and hence |s| ̸= |sz|. But we have sφ

∗
is conjugate to sz for some automorphism φ∗

dual to φ by [Tay18, Prop. 7.2], contradicting that |s| ̸= |sz|. We therefore obtain
that no such φ, β exist, and hence we see χs is irreducible on restriction to S (since
the number of consitutents in the restriction is the number of β such that χs = χsβ),
and χs is not D-conjugate to χsβ with 1 ̸= β. □
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We will also use the fact that unipotent characters are almost p-rational:

Lemma 4.7. Let p ≥ 3 be a prime distinct from q0. Then any unipotent character

of S or S̃ is invariant under σ.

Proof. For an integer m, let ζm denote a primitive mth root of unity. First, note
that

√
q lies in Q(ζq0 , i), which is fixed under σ since p ̸= q0 and p ≥ 3. Further, σ

fixes ζr for any prime r. Then from [Gec03, Table 1 and Prop. 5.6], we see that the
statement holds. □

With this, we are ready to prove Theorem B(ii).

Proof of Theorem B(ii). If S is sporadic, alternating An with n ≤ 8, Tits, or a group
of Lie type with nonexceptional Schur multiplier (see [GLS98, Tab. 6.1.3]), this can
be checked in GAP [GAP22]. If S = An with n ≥ 9, then the result follows from
[HS23, Section 3] and the “if” direction of Brauer’s Height Zero conjecture [KM13] if
a Sylow p-subgroup of S is abelian, and by [HSV23, Proposition 3.1(iii)] otherwise,
taking into account Lemma 4.1.

We now let S be a simple group of Lie type, defined in characteristic q0. Let
P ∈ Sylp(S) and assume P is non-cyclic. Note that since 2B2(q

2) and 2G2(q
2) have

cyclic Sylow p-subgroups for p ≥ 5 (see, e.g. [GLS98, Theorem 4.10.2]), we may
assume throughout that S is not one of these.
In most cases, we aim to exhibit at least 2

√
p− 1 + 1 characters in Irrp′,σ(B0(S))

that are not Aut(S)-conjugate and apply Corollary 4.5. Often, we will use the results
of [HS23, HSV23], together with Lemmas 4.2, 4.7, and 4.6. It will be useful to note
throughout that p ≥ 2

√
p− 1 + 1 for p ≥ 5 and that x + p−1

x
+ 1 ≥ 2

√
p− 1 + 1 for

p ≥ 5 and x ≥ 1.

We first assume that q0 ̸= p.

Non-Defining Characteristic with P Abelian. Let P ∈ Sylp(S) be abelian. Note that
by the “if” direction of BHZ [KM13], we have Irrp′(B0(S)) = Irr(B0(S)), and similar
for T .

With this, the proof in this case follows almost directly from the arguments in
the proof of [HS23, Theorem 1.2], with some minor modification. In loc. cit, the
strategy is to exhibit enough unipotent characters and semisimple characters χs with
s ∈ G∗ a p-element that lie in B0(S) and are not Aut(S)-conjugate. However, we see
that by replacing arbitrary p-elements s with elements only of order p, the bounds
obtained there are still sufficient, and now the characters lie in Irrp′,σ(B0(S)) thanks
to Lemmas 4.7 and 4.6. We summarize the details. Throughout, we will let U denote
the set of unipotent characters in B0(S) and S the set of characters in B0(S) that

are the irreducible restrictions of semisimple characters χs ∈ Irr(S̃) with s of order p.
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(That is, U ∪ S is the set of characters for which we will be able to apply Lemmas
4.7 and 4.6.)

Let e denote the order of q modulo p and let Φe be the eth cyclotomic polynomial
in q if S ̸= 2F4(q

2). If S = 2F4(q
2), then let Φe instead be the polynomial Φ(p) over

Q(
√
2) defined in [Mal07, Sec. 8.1]. Let pa be the largest power of p dividing Φe,

and let Φk
e be the order of a Sylow Φe-torus of (G, F ). Then a Sylow p-subgroup

P̃ of S̃ and of (G∗)F is isomorphic to P̃ ∼= Ck
pa . The analogue of [HS23, Lemma

5.3] holds for elements t ∈ G∗ of order p, yielding that the corresponding semisimple

character χt of S̃ has an orbit of size at most p − 1 under a field automorphism α.
With this, the considerations in [HS23, 5D] yield the same bound as [HS23, (5.3)].
Namely, the number of Aut(S)-orbits on Irrp′,σ(B0(S)) from semisimple characters

is at least pk−1
dg(p−1)|We| , where We is the so-called relative Weyl group for a minimal

e-split Levi subgroup of (G, F ), d = |S̃/S|, and g is the size of the group of graph
automorphisms in D. Note that k ≥ 2, since by assumption the Sylow p-subgroups
of S are non-cyclic.

From here, the proof in [HS23, Theorem 8.1] gives Theorem B(ii)(b) when S is an
exceptional group of Lie type. To obtain part (a), we again follow the proof of [HS23,
Theorem 8.1], where the methods there in fact yield our required Irrp′,σ(B0(T )) ≥
2
√
p− 1 + 1, although only 2

√
p− 1 was required in [HS23].

Now suppose that S is of classical type. First let S = PSLϵn(q) with n ≥ 3. (Note
that PSL2(q) has cyclic Sylow p-subgroups.) Let e′ be the order of ϵq modulo p, and
let w = ⌊ n

e′
⌋. Since n ̸= 2, note that we have (e′, w) ̸= (1, 2). Here the proof of [HS23,

Prop. 6.1] yields the result. There we see that the number of Aut(S)-orbits in U is
at least 2e′ + 1 and that the number of Aut(S)-orbits in S least p−1

2e′
. Then we have

at least 2e′ + p−1
2e′

+ 1 ≥ 2
√
p− 1 + 1 Aut(S)-orbits in Irrp′,σ(B0(S)), using Lemmas

4.7 and 4.6.
Next, we let S = Cn(q) with n ≥ 2, Bn(q) with n ≥ 3, Dn(q) with n ≥ 4, or 2Dn(q)

with n ≥ 4. Here let e′ denote the order of q2 modulo p and again let w = ⌊ n
e′
⌋ ≥ 2.

Then the proof of [HS23, Prop. 7.1] shows that the number of Aut(S)-orbits in U is
at least 4e′, and is strictly greater unless S ∈ {Dn(q),

2Dn(q)} with (e′, w) = (2, 2) or
S = C2(2

f ).
If S = Cn(q) or Bn(q), the proof in loc. cit. then tells us that there are at least

4e′ + p−1
4e′

+ 1 ≥ 2
√
p− 1 + 1 orbits under Aut(S) of characters in U ∪ S , unless

S = C2(2
f ). In the latter case, we instead have at least 4 + p−1

8
≥ 2(p − 1)1/4 such

orbits, giving (b). However, the proof there also shows that the number of characters

in B0(T ) lying above members of U ∪S is at least 3b+ (p−1)2

8b
, where b = |T/SCT (P )|.

Since this number is at least p for p ≥ 5 and b ≥ 1, we are again done in this case.
Now let S = Dn(q) with n ≥ 5 or S = 2Dn(q) with n ≥ 4. In this case, the proof of

[HS23, Prop. 7.1] gives at least 4e′ + p−1
4e′

+ 1 ≥ 2
√
p− 1 + 1 orbits under Aut(S) of
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characters in U ∪S unless e′ = 2. Suppose we are then in the case e′ = 2. Let Γ be

the group S̃ ≤ Γ ≤ Aut(S) generated by inner, diagonal, and graph automorphisms,
and consider the group X := (Γ∩T )CT (P ). Then the Alperin–Dade correspondence
Lemma 3.3 gives a bijection, via restriction, between Irr(B0(X)) and Irr(B0(Γ∩ T )).
Further, B0(T ) is the unique block covering B0(X) by Lemma 3.1(iv). Since there
are at least 8 Aut(S)-orbits of characters in U , we have at least 8 characters in
Irrp′,σ(B0(X)) lying over members of U , using Lemma 4.7 and Corollary 3.6. Letting
b := |T/X|, this gives at least 8b characters in Irrp′,σ(B0(T )) lying above these, since
the unipotent characters are fixed by field automorphisms and extend to their inertia
groups in Aut(S) by [Mal08, Theorems 2.4 and 2.5]. Further, there are at least(
p−1
4

)2
characters in S using the arguments of [HS23, Theorem 7.1]. This gives

at least 1
8

(
p−1
4

)2
characters in Irrp′,σ(B0(X)), and 1

8b

(
p−1
4

)2
in Irrp′,σ(B0(T )), lying

above these. Hence, we obtain that | Irrp′,σ(B0(T ))| ≥ 8b + (p−1)2

128b
, which is larger

than 2
√
p− 1 + 1 for p ≥ 5 and b ≥ 1.

Finally, consider S = D4(q). Here the methods of the penultimate paragraph of
[HS23, Prop. 7.1] yield at least 4+ p−1

24
≥ 2(p− 1)1/4 orbits under Aut(S) in U ∪S ,

giving (b). For (a), the final paragraph of loc. cit gives at least 4b+ (p−1)2

96b
characters

in B0(T ) lying above members of U ∪S , where b = |T/X| with X = (Γ∩ T )CT (P )

and Γ = S̃⋊S3 is the group generated by S̃ and the group of graph automorphisms.
This number is at least 2

√
p− 1 + 1 for p ≥ 5 and b ≥ 2 or for p > 23 and b ≥ 1. At

this point, we remark that this bound can be improved to 4b + (p−1)2

48b
+ (p−1)

12b
, since

the original bound in [HS23] only considered semisimple elements corresponding to
elements (λ1, λ2, · · · , λk) of Ck

p with at most k − 2 values of i such that λi = 1, and

since the bound (p−1)2

16
for the number of orbits of semisimple characters was from

restriction from the group GO8(q), which therefore had already taken into account the
action of an order-two graph automorphism. This number is more than ⌈2

√
p− 1⌉

unless p = 11 with b = 1, in which case the order 3-graph automorphism must act
trivially on the semisimple elements of order 11 corresponding to elements as above
with λi = 1 for at least k − 2 values of i. Then since 4 + 102/16 + 10/4 > ⌈2

√
10⌉,

we are again done in this case.

Non-Defining Characteristic with P Nonabelian. Let P be nonabelian. Then if S
is of exceptional type, this means that p ∈ {5, 7}, and hence it suffices to know

that there are at least 6 unipotent characters in Irrp′(B0(S̃)) that are not Aut(S)-
conjugate, applying Lemma 4.7 and Corollary 4.5. The existence of these characters
(recalling that P ∈ Sylp(S) is noncyclic and p ≥ 5) is proven in [RSV21, Lem. 3.7],

except possibly if S = S̃ = G2(q) and p | (q2 − 1). In the latter situation, loc. cit.

provides at least 5 non-Aut(S)-conjugate unipotent characters in Irrp′(B0(S̃)), and
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taking any s ∈ G∗ of order p, we obtain a semisimple character χs that cannot be
conjugate to any unipotent character, and we are done using Lemma 4.6.

We now assume that S is of classical type. In this case, parts (IV) and (VI) of
the proof of [HSV23, Prop. 3.2] shows that there are at least p unipotent characters
in Irrp′(B0(S)) that are not Aut(S)-conjugate, and we are again done by applying
Lemma 4.7.

Finally, suppose that q0 = p.

Defining Characteristic. Using Lemma 4.2 and Corollary 4.5, we are almost done
using [HSV23, Prop. 3.2]. However, note that we must exibit possibly one additional
character to what was needed in loc. cit. Using part (II) of that proof, we have

| Irrp′,σ(B0(S))| ≥ qr/d, where r is the semisimple rank of G and d = |S̃/S| is the
size of the diagonal automorphism group. Then the number of Aut(S)-orbits on

Irrp′,σ(B0(S)) is at least qr

d·|Out(S)| =
qr

d2·f ·g ≥ qr/2

d2·g , where q = pf and g is the size of

the group of graph automorphisms, noting that qr/f = prf/f ≥
√
qr. Now, from the

knowledge of d and g from, e.g., [GLS98, Thm. 2.5.12], we have qr

d2·f ·g ≥ p, except

possibly if S = PSLϵ4(5); S = PSL2(q) with q ∈ {p, 25, 49}; or PSLϵ3(p). Note that
PSL2(p) has a cyclic Sylow p-subgroup. In the remaining outlying cases, we have
qr

d2·f ·g ≥ 2
√
p− 1 + 1, except possibly for PSLϵ4(5), PSL

ϵ
3(5), PSL

ϵ
3(7), PSL

ϵ
3(11), and

PSL2(25). In these cases, we see directly from their character tables in GAP that
there are at least 1 + 2

√
p− 1 orbits under Aut(S) in Irrp′,σ(B0(S)).

This completes the proof of Theorem B(ii). □

5. Cyclic Sylow p-subgroups

The aim of this section is to prove part (iii) from Theorem B of the Introduction.
We make use of the fact that simple nonabelian groups with cyclic Sylow p-subgroups
satisfy the inductive Alperin–McKay conditions (as defined in [Spä13]) for odd primes
[KS16], together with deep properties of block character triple isomorphisms from
[NS14]. We use the notation ∼b from [NS14, Definition 3.6].

Assume S has a cyclic Sylow p-subgroup P with p an odd prime. Then following
[KS16, Section 5] the characters in B0 = B0(S) can be written as a disjoint union

Irrex(B0) ∪ Irrnex(B0)

where Irrnex(B0) is exactly the set of p-rational characters of B0 by [KS16, Lemma
5.5]. In particular, 1S ∈ Irrnex(B0). If Λ is a NG(P )-transversal on Irr(P )\{1P} then
for λ ∈ Λ, we define

ηλ =
∑

g∈[NG(P )/CG(P )]

λg,
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where [NG(P )/CG(P )] is a transversal of CG(P ) in NG(P ). Notice that ηλ does not
depend on the representative λ ∈ Λ.
Fixing some χ ∈ Irrnex(B0), we have a parametrization Irrex(B0) = {χλ | λ ∈ Λ}

where, by [KS16, Lemma 5.6] χλ is the unique non-p-rational constituent of the
generalized character

χ ∗ ηλ,
defined in the main theorem of [BP80] ([Nav98, p. 114]). For principal blocks, the
∗ construction can be simplified. If x is a p-element, we denote by S(x) = {u ∈ G |
up is G-conjugate to x} (this is known as the p-section of x [Nav98, p. 105]).

Lemma 5.1. Let G be a finite group, p a prime, χ ∈ Irr(B0(G)) and P ∈ Sylp(G).
Let S be a G-transversal on the set of p-elements of G contained in P , then

χ ∗ ηλ =
∑
x∈S

ηλ(x)1S(x)χ

where 1S(x) is the characteristic function of the p-section S(x) of x.

Proof. Let g ∈ G, then g ∈ S(x0) for a unique x0 ∈ S. In particular, gu = x0y for
some u in G, for a unique x0 ∈ S and some element y ∈ CG(x0) of order coprime to
p. Then

χ ∗ η(g) = χ ∗ η(xy) =
∑
x∈S

η(x)χ(x,b0(x))

where b0(x) = B0(CG(x)).
Now as in [Nav98, p. 114], χ(x,b0(x))(g) = 0 if g is not in S(x) and if g ∈ S(x) and

gu = xy with y ∈ CG(x) of order coprime to p, we have

χ(x,b0(x))(g) =
∑

φ∈IBr(b0(x))

dxχφφ(y)

where dxχφ are the generalized decomposition numbers [Nav98, p. 100]. By Brauer’s
Third Main theorem [Nav98, Theorem 6.7] and [Nav98, Corollary 5.8] we have∑

φ∈IBr(b0(x))

dxχφφ(y) = χ(xy) = χ(g)

and we are done. □

We can now easily check that the bijection constructed in [KS16, Section 6] is
equivariant with respect to the action of ⟨σ⟩ on characters.

Lemma 5.2. Let p be an odd prime. Let S be a finite group of order divisible by p.
Let P ∈ Sylp(S). Suppose that P is cyclic. Then the bijection

Ω : Irr(B0(S)) → Irr(B0(NS(P )))

from [KS16, Section 6] is (⟨σ⟩ ×NAut(S)(P ))-equivariant. Moreover, every character
in Irr(B0(S)) is almost p-rational if, and only if, |P | = p.
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Proof. Write H = NS(P ), let χ ∈ Irrnex(B0(S)) and Ω(χ) = χ′ ∈ Irrnex(B0(H)).
In the bijection Ω from [KS16, Section 6], Irrnex(B0(S)) maps onto Irrnex(B0(H))
and the restriction Ω : Irrex(B0(S)) → Irrex(B0(H)) is defined by Ω(χλ) = χ′

λ with
the labeling from the beginning of this section. Since the p-rational characters of
Irr(B0(S)) are exactly the characters in Irrnex(B0(S)) it follows that to check ⟨σ⟩-
equivariance it suffices to check it for the exceptional characters.

It is straightforward to check that ησλ = ηλσ . Using Lemma 5.1 and the fact that
χ ∈ Irrnex(B0(S)) is p-rational we obtain that χ ∗ (ηλ)

σ = (χ ∗ ηλ)σ. Similarly,
χ′ ∗ (ηλ)σ = (χ′ ∗ ηλ)σ. Now by [KS16, Lemma 5.6] χλ is the unique non-p-rational
constituent of χ ∗ ηλ, so Ω(χσ) = Ω(χ)σ, and the ⟨σ⟩-equivariance of Ω is proven.
Furthermore, Ω is NAut(S)(P )-equivariant by [KS16, Proposition 6.1]. The second
part of the statement follows from the first one. □

Proposition 5.3. Let N ◁ G and let p be a prime. Suppose that N = S1 × · · · × St
where Si are nonabelian simple groups with cyclic nontrivial Sylow p-subgroups. Let
P ∈ Sylp(N). Then there is a ⟨σ⟩ ×NG(P )-equivariant bijection

Ω : Irr(B0(N)) → Irr(B0(NN(P )))

such that if θ ∈ Irr(B0(N)) then

(Gθ, N, θ) ∼b (NG(P )θ,NN(P ),Ω(θ)).

Proof. Notice that under our assumptions p must be odd. Let Ai = Aut(Si). Write
P = Q1 × · · · × Qt where Qi ∈ Sylp(Si). By Lemma 5.2 there is a ⟨σ⟩ × NAi(Qi)-
equivariant bijection

ΩSi : Irr(B0(Si)) → Irr(B0(NSi(Qi))) .

By [KS16, Theorem 7.6] B0(Si) satisfies the inductive Alperin–McKay conditions and
the character bijection is exactly ΩSi .

Using Lemma 3.2 the construction of [Spä13, Theorem 7.9] and [NS14, Theorem
6.3] we have that the map

Ω : Irr(B0(N)) → Irr(B0(NN(P )))

defined by
Ω(η1 × · · · × ηt) = ΩS1(η1)× · · · × ΩSt(ηt)

is ⟨σ⟩ ×NG(P )-equivariant and whenever θ ∈ Irr(B0(N)) we have that

(Gθ, N, θ) ∼b (NG(P )θ,NN(P ),Ω(θ)) ,

as wanted. □

We now show that the principal p-block of groups G with a semisimple normal
subgroup N of index coprime to p and whose simple factors have cyclic Sylow p-
subgroups satisfies [IN02, Conjecture D]. If S is a finite group with cyclic Sylow p-
subgroups, then Irr(B0(S)) consists only of characters of p′-degree by work of Dade.
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It follows from Lemma 3.2 that if N = S × · · · × S then Irr(B0(N)) also contains
only characters of p′-degree. By Lemma 3.1(iv) and Corollary 3.6 we conclude that,
for groups X as in Theorem B(iii), Irr(B0(X)) contains only characters of p′-degree.
As usual, if N ◁ G and θ ∈ Irr(N), we denote by Irr(G|θ) the set of characters

G that lie over θ. We denote Irr(B0(G)|θ) = Irr(B0(G)) ∩ Irr(G|θ). Notice that
Irr(B0(G)|θ) is not empty if and only if θ ∈ Irr(B0(N)) by Lemma 3.1(iii) and (v).

Proposition 5.4. Let N ◁ G and let p be a prime. Suppose that N is semisimple,
its simple factors have nontrivial cyclic Sylow p-subgroups, and that p ∤ |G : N |. Let
P ∈ Sylp(G). Let τ be an automorphism of the cyclotomic field Q|G| and assume that
τ has p-power order and that it fixes all p′-roots of unity in Q|G|. Then τ fixes equal
numbers of (height zero) characters in Irr(B0(G)) and Irr(B0(NG(P ))).

Proof. Notice that under our assumptions p must be odd. Then τ ∈ ⟨σ⟩. Write
M = NN(P ) and H = NG(P ), so that G = NH and M = N ∩H. By Proposition
5.3 there is a H × ⟨σ⟩-equivariant bijection

Ω: Irr(B0(N)) → Irr(B0(M))

such that
(Gθ, N, θ) ∼b (Hθ,M,Ω(θ))

for every θ ∈ Irr(B0(N)). By the definition of∼b, [Nav98, Definition 3.6] and Brauer’s
Third Main theorem [Nav98, Theorem 6.7], this implies that

| Irr(B0(Gθ)|θ)| = | Irr(B0(Hθ)|Ω(θ))|
for every θ ∈ Irr(B0(N)). Let ∆ be a complete set if representatives of the H-orbits
on Irrτ (B0(N)). Since τ ∈ ⟨σ⟩, we have that Ω(∆) is a complete set of representatives
of the H-orbits on Irrτ (B0(M)). Then, by Corollary 3.6, we have the partitions

Irrτ (B0(G)) =
∐
η∈∆

Irr(B0(G)|η)

and
Irrτ (B0(H)) =

∐
η∈∆

Irr(B0(H)|Ω(η)) .

By the Fong–Reynolds correspondence [Nav98, Theorem 9.14] we obtain

| Irr(B0(G)|η)| = | Irr(B0(Gη)|η)| = | Irr(B0(Hη)|Ω(η))| = | Irr(B0(H)|Ω(η))|
as desired. □

The statement of Theorem B(iii) is now a corollary.

Corollary 5.5. Let S be a finite nonabelian simple group and let p be a prime.
Suppose that S has nontrivial cyclic Sylow p-subgroups. Write N = St with t ≥ 2.
Suppose that N ◁ X with p ∤ |X : N |. Then

k0,σ(B0(X)) = k0,σ(B0(NX(P ))) > 2
√
p− 1
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where P ∈ Sylp(X).

Proof. Let P ∈ Sylp(X). By Proposition 5.4 we have that

k0,σ(B0(X)) = k0,σ(B0(NX(P ))).

Since NX(P ) has a normal Sylow p-subgroup, by Lemma 3.4, we have that

k0,σ(B0(NX(P ))) = k(NX(P )/Φ(P )Op′(NX(P ))) .

The fact that P/Φ(P ) > 1 is not cyclic implies that

k(NX(P )/Φ(P )Op′(NX(P ))) > ⌈2
√
p− 1⌉

by Theorem 2.1 and this concludes the proof. □

6. Proof of Theorem A

We begin by proving the inequality part in Theorem A.

Theorem 6.1. Let p be a prime and G be a finite group of order divisible by p. Then
k0,σ(B0(G)) ≥ 2

√
p− 1.

Proof. If G has a normal Sylow p-subgroup P , then using Lemma 3.4 we have
k0,σ(B0(G)) = k(G/Φ(P )Op′(G)) ≥ 2

√
p− 1 by the main result of [Mar16] and we

are done in this case.
We proceed by induction on |G|. By Lemma 3.1(ii) and the inductive hypothesis,

we may assume that Op′(G) = 1. If M ◁ G and p | |G : M | then by induction and
Lemma 3.1(i) we have k0,σ(B0(G)) ≥ k0,σ(B0(G/M)) ≥ 2

√
p− 1 and we are done.

Thus we may assume that G has a unique minimal normal subgroup N , which is
semisimple, of order divisible by p and p ∤ |G : N |.

Say N ∼= St, where S is nonabelian simple of order divisible by p. Suppose that
S has cyclic Sylow p-subgroups. If t = 1, then the Sylow p-subgroups of G are also
cyclic and we are done by Lemma 5.2. If t ≥ 2 then we apply Theorem B(iii).

Therefore, we may assume that the Sylow p-subgroups of S are not cyclic. Let k
be the number of Aut(S)-orbits on Irrp′,σ(B0(S)). If t ≥ 2, since G ≤ Aut(S) ≀ St,

then G has at least
(
k+t−1
t

)
orbits on Irrp′,σ(B0(N)). By Theorem B(ii)(b) we have

that k ≥ 2(p− 1)1/4. In particular G has at least

k(k + 1)

2
= 2

√
p− 1 + (p− 1)1/4 ≥ 2

√
p− 1 + 1 > ⌈2

√
p− 1⌉

orbits on Irrp′,σ(B0(N)). Since |G : N | is not divisible by p, every such orbit lies
under a distinct χ ∈ Irrp′,σ(B0(G)) so we are done using Corollary 3.6. If t = 1, then
the result follows from Theorem B(ii)(a). □

Theorem 6.2. Assume k0,σ(B0(G)) = ⌈2
√
p− 1⌉. Then the Sylow p-subgroups of G

are cyclic.
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Proof. Let G be a minimal counterexample to the statement. In particular P ∈
Sylp(G) is not cyclic.

Step 1: We may assume p ≥ 5.

If p ≤ 3, then ⌈2
√
p− 1⌉ = p, so k0,σ(B0(G)) = ⌈2

√
p− 1⌉ implies that P is

cyclic by the main result of [RSV20], contradicting the choice of G as a minimal
counterexample.

Step 2: If N is a minimal normal subgroup of G, then p divides |N | and p does
not divide |G : N |.

Assume otherwise. If p ∤ |N | then Irr(B0(G)) = Irr(B0(G/N)) by Lemma 3.1(ii).
By the minimality of G we have that G/N has cyclic Sylow p-subgroups, then so
does G, a contradiction.

If p divides |G : N | then by Theorem 6.1 we have

⌈2
√
p− 1⌉ ≤ Irrp′,σ(B0(G/N)) ≤ Irrp′,σ(B0(G)) = ⌈2

√
p− 1⌉.

Thus G/N has cyclic Sylow p-subgroups and every p′-degree almost p-rational char-
acter of B0(G) lies over 1N (and in the principal block of G/N).
Suppose that N is a p-group. Let P ∈ Sylp(G) and notice that P is not cyclic

but P/N is cyclic and nontrivial. We have N ∩ Φ(P ) < Φ(P ). Let λ ∈ Irr(P/Φ(P ))
be such that N is not contained in ker(λ). Then λ is σ-invariant and linear. Write

PCG(P ) = P ×X and λ̂ = λ × 1X ∈ Irrp′,σ(B0(PCG(P ))). By Lemma 3.7 there is

some χ ∈ Irrp′,σ(B0(G)) contained in λ̂G. By Frobenius reciprocity, χPCG(P ) contains

λ̂ so N is not contained in ker(χ), a contradiction.
Therefore, we may assume that N is a direct product of a nonabelian simple group

S of order divisible by p. Write N = S1 × · · · × St, where Si ∼= S for every i. By
Theorem 6.1 and the hypothesis that k0,σ(B0(G)) = ⌈2

√
p− 1⌉, we have that

k0,σ(B0(G/N)) = ⌈2
√
p− 1⌉

so it suffices to show that there is some χ ∈ Irrp′,σ(B0(G)) such thatN is not contained
in ker(χ).

Write M = PN and H = MCG(P ). By Theorem B(i) and Lemma 3.8 there is
some ψ ∈ Irrp′,σ(B0(M)) not containing N in its kernel. By Alperin–Dade (Lemma

3.3), there is some extension ψ̃ ∈ Irr(B0(H)) of ψ, and by Lemma 3.5 we have

ψ̃ ∈ Irrp′,σ(B0(H)). By Lemma 3.7, the induced character (ψ̃)G contains some χ ∈
Irrp′,σ(B0(G)), and since χN contains θ, N is not contained in ker(χ).

Final step. Let N be a minimal normal subgroup of G. By Step 2 we have
|G : N | is not divisible by p. Therefore, whenever θ ∈ Irrp′,σ(B0(N)) there is some
χ ∈ Irrp′,σ(B0(G)) lying over θ. By Step 2 we have that N is semisimple, and N is the
only minimal normal subgroup of G. If N = S1 × · · · × St with t ≥ 2, then arguing
as in Theorem 6.1 we obtain that k0,σ(B0(G)) > ⌈2

√
p− 1⌉, so we may assume N is
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simple and G is almost simple. If N has cyclic Sylow p-subgroups, then so does G,
contradicting the choice of G as a counterexample. Otherwise, Theorem B(ii) shows
G is not a counterexample. □

7. Final comments

7.1. Related problems. Fix a prime number p and write

Sp = {e+ p− 1

e
| e divides p− 1}.

In [HMM22], Hung, Malle and the first-named author of this article ask the following
question.

Question 7.1 (Question 1.5 of [HMM22]). Is it true that the Sylow p-subgroups of
a group G of order divisible by p are cyclic if k0,σ(B0(G)) ∈ Sp?

Notice that when p− 1 is a perfect square, then ⌈2
√
p− 1⌉ = 2

√
p− 1 = min(Sp).

Then our main theorem provides a partial positive answer to the above question. It
is still unknown whether there are finitely many primes p satisfying that p − 1 is a
perfect square. In fact, this is one of the 4 problems on prime numbers that Landau
presented in his talk at the International Congress of Mathematicians in 1912.

In [CK23] the authors put forward the following conjecture.

Conjecture 7.2 (Cınarcı–Keller). Let p be a prime. Let a and b be positive integers
such that p − 1 = ab and such that |a − b| is minimal. Then, for any finite group
G of order divisible by p, we have k(G) ≥ a + b and k(G) = a + b if, and only if,
G ∼= Cp ⋊ Ca or Cp ⋊ Cb.

It is straightforward to see that a + b is precisely the minimum of Sp, where Sp
is defined as above. Notice that ⌈2

√
p− 1⌉ ≤ minSp, so our Theorem 2.1 provides

evidence for the Cınarcı–Keller conjecture in the case where ⌈2
√
p− 1⌉ = minSp

or, equivalently, when ⌈2
√
p− 1⌉ ∈ Sp. This happens significantly more often than√

p− 1 ∈ Z (a quick check in [GAP22] shows that ⌈2
√
p− 1⌉ ∈ Sp for 77 out of the

168 primes smaller than 1000, whereas there are only 10 primes smaller than 1000
with

√
p− 1 ∈ Z).

7.2. Arbitrary blocks. Recall that the Héthelyi-Külshammer conjecture predicts
that

k(B) ≥ 2
√
p− 1

whenever B is a p-block with nontrivial defect of some finite group G. The inequality
holds for p ≤ 3 by the weak block orthogonality relation. As already mentioned
in the Introduction, it was recently settled for principal blocks in [HS23]. However,
outside these cases, little is known about this conjecture. In particular, it is not
known whether it follows from the Alperin-McKay conjecture nor whether it holds
for solvable groups.
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The following problem appeared recently in [Nav23].

Problem 7.3 (Problem 2.5 of [Nav23]). Let V be a finite dimensional FpH-module,
where H is a finite p′-group and Fp is the field of p elements. Let G = V H be
the semidirect product. Let Z = Op′(G) = CH(V ) and assume Z ⊆ Z(G). Let
λ ∈ Irr(Z). Then | Irr(G|λ)| ≥ 2

√
p− 1.

As mentioned before its statement in [Nav23], if Problem 7.3 has a positive answer,
then the blocks B satisfying the Alperin–McKay conjecture also satisfy the Héthelyi–
Külshammer conjecture. Recall that the Alperin-McKay conjecture holds for a block
B if k0(B) = k0(b), where b is the Brauer first main correspondent of B. If instead
we assume that the block B satisfies the Alperin–McKay–Navarro conjecture [Nav04,
Conjecture], thenB would satisfy the blockwise version of our Theorem A.We provide
a proof of this fact in Propostion 7.5 below, but let us first recall the statement of
the Alperin–McKay–Navarro conjecture.

Let H ≤ Gal(Q|G|/Q) be the subgroup generated by the field automorphisms τ
which send p′-roots of unity ξ to ξp

e
for some integer e. For a p-block B we let

Irr0(B) denote the set of characters of B with height zero. The group H acts on the
set {Irr(B) | B p-block of G}, and we denote by HB the stabilizer of Irr(B) under
the action of H.

Conjecture 7.4 (Alperin–McKay–Navarro). Let B be a p-block of G with defect
group D and let b be its Brauer correspondent block in NG(D). Then there is an
HB-equivariant bijection Irr0(B) → Irr0(b).

Notice that our field automorphism σ from the introduction is an element of H.
Moreover the action of ⟨σ⟩ stabilizes Irr(B) for every p-block B (because Brauer
characters are σ-invariant). In particular, Conjecture 7.4 predicts that the action of
⟨σ⟩ on characters fixes the same number of height zero characters in B as it does in
its Brauer correspondent block b, that is

k0,σ(B) = k0,σ(b) .

Proposition 7.5. Let G be a finite group of order divisible by p, B a p-block of G
with nontrivial defect group D. Assume Problem 7.3 has a positive answer and that
the Alperin–McKay–Navarro conjecture holds for B. Then

k0,σ(B) ≥ 2
√
p− 1 .

Proof. Let b be the Brauer correspondent block of B in NG(D). We have that
k0,σ(B) = k0,σ(b) by the Alperin–McKay–Navarro conjecture. By [VR23, Lemma
2.2] we have that

k0,σ(b) = k(b)

where b is a block of NG(D)/Φ(D) with defect D/Φ(D). By [Rey63, Theorem 6] ap-
plied to b there is a block b′ of a finite groupK with normal defect group V ∈ Sylp(K),
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V ∼= D/Φ(D) and with a height-preserving bijection Irr(b) → Irr(b′). It follows that
k0,σ(B) = k(b′). By Schur–Zassenhaus, the group V has a complement H in K, so
K = V H with V an FpH-module. By Fong’s theorem [Nav98, Theorem 10.20], there
is some K-invariant λ ∈ Irr(Op′(K)) with Irr(b′) = Irr(K|λ). By character triple
isomorphisms [Nav98, Problem 8.13] we may assume Op′(K) ⊆ Z(K). Using the
assumption that Problem 7.3 has a positive answer, we have

k0,σ(B) = k(b′) = | Irr(K|λ)| ≥ 2
√
p− 1

as desired. □

The version for principal blocks of Problem 7.3 is the case where Z = 1, and a
positive answer in this case is guaranteed by [Mar16]. Arguing as above, we get that
if the Alperin–McKay–Navarro conjecture holds for B0(G) then

k0,σ(B0(G)) = k(NG(P )/Φ(P )Op′(NG(P )))

and the equality part of Theorem A follows from Theorem 2.1.

We close our note with a last observation. Notice that for every group G and every
prime p we have that k0,σ(B0(G)) ≥ 1 because the principal p-block contains the
trivial character 1G. However, the existence of almost p-rational characters of height
zero in arbitrary p-blocks had not been observed until quite recently (see [NR24]).
Now that we know that k0,σ(B) ≥ 1 for arbitrary blocks and primes, we can guarantee
that the lower bound

k0,σ(B) ≥ 2
√
p− 1

holds whenever p ≤ 3 by a direct application of [RSV20, Lemma 1.4].
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[Spä13] B. Späth. A reduction theorem for the Alperin-McKay conjecture. J. Reine Angew. Math.,

680:153–189, 2013.
[Tay18] J. Taylor. Action of automorphisms on irreducible characters of symplectic groups. J.

Algebra, 505:211–246, 2018.
[TZ04] P. H. Tiep and A. E. Zalesskii. Unipotent elements of finite groups of Lie type and

realization fields of their complex representations. J. Algebra, 271:327–390, 2004.
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