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Abstract. General bounds are presented for the diameters of orbital graphs

of finite affine primitive permutation groups. For example, it is proved that the
orbital diameter of a finite affine primitive permutation group with a nontrivial

point stabilizer H ≤ GL(V ), where the vector space V has dimension d over

the prime field, can be bounded in terms of d and log |V |/ log |H| only. Sev-
eral infinite families of affine primitive permutation groups with large orbital

diameter are constructed. The results are independent from the classification

of finite simple groups.

1. Introduction

Connections between finite permutation groups and graphs quite often allow one
to express some abstract group-theoretic properties in combinatorial terms. One
of the classical approaches is the study of orbital graphs of permutation groups.
Recall that if G is a permutation group acting on a finite set X, then an orbital
graph of G is a graph with vertex set X whose arc set is an orbit of G on X ×X.
An orbital graph whose arcs are a subset of the diagonal {(x, x) | x ∈ X} is called
a diagonal orbital graph.

A transitive permutation group is called primitive if it has no nontrivial proper
block of imprimitivity or, equivalently, if a point stabilizer is a maximal subgroup
in the group. Primitive permutation groups can also be characterized in terms of
their orbital graphs. By a criterion of Higman [10], a finite permutation group is
primitive if and only if all its non-diagonal orbital graphs are connected. The degree
of an orbital graph of a finite primitive permutation group is also of fundamental
importance. By Sims conjecture, resolved by Cameron, Praeger, Saxl and Seitz [6]
(see also a simplified proof by Pyber and Tracey [17]) if some non-diagonal orbital
graph of a finite primitive permutation group has degree bounded by d, then a
point stabilizer of the group has size bounded in terms of d.
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2 ATTILA MARÓTI AND SAVELIY V. SKRESANOV

The subject of this paper is the diameter of an orbital graph of a finite primitive
permutation group, or orbital diameter. Using model theory, Liebeck, Macpherson
and Tent [14] described finite primitive permutation groups whose non-diagonal
orbital graphs have bounded diameter (we note that in [14] orbital graphs are
considered to be undirected), see also the papers of Sheikh [19] and Rekvényi [18].
The converse problem of finding upper bounds on the diameters of orbital graphs
of primitive groups was also considered in [14], but in the case of affine groups only
a partial result was obtained, see [14, Lemma 3.1].

Recall that a finite primitive permutation group G acting on a set X is called
affine if it contains a unique minimal normal subgroup V which is elementary
abelian (and regular as a permutation group). In this case a stabilizer H in G of a
point in X acts linearly on V , viewed as a vector space over the prime field Fp, where
p is prime. Moreover V is a faithful and irreducible FpH-module and conversely, if
V is a faithful and irreducible FpH-module for a finite group H, then the semidirect
product HV may be viewed as an affine primitive permutation group with socle V .
The main goal of this paper is to provide detailed upper bounds on the diameters of
orbital graphs of affine primitive permutation groups, and complement the results
of [14].

Another motivation is a problem of finding a no(1) upper bound on diameters
of orbital graphs of some classes of primitive permutation groups of degree n and,
more generally, a bound on diameters of constituent graphs of primitive coherent
configurations. See Pyber’s paper [16] proving a logarithmic bound for distance-
regular graphs and his conjecture in [13, p. 119]. We show that there exist several
infinite families of affine primitive permutation groups of degree n = pd, where p
is a prime, with orbital diameter at least (p− 1)d/4 (see Section 7). In particular,
the no(1) bound is not achievable for affine groups. We note that a weaker version
of this was found earlier by Pyber (personal communication).

Our third motivation comes from additive combinatorics. Cochrane and Cipra
[7, Theorem 1.2] proved the following result on the Waring problem in finite fields.
Let A be a nontrivial multiplicative subgroup of F×, where F is a finite field, and

assume that A generates F additively. Then n ·A = F for every n ≥ 633 · |F |
log 4

log |A| ,
where n ·A denotes the sum of n copies of the set A (see Proposition 4.2 for a more
precise statement), in particular, the diameter of a non-diagonal orbital graph of
the affine primitive permutation group AF is bounded by n. Another goal of this
paper is to present a generalization of this theorem (see Theorem 1.1).

The theorem of Cochrane and Cipra should be compared to the following results
of Babai. Let r and p be primes such that r divides p − 1 and let H(p, r) be
the unique nonabelian group of order pr. This group can be generated by two
elements. Let diammin(H(p, r)) and diammax(H(p, r)) denote the minimum and,
respectively, maximum diameter of a Cayley graph of H(p, r) over all possible pairs
of generators. It was shown by Babai in an unpublished work that if r is bounded
and p → ∞ then both diammin(H(p, r)) and diammax(H(p, r)) have the order of
Θ(p1/(r−1)) (see [2, Theorem 6.1]). If r > p1/2+c for some constant c > 0 then
diammin(H(p, r)) = Θ(r1/2) and diammax(H(p, r)) = Θ(r) (see [2, Theorem 6.2]).
The second result is connected with the Waring problem in Fp, see [2, Section 6]
for details.
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Another related result is a theorem of Peluse [15] on exponential sums over
orbits of a linear group. It was shown that for every positive integer d and positive
numbers δ, β there is a positive ε such that whenever HV is an affine primitive
permutation group where H ≤ GL(V ) and V is a vector space of dimension d over
Fp and ∆ is a nonzero orbit of H on V with (1) |∆| ≥ pδ and (2) |∆∩P | ≤ |∆|1−β
for every hyperplane P in V , then the absolute value of an exponential sum over ∆
is bounded by p−ε|∆|. By Fourier analysis, this bound implies that the maximum
diameter of a non-diagonal orbital graph of the affine primitive permutation group
HV is bounded in terms of d, δ and β only. The third goal of the paper is to show
that the maximum diameter of a non-diagonal orbital graph of an affine primitive
permutation group is bounded in terms of d and δ provided that (1) holds (see
Corollary 1.2).

To state our main result, let V be a faithful irreducible FpH-module for a finite

group H, and let d be the dimension of V over Fp. Denote by
−−−→
diam(V,H) the

supremum of the diameters of non-diagonal orbital graphs of HV where graphs are
considered to be oriented, and let diam(V,H) be the supremum of diameters of non-
diagonal orbital graphs where we forget about arc directions and consider graphs to
be undirected. It follows from elementary diameter estimates (see Proposition 3.1
and 3.2) that

1

2
(|V |1/|H| − 1) ≤ diam(V,H) ≤

−−−→
diam(V,H) ≤ (p− 1)d.

Our main result may be considered an improvement of the previous upper bound
on the diameter in the case when p is large.

Theorem 1.1. Let HV ≤ AGL(V ) be an affine primitive permutation group with
V a vector space of dimension d over Fp, p prime, and H a point stabilizer.

(1) If H has a composition factor isomorphic to a finite simple group of Lie
type in characteristic p, then

diam(V,H) < 222d3 ,

in particular, the diameter is bounded in terms of dimV only.
(2) There exists a function J(d) depending only on d such that whenever H

does not have a composition factor isomorphic to a finite simple group of
Lie type in characteristic p, and |H| ≥ J(d)2, then

−−−→
diam(V,H) < 218d2 · |V |

d log 64
log |H| .

Part (2) of Theorem 1.1 may be viewed as a generalization of the aforementioned
theorem of Cochrane and Cipra [7] for arbitrary affine primitive groups in the case
when d is bounded.

The function J(d) from the statement of (2) of Theorem 1.1 is precisely the func-
tion from the Larsen and Pink theorem, see Proposition 5.2, which is a classification-
free version of Weisfeiler’s theorem on the structure of linear groups [21, 22]. We
will show in Section 7 that there exist groups H of size bounded in terms of d
with orbital graphs of large diameter, so the condition that |H| is larger than some
constant depending on d is essential in (2) of Theorem 1.1.



4 ATTILA MARÓTI AND SAVELIY V. SKRESANOV

In [14, Part (1) of Theorem 1.1] it was shown that if a class of affine primitive
permutation groups has bounded orbital diameter, then this class consists of the
so-called groups of t-bounded classical type, for some bounded t. It follows from
the definition of groups of t-bounded classical type that an affine group HV with
d = dimV is of t-bounded classical type for all t ≥ d, and therefore the conclusion
of [14, Theorem 1.1] is nontrivial only for classes of groups with unbounded d (see
the remark before [14, Lemma 3.2]).

As a corollary to Theorem 1.1, one can show that diameters are controlled by
the ratio log |V |/ log |H|, when d is bounded.

Corollary 1.2. For any d there exists a constant f(d) depending on d only such
that for any affine primitive permutation group HV ≤ AGL(V ) with V a vector
space of dimension d over Fp and 1 < H ≤ GL(V ), we have

log |V |
3 log |H|

≤ diam(V,H) ≤ f(d)
log |V |
log |H| .

In particular, when d is bounded, diam(V,H) is bounded if and only if log |V |
log |H| is

bounded.

In Section 7 we will show that f(d) grows at least linearly.

In order to prove Theorem 1.1 we establish the following technical result provid-
ing a more precise upper bound on the diameters of orbital graphs. Recall that a
finite group is called a p′-group if its order is not divisible by a prime p.

Theorem 1.3. Let HV ≤ AGL(V ) be an affine primitive permutation group where
V is a vector space of dimension d over Fp and H ≤ GL(V ) acts irreducibly on V .
Let A be a nontrivial abelian p′-subgroup of H and let k be the number of irreducible
summands of the completely reducible FpA-module V . Then

diam(V,H) < 322d · 144k(k+1) · |V |
k(k+1) log 4

log |A| .

Moreover, if A is normal in H, then

−−−→
diam(V,H) < d · 2576k(k+1) · |V |

(k+1) log 4
log |A| .

The proof of Theorem 1.3 relies on the result of Cochrane and Cipra [7, Theo-
rem 1.2].

It should be mentioned that our results are free from the classification of finite
simple groups. By utilizing the classification it is possible to give a good bound
on the function J(d) (see, for example, the bounds in [22] or [8]) and improve the
upper bounds in the case when the group contains a composition factor isomorphic
to a finite simple group of Lie type in characteristic p, but these questions are out
of scope of this paper.

The structure of the paper is as follows. In Section 2 we provide necessary prelim-
inaries on additive properties of subsets and reformulate the problem of bounding
diameters in those terms. In Section 3 we give elementary upper and lower bounds
on the diameters, in particular, we provide an upper bound in terms of the inter-
section of the point stabilizer with the group of scalar matrices. Section 4 contains
the proof of Theorem 1.3. In Section 5 we derive Theorem 1.1 from Theorem 1.3,
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and in Section 6 we derive Corollary 1.2. In Section 7 we provide examples of
affine primitive permutation groups with large diameter, proving that some of our
estimates are tight.

2. Preliminaries

Let V be a finite abelian group, and let ∆,Γ be subsets of V . We define the
sum, difference and negation of subsets as usual:

∆ + Γ = {x+ y | x ∈ ∆, y ∈ Γ},
∆− Γ = {x− y | x ∈ ∆, y ∈ Γ},
−∆ = {−x | x ∈ ∆}.

For an integer n ≥ 1 let n · ∆ denote the sum of n copies of ∆. The following
proposition records several properties of subset sums, which will be used without
further notice.

Proposition 2.1. Let V be a finite abelian group, and let ∆ ⊆ V .

(1) If m ≤ n, then |m ·∆| ≤ |n ·∆|. Furthermore, if 0 ∈ ∆, then m ·∆ ⊆ n ·∆.
(2) If m ·∆ = V , then for any n ≥ m we have n ·∆ = V .
(3) If ∆ + ∆ ⊆ ∆ and ∆ is nonempty, then ∆ is a subgroup of V .

Proof. If ∆ is nonempty and x ∈ ∆, then for any Γ ⊆ V we have

|Γ| = |Γ + x| ≤ |Γ + ∆|,

where the last inequality holds since Γ + x ⊆ Γ + ∆. Furthermore, if 0 ∈ ∆, then
Γ ⊆ Γ + ∆, and (1) follows.

Property (2) is a direct consequence of (1), and (3) is well-known for arbitrary
finite groups. �

Let G be a permutation group acting on a finite set X. An orbital graph for
(X,G) is a graph with vertex set X whose arc set is an orbit of G on X × X; in
general, this is a directed graph. The orbital graph with edge set {(x, x) : x ∈ X}
is called the diagonal orbital graph. The criterion of Higman [10] states that a
transitive permutation group G acting on X is primitive if and only if all non-
diagonal orbital graphs are (strongly) connected, see [5, Theorems 1.9 and 1.10] for
the proof.

Assume that G is an affine primitive permutation group with socle V . The group
V is elementary abelian and acts regularly on X, so it can be identified with X in a
natural way. Viewing V as a vector space of dimension d over the finite field Fp the
group G can be considered a subgroup of the affine general linear group AGL(V ).
Therefore G decomposes as a semidirect product HV where H is the stabilizer of
0 ∈ V , and V is a faithful irreducible FpH-module.

In the case of an affine permutation group one can easily see that its orbital
graphs are Cayley graphs. Indeed, if ∆ is an orbit ofH on V , then the corresponding
orbital graph has arc set {(x, y) ∈ V × V | x− y ∈ ∆}, so ∆ is the connection set.
Notice that we obtain the diagonal orbital graph when ∆ is the zero orbit.
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If x1, . . . , xk ∈ V is a directed path in an orbital graph corresponding to the orbit
∆ of H on V , then x1 − x2 ∈ ∆, x2 − x3 ∈ ∆, . . . , xk−1 − xk ∈ ∆, and therefore
x1 − xk ∈ (k − 1) ·∆. It follows that the (directed) diameter of the corresponding
orbital graph is equal to the minimal number n ≥ 1 such that

{0} ∪ (1 ·∆) ∪ (2 ·∆) ∪ · · · ∪ (n ·∆) = V,

or, in other words, to the minimal n ≥ 1 such that n · (∆ ∪ {0}) = V . Observe
that such n always exists for a nonzero orbit ∆, since H acts irreducibly on V and
therefore ∆ spans V over Fp.

Denote by
−−−→
diam(V,H) the supremum of the diameters of non-diagonal orbital

graphs of (X,G). Let ∆1, . . . ,∆r be all the nonzero orbits of H on V . Then

(1)
−−−→
diam(V,H) = min{n ∈ N | n · (∆i ∪ {0}) = V for all i = 1, . . . , r}.

If we forget about the arc direction of an orbital graph, we can consider its undi-
rected diameter; let diam(V,H) denote the supremum of the undirected diameters
of non-diagonal orbital graphs of (X,G). If ∆ is the connection set of some orbital
graph, then the corresponding undirected graph has connection set ∆ ∪ −∆, in
particular, we obtain the formula

(2) diam(V,H) = min{n ∈ N | n · (∆i ∪ −∆i ∪ {0}) = V for all i = 1, . . . , r}.

Clearly the orbits of the group H〈−1〉 on V are ∆i ∪ −∆i, i = 1, . . . , r, so

diam(V,H) =
−−−→
diam(V,H〈−1〉).

The following lemma shows that if all elements of some nontrivial subspace lie
at distance at most m from 0 in an orbital graph, then the whole orbital graph has
diameter at most dm, where d is the dimension of V .

Lemma 2.2. For any subgroup A of H, any nontrivial subspace W of V and any
nonzero vector v in V , if W ⊆ m · (vA∪{0}) for some m, then dm · (vH ∪{0}) = V .

Proof. Let u ∈ W be a nonzero vector. The orbit uH spans V over Fp, so there
exist elements h1, . . . , hd ∈ H such that uh1 , . . . , uhd is a basis of V over Fp. Since
Fpu ⊆W ⊆ m · (vA ∪ {0}) and A ≤ H, we have

Fpuh1 , . . . ,Fpuhd ⊆ m · (vH ∪ {0}).

Therefore V = Fpuh1 + · · ·+Fpuhd ⊆ dm · (vH ∪ {0}), and the claim is proved. �

By considering groups H〈−1〉 and A〈−1〉 we obtain an undirected version of the
above result: if W ⊆ m·(vA∪−vA∪{0}) for some m, then dm·(vH∪−vH∪{0}) = V .

3. Elementary diameter estimates

Let HV ≤ AGL(V ) be an affine primitive permutation group where V is a vector
space of dimension d over the prime field Fp and H ≤ GL(V ). First we prove two
general lower bounds for the diameter. We follow the proof of [3, Proposition 1.1]
for our second lower bound, see also [1, Theorem 3].
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Proposition 3.1. For H > 1 let s be the size of the smallest nonzero orbit of H
on V . Then

log |V |
3 log |H|

≤ log |V |
log(2s+ 1)

≤ diam(V,H)

and
1

2
(|V |1/|H| − 1) ≤ 1

2
(|V |1/s − 1) ≤ diam(V,H).

Proof. Let ∆ be a nonzero orbit of H on V of size s. Set n = diam(V,H) and recall
that n · (∆ ∪ −∆ ∪ {0}) = V . Therefore

|V | = |n · (∆ ∪ −∆ ∪ {0})| ≤ |∆ ∪ −∆ ∪ {0}|n ≤ (2s+ 1)n,

and the first displayed inequalities are proved.

Set ∆ = {x1, . . . , xs}. Then every vector x ∈ V can be expressed as the sum
x = k1x1 + · · · + ksxs, where |ki| ≤ n. Therefore |V | ≤ (2n + 1)s, and the second
result follows. �

Since diam(V,H) ≤
−−−→
diam(V,H), the provided bounds are also lower bounds for

the directed diameter.

Let F×p denote the multiplicative group of the finite field Fp, and recall that

we can identify F×p with the center of GL(V ) in a natural way. The next result

shows that the diameter is controlled by the intersection of the group H with F×p ,
essentially generalizing [14, Part (i) of Lemma 3.1].

Proposition 3.2. We have
−−−→
diam(V,H) ≤

−−−→
diam(Fp,F×p ∩H) · d ≤ (p− 1)d

for all p, and

diam(V,H) ≤ diam(Fp,F×p ∩H〈−1〉) · d ≤ (p− 1)d/2,

when p is odd.

Proof. Set A = F×p ∩H and let v ∈ V be a nonzero vector. Since A is a nonzero

orbit of A acting on Fp, we have n · (A ∪ {0}) = Fp, where n =
−−−→
diam(Fp, A).

Therefore n · (vA ∪ {0}) is a nontrivial subgroup of V , and by Lemma 2.2, we have

dn · (vH ∪ {0}) = V . Thus
−−−→
diam(V,H) ≤

−−−→
diam(Fp, A) · d. Now,

−−−→
diam(Fp, A) ≤

−−−→
diam(Fp, 〈1〉). Since non-diagonal orbital graphs of the trivial group acting on

Fp are directed cycles of length p, we obtain
−−−→
diam(Fp, 〈1〉) = p − 1 and the first

displayed inequalities are proved.

To prove the second part, recall that diam(V,H) =
−−−→
diam(V,H〈−1〉), there-

fore diam(V,H) ≤ diam(Fp,F×p ∩ H〈−1〉) · d by the previous paragraph. Clearly

diam(Fp,F×p ∩H〈−1〉) ≤ diam(Fp, 〈−1〉). Finally, we have diam(Fp, 〈−1〉) = (p −
1)/2 for odd p, since orbital graphs of 〈−1〉 acting on Fp are undirected cycles of
length p. �

In Section 7 we will show that for all d and all odd p the inequalities on undi-
rected diameter presented in Proposition 3.2 are sharp. Notice that the bound on
undirected diameter does not apply when p = 2, as diam(F2, 〈1〉) = 1.
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4. Proof of Theorem 1.3

In this section we prove Theorem 1.3 which is the main technical result required
for the proof of Theorem 1.1.

Let H be an irreducible subgroup of GL(V ), where V has dimension d over the
prime field Fp, and let A be a nontrivial abelian p′-subgroup of H. The vector
space V is a completely reducible FpA-module by Maschke’s theorem. We can
write V = V1 ⊕ · · · ⊕ Vk, k ≤ d, where the Vi are irreducible FpA-modules. Write
|Vi| = pfi , i = 1, . . . , k, for some integers fi. Let Ai ≤ GL(Vi) be the group induced
on Vi by A. Since A is abelian, it induces a multiplicative group of a finite field on
each Vi, so we may assume that Ai ≤ F×

pfi
for i = 1, . . . , k.

We have |Ai| ≥ |A|1/k for some i. Without loss of generality we may assume
that for some j ≥ 1 we have |Ai| ≥ |A|1/k for i = 1, . . . , j, and |Ai| < |A|1/k for
i = j + 1, . . . , k. Nonzero orbits of Ai on Vi have equal sizes, and in particular,
for i = 1, . . . , j nonzero orbits of Ai on Vi have size at least |A|1/k, while for
i = j + 1, . . . , k orbit sizes are less than |A|1/k.

If the subgroup A is normal in H, then all FpA-modules Vi, i = 1, . . . , k, are
isomorphic, in particular, j = k in this case.

Every vector v ∈ V can be uniquely written as v = v1 + · · ·+ vk, where vi ∈ Vi,
i = 1, . . . , k. We say that vi is the projection of v on Vi.

Lemma 4.1. Let v be a nonzero vector from V and set ∆ = vH ∪ −vH ∪ {0}. If
s ≤ k − j, then there exists w ∈ 2s ·∆ such that w ∈ V1 ⊕ · · · ⊕ Vk−s and w has a
nonzero projection on V1.

Proof. We will prove the statement by induction on s. Suppose that s = 0. Since
∆ spans V , it cannot lie inside the proper subspace V2 ⊕ · · · ⊕ Vk. Therefore there
exists a vector w ∈ 1 ·∆ such that w has a nonzero projection on V1.

Suppose that s > 0, so, in particular, A is not normal in H. By the inductive
hypothesis, there exists some vector u ∈ 2s−1 · ∆ lying in V1 ⊕ · · · ⊕ Vk−s+1 and
having a nonzero projection on V1, that is, u = u1 + · · ·+ uk−s+1 where ui ∈ Vi for
every i = 1, . . . , k−s+1, and u1 6= 0. Recall that the length of the A-orbit of uk−s+1

is strictly smaller than |A|1/k, in particular, it is smaller than the length of the A-
orbit of u1. Therefore there exists some a ∈ A with ua1 6= u1 and uak−s+1 = uk−s+1.
The vector w = u− ua has a nonzero projection on V1 and lies in V1 ⊕ · · · ⊕ Vk−s.
It is left to notice that w ∈ 2s−1 · ∆ − 2s−1 · ∆ = 2s · ∆, where the last equality
follows from −∆ = ∆. The inductive argument is over. �

We need the following result of Cochrane and Cipra.

Proposition 4.2 ([7, Theorem 1.2]). Let M be a subgroup of the multiplicative
group F×q of the finite field Fq. If M generates Fq additively and |M | > 1, then we

have n ·M = Fq for every n ≥ 633(2(q − 1)/|M |)
log 4

log |M| .

Recall that A induces a group Ai on each Vi, i = 1, . . . , j, and |Ai| ≥ |A|1/k.

We have ni · Ai = Fpfi for all i = 1, . . . , j provided that ni ≥ 160 · (2|Vi|)
k log 4
log |A| ,
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by Proposition 4.2. Let Ni be the lower integer part of 160 · (2|Vi|)
k log 4
log |A| and set

N = 1 + maxiNi. By definition, N ·Ai = Vi for all i = 1, . . . , j.

Let v be an arbitrary vector from U = V1⊕· · ·⊕Vj . It has a unique decomposition
of the form v = v1 + · · ·+vj , where vi ∈ Vi, i = 1, . . . , j. Let l(v) denote the number
of nonzero projections of v, i.e.

l(v) = |{i ∈ {1, . . . , j} | vi 6= 0}|.

Lemma 4.3. If v ∈ U , v 6= 0, then d(4N)l(v)+1 · (vH ∪ {0}) = V .

Proof. We use induction on l(v). Suppose that l(v) = 1. Then v lies in some
Vi for i ∈ {1, . . . , j}, and hence N · vA = Vi by the definition of N . Therefore
dN · (vH ∪ {0}) = V by Lemma 2.2.

Suppose that l(v) > 1 and vi 6= 0 for some i ∈ {1, . . . , j}. As N · vAi = Vi, the
projection of N · (vA∪{0}) on Vi is equal to Vi. In particular, |N · (vA∪{0})| ≥ pfi .

If |2N · (vA∪{0})| = pfi , then 2N · (vA∪{0}) = N · (vA∪{0}) and N · (vA∪{0})
is a subgroup of V . Therefore dN · (vH ∪ {0}) = V by Lemma 2.2.

Assume that |2N · (vA ∪ {0})| > pfi . There exist two distinct vectors u, u′ ∈
2N · (vA ∪ {0}) with equal projections on Vi, i.e. ui = u′i. Since the projection
of 2N · (vA ∪ {0}) on Vi is equal to Vi, there exists a vector w ∈ 2N · (vA ∪ {0})
with projection −ui on Vi. At least one of the vectors u+ w or u′ + w is nonzero;
without loss of generality, u + w 6= 0. Since u + w has zero projection on Vi, we
have l(u+ w) < l(v). As

u+ w ∈ 4N · (vA ∪ {0}) ⊆ 4N · (vH ∪ {0}),

the inductive hypothesis gives

V = d(4N)l(u+w)+1 · ((u+ w)H ∪ {0}) ⊆ d(4N)l(u+w)+1 · 4N · (vH ∪ {0}) ⊆

⊆ d(4N)l(v)+1 · (vH ∪ {0})

and the claim is proved. �

Assume first that A is normal in H. In this case j = k and U = V . Each Vi has
equal size and |Vi|k = |V |. Let v be an arbitrary nonzero vector in V . We have
l(v) ≤ k ≤ d, therefore

−−−→
diam(V,H) ≤ d(4N)k+1 ≤ d(640 · (2k|V |)

log 4
log |A| + 4)k+1 <

< d · 644k+1 · (2k|V |)
(k+1) log 4

log |A| < d · 2576(k+1)k · |V |
(k+1) log 4

log |A|

by Lemma 4.3 and Equation (1). Thus part (2) of Theorem 1.3 is proved.

Assume now that A is not necessarily a normal subgroup of H. Let v be an
arbitrary nonzero vector in V . By Lemma 4.1, we have a nonzero vector w in U
such that w ∈ 2k−1 · (vH ∪ −vH ∪ {0}). Thus

V = d(4N)l(w)+1 · (wH ∪ {0}) ⊆ d(4N)l(w)+1 · 2k−1 · (vH ∪ −vH ∪ {0})



10 ATTILA MARÓTI AND SAVELIY V. SKRESANOV

by Lemma 4.3. It follows from Equation (2) that

diam(V,H) ≤ d · (4N)k+1 · 2k−1 ≤ 2d · 8k · 161k+1 · (2|V |)
k(k+1) log 4

log |A| <

322d · 1288k · (2|V |)
k(k+1) log 4

log |A| < 322d · 144k(k+1) · |V |
k(k+1) log 4

log |A| ,

and part (1) of Theorem 1.3 is proved.

5. Proof of Theorem 1.1

Recall that an element of a finite group is called a p′-element if its order is not
divisible by the prime p. The following lemma shows that finite simple groups of
Lie type contain elements of large order.

Lemma 5.1. Any finite simple group of Lie type in characteristic p contains a
p′-element of order at least p1/5.

Proof. Assume first that p ≥ 7. Let S be a finite simple group of Lie type in
characteristic p. Let K be the corresponding universal version, and recall that
S ' K/Z(K). By [9, Theorem 2.4.7 (d)], the Cartan subgroup of K contains a
cyclic subgroup of order p−1, so let C be the image of that subgroup in S. Clearly
C is a cyclic group of order not divisible by p, and |C| ≥ (p− 1)/|Z(K)|.

Unless S has type Al or 2Al, [9, Table 2.2] gives us |Z(K)| ≤ 4, which proves
the claim in this case, since (p− 1)/4 ≥ p1/5. If S has type Al or 2Al, then one can
find an element of order at least (p− 1)/2, see, for instance, [4, Corollary 3].

Assume that p ≤ 5. The order of S has at least three distinct prime divisors
by Burnside’s theorem. It follows that S must have a p′-element of order at least
3 > 51/5 ≥ p1/5. �

We need the following modular analogue of Jordan’s theorem on linear groups.
The original result was proved by Weisfeiler [21, 22] with the use of the classification
of finite simple groups, but we use a classification-free version due to Larsen and
Pink.

Proposition 5.2 ([12, Theorem 0.2]). For every d there exists a constant J(d)
depending only on d such that any subgroup H of GL(d, p), p prime, possesses
normal subgroups P ≤ B ≤ E such that

(1) |H : E| ≤ J(d).
(2) Either E = B, or E/B is a direct product of finite simple groups of Lie

type in characteristic p.
(3) B/P is an abelian p′-group.
(4) P is a (possibly trivial) p-group.

As a consequence of the above two results, we show that irreducible linear groups
contain large abelian subgroups.

Corollary 5.3. Let H be a subgroup of GL(d, p) acting irreducibly on the vector
space of dimension d over Fp, where p is prime.
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(1) If H has a composition factor isomorphic to a finite simple group of Lie
type in characteristic p, then H contains a p′-element of order at least p1/5.

(2) If H does not have a composition factor isomorphic to a finite simple group
of Lie type in characteristic p, and |H| ≥ J(d)2, where J(d) is as in
Proposition 5.2, then H contains an abelian normal p′-subgroup of order
at least |H|1/2.

Proof. Assume that H has a composition factor S isomorphic to a finite simple
group of Lie type in characteristic p. The group S contains a p′-element x of order
at least p1/5. The preimage of x in H has order divisible by a number coprime to
p and at least p1/5. This proves (1).

Assume that H does not have a composition factor isomorphic to a finite simple
group of Lie type in characteristic p. We use Proposition 5.2 and its notation. Since
H acts irreducibly on the underlying module of dimension d over Fp, the normal
p-subgroup P of H is trivial by Clifford’s theorem. We have E = B by assumption.
Since B is an abelian normal p′-subgroup, we are finished if |B| ≥ |H|1/2. If |B| <
|H|1/2, then |H|1/2 < |H : B| ≤ J(d), contradicting our assumption |H| ≥ J(d)2.
This proves (2). �

We return to the proof of Theorem 1.1. Suppose that H contains a composition
factor isomorphic to a finite simple group of Lie type in characteristic p. Then
Corollary 5.3 (1) and Theorem 1.3 give us

diam(V,H) < 322 · d · 144d(d+1) · |V |
d(d+1) log 4

log |A| ,

where A is an abelian p′-subgroup of H with |A| ≥ p1/5. Thus

diam(V,H) < 322 · d · 144d(d+1) · 45d2(d+1) ≤ 222d3 ,

where the last inequality holds for all d ≥ 2.

If H does not contain a composition factor isomorphic to a finite simple group
of Lie type in characteristic p, and |H| ≥ J(d)2, then Corollary 5.3 (2) and Theo-
rem 1.3 imply

−−−→
diam(V,H) < d · 2576d(d+1) · |V |

(d+1) log 4
log |A| ,

where A is a normal abelian p′-subgroup of H with |A| ≥ |H|1/2. Hence

−−−→
diam(V,H) < d · 2576d(d+1) · |V |

2(d+1) log 4
log |H| ≤ 218d2 · |V |

d log 64
log |H| ,

where the last inequality holds for all d ≥ 2. If d = 1, then V = Fp and H is a
multiplicative subgroup of F×p . By Proposition 4.2, we have

−−−→
diam(V,H) ≤ 633 · |V |

log 4
log |H| < 218 · |V |

log 64
log |H| ,

so the claimed inequality holds in this case as well.

6. Proof of Corollary 1.2

The lower bound is the first inequality from Proposition 3.1.
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Let J(d) be the function from Theorem 1.1. Suppose that |H| < J(d)2. Then

log |V |/ log |H| ≥ d log p
log J(d)2 and taking f(d) ≥ J(d)4 we have

f(d)
log |V |
log |H| ≥ (J(d)2)

2d log p

log J(d)2 = p2d ≥ p · d.

By Proposition 3.2, the orbital diameter is always at most p · d, so we are done.

Now assume that |H| ≥ J(d)2. Recall that |H| ≤ |GL(V )| ≤ pd
2

, hence
log |V |/ log |H| ≥ 1/d. Now taking

f(d) ≥ (max{222d3 , 218d2 · 64d})d

and applying Theorem 1.1 proves the claim.

7. Affine groups with large orbital diameters

In this section we provide several series of groups with orbital graphs of large
diameter.

Let K be a nontrivial subgroup of F×p , where p is an odd prime. Let S be a
transitive permutation group of degree d and let H = K o S be a wreath product
acting (linearly) imprimitively on V = Fdp. By [20, Chapter IV §15, Lemma 4],
since p is odd and K is nontrivial, the group H acts irreducibly on V .

If {v1, . . . , vd} is the standard basis of V , then the orbit of v1 under H is vH1 =
vK1 ∪ . . . ∪ vKd . Therefore

m · (vH1 ∪ {0}) ⊆ (m · (vK1 ∪ {0})) + · · ·+ (m · (vKd ∪ {0})),

for any m ≥ 1 and hence
−−−→
diam(V,H) ≥

−−−→
diam(Fp,K) · d by Equation (1). As

F×p ∩H = K, Proposition 3.2 implies that
−−−→
diam(V,H) ≤

−−−→
diam(Fp,K) ·d. Therefore

we proved

Proposition 7.1. Let p be an odd prime, and let K be a nontrivial subgroup of F×p .
If S is a transitive permutation group of degree d, then the (linearly) imprimitive

wreath product H = K oS acts irreducibly on V and
−−−→
diam(V,H) =

−−−→
diam(Fp,K) · d.

Clearly, diam(V,H) = diam(Fp,K〈−1〉) · d. By taking appropriate K it easily
follows that the inequalities on undirected diameter presented in Proposition 3.2
are sharp.

Let r ≥ 5 be an integer. In the second example H is the alternating group Alt(r)
and p is an odd prime not dividing r. Let {v1, . . . , vr} be the basis of the natural
permutation module of H over the field Fp. This module has a proper submodule
V which consists of vectors v =

∑r
i=1 λivi, where each λi is an element of Fp,

such that
∑r
i=1 λi = 0. The module V is irreducible by [11, Lemma 5.3.4] and has

dimension d = r − 1 over Fp. We will prove that diam(V,H) ≥ (p− 1)d/4.

Consider the H-orbit ∆ = {±(vi − vj) | 1 ≤ i < j ≤ r} ⊆ V . Let m be the
smallest positive integer such that m · (∆ ∪ {0}) = V . Since this is a lower bound
for diam(V,H) by Equation (2), it is sufficient to show that m ≥ ((p− 1)/2) · d/2.

Observe that m = maxv∈V {m(v)} where m(v) is the smallest positive integer
such that v ∈ m(v) · (∆∪{0}). Denote the elements of Fp by 0,±1, . . . ,±(p− 1)/2.
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Let v =
∑r
k=1 λkvk where each λk is in Fp. We claim that 2m(v) ≥

∑r
k=1 |λk|.

This would finish the proof of the lower bound, as one can take λk = (p− 1)/2 for
k = 1, . . . , r − 1.

We prove the claim by induction on t = m(v). This is clear for t ≤ 1. Assume

that t ≥ 2 and that the claim is true for t−1. Let v =
∑m(v)
k=1 δk where each δk ∈ ∆.

Let δm(v) = vi − vj for some distinct i and j from {1, . . . , r}. Let v′ =
∑m(v)−1
k=1 δk.

Then 2m(v) − 2 ≥ 2m(v′) ≥ (
∑r
k=1 |λk|) − |λi| − |λj | + |λi − 1| + |λj + 1|. Since

1− |λi|+ |λi − 1| ≥ 0 and 1− |λj |+ |λj + 1| ≥ 0, the result follows.

Proposition 7.2. For every d ≥ 4 and every odd prime p not dividing d+ 1 there
exists a nonabelian simple group H with diam(V,H) ≥ (p− 1)d/4.

In Corollary 1.2 it was shown that there exists a function f(d) depending on d

only such that diam(V,H) ≤ f(d)
log |V |
log |H| for any irreducible subgroup H ≤ GL(V ),

where V has dimension d over Fp. Proposition 7.1 (and also Proposition 7.2) implies
that f(d) must depend on d at least linearly. For example, let S be the symmetric
group Sym(d) and K = 〈−1〉. Then |H| = |K oS| = 2d ·d! and log |H| ≥ d log(d/e).
We have diam(V,H) = d(p− 1)/2 hence

d(p− 1)/2 ≤ f(d)
log |V |
log |H| ≤ p

log f(d)
log(d/e) ,

implying log f(d)/ log(d/e) ≥ 1 for d ≥ 3. Thus d/e ≤ f(d), as claimed.

In our third example, let q and d be integers with q ≥ 2 and d ≥ 3. Zsigmondy’s
theorem [23] states that, provided (q, d) 6= (2, 6), there is a prime r dividing qd − 1
but not dividing qi − 1 for all i < d. Such a prime r is called a Zsigmondy prime
and is denoted by qd. There may be several Zsigmondy primes qd for given d and
q. It is easy to see that qd must be congruent to 1 modulo d. If d+ 1 is prime then
d+ 1 is a Zsigmondy prime qd whenever the multiplicative order of q modulo d+ 1
is d. For a given prime d+ 1 there are infinitely many primes q with this property
by Dirichlet’s prime number theorem.

Let p and d be such that d+ 1 is an odd Zsigmondy prime pd. Set V = Fdp and
let h be an element of GL(V ) of order d + 1. Since 〈h〉 is a cyclic group of order
coprime to p, the Fp〈h〉-module V is completely reducible by Maschke’s theorem.
Moreover, since the order of 〈h〉 is a Zsigmondy prime, V must be irreducible.

Let ∆ be an orbit of 〈h〉. It must have size d + 1 and it must contain a basis
of V ; set ∆ = {v1, . . . , vd, v}, where v1, . . . , vd are linearly independent. Since ∆ is
an orbit, h preserves the sum over all vectors in ∆:

(v1 + · · ·+ vd + v)h = v1 + · · ·+ vd + v,

and as 〈h〉 acts irreducibly on V , this sum must be zero. Therefore v = −
∑d
j=1 vj .

Let H be the cyclic group 〈h〉〈−1〉. By the previous paragraph every orbit ∆ of

H has the form {±v1} ∪ . . . ∪ {±vd} ∪ {±(
∑d
i=1 vi)} where {v1, . . . , vd} is a basis

for V . Let ` be the smallest positive integer such that ` · (∆ ∪ {0}) = V . Since
∆ = −∆, this is equal to diam(V,H) by Equation (2). We proceed to show that
(p− 1)d/4 ≤ ` ≤ (p− 1)(d+ 1)/4, provided that p is odd.

Assume that p is odd. Let x, 0 = x0, x1, . . . , xd be elements of Fp. For two
elements f1 and f2 of Fp let D(f1, f2) be their distance defined to be the smallest
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integer m for which f1 ∈ f2 + m{±1, 0}. The smallest integer m for which the

vector
∑d
i=1 xivi is contained in m · (∆∪{0}) is minx∈Fp

{
∑d
i=0D(xi, x)}. We have

min
x∈Fp

{
d∑
i=0

D(xi, x)} ≥ min
fd/2∈Fp

{D(xd/2, fd/2)}+
d
2−1∑
i=0

min
fi∈Fp

{D(xi, fi)+D(xd−i, fi)} =

=

d
2−1∑
i=0

min
fi∈Fp

{D(xi, fi) +D(xd−i, fi)} =

d
2−1∑
i=0

D(xd−i, xi).

It follows that

` = max
x1,...,xd∈Fp

x0=0

{min
x∈Fp

{
d∑
i=0

D(xi, x)}} ≥ max
x1,...,xd∈Fp

x0=0

(d/2)−1∑
i=0

D(xd−i, xi) ≥
(p− 1)d

4
.

On the other hand,

min
x∈Fp

{
d∑
i=0

D(xi, x)} ≤ min{
d∑
i=0

D(xi, 0),

d∑
i=0

D(xi, (p− 1)/2)}.

Without loss of generality we can renumber x0, . . . , xd in such a way that for some
z and k we have x0 = . . . = xz = 0, 1 ≤ xz+1 ≤ . . . ≤ xk ≤ (p − 1)/2 and
−1 ≥ xk+1 ≥ . . . ≥ xd ≥ −(p− 1)/2. With this assumption,

d∑
i=0

D(xi, 0) = (

k∑
i=z+1

xi)− (

d∑
i=k+1

xi),

d∑
i=0

D(xi, (p− 1)/2) =
(p− 1)(d+ 1)

2
− (

k∑
i=z+1

xi) + (

d∑
i=k+1

xi).

It follows that

` = max
x1,...,xd∈Fp

x0=0

{min
x∈Fp

{
d∑
i=0

D(xi, x)}} ≤ (p− 1)(d+ 1)

4
.

We summarize the discussed example in the following

Proposition 7.3. There are infinitely many positive integers d and, for each
such d, infinitely many primes p and cyclic groups H for which (p − 1)d/4 ≤
diam(V,H) ≤ (p− 1)(d+ 1)/4.
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