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To My Parents



Preface

Since the publication of my book Mathematical Statistics (Shao, 2003), I
have been asked many times for a solution manual to the exercises in my
book. Without doubt, exercises form an important part of a textbook
on mathematical statistics, not only in training students for their research
ability in mathematical statistics but also in presenting many additional
results as complementary material to the main text. Written solutions
to these exercises are important for students who initially do not have
the skills in solving these exercises completely and are very helpful for
instructors of a mathematical statistics course (whether or not my book
Mathematical Statistics is used as the textbook) in providing answers to
students as well as finding additional examples to the main text. Moti-
vated by this and encouraged by some of my colleagues and Springer-Verlag
editor John Kimmel, I have completed this book, Mathematical Statistics:
Exercises and Solutions.

This book consists of solutions to 400 exercises, over 95% of which are
in my book Mathematical Statistics. Many of them are standard exercises
that also appear in other textbooks listed in the references. It is only
a partial solution manual to Mathematical Statistics (which contains over
900 exercises). However, the types of exercise in Mathematical Statistics not
selected in the current book are (1) exercises that are routine (each exercise
selected in this book has a certain degree of difficulty), (2) exercises similar
to one or several exercises selected in the current book, and (3) exercises for
advanced materials that are often not included in a mathematical statistics
course for first-year Ph.D. students in statistics (e.g., Edgeworth expan-
sions and second-order accuracy of confidence sets, empirical likelihoods,
statistical functionals, generalized linear models, nonparametric tests, and
theory for the bootstrap and jackknife, etc.). On the other hand, this is
a stand-alone book, since exercises and solutions are comprehensible
independently of their source for likely readers. To help readers not
using this book together with Mathematical Statistics, lists of notation,
terminology, and some probability distributions are given in the front of
the book.
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viii Preface

All notational conventions are the same as or very similar to those
in Mathematical Statistics and so is the mathematical level of this book.
Readers are assumed to have a good knowledge in advanced calculus. A
course in real analysis or measure theory is highly recommended. If this
book is used with a statistics textbook that does not include probability
theory, then knowledge in measure-theoretic probability theory is required.

The exercises are grouped into seven chapters with titles matching those
in Mathematical Statistics. A few errors in the exercises from Mathematical
Statistics were detected during the preparation of their solutions and the
corrected versions are given in this book. Although exercises are numbered
independently of their source, the corresponding number in Mathematical
Statistics is accompanied with each exercise number for convenience of
instructors and readers who also use Mathematical Statistics as the main
text. For example, Exercise 8 (#2.19) means that Exercise 8 in the current
book is also Exercise 19 in Chapter 2 of Mathematical Statistics.

A note to students/readers who have a need for exercises accompanied
by solutions is that they should not be completely driven by the solutions.
Students/readers are encouraged to try each exercise first without reading
its solution. If an exercise is solved with the help of a solution, they are
encouraged to provide solutions to similar exercises as well as to think about
whether there is an alternative solution to the one given in this book. A
few exercises in this book are accompanied by two solutions and/or notes
of brief discussions.

I would like to thank my teaching assistants, Dr. Hansheng Wang, Dr.
Bin Cheng, and Mr. Fang Fang, who provided valuable help in preparing
some solutions. Any errors are my own responsibility, and a correction of
them can be found on my web page http://www.stat.wisc.edu/˜ shao.

Madison, Wisconsin Jun Shao
April 2005
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Notation

R: The real line.
Rk: The k-dimensional Euclidean space.
c = (c1, ..., ck): A vector (element) in Rk with jth component cj ∈ R; c is

considered as a k × 1 matrix (column vector) when matrix algebra is
involved.

cτ : The transpose of a vector c ∈ Rk considered as a 1 × k matrix (row
vector) when matrix algebra is involved.

‖c‖: The Euclidean norm of a vector c ∈ Rk, ‖c‖2 = cτ c.
|c|: The absolute value of c ∈ R.
Aτ : The transpose of a matrix A.
Det(A) or |A|: The determinant of a matrix A.
tr(A): The trace of a matrix A.
‖A‖: The norm of a matrix A defined as ‖A‖2 = tr(AτA).
A−1: The inverse of a matrix A.
A−: The generalized inverse of a matrix A.
A1/2: The square root of a nonnegative definite matrix A defined by

A1/2A1/2 = A.
A−1/2: The inverse of A1/2.
R(A): The linear space generated by rows of a matrix A.
Ik: The k × k identity matrix.
Jk: The k-dimensional vector of 1’s.
∅: The empty set.
(a, b): The open interval from a to b.
[a, b]: The closed interval from a to b.
(a, b]: The interval from a to b including b but not a.
[a, b): The interval from a to b including a but not b.
{a, b, c}: The set consisting of the elements a, b, and c.
A1 × · · · × Ak: The Cartesian product of sets A1, ..., Ak, A1 × · · · × Ak =

{(a1, ..., ak) : a1 ∈ A1, ..., ak ∈ Ak}.
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xii Notation

σ(C): The smallest σ-field that contains C.
σ(X): The smallest σ-field with respect to which X is measurable.
ν1 × · · ·× νk: The product measure of ν1,...,νk on σ(F1 × · · ·×Fk), where

νi is a measure on Fi, i = 1, ..., k.
B: The Borel σ-field on R.
Bk: The Borel σ-field on Rk.
Ac: The complement of a set A.
A ∪ B: The union of sets A and B.
∪Ai: The union of sets A1, A2, ....
A ∩ B: The intersection of sets A and B.
∩Ai: The intersection of sets A1, A2, ....
IA: The indicator function of a set A.
P (A): The probability of a set A.∫

fdν: The integral of a Borel function f with respect to a measure ν.∫
A

fdν: The integral of f on the set A.∫
f(x)dF (x): The integral of f with respect to the probability measure

corresponding to the cumulative distribution function F .
λ � ν: The measure λ is dominated by the measure ν, i.e., ν(A) = 0

always implies λ(A) = 0.
dλ
dν : The Radon-Nikodym derivative of λ with respect to ν.
P: A collection of populations (distributions).
a.e.: Almost everywhere.
a.s.: Almost surely.
a.s. P: A statement holds except on the event A with P (A) = 0 for all

P ∈ P.
δx: The point mass at x ∈ Rk or the distribution degenerated at x ∈ Rk.
{an}: A sequence of elements a1, a2, ....
an → a or limn an = a: {an} converges to a as n increases to ∞.
lim supn an: The largest limit point of {an}, lim supn an = infn supk≥n ak.
lim infn an: The smallest limit point of {an}, lim infn an = supn infk≥n ak.
→p: Convergence in probability.
→d: Convergence in distribution.
g′: The derivative of a function g on R.
g′′: The second-order derivative of a function g on R.
g(k): The kth-order derivative of a function g on R.
g(x+): The right limit of a function g at x ∈ R.
g(x−): The left limit of a function g at x ∈ R.
g+(x): The positive part of a function g, g+(x) = max{g(x), 0}.



Notation xiii

g−(x): The negative part of a function g, g−(x) = max{−g(x), 0}.
∂g/∂x: The partial derivative of a function g on Rk.
∂2g/∂x∂xτ : The second-order partial derivative of a function g on Rk.
exp{x}: The exponential function ex.
log x or log(x): The inverse of ex, log(ex) = x.
Γ(t): The gamma function defined as Γ(t) =

∫∞
0 xt−1e−xdx, t > 0.

F−1(p): The pth quantile of a cumulative distribution function F on R,
F−1(t) = inf{x : F (x) ≥ t}.

E(X) or EX: The expectation of a random variable (vector or matrix)
X.

Var(X): The variance of a random variable X or the covariance matrix of
a random vector X.

Cov(X, Y ): The covariance between random variables X and Y .
E(X|A): The conditional expectation of X given a σ-field A.
E(X|Y ): The conditional expectation of X given Y .
P (A|A): The conditional probability of A given a σ-field A.
P (A|Y ): The conditional probability of A given Y .
X(i): The ith order statistic of X1, ..., Xn.
X̄ or X̄·: The sample mean of X1, ..., Xn, X̄ = n−1∑n

i=1 Xi.
X̄·j : The average of Xij ’s over the index i, X̄·j = n−1∑n

i=1 Xij .
S2: The sample variance of X1, ..., Xn, S2 = (n − 1)−1∑n

i=1(Xi − X̄)2.
Fn: The empirical distribution of X1, ..., Xn, Fn(t) = n−1∑n

i=1 δXi(t).
�(θ): The likelihood function.
H0: The null hypothesis in a testing problem.
H1: The alternative hypothesis in a testing problem.
L(P, a) or L(θ, a): The loss function in a decision problem.
RT (P ) or RT (θ): The risk function of a decision rule T .
r

T
: The Bayes risk of a decision rule T .

N(µ, σ2): The one-dimensional normal distribution with mean µ and vari-
ance σ2.

Nk(µ,Σ): The k-dimensional normal distribution with mean vector µ and
covariance matrix Σ.

Φ(x): The cumulative distribution function of N(0, 1).
zα: The (1 − α)th quantile of N(0, 1).
χ2

r: The chi-square distribution with degrees of freedom r.
χ2

r,α: The (1 − α)th quantile of the chi-square distribution χ2
r.

χ2
r(δ): The noncentral chi-square distribution with degrees of freedom r

and noncentrality parameter δ.



xiv Notation

tr: The t-distribution with degrees of freedom r.
tr,α: The (1 − α)th quantile of the t-distribution tr.
tr(δ): The noncentral t-distribution with degrees of freedom r and non-

centrality parameter δ.
Fa,b: The F-distribution with degrees of freedom a and b.
Fa,b,α: The (1 − α)th quantile of the F-distribution Fa,b.
Fa,b(δ): The noncentral F-distribution with degrees of freedom a and b

and noncentrality parameter δ.
: The end of a solution.



Terminology

σ-field: A collection F of subsets of a set Ω is a σ-field on Ω if (i) the
empty set ∅ ∈ F ; (ii) if A ∈ F , then the complement Ac ∈ F ; and
(iii) if Ai ∈ F , i = 1, 2, ..., then their union ∪Ai ∈ F .

σ-finite measure: A measure ν on a σ-field F on Ω is σ-finite if there are
A1, A2, ... in F such that ∪Ai = Ω and ν(Ai) < ∞ for all i.

Action or decision: Let X be a sample from a population P . An action or
decision is a conclusion we make about P based on the observed X.

Action space: The set of all possible actions.

Admissibility: A decision rule T is admissible under the loss function
L(P, ·), where P is the unknown population, if there is no other de-
cision rule T1 that is better than T in the sense that E[L(P, T1)] ≤
E[L(P, T )] for all P and E[L(P, T1)] < E[L(P, T )] for some P .

Ancillary statistic: A statistic is ancillary if and only if its distribution
does not depend on any unknown quantity.

Asymptotic bias: Let Tn be an estimator of θ for every n satisfying
an(Tn−θ) →d Y with E|Y | < ∞, where {an} is a sequence of positive
numbers satisfying limn an = ∞ or limn an = a > 0. An asymptotic
bias of Tn is defined to be EY/an.

Asymptotic level α test: Let X be a sample of size n from P and T (X)
be a test for H0 : P ∈ P0 versus H1 : P ∈ P1. If limn E[T (X)] ≤ α
for any P ∈ P0, then T (X) has asymptotic level α.

Asymptotic mean squared error and variance: Let Tn be an estimator of
θ for every n satisfying an(Tn − θ) →d Y with 0 < EY 2 < ∞, where
{an} is a sequence of positive numbers satisfying limn an = ∞. The
asymptotic mean squared error of Tn is defined to be EY 2/a2

n and
the asymptotic variance of Tn is defined to be Var(Y )/a2

n.

Asymptotic relative efficiency: Let Tn and T ′
n be estimators of θ. The

asymptotic relative efficiency of T ′
n with respect to Tn is defined to

be the asymptotic mean squared error of Tn divided by the asymptotic
mean squared error of Tn.

xv



xvi Terminology

Asymptotically correct confidence set: Let X be a sample of size n from
P and C(X) be a confidence set for θ. If limn P (θ ∈ C(X)) = 1 − α,
then C(X) is 1 − α asymptotically correct.

Bayes action: Let X be a sample from a population indexed by θ ∈ Θ ⊂
Rk. A Bayes action in a decision problem with action space A and loss
function L(θ, a) is the action that minimizes the posterior expected
loss E[L(θ, a)] over a ∈ A, where E is the expectation with respect
to the posterior distribution of θ given X.

Bayes risk: Let X be a sample from a population indexed by θ ∈ Θ ⊂ Rk.
The Bayes risk of a decision rule T is the expected risk of T with
respect to a prior distribution on Θ.

Bayes rule or Bayes estimator: A Bayes rule has the smallest Bayes risk
over all decision rules. A Bayes estimator is a Bayes rule in an esti-
mation problem.

Borel σ-field Bk: The smallest σ-field containing all open subsets of Rk.

Borel function: A function f from Ω to Rk is Borel with respect to a
σ-field F on Ω if and only if f−1(B) ∈ F for any B ∈ Bk.

Characteristic function: The characteristic function of a distribution F on
Rk is

∫
e
√−1tτ xdF (x), t ∈ Rk.

Complete (or bounded complete) statistic: Let X be a sample from a
population P . A statistic T (X) is complete (or bounded complete)
for P if and only if, for any Borel (or bounded Borel) f , E[f(T )] = 0
for all P implies f = 0 except for a set A with P (X ∈ A) = 0 for all
P .

Conditional expectation E(X|A): Let X be an integrable random variable
on a probability space (Ω,F , P ) and A be a σ-field contained in F .
The conditional expectation of X given A, denoted by E(X|A), is
defined to be the a.s.-unique random variable satisfying (a) E(X|A)
is Borel with respect to A and (b)

∫
A

E(X|A)dP =
∫

A
XdP for any

A ∈ A.

Conditional expectation E(X|Y ): The conditional expectation of X given
Y , denoted by E(X|Y ), is defined as E(X|Y ) = E(X|σ(Y )).

Confidence coefficient and confidence set: Let X be a sample from a pop-
ulation P and θ ∈ Rk be an unknown parameter that is a function
of P . A confidence set C(X) for θ is a Borel set on Rk depend-
ing on X. The confidence coefficient of a confidence set C(X) is
infP P (θ ∈ C(X)). A confidence set is said to be a 1 − α confidence
set for θ if its confidence coefficient is 1 − α.

Confidence interval: A confidence interval is a confidence set that is an
interval.
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Consistent estimator: Let X be a sample of size n from P . An estimator
T (X) of θ is consistent if and only if T (X) →p θ for any P as n →
∞. T (X) is strongly consistent if and only if limn T (X) = θ a.s.
for any P . T (X) is consistent in mean squared error if and only if
limn E[T (X) − θ]2 = 0 for any P .

Consistent test: Let X be a sample of size n from P . A test T (X) for
testing H0 : P ∈ P0 versus H1 : P ∈ P1 is consistent if and only if
limn E[T (X)] = 1 for any P ∈ P1.

Decision rule (nonrandomized): Let X be a sample from a population P .
A (nonrandomized) decision rule is a measurable function from the
range of X to the action space.

Discrete probability density: A probability density with respect to the
counting measure on the set of nonnegative integers.

Distribution and cumulative distribution function: The probability mea-
sure corresponding to a random vector is called its distribution (or
law). The cumulative distribution function of a distribution or proba-
bility measure P on Bk is F (x1, ..., xk) = P ((−∞, x1]×· · ·×(−∞, xk]),
xi ∈ R.

Empirical Bayes rule: An empirical Bayes rule is a Bayes rule with pa-
rameters in the prior estimated using data.

Empirical distribution: The empirical distribution based on a random
sample (X1, ..., Xn) is the distribution putting mass n−1 at each Xi,
i = 1, ..., n.

Estimability: A parameter θ is estimable if and only if there exists an
unbiased estimator of θ.

Estimator: Let X be a sample from a population P and θ ∈ Rk be a
function of P . An estimator of θ is a measurable function of X.

Exponential family: A family of probability densities {fθ : θ ∈ Θ} (with
respect to a common σ-finite measure ν), Θ ⊂ Rk, is an expo-
nential family if and only if fθ(x) = exp

{
[η(θ)]τT (x) − ξ(θ)

}
h(x),

where T is a random p-vector with a fixed positive integer p, η is
a function from Θ to Rp, h is a nonnegative Borel function, and
ξ(θ) = log

{∫
exp{[η(θ)]τT (x)}h(x)dν

}
.

Generalized Bayes rule: A generalized Bayes rule is a Bayes rule when the
prior distribution is improper.

Improper or proper prior: A prior is improper if it is a measure but not a
probability measure. A prior is proper if it is a probability measure.

Independence: Let (Ω,F , P ) be a probability space. Events in C ⊂ F
are independent if and only if for any positive integer n and distinct
events A1,...,An in C, P (A1 ∩A2 ∩· · ·∩An) = P (A1)P (A2) · · ·P (An).
Collections Ci ⊂ F , i ∈ I (an index set that can be uncountable),
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are independent if and only if events in any collection of the form
{Ai ∈ Ci : i ∈ I} are independent. Random elements Xi, i ∈ I, are
independent if and only if σ(Xi), i ∈ I, are independent.

Integration or integral: Let ν be a measure on a σ-field F on a set Ω.
The integral of a nonnegative simple function (i.e., a function of
the form ϕ(ω) =

∑k
i=1 aiIAi(ω), where ω ∈ Ω, k is a positive in-

teger, A1, ..., Ak are in F , and a1, ..., ak are nonnegative numbers)
is defined as

∫
ϕdν =

∑k
i=1 aiν(Ai). The integral of a nonnegative

Borel function is defined as
∫

fdν = supϕ∈Sf

∫
ϕdν, where Sf is the

collection of all nonnegative simple functions that are bounded by
f . For a Borel function f , its integral exists if and only if at least
one of

∫
max{f, 0}dν and

∫
max{−f, 0}dν is finite, in which case∫

fdν =
∫

max{f, 0}dν −
∫

max{−f, 0}dν. f is integrable if and
only if both

∫
max{f, 0}dν and

∫
max{−f, 0}dν are finite. When ν

is a probability measure corresponding to the cumulative distribution
function F on Rk, we write

∫
fdν =

∫
f(x)dF (x). For any event A,∫

A
fdν is defined as

∫
IAfdν.

Invariant decision rule: Let X be a sample from P ∈ P and G be a group
of one-to-one transformations of X (gi ∈ G implies g1◦g2 ∈ G and
g−1

i ∈ G). P is invariant under G if and only if ḡ(PX) = Pg(X) is a
one-to-one transformation from P onto P for each g ∈ G. A decision
problem is invariant if and only if P is invariant under G and the
loss L(P, a) is invariant in the sense that, for every g ∈ G and every
a ∈ A (the collection of all possible actions), there exists a unique
ḡ(a) ∈ A such that L(PX , a) = L

(
Pg(X), ḡ(a)

)
. A decision rule T (x)

in an invariant decision problem is invariant if and only if, for every
g ∈ G and every x in the range of X, T (g(x)) = ḡ(T (x)).

Invariant estimator: An invariant estimator is an invariant decision rule
in an estimation problem.

LR (Likelihood ratio) test: Let �(θ) be the likelihood function based on
a sample X whose distribution is Pθ, θ ∈ Θ ⊂ Rp for some positive
integer p. For testing H0 : θ ∈ Θ0 ⊂ Θ versus H1 : θ 
∈ Θ0, an LR test
is any test that rejects H0 if and only if λ(X) < c, where c ∈ [0, 1]
and λ(X) = supθ∈Θ0

�(θ)/ supθ∈Θ �(θ) is the likelihood ratio.
LSE: The least squares estimator.
Level α test: A test is of level α if its size is at most α.
Level 1 − α confidence set or interval: A confidence set or interval is said

to be of level 1 − α if its confidence coefficient is at least 1 − α.
Likelihood function and likelihood equation: Let X be a sample from a

population P indexed by an unknown parameter vector θ ∈ Rk. The
joint probability density of X treated as a function of θ is called the
likelihood function and denoted by �(θ). The likelihood equation is
∂ log �(θ)/∂θ = 0.



Terminology xix

Location family: A family of Lebesgue densities on R, {fµ : µ ∈ R}, is
a location family with location parameter µ if and only if fµ(x) =
f(x − µ), where f is a known Lebesgue density.

Location invariant estimator. Let (X1, ..., Xn) be a random sample from a
population in a location family. An estimator T (X1, ..., Xn) of the lo-
cation parameter is location invariant if and only if T (X1 +c, ..., Xn +
c) = T (X1, ..., Xn) + c for any Xi’s and c ∈ R.

Location-scale family: A family of Lebesgue densities on R, {fµ,σ : µ ∈
R, σ > 0}, is a location-scale family with location parameter µ and
scale parameter σ if and only if fµ,σ(x) = 1

σ f
(

x−µ
σ

)
, where f is a

known Lebesgue density.
Location-scale invariant estimator. Let (X1, ..., Xn) be a random sam-

ple from a population in a location-scale family with location pa-
rameter µ and scale parameter σ. An estimator T (X1, ..., Xn) of
the location parameter µ is location-scale invariant if and only if
T (rX1 + c, ..., rXn + c) = rT (X1, ..., Xn) + c for any Xi’s, c ∈ R, and
r > 0. An estimator S(X1, ..., Xn) of σh with a fixed h 
= 0 is location-
scale invariant if and only if S(rX1 +c, ..., rXn +c) = rhT (X1, ..., Xn)
for any Xi’s and r > 0.

Loss function: Let X be a sample from a population P ∈ P and A be the
set of all possible actions we may take after we observe X. A loss
function L(P, a) is a nonnegative Borel function on P × A such that
if a is our action and P is the true population, our loss is L(P, a).

MRIE (minimum risk invariant estimator): The MRIE of an unknown
parameter θ is the estimator has the minimum risk within the class
of invariant estimators.

MLE (maximum likelihood estimator): Let X be a sample from a popula-
tion P indexed by an unknown parameter vector θ ∈ Θ ⊂ Rk and �(θ)
be the likelihood function. A θ̂ ∈ Θ satisfying �(θ̂) = maxθ∈Θ �(θ) is
called an MLE of θ (Θ may be replaced by its closure in the above
definition).

Measure: A set function ν defined on a σ-field F on Ω is a measure if (i)
0 ≤ ν(A) ≤ ∞ for any A ∈ F ; (ii) ν(∅) = 0; and (iii) ν (∪∞

i=1Ai) =∑∞
i=1 ν(Ai) for disjoint Ai ∈ F , i = 1, 2, ....

Measurable function: a function from a set Ω to a set Λ (with a given σ-
field G) is measurable with respect to a σ-field F on Ω if f−1(B) ∈ F
for any B ∈ G.

Minimax rule: Let X be a sample from a population P and RT (P ) be
the risk of a decision rule T . A minimax rule is the rule minimizes
supP RT (P ) over all possible T .

Moment generating function: The moment generating function of a dis-
tribution F on Rk is

∫
etτ xdF (x), t ∈ Rk, if it is finite.
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Monotone likelihood ratio: The family of densities {fθ : θ ∈ Θ} with
Θ ⊂ R is said to have monotone likelihood ratio in Y (x) if, for any
θ1 < θ2, θi ∈ Θ, fθ2(x)/fθ1(x) is a nondecreasing function of Y (x) for
values x at which at least one of fθ1(x) and fθ2(x) is positive.

Optimal rule: An optimal rule (within a class of rules) is the rule has the
smallest risk over all possible populations.

Pivotal quantity: A known Borel function R of (X, θ) is called a pivotal
quantity if and only if the distribution of R(X, θ) does not depend on
any unknown quantity.

Population: The distribution (or probability measure) of an observation
from a random experiment is called the population.

Power of a test: The power of a test T is the expected value of T with
respect to the true population.

Prior and posterior distribution: Let X be a sample from a population
indexed by θ ∈ Θ ⊂ Rk. A distribution defined on Θ that does
not depend on X is called a prior. When the population of X is
considered as the conditional distribution of X given θ and the prior
is considered as the distribution of θ, the conditional distribution of
θ given X is called the posterior distribution of θ.

Probability and probability space: A measure P defined on a σ-field F
on a set Ω is called a probability if and only if P (Ω) = 1. The triple
(Ω,F , P ) is called a probability space.

Probability density: Let (Ω,F , P ) be a probability space and ν be a σ-
finite measure on F . If P � ν, then the Radon-Nikodym derivative
of P with respect to ν is the probability density with respect to ν
(and is called Lebesgue density if ν is the Lebesgue measure on Rk).

Random sample: A sample X = (X1, ..., Xn), where each Xj is a random
d-vector with a fixed positive integer d, is called a random sample of
size n from a population or distribution P if X1, ..., Xn are indepen-
dent and identically distributed as P .

Randomized decision rule: Let X be a sample with range X , A be the
action space, and FA be a σ-field on A. A randomized decision rule
is a function δ(x, C) on X ×FA such that, for every C ∈ FA, δ(X, C)
is a Borel function and, for every X ∈ X , δ(X, C) is a probability
measure on FA. A nonrandomized decision rule T can be viewed as
a degenerate randomized decision rule δ, i.e., δ(X, {a}) = I{a}(T (X))
for any a ∈ A and X ∈ X .

Risk: The risk of a decision rule is the expectation (with respect to the
true population) of the loss of the decision rule.

Sample: The observation from a population treated as a random element
is called a sample.
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Scale family: A family of Lebesgue densities on R, {fσ : σ > 0}, is a scale
family with scale parameter σ if and only if fσ(x) = 1

σ f(x/σ), where
f is a known Lebesgue density.

Scale invariant estimator. Let (X1, ..., Xn) be a random sample from a
population in a scale family with scale parameter σ. An estimator
S(X1, ..., Xn) of σh with a fixed h 
= 0 is scale invariant if and only if
S(rX1, ..., rXn) = rhT (X1, ..., Xn) for any Xi’s and r > 0.

Simultaneous confidence intervals: Let θt ∈ R, t ∈ T . Confidence intervals
Ct(X), t ∈ T , are 1−α simultaneous confidence intervals for θt, t ∈ T ,
if P (θt ∈ Ct(X), t ∈ T ) = 1 − α.

Statistic: Let X be a sample from a population P . A known Borel function
of X is called a statistic.

Sufficiency and minimal sufficiency: Let X be a sample from a population
P . A statistic T (X) is sufficient for P if and only if the conditional
distribution of X given T does not depend on P . A sufficient statistic
T is minimal sufficient if and only if, for any other statistic S sufficient
for P , there is a measurable function ψ such that T = ψ(S) except
for a set A with P (X ∈ A) = 0 for all P .

Test and its size: Let X be a sample from a population P ∈ P and Pi

i = 0, 1, be subsets of P satisfying P0 ∪ P1 = P and P0 ∩ P1 = ∅. A
randomized test for hypotheses H0 : P ∈ P0 versus H1 : P ∈ P1 is a
Borel function T (X) ∈ [0, 1] such that after X is observed, we reject
H0 (conclude P ∈ P1) with probability T (X). If T (X) ∈ {0, 1}, then
T is nonrandomized. The size of a test T is supP∈P0

E[T (X)], where
E is the expectation with respect to P .

UMA (uniformly most accurate) confidence set: Let θ ∈ Θ be an unknown
parameter and Θ′ be a subset of Θ that does not contain the true
value of θ. A confidence set C(X) for θ with confidence coefficient
1 − α is Θ′-UMA if and only if for any other confidence set C1(X)
with significance level 1 − α, P

(
θ′ ∈ C(X)

)
≤ P
(
θ′ ∈ C1(X)

)
for all

θ′ ∈ Θ′.
UMAU (uniformly most accurate unbiased) confidence set: Let θ ∈ Θ be

an unknown parameter and Θ′ be a subset of Θ that does not contain
the true value of θ. A confidence set C(X) for θ with confidence
coefficient 1 − α is Θ′-UMAU if and only if C(X) is unbiased and for
any other unbiased confidence set C1(X) with significance level 1−α,
P
(
θ′ ∈ C(X)

)
≤ P
(
θ′ ∈ C1(X)

)
for all θ′ ∈ Θ′.

UMP (uniformly most powerful) test: A test of size α is UMP for testing
H0 : P ∈ P0 versus H1 : P ∈ P1 if and only if, at each P ∈ P1, the
power of T is no smaller than the power of any other level α test.

UMPU (uniformly most powerful unbiased) test: An unbiased test of size
α is UMPU for testing H0 : P ∈ P0 versus H1 : P ∈ P1 if and only
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if, at each P ∈ P1, the power of T is no larger than the power of any
other level α unbiased test.

UMVUE (uniformly minimum variance estimator): An estimator is a
UMVUE if it has the minimum variance within the class of unbiased
estimators.

Unbiased confidence set: A level 1 − α confidence set C(X) is said to be
unbiased if and only if P (θ′ ∈ C(X)) ≤ 1−α for any P and all θ′ 
= θ.

Unbiased estimator: Let X be a sample from a population P and θ ∈ Rk

be a function of P . If an estimator T (X) of θ satisfies E[T (X)] = θ
for any P , where E is the expectation with respect to P , then T (X)
is an unbiased estimator of θ.

Unbiased test: A test for hypotheses H0 : P ∈ P0 versus H1 : P ∈ P1 is
unbiased if its size is no larger than its power at any P ∈ P1.



Some Distributions

1. Discrete uniform distribution on the set {a1, ..., am}: The probability
density (with respect to the counting measure) of this distribution is

f(x) =
{

m−1 x = ai, i = 1, ..., m
0 otherwise,

where ai ∈ R, i = 1, ..., m, and m is a positive integer. The expec-
tation of this distribution is ā =

∑m
j=1 aj/m and the variance of this

distribution is
∑m

j=1(aj − ā)2/m. The moment generating function of
this distribution is

∑m
j=1 eajt/m, t ∈ R.

2. The binomial distribution with size n and probability p: The probabil-
ity density (with respect to the counting measure) of this distribution
is

f(x) =
{ (n

x

)
px(1 − p)n−x x = 0, 1, ..., n

0 otherwise,

where n is a positive integer and p ∈ [0, 1]. The expectation and
variance of this distributions are np and np(1 − p), respectively. The
moment generating function of this distribution is (pet + 1 − p)n,
t ∈ R.

3. The Poisson distribution with mean θ: The probability density (with
respect to the counting measure) of this distribution is

f(x)

{
θxe−θ

x! x = 0, 1, 2, ...

0 otherwise,

where θ > 0 is the expectation of this distribution. The variance
of this distribution is θ. The moment generating function of this
distribution is eθ(et−1), t ∈ R.

4. The geometric with mean p−1: The probability density (with respect
to the counting measure) of this distribution is

f(x) =
{

(1 − p)x−1p x = 1, 2, ...

0 otherwise,

xxiii
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where p ∈ [0, 1]. The expectation and variance of this distribution are
p−1 and (1 − p)/p2, respectively. The moment generating function of
this distribution is pet/[1 − (1 − p)et], t < − log(1 − p).

5. Hypergeometric distribution: The probability density (with respect
to the counting measure) of this distribution is

f(x) =

⎧⎨
⎩

(n
x)( m

r−x)
(N

r ) x = 0, 1, ...,min{r, n}, r − x ≤ m

0 otherwise,

where r, n, and m are positive integers, and N = n + m. The ex-
pectation and variance of this distribution are equal to rn/N and
rnm(N − r)/[N2(N − 1)], respectively.

6. Negative binomial with size r and probability p: The probability
density (with respect to the counting measure) of this distribution
is

f(x) =

{ (
x−1
r−1

)
pr(1 − p)x−r x = r, r + 1, ...

0 otherwise,

where p ∈ [0, 1] and r is a positive integer. The expectation and vari-
ance of this distribution are r/p and r(1−p)/p2, respectively. The mo-
ment generating function of this distribution is equal to
prert/[1 − (1 − p)et]r, t < − log(1 − p).

7. Log-distribution with probability p: The probability density (with
respect to the counting measure) of this distribution is

f(x) =
{

−(log p)−1x−1(1 − p)x x = 1, 2, ...

0 otherwise,

where p ∈ (0, 1). The expectation and variance of this distribution
are −(1−p)/(p log p) and −(1−p)[1+(1−p)/ log p]/(p2 log p), respec-
tively. The moment generating function of this distribution is equal to
log[1 − (1 − p)et]/ log p, t ∈ R.

8. Uniform distribution on the interval (a, b): The Lebesgue density of
this distribution is

f(x) =
1

b − a
I(a,b)(x),

where a and b are real numbers with a < b. The expectation and
variance of this distribution are (a + b)/2 and (b − a)2/12, respec-
tively. The moment generating function of this distribution is equal to
(ebt − eat)/[(b − a)t], t ∈ R.
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9. Normal distribution N(µ, σ2): The Lebesgue density of this distribu-
tion is

f(x) =
1√
2πσ

e−(x−µ)2/2σ2
,

where µ ∈ R and σ2 > 0. The expectation and variance of N(µ, σ2)
are µ and σ2, respectively. The moment generating function of this
distribution is eµt+σ2t2/2, t ∈ R.

10. Exponential distribution on the interval (a,∞) with scale parameter
θ: The Lebesgue density of this distribution is

f(x) =
1
θ
e−(x−a)/θI(a,∞)(x),

where a ∈ R and θ > 0. The expectation and variance of this distri-
bution are θ+a and θ2, respectively. The moment generating function
of this distribution is eat(1 − θt)−1, t < θ−1.

11. Gamma distribution with shape parameter α and scale parameter γ:
The Lebesgue density of this distribution is

f(x) =
1

Γ(α)γα
xα−1e−x/γI(0,∞)(x),

where α > 0 and γ > 0. The expectation and variance of this distri-
bution are αγ and αγ2, respectively. The moment generating function
of this distribution is (1 − γt)−α, t < γ−1.

12. Beta distribution with parameter (α, β): The Lebesgue density of this
distribution is

f(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1I(0,1)(x),

where α > 0 and β > 0. The expectation and variance of this distri-
bution are α/(α + β) and αβ/[(α + β + 1)(α + β)2], respectively.

13. Cauchy distribution with location parameter µ and scale parameter
σ: The Lebesgue density of this distribution is

f(x) =
σ

π[σ2 + (x − µ)2]
,

where µ ∈ R and σ > 0. The expectation and variance of this distri-
bution do not exist. The characteristic function of this distribution
is e

√−1µt−σ|t|, t ∈ R.
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14. Log-normal distribution with parameter (µ, σ2): The Lebesgue den-
sity of this distribution is

f(x) =
1√

2πσx
e−(log x−µ)2/2σ2

I(0,∞)(x),

where µ ∈ R and σ2 > 0. The expectation and variance of this
distribution are eµ+σ2/2 and e2µ+σ2

(eσ2 − 1), respectively.

15. Weibull distribution with shape parameter α and scale parameter θ:
The Lebesgue density of this distribution is

f(x) =
α

θ
xα−1e−xα/θI(0,∞)(x),

where α > 0 and θ > 0. The expectation and variance of this distri-
bution are θ1/αΓ(α−1 + 1) and θ2/α{Γ(2α−1 + 1) − [Γ(α−1 + 1)]2},
respectively.

16. Double exponential distribution with location parameter µ and scale
parameter θ: The Lebesgue density of this distribution is

f(x) =
1
2θ

e−|x−µ|/θ,

where µ ∈ R and θ > 0. The expectation and variance of this distri-
bution are µ and 2θ2, respectively. The moment generating function
of this distribution is eµt/(1 − θ2t2), |t| < θ−1.

17. Pareto distribution: The Lebesgue density of this distribution is

f(x) = θaθx−(θ+1)I(a,∞)(x),

where a > 0 and θ > 0. The expectation this distribution is θa/(θ−1)
when θ > 1 and does not exist when θ ≤ 1. The variance of this
distribution is θa2/[(θ − 1)2(θ − 2)] when θ > 2 and does not exist
when θ ≤ 2.

18. Logistic distribution with location parameter µ and scale parameter
σ: The Lebesgue density of this distribution is

f(x) =
e−(x−µ)/σ

σ[1 + e−(x−µ)/σ]2
,

where µ ∈ R and σ > 0. The expectation and variance of this
distribution are µ and σ2π2/3, respectively. The moment generating
function of this distribution is eµtΓ(1 + σt)Γ(1 − σt), |t| < σ−1.
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19. Chi-square distribution χ2
k: The Lebesgue density of this distribution

is

f(x) =
1

Γ(k/2)2k/2 xk/2−1e−x/2I(0,∞)(x),

where k is a positive integer. The expectation and variance of this dis-
tribution are k and 2k, respectively. The moment generating function
of this distribution is (1 − 2t)−k/2, t < 1/2.

20. Noncentral chi-square distribution χ2
k(δ): This distribution is defined

as the distribution of X2
1 + · · ·+X2

k , where X1, ..., Xk are independent
and identically distributed as N(µi, 1), k is a positive integer, and
δ = µ2

1 + · · · + µ2
k ≥ 0. δ is called the noncentrality parameter. The

Lebesgue density of this distribution is

f(x) = e−δ/2
∞∑

j=0

(δ/2)j

j!
f2j+n(x),

where fk(x) is the Lebesgue density of the chi-square distribution
χ2

k. The expectation and variance of this distribution are k + δ and
2k + 4δ, respectively. The characteristic function of this distribution
is (1 − 2

√
−1t)−k/2e

√−1δt/(1−2
√−1t).

21. t-distribution tn: The Lebesgue density of this distribution is

f(x) =
Γ(n+1

2 )√
nπΓ(n

2 )

(
1 +

x2

n

)−(n+1)/2

,

where n is a positive integer. The expectation of tn is 0 when n > 1
and does not exist when n = 1. The variance of tn is n/(n − 2) when
n > 2 and does not exist when n ≤ 2.

22. Noncentral t-distribution tn(δ): This distribution is defined as the
distribution of X/

√
Y/n, where X is distributed as N(δ, 1), Y is dis-

tributed as χ2
n, X and Y are independent, n is a positive integer, and

δ ∈ R is called the noncentrality parameter. The Lebesgue density of
this distribution is

f(x) =
1

2(n+1)/2Γ(n
2 )

√
πn

∫ ∞

0
y(n−1)/2e−[(x

√
y/n−δ)2+y]/2dy.

The expectation of tn(δ) is δΓ(n−1
2 )
√

n/2/Γ(n
2 ) when n > 1 and does

not exist when n = 1. The variance of tn(δ) is [n(1 + δ2)/(n − 2)] −
[Γ(n−1

2 )/Γ(n
2 )]2δ2n/2 when n > 2 and does not exist when n ≤ 2.
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23. F-distribution Fn,m: The Lebesgue density of this distribution is

f(x) =
nn/2mm/2Γ(n+m

2 )xn/2−1

Γ(n
2 )Γ(m

2 )(m + nx)(n+m)/2 I(0,∞)(x),

where n and m are positive integers. The expectation of Fn,m is
m/(m−2) when m > 2 and does not exist when m ≤ 2. The variance
of Fn,m is 2m2(n + m − 2)/[n(m − 2)2(m − 4)] when m > 4 and does
not exist when m ≤ 4.

24. Noncentral F-distribution Fn,m(δ): This distribution is defined as
the distribution of (X/n)/(Y/m), where X is distributed as χ2

n(δ),
Y is distributed as χ2

m, X and Y are independent, n and m are
positive integers, and δ ≥ 0 is called the noncentrality parameter.
The Lebesgue density of this distribution is

f(x) = e−δ/2
∞∑

j=0

n1(δ/2)j

j!(2j + n1)
f2j+n1,n2

(
n1x

2j + n1

)
,

where fk1,k2(x) is the Lebesgue density of Fk1,k2 . The expectation
of Fn,m(δ) is m(n + δ)/[n(m − 2)] when m > 2 and does not exist
when m ≤ 2. The variance of Fn,m(δ) is 2m2[(n + δ)2 + (m − 2)(n +
2δ)]/[n2(m−2)2(m−4)] when m > 4 and does not exist when m ≤ 4.

25. Multinomial distribution with size n and probability vector (p1,...,pk):
The probability density (with respect to the counting measure on Rk)
is

f(x1, ..., xk) =
n!

x1! · · ·xk!
px1
1 · · · pxk

k IB(x1, ..., xk),

where B = {(x1, ..., xk) : xi’s are nonnegative integers,
∑k

i=1 xi = n},
n is a positive integer, pi ∈ [0, 1], i = 1, ..., k, and

∑k
i=1 pi = 1. The

mean-vector (expectation) of this distribution is (np1, ..., npk). The
variance-covariance matrix of this distribution is the k × k matrix
whose ith diagonal element is npi and (i, j)th off-diagonal element is
−npipj .

26. Multivariate normal distribution Nk(µ,Σ): The Lebesgue density of
this distribution is

f(x) =
1

(2π)k/2[Det(Σ)]1/2 e−(x−µ)τΣ−1(x−µ)/2, x ∈ Rk,

where µ ∈ Rk and Σ is a positive definite k × k matrix. The mean-
vector (expectation) of this distribution is µ. The variance-covariance
matrix of this distribution is Σ. The moment generating function of
Nk(µ,Σ) is etτ µ+tτΣt/2, t ∈ Rk.



Chapter 1

Probability Theory

Exercise 1. Let Ω be a set, F be σ-field on Ω, and C ∈ F . Show that
FC = {C ∩ A : A ∈ F} is a σ-field on C.
Solution. This exercise, similar to many other problems, can be solved by
directly verifying the three properties in the definition of a σ-field.
(i) The empty subset of C is C ∩ ∅. Since F is a σ-field, ∅ ∈ F . Then,
C ∩ ∅ ∈ FC .
(ii) If B ∈ FC , then B = C ∩ A for some A ∈ F . Since F is a σ-field,
Ac ∈ F . Then the complement of B in C is C ∩ Ac ∈ FC .
(iii) If Bi ∈ FC , i = 1, 2, ..., then Bi = C ∪ Ai for some Ai ∈ F , i = 1, 2, ....
Since F is a σ-field, ∪Ai ∈ F . Therefore, ∪Bi = ∪(C ∩ Ai) = C ∩ (∪Ai) ∈
FC .

Exercise 2 (#1.12)†. Let ν and λ be two measures on a σ-field F on Ω
such that ν(A) = λ(A) for any A ∈ C, where C ⊂ F is a collection having
the property that if A and B are in C, then so is A ∩ B. Assume that
there are Ai ∈ C, i = 1, 2, ..., such that ∪Ai = Ω and ν(Ai) < ∞ for all
i. Show that ν(A) = λ(A) for any A ∈ σ(C), where σ(C) is the smallest
σ-field containing C.
Note. Solving this problem requires knowing properties of measures (Shao,
2003, §1.1.1). The technique used in solving this exercise is called the “good
sets principle”. All sets in C have property A and we want to show that all
sets in σ(C) also have property A. Let G be the collection of all sets having
property A (good sets). Then, all we need to show is that G is a σ-field.
Solution. Define G = {A ∈ F : ν(A) = λ(A)}. Since C ⊂ G, σ(C) ⊂ G if G
is a σ-field. Hence, the result follows if we can show that G is a σ-field.
(i) Since both ν and λ are measures, 0 = ν(∅) = λ(∅) and, thus, the empty
set ∅ ∈ G.

†The number in parentheses is the exercise number in Mathematical Statistics (Shao,
2003). The first digit is the chapter number.

1
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(ii) For any B ∈ F , by the inclusion and exclusion formula,

ν

(
n⋃

i=1

Ai ∩ B

)
=
∑

1≤i≤n

ν(Ai ∩ B) −
∑

1≤i<j≤n

ν(Ai ∩ Aj ∩ B) + · · ·

for any positive integer n, where Ai’s are the sets given in the description
of this exercise. The same result also holds for λ. Since Aj ’s are in C,
Ai ∩ Aj ∩ · · · ∩ Ak ∈ C and, if B ∈ G,

ν(Ai ∩ Aj ∩ · · · ∩ Ak ∩ B) = λ(Ai ∩ Aj ∩ · · · ∩ Ak ∩ B) < ∞.

Consequently,

ν(Ai ∩ Aj ∩ · · · ∩ Ak ∩ Bc) = λ(Ai ∩ Aj ∩ · · · ∩ Ak ∩ Bc) < ∞.

By the inclusion and exclusion formula again, we obtain that

ν

(
n⋃

i=1

Ai ∩ Bc

)
= λ

(
n⋃

i=1

Ai ∩ Bc

)

for any n. From the continuity property of measures (Proposition 1.1(iii)
in Shao, 2003), we conclude that ν(Bc) = λ(Bc) by letting n → ∞ in the
previous expression. Thus, Bc ∈ G whenever B ∈ G.
(iii) Suppose that Bi ∈ G, i = 1, 2, .... Note that

ν(B1 ∪ B2) = ν(B1) + ν(Bc
1 ∩ B2) = λ(B1) + λ(Bc

1 ∩ B2) = λ(B1 ∪ B2),

since Bc
1 ∩ B2 ∈ G. Thus, B1 ∪ B2 ∈ G. This shows that for any n,

∪n
i=1Bi ∈ G. By the continuity property of measures,

ν

( ∞⋃
i=1

Bi

)
= lim

n→∞ ν

(
n⋃

i=1

Bi

)
= lim

n→∞ λ

(
n⋃

i=1

Bi

)
= λ

( ∞⋃
i=1

Bi

)
.

Hence, ∪Bi ∈ G.

Exercise 3 (#1.14). Show that a real-valued function f on a set Ω is
Borel with respect to a σ-field F on Ω if and only if f−1(a,∞) ∈ F for all
a ∈ R.
Note. Good sets principle is used in this solution.
Solution. The only if part follows directly from the definition of a Borel
function. Suppose that f−1(a,∞) ∈ F for all a ∈ R. Let

G = {C ⊂ R : f−1(C) ∈ F}.

Note that (i) ∅ ∈ G; (ii) if C ∈ G, then f−1(Cc) = (f−1(C))c ∈ F , i.e.,
Cc ∈ G; and (iii) if Ci ∈ G, i = 1, 2, ..., then f−1(∪Ci) = ∪f−1(Ci) ∈ F ,
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i.e., ∪Ci ∈ G. This shows that G is a σ-field. Thus B ⊂ G, i.e., f−1(B) ∈ F
for any B ∈ B and, hence, f is Borel.

Exercise 4 (#1.14). Let f and g be real-valued functions on Ω. Show
that if f and g are Borel with respect to a σ-field F on Ω, then so are fg,
f/g (when g 
= 0), and af + bg, where a and b are real numbers.
Solution. Suppose that f and g are Borel. Consider af + bg with a > 0
and b > 0. Let Q be the set of all rational numbers on R. For any c ∈ R,

{af + bg > c} =
⋃
t∈Q

{f > (c − t)/a} ∩ {g > t/b}.

Since f and g are Borel, {af +bg > c} ∈ F . By Exercise 3, af +bg is Borel.
Similar results can be obtained for the case of a > 0 and b < 0, a < 0 and
b > 0, or a < 0 and b < 0.

From the above result, f + g and f − g are Borel if f and g are Borel.
Note that for any c > 0,

{(f + g)2 > c} = {f + g >
√

c} ∪ {f + g < −
√

c}.

Hence, (f + g)2 is Borel. Similarly, (f − g)2 is Borel. Then

fg = [(f + g)2 − (f − g)2]/4

is Borel.
Since any constant function is Borel, this shows that af is Borel if f is

Borel and a is a constant. Thus, af + bg is Borel even when one of a and
b is 0.

Assume g 
= 0. For any c,

{1/g > c} =

⎧⎨
⎩

{0 < g < 1/c} c > 0
{g > 0} c = 0
{g > 0} ∪ {1/c < g < 0} c < 0.

Hence 1/g is Borel if g is Borel and g 
= 0. Then f/g is Borel if both f and
g are Borel and g 
= 0.

Exercise 5 (#1.14). Let fi, i = 1, 2, ..., be Borel functions on Ω with re-
spect to a σ-field F . Show that supn fn, infn fn, lim supn fn, and lim infn fn

are Borel with respect to F . Also, show that the set

A =
{

ω ∈ Ω : lim
n

fn(ω) exists
}

is in F and the function

h(ω) =
{

limn fn(ω) ω ∈ A

f1(ω) ω 
∈ A
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is Borel with respect to F .
Solution. For any c ∈ R, {supn fn > c} = ∪n{fn > c}. By Exercise 3,
supn fn is Borel. By Exercise 4, infn fn = − supn(−fn) is Borel. Then
lim supn fn = infn supk≥n fk is Borel and lim infn fn = − lim supn(−fn)
is Borel. Consequently, A = {lim supn fn − lim infn fn = 0} ∈ F . The
function h is equal to IA lim supn fn + IAcf1, where IA is the indicator
function of the set A. Since A ∈ F , IA is Borel. Thus, h is Borel.

Exercise 6. Let f be a Borel function on R2. Define a function g from
R to R as g(x) = f(x, y0), where y0 is a fixed point in R. Show that g is
Borel. Is it true that f is Borel from R2 to R if f(x, y) with any fixed y or
fixed x is Borel from R to R?
Solution. For a fixed y0, define

G = {C ⊂ R2 : {x : (x, y0) ∈ C} ∈ B}.

Then, (i) ∅ ∈ G; (ii) if C ∈ G, {x : (x, y0) ∈ Cc} = {x : (x, y0) ∈ C}c ∈ B,
i.e., Cc ∈ G; (iii) if Ci ∈ G, i = 1, 2, ..., then {x : (x, y0) ∈ ∪Ci} =
∪{x : (x, y0) ∈ Ci} ∈ B, i.e., ∪Ci ∈ G. Thus, G is a σ-field. Since any open
rectangle (a, b) × (c, d) ∈ G, G is a σ-field containing all open rectangles
and, thus, G contains B2, the Borel σ-field on R2. Let B ∈ B. Since f is
Borel, A = f−1(B) ∈ B2. Then A ∈ G and, thus,

g−1(B) = {x : f(x, y0) ∈ B} = {x : (x, y0) ∈ A} ∈ B.

This proves that g is Borel.
If f(x, y) with any fixed y or fixed x is Borel from R to R, f is not

necessarily to be a Borel function from R2 to R. The following is a coun-
terexample. Let A be a non-Borel subset of R and

f(x, y) =
{

1 x = y ∈ A

0 otherwise

Then for any fixed y0, f(x, y0) = 0 if y0 
∈ A and f(x, y0) = I{y0}(x)
(the indicator function of the set {y0}) if y0 ∈ A. Hence f(x, y0) is Borel.
Similarly, f(x0, y) is Borel for any fixed x0. We now show that f(x, y) is
not Borel. Suppose that it is Borel. Then B = {(x, y) : f(x, y) = 1} ∈ B2.
Define G = {C ⊂ R2 : {x : (x, x) ∈ C} ∈ B}. Using the same argument in
the proof of the first part, we can show that G is a σ-field containing B2.
Hence {x : (x, x) ∈ B} ∈ B. However, by definition {x : (x, x) ∈ B} = A 
∈
B. This contradiction proves that f(x, y) is not Borel.

Exercise 7 (#1.21). Let Ω = {ωi : i = 1, 2, ...} be a countable set, F
be all subsets of Ω, and ν be the counting measure on Ω (i.e., ν(A) = the
number of elements in A for any A ⊂ Ω). For any Borel function f , the
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integral of f w.r.t. ν (if it exists) is

∫
fdν =

∞∑
i=1

f(ωi).

Note. The definition of integration and properties of integration can be
found in Shao (2003, §1.2). This type of exercise is much easier to solve if
we first consider nonnegative functions (or simple nonnegative functions)
and then general functions by using f+ and f−. See also the next exercise
for another example.
Solution. First, consider nonnegative f . Then f =

∑∞
i=1 aiI{ωi}, where

ai = f(ωi) ≥ 0. Since fn =
∑n

i=1 aiI{ωi} is a nonnegative simple function
(a function is simple if it is a linear combination of finitely many indicator
functions of sets in F) and fn ≤ f , by definition

∫
fndν =

n∑
i=1

ai ≤
∫

fdν.

Letting n → ∞ we obtain that

∫
fdν ≥

∞∑
i=1

ai.

Let s =
∑k

i=1 biI{ωi} be a nonnegative simple function satisfying s ≤ f .
Then 0 ≤ bi ≤ ai and

∫
sdν =

k∑
i=1

bi ≤
∞∑

i=1

ai.

Hence ∫
fdν = sup

{∫
sdν : s is simple, 0 ≤ s ≤ f

}
≤

∞∑
i=1

ai

and, thus, ∫
fdν =

∞∑
i=1

ai

for nonnegative f .
For general f , let f+ = max{f, 0} and f− = max{−f, 0}. Then

∫
f+dν =

∞∑
i=1

f+(ωi) and
∫

f−dν =
∞∑

i=1

f−(ωi).
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Then the result follows from∫
fdν =

∫
f+dν −

∫
f−dν

if at least one of
∫

f+dν and
∫

f−dν is finite.

Exercise 8 (#1.22). Let ν be a measure on a σ-field F on Ω and f and
g be Borel functions with respect to F . Show that
(i) if
∫

fdν exists and a ∈ R, then
∫

(af)dν exists and is equal to a
∫

fdν;
(ii) if both

∫
fdν and

∫
gdν exist and

∫
fdν +

∫
gdν is well defined, then∫

(f + g)dν exists and is equal to
∫

fdν +
∫

gdν.
Note. For integrals in calculus, properties such as

∫
(af)dν =a

∫
fdν and∫

(f + g)dν
∫

fdν +
∫

gdν are obvious. However, the proof of them are
complicated for integrals defined on general measure spaces. As shown in
this exercise, the proof often has to be broken into several steps: simple
functions, nonnegative functions, and then general functions.
Solution. (i) If a = 0, then

∫
(af)dν =

∫
0dν = 0 = a

∫
fdν.

Suppose that a > 0 and f ≥ 0. By definition, there exists a sequence of
nonnegative simple functions sn such that sn ≤ f and limn

∫
sndν =

∫
fdν.

Then asn ≤ af and limn

∫
asndν = a limn

∫
sndν = a

∫
fdν. This shows∫

(af)dν ≥ a
∫

fdν. Let b = a−1 and consider the function h = b−1f . From
what we have shown,

∫
fdν =

∫
(bh)dν ≥ b

∫
hdν = a−1

∫
(af)dν. Hence∫

(af)dν = a
∫

fdν.
For a > 0 and general f , the result follows by considering af = af+ −

af−. For a < 0, the result follows by considering af = |a|f− − |a|f+.
(ii) Consider the case where f ≥ 0 and g ≥ 0. If both f and g are simple
functions, the result is obvious. Let sn, tn, and rn be simple functions such
that 0 ≤ sn ≤ f , limn

∫
sndν =

∫
fdν, 0 ≤ tn ≤ g, limn

∫
tndν =

∫
gdν,

0 ≤ rn ≤ f + g, and limn

∫
rndν =

∫
(f + g)dν. Then sn + tn is simple,

0 ≤ sn + tn ≤ f + g, and∫
fdν +

∫
gdν = lim

n

∫
sndν + lim

n

∫
tndν

= lim
n

∫
(sn + tn)dν,

which implies ∫
fdν +

∫
gdν ≤

∫
(f + g)dν.

If any of
∫

fdν and
∫

gdν is infinite, then so is
∫

(f + g)dν. Hence, we only
need to consider the case where both f and g are integrable. Suppose that
g is simple. Then rn − g is simple and

lim
n

∫
rndν −

∫
gdν = lim

n

∫
(rn − g)dν ≤

∫
fdν,
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since rn − g ≤ f . Hence∫
(f + g)dν = lim

n

∫
rndν ≤

∫
fdν +

∫
gdν

and, thus, the result follows if g is simple. For a general g, by the proved
result,

lim
n

∫
rndν −

∫
gdν = lim

n

∫
(rn − g)dν.

Hence
∫

(f + g)dν = limn

∫
rndν ≤

∫
fdν +

∫
gdν and the result follows.

Consider general f and g. Note that

(f + g)+ − (f + g)− = f + g = f+ − f− + g+ − g−,

which leads to

(f + g)+ + f− + g− = (f + g)− + f+ + g+.

From the proved result for nonnegative functions,∫
[(f + g)+ + f− + g−]dν =

∫
(f + g)+dν +

∫
f−dν +

∫
g−dν

=
∫

[(f + g)− + f+ + g+]dν

=
∫

(f + g)−dν +
∫

f+dν +
∫

g+dν.

If both f and g are integrable, then∫
(f + g)+dν −

∫
(f + g)−dν =

∫
f+dν −

∫
f−dν +

∫
g+dν −

∫
g−dν,

i.e., ∫
(f + g)dν =

∫
fdν +

∫
gdν.

Suppose now that
∫

f−dν = ∞. Then
∫

f+dν < ∞ since
∫

fdν exists.
Since

∫
fdν +

∫
gdν is well defined, we must have

∫
g+dν < ∞. Since

(f + g)+ ≤ f+ + g+,
∫

(f + g)+dν < ∞. Thus,
∫

(f + g)−dν = ∞ and∫
(f + g)dν = −∞. On the other hand, we also have

∫
fdν +

∫
gdν = −∞.

Similarly, we can prove the case where
∫

f+dν = ∞ and
∫

f−dν < ∞.

Exercise 9 (#1.30). Let F be a cumulative distribution function on the
real line R and a ∈ R. Show that∫

[F (x + a) − F (x)]dx = a.
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Solution. For a ≥ 0,∫
[F (x + a) − F (x)]dx =

∫ ∫
I(x,x+a](y)dF (y)dx.

Since I(x,x+a](y) ≥ 0, by Fubini’s theorem, the above integral is equal to∫ ∫
I(y−a,y](x)dxdF (y) =

∫
adF (y) = a.

The proof for the case of a < 0 is similar.

Exercise 10 (#1.31). Let F and G be two cumulative distribution func-
tions on the real line. Show that if F and G have no common points of
discontinuity in the interval [a, b], then∫

(a,b]
G(x)dF (x) = F (b)G(b) − F (a)G(a) −

∫
(a,b]

F (x)dG(x).

Solution. Let PF and PG be the probability measures corresponding to
F and G, respectively, and let P = PF × PG be the product measure
(see Shao, 2003, §1.1.1). Consider the following three Borel sets in R2:
A = {(x, y) : x ≤ y, a < y ≤ b}, B = {(x, y) : y ≤ x, a < x ≤ b}, and
C = {(x, y) : a < x ≤ b, x = y}. Since F and G have no common points of
discontinuity, P (C) = 0. Then,

F (b)G(b) − F (a)G(a) = P
(
(−∞, b]×(−∞, b]

)
− P
(
(−∞, a]×(−∞, a]

)
= P (A) + P (B) − P (C)
= P (A) + P (B)

=
∫

A

dP +
∫

B

dP

=
∫

(a,b]

∫
(−∞,y]

dPF dPG +
∫

(a,b]

∫
(−∞,x]

dPGdPF

=
∫

(a,b]
F (y)dPG +

∫
(a,b]

G(x)dPF

=
∫

(a,b]
F (y)dG(y) +

∫
(a,b]

G(x)dF (x)

=
∫

(a,b]
F (x)dG(x) +

∫
(a,b]

G(x)dF (x),

where the fifth equality follows from Fubini’s theorem.

Exercise 11. Let Y be a random variable and m be a median of Y , i.e.,
P (Y ≤ m) ≥ 1/2 and P (Y ≥ m) ≥ 1/2. Show that, for any real numbers
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a and b such that m ≤ a ≤ b or m ≥ a ≥ b, E|Y − a| ≤ E|Y − b|.
Solution. We can assume E|Y | < ∞, otherwise ∞ = E|Y −a| ≤ E|Y −b| =
∞. Assume m ≤ a ≤ b. Then

E|Y − b| − E|Y − a| = E[(b − Y )I{Y ≤b}] + E[(Y − b)I{Y >b}]
−E[(a − Y )I{Y ≤a}] − E[(Y − a)I{Y >a}]

= 2E[(b − Y )I{a<Y ≤b}]
+ (a − b)[E(I{Y >a}) − E(I{Y ≤a})]

≥ (a − b)[1 − 2P (Y ≤ a)]
≥ 0,

since P (Y ≤ a) ≥ P (Y ≤ m) ≥ 1/2. If m ≥ a ≥ b, then −m ≤ −a ≤ −b
and −m is a median of −Y . From the proved result, E|(−Y ) − (−b)| ≥
E|(−Y ) − (−a)|, i.e., E|Y − a| ≤ E|Y − b|.

Exercise 12. Let X and Y be independent random variables satisfying
E|X + Y |a < ∞ for some a > 0. Show that E|X|a < ∞.
Solution. Let c ∈ R such that P (Y > c) > 0 and P (Y ≤ c) > 0. Note
that

E|X + Y |a ≥ E(|X + Y |aI{Y >c,X+c>0}) + E(|X + Y |aI{Y ≤c,X+c≤0})
≥ E(|X + c|aI{Y >c,X+c>0}) + E(|X + c|aI{Y ≤c,X+c≤0})
= P (Y > c)E(|X + c|aI{X+c>0})

+ P (Y ≤ c)E(|X + c|aI{X+c≤0}),

where the last inequality follows from the independence of X and Y . Since
E|X + Y |a < ∞, both E(|X + c|aI{X+c>0}) and E(|X + c|aI{X+c≤0}) are
finite and

E|X + c|a = E(|X + c|aI{X+c>0}) + E(|X + c|aI{X+c≤0}) < ∞.

Then,
E|X|a ≤ 2a(E|X + c|a + |c|a) < ∞.

Exercise 13 (#1.34). Let ν be a σ-finite measure on a σ-field F on Ω,
λ be another measure with λ � ν, and f be a nonnegative Borel function
on Ω. Show that ∫

fdλ =
∫

f
dλ

dν
dν,

where dλ
dν is the Radon-Nikodym derivative.

Note. Two measures λ and ν satisfying λ � ν if ν(A) = 0 always implies
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λ(A) = 0, which ensures the existence of the Radon-Nikodym derivative dλ
dν

when ν is σ-finite (see Shao, 2003, §1.1.2).
Solution. By the definition of the Radon-Nikodym derivative and the
linearity of integration, the result follows if f is a simple function. For
a general nonnegative f , there is a sequence {sn} of nonnegative sim-
ple functions such that sn ≤ sn+1, n = 1, 2, ..., and limn sn = f . Then
0 ≤ sn

dλ
dν ≤ sn+1

dλ
dν and limn sn

dλ
dν = f dλ

dν . By the monotone convergence
theorem (e.g., Theorem 1.1 in Shao, 2003),∫

fdλ = lim
n

∫
sndλ = lim

n

∫
sn

dλ

dν
dν =
∫

f
dλ

dν
dν.

Exercise 14 (#1.34). Let Fi be a σ-field on Ωi, νi be a σ-finite measure
on Fi, and λi be a measure on Fi with λi � νi, i = 1, 2. Show that
λ1 × λ2 � ν1 × ν2 and

d(λ1 × λ2)
d(ν1 × ν2)

=
dλ1

dν1

dλ2

dν2
a.e. ν1 × ν2,

where ν1 × ν2 (or λ1 × λ2) denotes the product measure of ν1 and ν2 (or
λ1 and λ2).
Solution. Suppose that A ∈ σ(F1 × F2) and ν1 × ν2(A) = 0. By Fubini’s
theorem,

0 = ν1 × ν2(A) =
∫

IAd(ν1 × ν2) =
∫ (∫

IAdν1

)
dν2.

Since IA ≥ 0, this implies that there is a B ∈ F2 such that ν2(Bc) = 0 and
on the set B,

∫
IAdν1 = 0. Since λ1 � ν1, on the set B∫

IAdλ1 =
∫

IA
dλ1

dν1
dν1 = 0.

Since λ2 � ν2, λ2(Bc) = 0. Then

λ1 × λ2(A) =
∫

IAd(λ1 × λ2) =
∫

B

(∫
A

dλ1

)
dλ2 = 0.

Hence λ1 × λ2 � ν1 × ν2.
For the second assertion, it suffices to show that for any A ∈ σ(F1×F2),

λ(A) = ν(A), where

λ(A) =
∫

A

d(λ1 × λ2)
d(ν1 × ν2)

d(ν1 × ν2)

and
ν(A) =

∫
A

dλ1

dν1

dλ2

dν2
d(ν1 × ν2).
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Let C = F1 × F2. Then C satisfies the conditions specified in Exercise 2.
For A1 × A2 ∈ F1 × F2,

λ(A) =
∫

A1×A2

d(λ1 × λ2)
d(ν1 × ν2)

d(ν1 × ν2)

=
∫

A1×A2

d(λ1 × λ2)

= λ1(A1)λ2(A2)

and, by Fubini’s theorem,

ν(A) =
∫

A1×A2

dλ1

dν1

dλ2

dν2
d(ν1 × ν2)

=
∫

A1

dλ1

dν1
dν1

∫
A2

dλ2

dν2
dν2

= λ1(A1)λ2(A2).

Hence λ(A) = ν(A) for any A ∈ C and the second assertion of this exercise
follows from the result in Exercise 2.

Exercise 15. Let P and Q be two probability measures on a σ-field F .
Assume that f = dP

dν and g = dQ
dν exists for a measure ν on F . Show that∫

|f − g|dν = 2 sup{|P (C) − Q(C)| : C ∈ F}.

Solution. Let A = {f ≥ g} and B = {f < g}. Then A ∈ F , B ∈ F , and∫
|f − g|dν =

∫
A

(f − g)dν +
∫

B

(g − f)dν

= P (A) − Q(A) + Q(B) − P (B)
≤ |P (A) − Q(A)| + |P (B) − Q(B)|
≤ 2 sup{|P (C) − Q(C)| : C ∈ F}.

For any C ∈ F ,

P (C) − Q(C) =
∫

C

(f − g)dν

=
∫

C∩A

(f − g)dν +
∫

C∩B

(f − g)dν

≤
∫

A

(f − g)dν.

Since ∫
C

(f − g)dν +
∫

Cc

(f − g)dν =
∫

(f − g)dν = 1 − 1 = 0,
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we have

P (C) − Q(C) =
∫

Cc

(g − f)dν

=
∫

Cc∩A

(g − f)dν +
∫

Cc∩B

(g − f)dν

≤
∫

B

(g − f)dν.

Hence

2[P (C) − Q(C)] ≤
∫

A

(f − g)dν +
∫

B

(g − f)dν =
∫

|f − g|dν.

Similarly, 2[Q(C)−P (C)] ≤
∫

|f−g|dν. Thus, 2|P (C)−Q(C)| ≤
∫

|f−g|dν
and, consequently,

∫
|f − g|dν ≥ 2 sup{|P (C) − Q(C)| : C ∈ F}.

Exercise 16 (#1.36). Let Fi be a cumulative distribution function on
the real line having a Lebesgue density fi, i = 1, 2. Assume that there is a
real number c such that F1(c) < F2(c). Define

F (x) =
{

F1(x) −∞ < x < c

F2(x) c ≤ x < ∞.

Show that the probability measure P corresponding to F satisfies P �
m + δc, where m is the Lebesgue measure and δc is the point mass at c,
and find the probability density of F with respect to m + δc.
Solution. For any A ∈ B,

P (A) =
∫

(−∞,c)∩A

f1(x)dm + a

∫
{c}∩A

dδc +
∫

(c,∞)∩A

f2(x)dm,

where a = F2(c) − F1(c). Note that
∫
(−∞,c)∩A

dδc = 0,
∫
(c,∞)∩A

dδc = 0,
and
∫

{c}∩A
dm = 0. Hence,

P (A) =
∫

(−∞,c)∩A

f1(x)d(m + δc) + a

∫
{c}∩A

d(m + δc)

+
∫

(c,∞)∩A

f2(x)d(m + δc)

=
∫

A

[I(−∞,c)(x)f1(x) + aI{c}(x) + I(c,∞)f2(x)]d(m + δc).

This shows that P � m + δc and

dP

d(m + δc)
= I(−∞,c)(x)f1(x) + aI{c}(x) + I(c,∞)f2(x).
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Exercise 17 (#1.46). Let X1 and X2 be independent random variables
having the standard normal distribution. Obtain the joint Lebesgue density
of (Y1, Y2), where Y1 =

√
X2

1 + X2
2 and Y2 = X1/X2. Are Y1 and Y2

independent?
Note. For this type of problem, we may apply the following result. Let X
be a random k-vector with a Lebesgue density fX and let Y = g(X), where
g is a Borel function from (Rk,Bk) to (Rk,Bk). Let A1, ..., Am be disjoint
sets in Bk such that Rk − (A1 ∪ · · · ∪ Am) has Lebesgue measure 0 and
g on Aj is one-to-one with a nonvanishing Jacobian, i.e., the determinant
Det(∂g(x)/∂x) 
= 0 on Aj , j = 1, ..., m. Then Y has the following Lebesgue
density:

fY (x) =
m∑

j=1

∣∣Det (∂hj(x)/∂x)
∣∣ fX (hj(x)) ,

where hj is the inverse function of g on Aj , j = 1, ..., m.
Solution. Let A1 ={(x1, x2): x1 >0, x2 >0}, A2 ={(x1, x2): x1 >0, x2 <0},
A3 ={(x1, x2): x1 < 0, x2 > 0}, and A4 ={(x1, x2): x1 < 0, x2 < 0}. Then
the Lebesgue measure of R2 − (A1 ∪ A2 ∪ A3 ∪ A4) is 0. On each Ai, the
function (y1, y2) = (

√
x2

1 + x2
2, x1/x2) is one-to-one with

Det
(

∂(x1, x2)
∂(y1, y2)

)
=

∣∣∣∣∣∣
y2√
1+y2

2

y1√
1+y2

2

− y1y2
2

(1+y2
2)3/2

1√
1+y2

2

− y1y2
(1+y2

2)3/2

∣∣∣∣∣∣ =
y1

1 + y2
2
.

Since the joint Lebesgue density of (X1, X2) is

1
2π

e−(x2
1+x2

2)/2

and x2
1 + x2

2 = y2
1 , the joint Lebesgue density of (Y1, Y2) is

4∑
i=1

1
2π

e−(x2
1+x2

2)/2
∣∣∣∣Det
(

∂(x1, x2)
∂(y1, y2)

) ∣∣∣∣ = 2
π

e−y2
1

y1

1 + y2
2
.

Since the joint Lebesgue density of (Y1, Y2) is a product of two functions
that are functions of one variable, Y1 and Y2 are independent.

Exercise 18 (#1.45). Let Xi, i = 1, 2, 3, be independent random vari-
ables having the same Lebesgue density f(x) = e−xI(0,∞)(x). Obtain
the joint Lebesgue density of (Y1, Y2, Y3), where Y1 = X1 + X2 + X3,
Y2 = X1/(X1 + X2), and Y3 = (X1 + X2)/(X1 + X2 + X3). Are Yi’s
independent?
Solution: Let x1 = y1y2y3, x2 = y1y3 − y1y2y3, and x3 = y1 − y1y3. Then,

Det
(

∂(x1, x2, x3)
∂(y1, y2, y3)

)
= y2

1y3.
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Using the same argument as that in the previous exercise, we obtain the
joint Lebesgue density of (Y1, Y2, Y3) as

e−y1y2
1I(0,∞)(y1)I(0,1)(y2)y3I(0,1)(y3).

Because this function is a product of three functions, e−y1y2
1I(0,∞)(y1),

I(0,1)(y2), and y3I(0,1)(y3), Y1, Y2, and Y3 are independent.

Exercise 19 (#1.47). Let X and Y be independent random variables with
cumulative distribution functions FX and FY , respectively. Show that
(i) the cumulative distribution function of X + Y is

FX+Y (t) =
∫

FY (t − x)dFX(x);

(ii) FX+Y is continuous if one of FX and FY is continuous;
(iii) X+Y has a Lebesgue density if one of X and Y has a Lebesgue density.
Solution. (i) Note that

FX+Y (t) =
∫

x+y≤t

dFX(x)dFY (y)

=
∫ (∫

y≤t−x

dFY (y)
)

dFX(x)

=
∫

FY (t − x)dFX(x),

where the second equality follows from Fubini’s theorem.
(ii) Without loss of generality, we assume that FY is continuous. Since FY

is bounded, by the dominated convergence theorem (e.g., Theorem 1.1 in
Shao, 2003),

lim
∆t→0

FX+Y (t + ∆t) = lim
∆t→0

∫
FY (t + ∆t − x)dFX(x)

=
∫

lim
∆t→0

FY (t + ∆t − x)dFX(x)

=
∫

FY (t − x)dFX(x)

= FX+Y (t).

(iii) Without loss of generality, we assume that Y has a Lebesgue density
fY . Then

FX+Y (t) =
∫

FY (t − x)dFX(x)

=
∫ (∫ t−x

−∞
fY (s)ds

)
dFX(x)
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=
∫ (∫ t

−∞
fY (y − x)dy

)
dFX(x)

=
∫ t

−∞

(∫
fY (y − x)dFX(x)

)
dy,

where the last equality follows from Fubini’s theorem. Hence, X + Y has
the Lebesgue density fX+Y (t) =

∫
fY (t − x)dFX(x).

Exercise 20 (#1.94). Show that a random variable X is independent of
itself if and only if X is constant a.s. Can X and f(X) be independent,
where f is a Borel function?
Solution. Suppose that X = c a.s. for a constant c ∈ R. For any A ∈ B
and B ∈ B,

P (X ∈ A, X ∈ B) = IA(c)IB(c) = P (X ∈ A)P (X ∈ B).

Hence X and X are independent. Suppose now that X is independent of
itself. Then, for any t ∈ R,

P (X ≤ t) = P (X ≤ t, X ≤ t) = [P (X ≤ t)]2.

This means that P (X ≤ t) can only be 0 or 1. Since limt→∞ P (X ≤ t) = 1
and limt→−∞ P (X ≤ t) = 0, there must be a c ∈ R such that P (X ≤ c) = 1
and P (X < c) = 0. This shows that X = c a.s.

If X and f(X) are independent, then so are f(X) and f(X). From the
previous result, this occurs if and only if f(X) is constant a.s.

Exercise 21 (#1.38). Let (X, Y, Z) be a random 3-vector with the fol-
lowing Lebesgue density:

f(x, y, z) =
{ 1−sin x sin y sin z

8π3 0 ≤ x, y, z,≤ 2π

0 otherwise

Show that X, Y, Z are pairwise independent, but not independent.
Solution. The Lebesgue density for (X, Y ) is∫ 2π

0
f(x, y, z)dz =

∫ 2π

0

1 − sin x sin y sin z

8π3 dz =
1

4π2 ,

0 ≤ x, y,≤ 2π. The Lebesgue density for X or Y is∫ 2π

0

∫ 2π

0
f(x, y, z)dydz =

∫ 2π

0

1
4π2 dy =

1
2π

,

0 ≤ x ≤ 2π. Hence X and Y are independent. Similarly, X and Z are
independent and Y and Z are independent. Note that

P (X ≤ π) = P (Y ≤ π) = P (Z ≤ π) =
∫ π

0

1
2π

dx =
1
2
.
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Hence P (X ≤ π)P (Y ≤ π)P (Z ≤ π) = 1/8. On the other hand,

P (X ≤ π, Y ≤ π, Z ≤ π) =
∫ π

0

∫ π

0

∫ π

0

1 − sin x sin y sin z

8π3 dxdydz

=
1
8

− 1
8π3

(∫ π

0
sin xdx

)3

=
1
8

− 1
π3 .

Hence X, Y , and Z are not independent.

Exercise 22 (#1.51, #1.53). Let X be a random n-vector having the
multivariate normal distribution Nn(µ, In).
(i) Apply Cochran’s theorem to show that if A2 = A, then XτAX has the
noncentral chi-square distribution χ2

r(δ), where A is an n × n symmetric
matrix, r = rank of A, and δ = µτAµ.
(ii) Let Ai be an n × n symmetric matrix satisfying A2

i = Ai, i = 1, 2.
Show that a necessary and sufficient condition that XτA1X and XτA2X
are independent is A1A2 = 0.
Note. If X1, ..., Xk are independent and Xi has the normal distribution
N(µi, σ

2), i = 1, ..., k, then the distribution of (X2
1 + · · · + X2

k)/σ2 is called
the noncentral chi-square distribution χ2

k(δ), where δ = (µ2
1 + · · · + µ2

k)/σ2.
When δ = 0, χ2

k is called the central chi-square distribution.
Solution. (i) Since A2 = A, i.e., A is a projection matrix,

(In − A)2 = In − A − A + A2 = In − A.

Hence, In−A is a projection matrix with rank tr(In−A) = tr(In)−tr(A) =
n−r. The result then follows by applying Cochran’s theorem (e.g., Theorem
1.5 in Shao, 2003) to

XτX = XτAX + Xτ (In − A)X.

(ii) Suppose that A1A2 = 0. Then

(In − A1 − A2)2 = In − A1 − A2 − A1 + A2
1 + A2A1 − A2 + A1A2 + A2

2

= In − A1 − A2,

i.e., In − A1 − A2 is a projection matrix with rank = tr(In − A1 − A2) =
n − r1 − r2, where ri = tr(Ai) is the rank of Ai, i = 1, 2. By Cochran’s
theorem and

XτX = XτA1X + XτA2X + Xτ (In − A1 − A2)X,

XτA1X and XτA2X are independent.
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Assume that XτA1X and XτA2X are independent. Since XτAiX has
the noncentral chi-square distribution χ2

ri
(δi), where ri is the rank of Ai

and δi = µτAiµ, Xτ (A1 + A2)X has the noncentral chi-square distribution
χ2

r1+r2
(δ1 + δ2). Consequently, A1 + A2 is a projection matrix, i.e.,

(A1 + A2)2 = A1 + A2,

which implies
A1A2 + A2A1 = 0.

Since A2
1 = A1, we obtain that

0 = A1(A1A2 + A2A1) = A1A2 + A1A2A1

and
0 = A1(A1A2 + A2A1)A1 = 2A1A2A1,

which imply A1A2 = 0.

Exercise 23 (#1.55). Let X be a random variable having a cumulative
distribution function F . Show that if EX exists, then

EX =
∫ ∞

0
[1 − F (x)]dx −

∫ 0

−∞
F (x)dx.

Solution. By Fubini’s theorem,∫ ∞

0
[1 − F (x)]dx =

∫ ∞

0

∫
(x,∞)

dF (y)dx

=
∫ ∞

0

∫
(0,y)

dxdF (y)

=
∫ ∞

0
ydF (y).

Similarly,∫ 0

−∞
F (x)dx =

∫ 0

−∞

∫
(−∞,x]

dF (y)dx = −
∫ 0

−∞
ydF (y).

If EX exists, then at least one of
∫∞
0 ydF (y) and

∫ 0
−∞ ydF (y) is finite and

EX =
∫ ∞

−∞
ydF (y) =

∫ ∞

0
[1 − F (x)]dx −

∫ 0

−∞
F (x)dx.

Exercise 24 (#1.58(c)). Let X and Y be random variables having the
bivariate normal distribution with EX = EY = 0, Var(X) = Var(Y ) = 1,
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and Cov(X, Y ) = ρ. Show that E(max{X, Y }) =
√

(1 − ρ)/π.
Solution. Note that

|X − Y | = max{X, Y } − min{X, Y } = max{X, Y } + max{−X, −Y }.

Since the joint distribution of (X, Y ) is symmetric about 0, the distribu-
tion of max{X, Y } and max{−X, −Y } are the same. Hence, E|X − Y | =
2E(max{X, Y }). From the property of the normal distribution, X − Y is
normally distributed with mean 0 and variance Var(X − Y ) = Var(X) +
Var(Y ) − 2Cov(X, Y ) = 2 − 2ρ. Then,

E(max{X, Y }) = 2−1E|X − Y | = 2−1
√

2/π
√

2 − 2ρ =
√

(1 − ρ)/π.

Exercise 25 (#1.60). Let X be a random variable with EX2 < ∞ and
let Y = |X|. Suppose that X has a Lebesgue density symmetric about 0.
Show that X and Y are uncorrelated, but they are not independent.
Solution. Let f be the Lebesgue density of X. Then f(x) = f(−x). Since
X and XY = X|X| are odd functions of X, EX = 0 and E(X|X|) = 0.
Hence,

Cov(X, Y ) = E(XY ) − EXEY = E(X|X|) − EXE|X| = 0.

Let t be a positive constant such that p = P (0 < X < t) > 0. Then

P (0 < X < t, Y < t) = P (0 < X < t, −t < X < t)
= P (0 < X < t)
= p

and

P (0 < X < t)P (Y < t) = P (0 < X < t)P (−t < X < t)
= 2P (0 < X < t)P (0 < X < t)
= 2p2,

i.e., P (0 < X < t, Y < t) 
= P (0 < X < t)P (Y < t). Hence X and Y are
not independent.

Exercise 26 (#1.61). Let (X, Y ) be a random 2-vector with the following
Lebesgue density:

f(x, y) =
{

π−1 x2 + y2 ≤ 1
0 x2 + y2 > 1.

Show that X and Y are uncorrelated, but they are not independent.
Solution. Since X and Y are uniformly distributed on the Borel set
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{(x, y) : x2+y2 ≤ 1}, EX = EY = 0 and E(XY ) = 0. Hence Cov(X, Y ) =
0. A direct calculation shows that

P (0 < X < 1/
√

2, 0 < Y < 1/
√

2) =
1
2π

and
P (0 < X < 1/

√
2) = P (0 < Y < 1/

√
2) =

1
4

+
1
2π

.

Hence,

P (0 < X < 1/
√

2, 0 < Y < 1/
√

2) 
= P (0 < X < 1/
√

2)P (0 < Y < 1/
√

2)

and X and Y are not independent.

Exercise 27 (#1.48, #1.70). Let Y be a random variable having the
noncentral chi-square distribution χ2

k(δ), where k is a positive integer. Show
that
(i) the Lebesgue density of Y is

gδ,k(t) = e−δ/2
∞∑

j=0

(δ/2)j

j!
f2j+k(t),

where fj(t) = [Γ(j/2)2j/2]−1tj/2−1e−t/2I(0,∞)(t) is the Lebesgue density of
the central chi-square distribution χ2

j , j = 1, 2, ...;
(ii) the characteristic function of Y is (1 − 2

√
−1t)−k/2e

√−1t/(1−2
√−1t);

(iii) E(Y ) = k + δ and Var(Y ) = 2k + 4δ.
Solution A. (i) Consider first k = 1. By the definition of the noncentral
chi-square distribution (e.g., Shao, 2003, p. 26), the distribution of Y is the
same as that of X2, where X has the normal distribution with mean

√
δ

and variance 1. Since

P (Y ≤ t) = P (X ≤
√

t) − P (X ≤ −
√

t)

for t > 0, the Lebesgue density of Y is

fY (t) =
1

2
√

t
[fX(

√
t) + fX(−

√
t)]I(0,∞)(t),

where fX is the Lebesgue density of X. Using the fact that X has a normal
distribution, we obtain that, for t > 0,

fY (t) =
1

2
√

2πt

(
e−(

√
t−√

δ)2/2 + e−(−√
t−√

δ)2/2
)

=
e−δ/2e−t/2

2
√

2πt

(
e
√

δt + e
√−δt
)
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=
e−δ/2e−t/2

2
√

2πt

⎛
⎝ ∞∑

j=0

(
√

δt)j

j!
+

∞∑
j=0

(−
√

δt)j

j!

⎞
⎠

=
e−δ/2e−t/2

√
2πt

∞∑
j=0

(δt)j

(2j)!
.

On the other hand, for k = 1 and t > 0,

gδ,1(t) = e−δ/2
∞∑

j=0

(δ/2)j

j!

(
1

Γ(j + 1/2)2j+1/2 tj−1/2e−t/2
)

=
e−δ/2e−t/2

√
2t

∞∑
j=0

(δt)j

j!Γ(j + 1/2)22j
.

Since j!22jΓ(j + 1/2) =
√

π(2j)!, fY (t) = gδ,1(t) holds.
We then use induction. By definition, Y = X1 + X2, where X1 has the

noncentral chi-square distribution χ2
k−1(δ), X2 has the central chi-square

distribution χ2
1, and X1 and X2 are independent. By the induction assump-

tion, the Lebesgue density of X1 is gδ,k−1. Note that the Lebesgue density
of X2 is f1. Using the convolution formula (e.g., Example 1.15 in Shao,
2003), the Lebesgue density of Y is

fY (t) =
∫

gδ,k−1(u)f1(t − u)du

= e−δ/2
∞∑

j=0

(δ/2)j

j!

∫
f2j+k−1(u)f1(t − u)du

for t > 0. By the convolution formula again,
∫

f2j+k−1(u)f1(t−u)du is the
Lebesgue density of Z+X2, where Z has density f2j+k−1 and is independent
of X2. By definition, Z + X2 has the central chi-square distribution χ2

2j+k,
i.e., ∫

f2j+k−1(u)f1(t − u)du = f2j+k(t).

Hence, fY = gδ,k.
(ii) Note that the moment generating function of the central chi-square
distribution χ2

k is, for t < 1/2,∫
etufk(u)du =

1
Γ(k/2)2k/2

∫ ∞

0
uk/2−1e−(1−2t)u/2du

=
1

Γ(k/2)2k/2(1 − 2t)k/2

∫ ∞

0
sk/2−1e−s/2ds

=
1

(1 − 2t)k/2 ,
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where the second equality follows from the following change of variable in
the integration: s = (1 − 2t)u. By the result in (i), the moment generating
function for Y is∫

etxgδ,k(x)dx = e−δ/2
∞∑

j=0

(δ/2)j

j!

∫
etxf2j+k(x)dx

= e−δ/2
∞∑

j=0

(δ/2)j

j!(1 − 2t)(j+k/2)

=
e−δ/2

(1 − 2t)k/2

∞∑
j=0

{δ/[2(1 − 2t)]}j

j!

=
e−δ/2+δ/[2(1−2t)]

(1 − 2t)k/2

=
eδt/(1−2t)

(1 − 2t)k/2 .

Substituting t by
√

−1t in the moment generating function of Y , we obtain
the characteristic function of Y as (1 − 2

√
−1t)−k/2e

√−1δt/(1−2
√−1t).

(iii) Let ψY (t) be the moment generating function of Y . By the result in
(ii),

ψ′(t) = ψ(t)
(

δ

1 − 2t
+

2δt

(1 − 2t)2
+

k

1 − 2t

)

and

ψ′′(t) = ψ′(t)
(

δ

1 − 2t
+

2δt

(1 − 2t)2
+

k

1 − 2t

)

+ ψ(t)
(

4δ

(1 − 2t)2
+

2δt

(1 − 2t)3
+

2k

(1 − 2t)2

)
.

Hence, EY = ψ′(0) = δ + k, EY 2 = ψ′′(0) = (δ + k)2 + 4δ + 2k, and
Var(Y ) = EY 2 − (EY )2 = 4δ + 2k.
Solution B. (i) We first derive result (ii). Let X be a random variable
having the standard normal distribution and µ be a real number. The
moment generating function of (X + µ)2 is

ψµ(t) =
1√
2π

∫
e−x2/2et(x+µ)2dx

=
eµ2t/(1−2t)

√
2π

∫
e−(1−2t)[x−2µt/(1−2t)]2/2dx

=
eµ2t/(1−2t)
√

1 − 2t
.
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By definition, Y has the same distribution as X2
1 + · · ·+X2

k−1+(Xk +
√

δ)2,
where Xi’s are independent and have the standard normal distribution.
From the obtained result, the moment generating function of Y is

Eet[X2
1+···+X2

k−1+(Xk+
√

δ)2] = [ψ0(t)]k−1ψ√
δ(t) =

eµ2t/(1−2t)

(1 − 2t)k/2 .

(ii) We now use the result in (ii) to prove the result in (i). From part (ii) of
Solution A, the moment generating function of gδ,k is eµ2t/(1−2t)(1−2t)−k/2,
which is the same as the moment generating function of Y derived in part
(i) of this solution. By the uniqueness theorem (e.g., Theorem 1.6 in Shao,
2003), we conclude that gδ,k is the Lebesgue density of Y .
(iii) Let Xi’s be as defined in (i). Then,

EY = EX2
1 + · · · + EX2

k−1 + E(Xk +
√

δ)2

= k − 1 + EX2
k + δ + E(2

√
δXk)

= k + δ

and

Var(Y ) = Var(X2
1 ) + · · · + Var(X2

k−1) + Var
(
(Xk +

√
δ)2
)

= 2(k − 1) + Var(X2
k + 2

√
δXk)

= 2(k − 1) + Var(X2
k) + Var(2

√
δXk) + 2Cov(X2

k , 2
√

δXk)
= 2k + 4δ,

since Var(X2
i ) = 2 and Cov(X2

k , Xk) = EX3
k − EX2

kEXk = 0.

Exercise 28 (#1.57). Let U1 and U2 be independent random vari-
ables having the χ2

n1
(δ) and χ2

n2
distributions, respectively, and let F =

(U1/n1)/(U2/n2). Show that
(i) E(F ) = n2(n1+δ)

n1(n2−2) when n2 > 2;

(ii) Var(F ) = 2n2
2[(n1+δ)2+(n2−2)(n1+2δ)]

n2
1(n2−2)2(n2−4) when n2 > 4.

Note. The distribution of F is called the noncentral F-distribution and
denoted by Fn1,n2(δ).
Solution. From the previous exercise, EU1 = n1+δ and EU2

1 = Var(U1)+
(EU1)2 = 2n1 + 4δ + (n1 + δ)2. Also,

EU−1
2 =

1
Γ(n2/2)2n2/2

∫ ∞

0
xn2/2−2e−x/2dx

=
Γ(n2/2 − 1)2n2/2−1

Γ(n2/2)2n2/2

=
1

n2 − 2
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for n2 > 2 and

EU−2
2 =

1
Γ(n2/2)2n2/2

∫ ∞

0
xn2/2−3e−x/2dx

=
Γ(n2/2 − 2)2n2/2−2

Γ(n2/2)2n2/2

=
1

(n2 − 2)(n2 − 4)

for n2 > 4. Then,

E(F ) = E
U1/n1

U2/n2
=

n2

n1
EU1EU−1

2 =
n2(n1 + δ)
n1(n2 − 2)

when n2 > 2 and

Var(F ) = E
U2

1 /n2
1

U2
2 /n2

2
− [E(F )]2

=
n2

2

n2
1
EU2

1 EU−2
2 −
(

n2(n1 + δ)
n1(n2 − 2)

)2

=
n2

2

n2
1

(
2n1 + 4δ + (N − 1 + δ)2

(n2 − 2)(n2 − 4)
− (n1 + δ)2

(n2 − 2)2

)

=
2n2

2[(n1 + δ)2 + (n2 − 2)(n1 + 2δ)]
n2

1(n2 − 2)2(n2 − 4)

when n2 > 4.

Exercise 29 (#1.74). Let φn be the characteristic function of a probabil-
ity measure Pn, n = 1, 2, .... Let {an} be a sequence of nonnegative numbers
with
∑∞

n=1 an = 1. Show that
∑∞

n=1 anφn is a characteristic function and
find its corresponding probability measure.
Solution A. For any event A, define

P (A) =
∞∑

n=1

anPn(A).

Then P is a probability measure and Pn � P for any n. Denote the Radon-
Nikodym derivative of Pn with respect to P as fn, n = 1, 2, .... By Fubini’s
theorem, for any event A,∫

A

∞∑
n=1

anfndP =
∞∑

n=1

an

∫
A

fndP

=
∞∑

n=1

anPn(A)

= P (A).
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Hence,
∑

anfn = 1 a.s. P . Then,

∞∑
n=1

anφn(t) =
∞∑

n=1

an

∫
e
√−1txdPn(x)

=
∞∑

n=1

an

∫
e
√−1txfn(x)dP

=
∫

e
√−1tx

∞∑
n=1

anfn(x)dP

=
∫

e
√−1txdP.

Hence,
∑∞

n=1 anφn is the characteristic function of P .
Solution B. Let X be a discrete random variable satisfying P (X = n) =
an and Y be a random variable such that given X = n, the conditional
distribution of Y is Pn, n = 1, 2, .... The characteristic function of Y is

E(e
√−1tY ) = E[E(e

√−1tY |X)]

=
∞∑

n=1

anE(e
√−1tY |X = n)

=
∞∑

n=1

an

∫
e
√−1tydPn(y)

=
∞∑

n=1

anφn(t).

This shows that
∑∞

n=1 anφn is the characteristic function of the marginal
distribution of Y .

Exercise 30 (#1.79). Find an example of two random variables X and Y
such that X and Y are not independent but their characteristic functions
φX and φY satisfy φX(t)φY (t) = φX+Y (t) for all t ∈ R.
Solution. Let X = Y be a random variable having the Cauchy distribution
with φX(t) = φY (t) = e−|t|. Then X and Y are not independent (see
Exercise 20). The characteristic function of X + Y = 2X is

φX+Y (t) = E(e
√−1t(2X)) = φX(2t) = e−|2t| = e−|t|e−|t| = φX(t)φY (t).

Exercise 31 (#1.75). Let X be a random variable whose characteristic
function φ satisfies

∫
|φ(t)|dt < ∞. Show that (2π)−1

∫
e−√−1xtφ(t)dt is

the Lebesgue density of X.
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Solution. Define g(t, x) = (e−√−1ta − e−√−1tx)/(
√

−1t) for a fixed real
number a. For any x, |g(t, x)| ≤ |x−a|. Under the condition

∫
|φ(t)|dt < ∞,

F (x) − F (a) =
1
2π

∫ ∞

−∞
φ(t)g(t, x)dt

(e.g., Theorem 1.6 in Shao, 2003), where F is the cumulative distribution
function of X. Since ∣∣∣∣∂g(t, x)

∂x

∣∣∣∣ = |e−√−1tx| = 1,

by the dominated convergence theorem (Theorem 1.1 and Example 1.8 in
Shao, 2003),

F ′(x) =
d

dx

(
1
2π

∫ ∞

−∞
φ(t)g(t, x)dt

)

=
1
2π

∫ ∞

−∞
φ(t)

∂g(t, x)
∂x

dt

=
1
2π

∫ ∞

−∞
φ(t)e−√−1txdt.

Exercise 32 (#1.73(g)). Let φ be a characteristic function and G be a
cumulative distribution function on the real line. Show that

∫
φ(ut)dG(u)

is a characteristic function on the real line.
Solution. Let F be the cumulative distribution function corresponding to
φ and let X and U be independent random variables having distributions
F and G, respectively. The characteristic function of UX is

Ee
√−1tUX =

∫ ∫
e
√−1tuxdF (x)dG(u)

=
∫

φ(ut)dG(u).

Exercise 33. Let X and Y be independent random variables. Show that
if X and X − Y are independent, then X must be degenerate.
Solution. We denote the characteristic function of any random variable Z
by φZ . Since X and Y are independent, so are −X and Y . Hence,

φY −X(t) = φY (t)φ−X(t) = φY (t)φX(−t), t ∈ R.

If X and X −Y are independent, then X and Y −X are independent. Then

φY (t) = φX+(Y −X)(t) = φX(t)φY −X(t) = φX(t)φX(−t)φY (t), t ∈ R.
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Since φY (0) = 1 and φY is continuous, φY (t) 
= 0 for a neighborhood of 0.
Hence φX(t)φX(−t) = |φX(t)|2 = 1 on this neighborhood of 0. Thus, X is
degenerate.

Exercise 34 (#1.98). Let PY be a discrete distribution on {0, 1, 2, ...}
and given Y = y, the conditional distribution of X be the binomial distri-
bution with size y and probability p. Show that
(i) if Y has the Poisson distribution with mean θ, then the marginal distri-
bution of X is the Poisson distribution with mean pθ;
(ii) if Y + r has the negative binomial distribution with size r and proba-
bility π, then the marginal distribution of X + r is the negative binomial
distribution with size r and probability π/[1 − (1 − p)(1 − π)].
Solution. (i) The moment generating function of X is

E(etX) = E[E(etX |Y )] = E[(pet + 1 − p)Y ] = eθp(et−1),

which is the moment generating function of the Poisson distribution with
mean pθ.
(ii) The moment generating function of X + r is

E(et(X+r)) = etrE[E(etX |Y )]
= etrE[(pet + 1 − p)Y ]

=
etr

(pet + 1 − p)r
E[(pet + 1 − p)Y +r]

=
etr

(pet + 1 − p)r

πr(pet + 1 − p)r

[1 − (1 − π)(pet + 1 − p)]r

=
πrert

[1 − (1 − π)(pet + 1 − p)]r
.

Then the result follows from the fact that

1 − (1 − π)(pet + 1 − p)
1 − (1 − p)(1 − π)

= 1 −
[
1 − π

1 − (1 − p)(1 − π)

]
et.

Exercise 35 (#1.85). Let X and Y be integrable random variables on
the probability space (Ω,F , P ) and A be a sub-σ-field of F . Show that
(i) if X ≤ Y a.s., then E(X|A) ≤ E(Y |A) a.s.;
(ii) if a and b are constants, then E(aX + bY |A) = aE(X|A) + bE(X|A)
a.s.
Solution. (i) Suppose that X ≤ Y a.s. By the definition of the conditional
expectation and the property of integration,∫

A

E(X|A)dP =
∫

A

XdP ≤
∫

A

Y dP =
∫

A

E(Y |A)dP,
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where
A = {E(X|A) > E(Y |A)} ∈ A.

Hence P (A) = 0, i.e., E(X|A) ≤ E(Y |A) a.s.
(ii) Note that aE(X|A) + bE(Y |A) is measurable from (Ω,A) to (R,B).
For any A ∈ A, by the linearity of integration,∫

A

(aX + bY )dP = a

∫
A

XdP + b

∫
A

Y dP

= a

∫
A

E(X|A)dP + b

∫
A

E(Y |A)dP

=
∫

A

[aE(X|A) + bE(Y |A)]dP.

By the a.s.-uniqueness of the conditional expectation, E(aX + bY |A) =
aE(X|A) + bE(X|A) a.s.

Exercise 36 (#1.85). Let X be an integrable random variable on the
probability space (Ω,F , P ) and A and A0 be σ-fields satisfying A0 ⊂ A ⊂
F . Show that E[E(X|A)|A0] = E(X|A0) = E[E(X|A0)|A] a.s.
Solution. Note that E(X|A0) is measurable from (Ω,A0) to (R,B) and
A0 ⊂ A. Hence E(X|A0) is measurable from (Ω,A) to (R,B) and, thus,
E(X|A0) = E[E(X|A0)|A] a.s. Since E[E(X|A)|A0] is measurable from
(Ω,A0) to (R,B) and for any A ∈ A0 ⊂ A,∫

A

E[E(X|A)|A0]dP =
∫

A

E(X|A)dP =
∫

A

XdP,

we conclude that E[E(X|A)|A0] = E(X|A0) a.s.

Exercise 37 (#1.85). Let X be an integrable random variable on the
probability space (Ω,F , P ), A be a sub-σ-field of F , and Y be another
random variable satisfying σ(Y )⊂A and E|XY | < ∞. Show that

E(XY |A) = Y E(X|A) a.s.

Solution. Since σ(Y ) ⊂ A, Y E(X|A) is measurable from (Ω,A) to (R,B).
The result follows if we can show that for any A ∈ A,∫

A

Y E(X|A)dP =
∫

A

XY dP.

(1) If Y = aIB , where a ∈ R and B ∈ A, then A ∩ B ∈ A and∫
A

XY dP = a

∫
A∩B

XdP = a

∫
A∩B

E(X|A)dP =
∫

A

Y E(X|A)dP.



28 Chapter 1. Probability Theory

(2) If Y =
∑k

i=1 aiIBi , where Bi ∈ A, then

∫
A

XY dP =
k∑

i=1

ai

∫
A

XIBidP =
k∑

i=1

ai

∫
A

IBiE(X|A)dP =
∫

A

Y E(X|A)dP.

(3) Suppose that X ≥ 0 and Y ≥ 0. There exists a sequence of increasing
simple functions Yn such that σ(Yn) ⊂ A, Yn ≤ Y and limn Yn = Y .
Then limn XYn = XY and limn YnE(X|A) = Y E(X|A). By the monotone
convergence theorem and the result in (2),∫

A

XY dP = lim
n

∫
A

XYndP = lim
n

∫
A

YnE(X|A)dP =
∫

A

Y E(X|A)dP.

(4) For general X and Y , consider X+, X−, Y+, and Y−. Since σ(Y ) ⊂ A,
so are σ(Y+) and σ(Y−). Then, by the result in (3),∫

A

XY dP =
∫

A

X+Y+dP −
∫

A

X+Y−dP

−
∫

A

X−Y+dP +
∫

A

X−Y−dP

=
∫

A

Y+E(X+|A)dP −
∫

A

Y−E(X+|A)dP

−
∫

A

Y+E(X−|A)dP +
∫

A

Y−E(X−|A)dP

=
∫

A

Y E(X+|A)dP −
∫

A

Y E(X−|A)dP

=
∫

A

Y E(X|A)dP,

where the last equality follows from the result in Exercise 35.

Exercise 38 (#1.85). Let X1, X2, ... and X be integrable random vari-
ables on the probability space (Ω,F , P ). Assume that 0 ≤ X1 ≤ X2 ≤
· · · ≤ X and limn Xn = X a.s. Show that for any σ-field A ⊂ F ,

E(X|A) = lim
n

E(Xn|A) a.s.

Solution. Since each E(Xn|A) is measurable from (Ω,A) to (R,B), so is
the limit limn E(Xn|A). We need to show that∫

A

lim
n

E(Xn|A)dP =
∫

A

XdP

for any A ∈ A. By Exercise 35, 0 ≤ E(X1|A) ≤ E(X2|A) ≤ · · · ≤ E(X|A)
a.s. By the monotone convergence theorem (e.g., Theorem 1.1 in Shao,
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2003), for any A ∈ A,∫
A

lim
n

E(Xn|A)dP = lim
n

∫
A

E(Xn|A)dP

= lim
n

∫
A

XndP

=
∫

A

lim
n

XndP

=
∫

A

XdP.

Exercise 39 (#1.85). Let X1, X2, ... be integrable random variables on
the probability space (Ω,F , P ). Show that for any σ-field A ⊂ F ,
(i) E(lim infn Xn|A) ≤ lim infn E(Xn|A) a.s. if Xn ≥ 0 for any n;
(ii) limn E(Xn|A) = E(X|A) a.s. if limn Xn = X a.s. and |Xn| ≤ Y for any
n and an integrable random variable Y .
Solution. (i) For any m ≥ n, by Exercise 35, E(infm≥n Xm|A)≤E(Xm|A)
a.s. Hence, E(infm≥n Xm|A)≤ infm≥n E(Xm|A) a.s. Let Yn = infm≥n Xm.
Then 0 ≤ Y1 ≤ Y2 ≤ · · · ≤ limn Yn and Yn’s are integrable. Hence,

E(lim inf
n

Xn|A) = E(lim
n

Yn|A)

= lim
n

E(Yn|A)

= lim
n

E(infm≥n Xm|A)

≤ lim
n

inf
m≥n

E(Xm|A)

= lim inf
n

E(Xn|A)

a.s., where the second equality follows from the result in the previous
exercise and the first and the last equalities follow from the fact that
lim infn fn = limn infm≥n fm for any sequence of functions {fn}.
(ii) Note that Y + Xn ≥ 0 for any n. Applying the result in (i) to Y + Xn,

lim inf
n

E(Y + Xn|A) ≤ E(lim inf
n

(Y + Xn)|A) = E(Y + X|A) a.s.

Since Y is integrable, so is X and, consequently, E(Y + X|A) = E(Y |A) +
E(X|A) a.s. and lim infn E(Y + Xn|A) = E(Y |A) + lim infn E(Xn|A) a.s.
Hence,

lim inf
n

E(Xn|A) ≤ E(X|A) a.s.

Applying the same argument to Y − Xn, we obtain that

lim inf
n

E(−Xn|A) ≤ E(−X|A) a.s.
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Since lim infn E(−Xn|A) = − lim supn E(Xn|A), we obtain that

lim sup
n

E(Xn|A) ≥ E(X|A) a.s.

Combining the results, we obtain that

lim sup
n

E(Xn|A) = lim inf
n

E(Xn|A) = lim
n

E(Xn|A) = E(X|A) a.s.

Exercise 40 (#1.86). Let X and Y be integrable random variables
on the probability space (Ω,F , P ) and A ⊂ F be a σ-field. Show that
E[Y E(X|A)] = E[XE(Y |A)], assuming that both integrals exist.
Solution. (1) The problem is much easier if we assume that Y is bounded.
When Y is bounded, both Y E(X|A) and XE(Y |A) are integrable. Using
the result in Exercise 37 and the fact that E[E(X|A)] = EX, we obtain
that

E[Y E(X|A)] = E{E[Y E(X|A)|A]}
= E[E(X|A)E(Y |A)]
= E{E[XE(Y |A)|A]}
= E[XE(Y |A)].

(2) Assume that Y ≥ 0. Let Z be another nonnegative integrable random
variable. We now show that if σ(Z) ⊂ A, then E(Y Z) = E[ZE(Y |A)].
(Note that this is a special case of the result in Exercise 37 if E(Y Z) < ∞.)

Let Yn = max{Y, n}, n = 1, 2, .... Then 0 ≤ Y1 ≤ Y2 ≤ · · · ≤ Y
and limn Yn = Y . By the results in Exercises 35 and 39, 0 ≤ E(Y1|A) ≤
E(Y2|A) ≤ · · · a.s. and limn E(Yn|A) = E(Y |A) a.s. Since Yn is bounded,
YnZ is integrable. By the result in Exercise 37,

E[ZE(Yn|A)] = E(YnZ), n = 1, 2, ....

By the monotone convergence theorem,

E(Y Z) = lim
n

E(YnZ) = lim
n

E[ZE(Yn|A)] = E[ZE(Y |A)].

Consequently, if X ≥ 0, then the result follows by taking Z = E(X|A).
(3) We now consider general X and Y . Let f+ and f− denote the positive
and negative parts of a function f . Note that

E{[XE(Y |A)]+} = E{X+[E(Y |A)]+} + E{X−[E(Y |A)]−}

and

E{[XE(Y |A)]−} = E{X+[E(Y |A)]−} + E{X−[E(Y |A)]+}.
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Since E[XE(Y |A)] exists, without loss of generality we assume that

E{[XE(Y |A)]+} = E{X+[E(Y |A)]+} + E{X−[E(Y |A)]−} < ∞.

Then, both

E[X+E(Y |A)] = E{X+[E(Y |A)]+} − E{X+[E(Y |A)]−}

and
E[X−E(Y |A)] = E{X−[E(Y |A)]+} − E{X−[E(Y |A)]−}

are well defined and their difference is also well defined. Applying the result
established in (2), we obtain that

E[X+E(Y |A)] = E{E(X+|A)[E(Y |A)]+} − E{E(X+|A)[E(Y |A)]−}
= E[E(X+|A)E(Y |A)],

where the last equality follows from the result in Exercise 8. Similarly,

E[X−E(Y |A)] = E{E(X−|A)[E(Y |A)]+} − E{E(X−|A)[E(Y |A)]−}
= E[E(X−|A)E(Y |A)].

By Exercise 8 again,

E[XE(Y |A)] = E[X+E(Y |A)] − E[X−E(Y |A)]
= E[E(X+|A)E(Y |A)] − E[E(X−|A)E(Y |A)]
= E[E(X|A)E(Y |A)]}.

Switching X and Y , we also conclude that

E[Y E(X|A)] = E[E(X|A)E(Y |A)].

Hence, E[XE(Y |A)] = E[Y E(X|A)].

Exercise 41 (#1.87). Let X, X1, X2, ... be a sequence of integrable ran-
dom variables on the probability space (Ω,F , P ) and A ⊂ F be a σ-field.
Suppose that limn E(XnY ) = E(XY ) for every integrable (or bounded)
random variable Y . Show that limn E[E(Xn|A)Y ] = E[E(X|A)Y ] for ev-
ery integrable (or bounded) random variable Y .
Solution. Assume that Y is integrable. Then E(Y |A) is integrable. By the
condition, E[XnE(Y |A)] → E[XE(Y |A)]. By the result of the previous ex-
ercise, E[XnE(Y |A)] = E[E(Xn|A)Y ] and E[XE(Y |A)] = E[E(X|A)Y ].
Hence, E[E(Xn|A)Y ] → E[E(X|A)Y ] for every integrable Y . The same
result holds if “integrable” is changed to “bounded”.
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Exercise 42 (#1.88). Let X be a nonnegative integrable random variable
on the probability space (Ω,F , P ) and A ⊂ F be a σ-field. Show that

E(X|A) =
∫ ∞

0
P
(
X > t|A

)
dt.

Note. For any B ∈ F , P (B|A) is defined to be E(IB |A).
Solution. From the theory of conditional distribution (e.g., Theorem 1.7
in Shao, 2003), there exists P̃ (B, ω) defined on F × Ω such that (i) for any
ω ∈ Ω, P̃ (·, ω) is a probability measure on (Ω,F) and (ii) for any B ∈ F ,
P̃ (B, ω) = P (B|A) a.s. From Exercise 23,

∫
XdP̃ (·, ω) =

∫ ∞

0
P̃ ({X > t}, ω)dt

=
∫ ∞

0
P (X > t|A)dt a.s.

Hence, the result follows if

E(X|A)(ω) =
∫

XdP̃ (, ω) a.s.

This is certainly true if X = IB for a B ∈ F . By the linearity of the
integration and conditional expectation, this equality also holds when X is
a nonnegative simple function. For general nonnegative X, there exists a
sequence of simple functions X1, X2, ..., such that 0 ≤ X1 ≤ X2 ≤ · · · ≤ X
and limn Xn = X a.s. From Exercise 38,

E(X|A) = lim
n

E(Xn|A)

= lim
n

∫
XndP̃ (·, ω)

=
∫

XdP̃ (·, ω) a.s.

Exercise 43 (#1.97). Let X and Y be independent integrable random
variables on a probability space and f be a nonnegative convex function.
Show that E[f(X + Y )] ≥ E[f(X + EY )].
Note. We need to apply the following Jensen’s inequality for conditional
expectations. Let f be a convex function and X be an integrable random
variable satisfying E|f(X)| < ∞. Then f(E(X|A)) ≤ E(f(X)|A) a.s. (e.g.,
Theorem 9.1.4 in Chung, 1974).
Solution. If E[f(X + Y )] = ∞, then the inequality holds. Hence, we may
assume that f(X + Y ) is integrable. Using Jensen’s inequality and some



Chapter 1. Probability Theory 33

properties of conditional expectations, we obtain that

E[f(X + Y )] = E{E[f(X + Y )|X]}
≥ E{f(E(X + Y |X))}
= E{f(X + E(Y |X))}
= E[f(X + EY )],

where the last equality follows from E(Y |X) = EY since X and Y are
independent.

Exercise 44 (#1.83). Let X be an integrable random variable with a
Lebesgue density f and let Y = g(X), where g is a function with positive
derivative on (0,∞) and g(x) = g(−x). Find an expression for E(X|Y )
and verify that it is indeed the conditional expectation.
Solution. Let h be the inverse function of g on (0,∞) and

ψ(y) = h(y)
f(h(y)) − f(−h(y))
f(h(y)) + f(−h(y))

.

We now show that E(X|Y ) = ψ(Y ) a.s. It is clear that ψ(y) is a Borel
function. Also, the σ-field generated by Y is generated by the sets of the
form Aa = {y : g(0) ≤ y ≤ a}, a > g(0). Hence, it suffices to show that for
any a > g(0), ∫

Aa

XdP =
∫

Aa

ψ(Y )dP.

Note that ∫
Aa

XdP =
∫

g(0)≤g(x)≤a

xf(x)dx

=
∫ h(a)

−h(a)
xf(x)dx

=
∫ 0

−h(a)
xf(x)dx +

∫ h(a)

0
xf(x)dx

=
∫ 0

h(a)
xf(−x)dx +

∫ h(a)

0
xf(x)dx

=
∫ h(a)

0
x[f(x) − f(−x)]dx

=
∫ a

g(0)
h(y)[f(h(y)) − f(−h(y))]h′(y)dy.

On the other hand, h′(y)[f(h(y)) + f(−h(y))]I(g(0),∞)(y) is the Lebesgue
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density of Y (see the note in Exercise 17). Hence,∫
Aa

ψ(Y )dP =
∫ a

g(0)
ψ(y)h′(y)[f(h(y)) + f(−h(y))]dy

=
∫ a

g(0)
h(y)[f(h(y)) − f(−h(y))]h′(y)dy

by the definition of ψ(y).

Exercise 45 (#1.91). Let X, Y , and Z be random variables on a proba-
bility space. Suppose that E|X| < ∞ and Y = h(Z) with a Borel h. Show
that
(i) E(XZ|Y ) = E(X)E(Z|Y ) a.s. if X and Z are independent and E|Z| <
∞;
(ii) if E[f(X)|Z] = f(Y ) for all bounded continuous functions f on R, then
X = Y a.s.;
(iii) if E[f(X)|Z] ≥ f(Y ) for all bounded, continuous, nondecreasing func-
tions f on R, then X ≥ Y a.s.
Solution. (i) It suffices to show∫

Y −1(B)
XZdP = E(X)

∫
Y −1(B)

ZdP

for any Borel set B. Since Y = h(Z), Y −1(B) = Z−1(h−1(B)). Then∫
Y −1(B)

XZdP =
∫

XZIh−1(B)(Z)dP = E(X)
∫

ZIh−1(B)(Z)dP,

since X and Z are independent. On the other hand,∫
Y −1(B)

ZdP =
∫

h−1(B)
ZdP =

∫
ZIh−1(B)(Z)dP.

(ii) Let f(t) = et/(1+et). Then both f and f2 are bounded and continuous.
Note that

E[f(X) − f(Y )]2 = EE{[f(X) − f(Y )]2|Z}
= E{E[f2(X)|Z] + E[f2(Y )|Z] − 2E[f(X)f(Y )|Z]}
= E{E[f2(X)|Z] + f2(Y ) − 2f(Y )E[f(X)|Z]}
= E{f2(Y ) + f2(Y ) − 2f(Y )f(Y )}
= 0,

where the third equality follows from the result in Exercise 37 and the
fourth equality follows from the condition. Hence f(X) = f(Y ) a.s. Since
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f is strictly increasing, X = Y a.s.
(iii) For any real number c, there exists a sequence of bounded, continuous
and nondecreasing functions {fn} such that limn fn(t) = I(c,∞)(t) for any
real number t. Then,

P (X > c, Y > c) = E{E(I{X>c}I{Y >c}|Z)}
= E{I{Y >c}E(I{X>c}|Z)}
= E{I{Y >c}E[lim

n
fn(X)|Z]}

= E{I{Y >c} lim
n

E[fn(X)|Z]}

≥ E{I{Y >c} lim
n

fn(Y )}

= E{I{Y >c}I{Y >c}}
= P (Y > c),

where the fourth and fifth equalities follow from Exercise 39 (since fn is
bounded) and the inequality follows from the condition. This implies that
P (X ≤ c, Y > c) = P (Y > c) − P (X > c, Y > c) = 0. For any integer k
and positive integer n, let ak,i = k + i/n, i = 1, ..., n. Then

P (X < Y ) = lim
n

∞∑
k=−∞

n−1∑
i=0

P (X ≤ ak,i, ak,i < Y ≤ ak,i+1) = 0.

Hence, X ≥ Y a.s.

Exercise 46 (#1.115). Let X1, X2, ... be a sequence of identically dis-
tributed random variables with E|X1|<∞ and let Yn = n−1 max1≤i≤n |Xi|.
Show that limn E(Yn) = 0 and limn Yn = 0 a.s.
Solution. (i) Let gn(t) = n−1P (max1≤i≤n |Xi| > t). Then limn gn(t) = 0
for any t and

0 ≤ gn ≤ 1
n

n∑
i=1

P (|Xi| > t) = P (|X1| > t).

Since E|X1| < ∞,
∫∞
0 P (|X1| > t)dt < ∞ (Exercise 23). By the dominated

convergence theorem,

lim
n

E(Yn) = lim
n

∫ ∞

0
gn(t)dt =

∫ ∞

0
lim
n

gn(t)dt = 0.

(ii) Since E|X1| < ∞,

∞∑
n=1

P (|Xn|/n > ε) =
∞∑

n=1

P (|X1| > εn) < ∞,
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which implies that limn |Xn|/n = 0 a.s. (see, e.g., Theorem 1.8(v) in Shao,
2003). Let Ω0 = {ω : limn |Xn(ω)|/n = 0}. Then P (Ω0) = 1. Let ω ∈ Ω0.
For any ε > 0, there exists an Nε,ω such that |Xn(ω)| < nε whenever n >
Nε,ω. Also, there exists an Mε,ω > Nε,ω such that max1≤i≤Nεω

|Xi(ω)| ≤ nε
whenever n > Mε,ω. Then, whenever n > Mε,ω,

Yn(ω) =
max1≤i≤n |Xi(ω)|

n

≤ max1≤i≤Nεω |Xi(ω)|
n

+
maxNεω<i≤n |Xi(ω)|

n

≤ ε + max
Nεω<i≤n

|Xi(ω)|
i

≤ 2ε,

i.e., limn Yn(ω) = 0. Hence, limn Yn = 0 a.s., since P (Ω0) = 1.

Exercise 47 (#1.116). Let X, X1, X2, ... be random variables. Find an
example for each of the following cases:
(i) Xn →p X, but {Xn} does not converge to X a.s.;
(ii) Xn →p X, but E|Xn − X|p does not converge for any p > 0;
(iii) Xn →d X, but {Xn} does not converge to X in probability;
(iv) Xn →p X, but g(Xn) does not converge to g(X) in probability for
some function g;
(v) limn E|Xn| = 0, but |Xn| cannot be bounded by any integrable function.
Solution: Consider the probability space ([0, 1],B[0,1], P ), where B[0,1] is
the Borel σ-field and P is the Lebesgue measure on [0, 1].
(i) Let X = 0. For any positive integer n, there exist integers m and k such
that n = 2m − 2 + k and 0 ≤ k < 2m+1. Define

Xn(ω) =
{

1 k/2m ≤ ω ≤ k + 1/2m

0 otherwise

for any ω ∈ [0, 1]. Note that

P (|Xn − X| > ε) ≤ P ({ω : k/2m ≤ ω ≤ (k + 1)/2m}) =
1

2m
→ 0

as n → ∞ for any ε > 0. Thus Xn →p X. However, for any fixed ω ∈ [0, 1]
and m, there exists k with 1 ≤ k ≤ 2m such that (k − 1)/2m ≤ ω ≤ k/2m.
Let nm = 2m − 2 + k. Then Xnm

(ω) = 1. Since m is arbitrarily selected,
we can find an infinite sequence {nm} such that Xnm(ω) = 1. This implies
Xn(ω) does not converge to X(ω) = 0. Since ω is arbitrary, Xn does not
converge to X a.s.
(ii) Let X = 0 and

Xn(ω) =
{

0 1/n < ω ≤ 1
en 0 ≤ ω ≤ 1/n.
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For any ε ∈ (0, 1)

P (|Xn − X| > ε) = P (|Xn| 
= 0) =
1
n

→ 0

as n → ∞, i.e., Xn →p X. On the other hand, for any p > 0,

E|Xn − X|p = E|Xn|p = enp/n → ∞.

(iii) Define

X(ω) =
{

1 0 ≤ ω ≤ 1/2
0 1/2 < ω ≤ 1

and

Xn(ω) =
{

0 0 ≤ ω ≤ 1/2
1 1/2 < ω ≤ 1.

For any t,

P (X ≤ t) = P (Xn ≤ t) =

⎧⎨
⎩

1 t ≥ 1
1/2 0 ≤ t < 1
0 t < 0,

Therefore, Xn →d X. However, |Xn−X| = 1 and thus P (|Xn−X| > ε) = 1
for any ε ∈ (0, 1).
(iv) let g(t) = 1 − I{0}(t), X = 0, and Xn = 1/n. Then, Xn →p X, but
g(Xn) = 1 and g(X) = 0.
(v) Define

Xn,m(ω) =
{ √

n m−1
n < ω ≤ m

n

0 otherwise,
m = 1, ..., n, n = 1, 2, ....

Then,

E|Xn,m| =
∫ m/n

(m−1)/n

√
ndx =

1√
n

→ 0

as n → ∞. Hence, the sequence {Xn,m : m = 1, ..., n, n = 1, 2, ...} satisfies
the requirement. If there is a function f such that |Xn,m| ≤ f , then f(ω) =
∞ for any ω ∈ [0, 1]. Hence, f cannot be integrable.

Exercise 48. Let Xn be a random variable and mn be a median of Xn,
n = 1, 2, .... Show that if Xn →d X for a random variable X, then any
limit point of mn is a median of X.
Solution. Without loss of generality, assume that limn mn = m. For ε > 0
such that m + ε and m − ε are continuity points of the distribution of X,
m − ε < mn < m + ε for sufficiently large n and

1
2

≤ P (Xn ≤ mn) ≤ P (Xn ≤ m + ε)
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and
1
2

≤ P (Xn ≥ mn) ≤ P (Xn ≥ m − ε).

Letting n → ∞, we obtain that 1
2 ≤ P (X ≤ m+ ε) and 1

2 ≤ P (X ≥ m− ε).
Letting ε → 0, we obtain that 1

2 ≤ P (X ≤ m) and 1
2 ≤ P (X ≥ m). Hence

m is a median of X.

Exercise 49 (#1.126). Show that if Xn →d X and X = c a.s. for a real
number c, then Xn →p X.
Solution. Note that the cumulative distribution function of X has only
one discontinuity point c. For any ε > 0,

P (|Xn − X| > ε) = P (|Xn − c| > ε)
≤ P (Xn > c + ε) + P (Xn ≥ c − ε)
→ P (X > c + ε) + P (X ≤ c − ε)
= 0

as n → ∞. Thus, Xn →p X.

Exercise 50 (#1.117(b), #1.118). Let X1, X2, ... be random variables.
Show that {|Xn|} is uniformly integrable if one of the following condition
holds:
(i) supn E|Xn|1+δ < ∞ for a δ > 0;
(ii) P (|Xn| ≥ c) ≤ P (|X| ≥ c) for all n and c > 0, where X is an integrable
random variable.
Note. A sequence of random variables {Xn} is uniformly integrable if
limt→∞ supn E(|Xn|I{|Xn|>t}) = 0.
Solution. (i) Denote p = 1 + δ and q = 1 + δ−1. Then

E(|Xn|I{|Xn|>t}) ≤ (E|Xn|p)1/p[E(I{|Xn|>t})q]1/q

= (E|Xn|p)1/p[P (|Xn| > t)]1/q

≤ (E|Xn|p)1/p(E|Xn|p)1/qt−p/q

= E|Xn|1+δt−δ,

where the first inequality follows from Hölder’s inequality (e.g., Shao, 2003,
p. 29) and the second inequality follows from

P (|Xn| > t) ≤ t−pE|Xn|p.

Hence

lim
t→∞ sup

n
E(|Xn|I{|Xn|>t}) ≤ sup

n
E|Xn|1+δ lim

t→∞ t−δ = 0.
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(ii) By Exercise 23,

sup
n

E(|Xn|I{|Xn|>t}) = sup
n

∫ ∞

0
P (|Xn|I{|Xn|>t} > s)ds

= sup
n

∫ ∞

0
P (|Xn| > s, |Xn| > t)ds

= sup
n

(
tP (|Xn| > t) +

∫ ∞

t

P (|Xn| > s)ds

)

≤ tP (|X| > t) +
∫ ∞

t

P (|X| > s)ds

→ 0

as t → ∞ when E|X| < ∞.

Exercise 51. Let {Xn} and {Yn} be sequences of random variables such
that Xn diverges to ∞ in probability and Yn is bounded in probability.
Show that Xn + Yn diverges to ∞ in probability.
Solution. By the definition of bounded in probability, for any ε > 0,
there is Cε > 0 such that supn P (|Yn| > Cε) < ε/2. By the definition of
divergence to ∞ in probability, for any M > 0 and ε > 0, there is nε > 0
such that P (|Xn| ≤ M + Cε) < ε/2 whenever n > nε. Then, for n > nε,

P (|Xn + Yn| ≤ M) ≤ P (|Xn| ≤ M + |Yn|)
= P (|Xn| ≤ M + |Yn|, |Yn| ≤ Cε)

+ P (|Xn| ≤ M + |Yn|, |Yn| > Cε)
≤ P (|Xn| ≤ M + Cε) + P (|Yn| > Cε)
≤ ε/2 + ε/2
= ε.

This means that Xn + Yn diverges to ∞ in probability.

Exercise 52. Let X, X1, X2, ... be random variables. Show that if limn Xn

= X a.s., then supm≥n |Xm| is bounded in probability.
Solution. Since supm≥n |Xm| ≤ supm≥1 |Xm| for any n, it suffices to show
that for any ε > 0, there is a C > 0 such that P (supn≥1 |Xn| > C) ≤ ε. Note
that limn Xn = X implies that, for any ε > 0 and any fixed c1 > 0, there
exists a sufficiently large N such that P (∪∞

n=N{|Xn − X| > c1}) < ε/3
(e.g., Lemma 1.4 in Shao, 2003). For this fixed N , there exist constants
c2 > 0 and c3 > 0 such that

N∑
n=1

P (|Xn| > c2) <
ε

3
and P (|X| > c3) <

ε

3
.
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Let C = max{c1, c2} + c3. Then the result follows from

P

(
sup
n≥1

|Xn| > C

)
= P

( ∞⋃
n=1

{|Xn| > C}
)

≤
N∑

n=1

P (|Xn| > C) + P

( ∞⋃
n=N

{|Xn| > C}
)

≤ ε

3
+ P (|X| > c3) + P

( ∞⋃
n=N

{|Xn| > C, |X| ≤ c3}
)

≤ ε

3
+

ε

3
+ P

( ∞⋃
n=N

{|Xn − X| > c1}
)

≤ ε

3
+

ε

3
+

ε

3
= ε.

Exercise 53 (#1.128). Let {Xn} and {Yn} be two sequences of random
variables such that Xn is bounded in probability and, for any real number
t and ε > 0, limn[P (Xn ≤ t, Yn ≥ t+ ε)+P (Xn ≥ t+ ε, Yn ≤ t)] = 0. Show
that Xn − Yn →p 0.
Solution. For any ε > 0, there exists an M > 0 such that P (|Xn| ≥ M) ≤ ε
for any n, since Xn is bounded in probability. For this fixed M , there exists
an N such that 2M/N < ε/2. Let ti = −M +2Mi/N , i = 0, 1, ..., N . Then,

P (|Xn − Yn| ≥ ε) ≤ P (|Xn| ≥ M) + P (|Xn| < M, |Xn − Yn| ≥ ε)

≤ ε +
N∑

i=1

P (ti−1 ≤ Xn ≤ ti, |Xn − Yn| ≥ ε)

≤ ε +
N∑

i=1

P (Yn ≤ ti−1 − ε/2, ti−1 ≤ Xn)

+
N∑

i=1

P (Yn ≥ ti + ε/2, Xn ≤ ti).

This, together with the given condition, implies that

lim sup
n

P (|Xn − Yn| ≥ ε) ≤ ε.

Since ε is arbitrary, we conclude that Xn − Yn →p 0.

Exercise 54 (#1.133). Let Fn, n = 0, 1, 2, ..., be cumulative distribution
functions such that Fn → F0 for every continuity point of F0. Let U be a
random variable having the uniform distribution on the interval [0, 1] and let
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Gn(U) = sup{x : Fn(x) ≤ U}, n = 0, 1, 2, .... Show that Gn(U) →p G0(U).
Solution. For any n and real number t, Gn(U) ≤ t if and only if Fn(t) ≥ U
a.s. Similarly, Gn(U) ≥ t if and only if Fn(t) ≤ U a.s. Hence, for any n, t
and ε > 0,

P (Gn(U) ≤ t, G0(U) ≥ t + ε) = P (Fn(t) ≥ U, F0(t + ε) ≤ U)
= max{0, Fn(t) − F0(t + ε)}

and

P (Gn(U) ≥ t + ε, G0(U) ≤ t) = P (Fn(t + ε) ≤ U, F0(t) ≤ U)
= max{0, F0(t) − Fn(t + ε)}.

If both t and t+ε are continuity points of F0, then limn[Fn(t)−F0(t+ε)] =
F0(t) − F0(t + ε) ≤ 0 and limn[F0(t) − Fn(t + ε)] = F0(t) − F0(t + ε) ≤ 0.
Hence,

lim
n

[P (Gn(U) ≤ t, G0(U) ≥ t + ε) + P (Gn(U) ≥ t + ε, G0(U) ≤ t)] = 0

when both t and t+ ε are continuity points of F0. Since the set of disconti-
nuity points of F0 is countable, Gn(U)−G0(U) →p 0 follows from the result
in the previous exercise, since G0(U) is obviously bounded in probability.

Exercise 55. Let {Xn} be a sequence of independent and identically
distributed random variables. Show that there does not exist a sequence
of real numbers {cn} such that limn

∑n
i=1(Xi − ci) exists a.s., unless the

distribution of X1 is degenerate.
Solution. Suppose that limn

∑n
i=1(Xi − ci) exists a.s. Let φ and g be the

characteristic functions of X1 and limn

∑n
i=1(Xi−ci), respectively. For any

n, the characteristic function of
∑n

i=1(Xi − ci) is

n∏
i=1

φ(t)e−√−1tci = [φ(t)]ne−√−1t(c1+···+cn),

which converges to g(t) for any t. Then

lim
n

∣∣∣∣[φ(t)]ne−√−1t(c1+···+cn)
∣∣∣∣ = lim

n
|φ(t)|n = |g(t)|.

Since |g(t)| is continuous and g(0) = 1, |g(t)| 
= 0 on a neighborhood of 0.
Hence, |φ(t)| = 1 on this neighborhood and, thus, X1 is degenerate.

Exercise 56. Let P, P1, P2, ... be probability measures such that limnPn(O)
= P (O) for any open set O with P (∂O) = 0, where ∂A is the boundary of
the set A. Show that limn Pn(A) = P (A) for any Borel A with P (∂A) = 0.
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Solution. Let A be a Borel set with P (∂A) = 0. Let A0 be the interior
of A and A1 be the closure of A. Then A0 ⊂ A ⊂ A1 = A0 ∪ ∂A. Since
∂A0 ⊂ ∂A, P (∂A0) = 0 and, by assumption, limn Pn(A0) = P (A0). Since
∂Ac

1 ⊂ ∂A and Ac
1 is an open set, limn Pn(Ac

1) = P (Ac
1), which implies

limn Pn(A1) = P (A1). Then,

P (A) ≤ P (A0) + P (∂A) = P (A0) = lim
n

Pn(A0) ≤ lim inf
n

Pn(A)

and

P (A) ≥ P (A0) = P (A0) + P (∂A) = P (A1) = lim
n

Pn(A1) ≥ lim sup
n

Pn(A).

Hence lim infn Pn(A) = lim supn Pn(A) = limn Pn(A) = P (A).

Exercise 57. Let X, X1, X2, ... be random variables such that, for any
continuous cumulative distribution function F , limn E[F (Xn)] = E[F (X)].
Show that Xn →d X.
Solution. Let y be a continuity point of the cumulative distribution func-
tion of X. Define

Fm(x) =

⎧⎨
⎩

0 x ≤ y − m−1

mx + 1 − my y − m−1 < x ≤ y

1 x > y

and

Hm(x) =

⎧⎨
⎩

0 x ≤ y

mx − my y < x ≤ y + m−1

1 x > y + m−1.

Then, Fm, Hm, m = 1, 2, ..., are continuous cumulative distribution func-
tions and limm Fm(x) = I(−∞,y](x) and limm Hm(x) = I(−∞,y](x), since y
is a continuity point of the cumulative distribution function of X. By the
dominated convergence theorem,

lim
m

E[Fm(X)] = lim
m

E[Hm(X)] = E[I(−∞,y](X)] = P (X ≤ y).

Since Fm(x) decreases as m increases,

E[Fm(Xn)] ≥ E[I(−∞,y](Xn)] = P (Xn ≤ y).

By the assumption, limn E[Fm(Xn)] = E[Fm(X)] for any m. Hence,

E[Fm(X)] ≥ lim sup
n

P (Xn ≤ y)

for any m. Letting m → ∞, we obtain that

P (X ≤ y) ≥ lim sup
n

P (Xn ≤ y).
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Similarly,
E[Hm(Xn)] ≤ E[I(−∞,y](Xn)] = P (Xn ≤ y)

and

lim inf
n

P (Xn ≤ y) ≤ lim
m

lim
n

E[Hm(Xn)] = lim
m

E[Hm(X)] = P (X ≤ y).

Hence limn P (Xn ≤ y) = P (X ≤ y).

Exercise 58 (#1.137). Let {Xn} and {Yn} be two sequences of random
variables. Suppose that Xn →d X and that, for almost every given se-
quence {Xn}, the conditional distribution of Yn given Xn converges to the
distribution of Y at every continuity point of the distribution of Y , where
X and Y are independent random variables. Show that Xn+Yn →d X +Y .
Solution. From the assumed conditions and the continuity theorem (e.g.,
Theorem 1.9 in Shao, 2003), for any real number t, limn E(e

√−1tXn) =
E(e

√−1tX) and limn E(e
√−1tYn |Xn) = E(e

√−1tY ) a.s. By the dominated
convergence theorem,

lim
n

E{e
√−1tXn [E(e

√−1tYn |Xn) − E(e
√−1tY )]} = 0.

Then

lim
n

E[e
√−1t(Xn+Yn)] = lim

n
E[E(e

√−1t(Xn+Yn)|Xn)]

= lim
n

E[e
√−1tXnE(e

√−1tYn |Xn)]

= lim
n

E{e
√−1tXn [E(e

√−1tYn |Xn) − E(e
√−1tY )]}

+ lim
n

E(e
√−1tY )E(e

√−1tXn)

= E(e
√−1tY )E(e

√−1tX)

= E[e
√−1t(X+Y )].

By the continuity theorem again, Xn + Yn →d X + Y .

Exercise 59 (#1.140). Let Xn be a random variable distributed as
N(µn, σ2

n), n = 1, 2,..., and X be a random variable distributed as N(µ, σ2).
Show that Xn →d X if and only if limn µn = µ and limn σ2

n = σ2.
Solution. The characteristic function of X is φX(t) = e

√−1µt−σ2t2/2

and the characteristic function of Xn is φXn
(t) = e

√−1µnt−σ2
nt2/2. If

limn µn = µ and limn σ2
n = σ2, then limn φXn

(t) = φX(t) for any t and, by
the continuity theorem, Xn →d X.

Assume now Xn →d X. By the continuity theorem, limn φXn(t) =
φX(t) for any t. Then limn |φXn(t)| = |φX(t)| for any t. Since |φXn(t)| =
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e−σ2
nt2/2 and |φX(t)| = e−σ2t2/2, limn σ2

n = σ2. Note that

lim
n

e
√−1µnt = lim

n

φXn
(t)

|φXn(t)| =
φX(t)
|φX(t)| = e

√−1µt.

Hence limn µn = µ.

Exercise 60 (#1.146). Let U1, U2, ... be independent random variables
having the uniform distribution on [0, 1] and Yn = (

∏n
i=1 Ui)

−1/n. Show
that

√
n(Yn − e) →d N(0, e2).

Solution. Let Xi = − log Ui. Then X1, X2, ... are independent and identi-
cally distributed random variables with EX1 = 1 and Var(X1) = 1. By the
central limit theorem,

√
n(X̄n − 1) →d N(0, 1), where X̄n = n−1∑n

i=1 Xi.
Note that Yn = eX̄n . Applying the δ-method with g(t) = et to X̄n (e.g.,
Theorem 1.12 in Shao, 2003), we obtain that

√
n(Yn −e) →d N(0, e2), since

g′(0) = 1.

Exercise 61 (#1.161). Suppose that Xn is a random variable having
the binomial distribution with size n and probability θ ∈ (0, 1), n = 1, 2,....
Define Yn = log(Xn/n) when Xn ≥ 1 and Yn = 1 when Xn = 0. Show that
limn Yn = log θ a.s. and

√
n(Yn − log θ) →d N

(
0, 1−θ

θ

)
.

Solution. (i) Let Z1, Z2, ... be independent and identically distributed
random variables with P (Z1 = 1) = θ and P (Z1 = 0) = 1 − θ. Then the
distribution of Xn is the same as that of

∑n
j=1 Zj . For any ε > 0,

P

(∣∣∣∣Xn

n
− θ

∣∣∣∣ ≥ ε

)
≤ 1

ε4
E

∣∣∣∣Xn

n
− θ

∣∣∣∣
4

=
θ4(1 − θ) + (1 − θ)4θ

ε4n3 +
θ2(1 − θ)2(n − 1)

ε4n3 .

Hence,
∞∑

n=1

P

(∣∣∣∣Xn

n
− θ

∣∣∣∣ ≥ ε

)
< ∞

and, by Theorem 1.8(v) in Shao (2003), limn Xn/n = θ a.s.
Define Wn = I{Xn 	=0}Xn/n. Then Yn = log(Wn +eI{Xn=0}). Note that

∞∑
n=1

P (
√

nI{Xn=0} > ε) =
∞∑

n=1

P (Xn = 0) =
∞∑

n=1

(1 − θ)n < ∞.

Hence, limn
√

nI{Xn=0} = 0 a.s., which implies that limn I{Xn=0} = 0 a.s.
and limn I{Xn 	=0} = 1 a.s. By the continuity of the log function on (0,∞),
limn Yn = log θ a.s.

Since Xn has the same distribution as
∑n

j=1 Zj , by the central limit
theorem,

√
n(Xn/n − θ) →d N(0, θ(1 − θ)). Since we have shown that
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limn
√

nI{Xn=0} = 0 a.s. and limn Xn/n = θ a.s., limn I{Xn=0}Xn/
√

n = 0
a.s. By Slutsky’s theorem (e.g., Theorem 1.11 in Shao, 2003),

√
n(Wn − θ) =

√
n

(
Xn

n
− θ

)
− I{Xn=0}

Xn√
n

→d N(0, θ(1 − θ)).

Then, by the δ-method with g(t) = log t and g′(t) = t−1 (e.g., Theorem 1.12
in Shao, 2003),

√
n(log Wn − log θ) →d N

(
0, 1−θ

θ

)
. Since

√
n(Yn − log θ) =√

n(log Wn − log θ) +
√

nI{Xn=0}, by Slutsky’s theorem again, we obtain
that

√
n(Yn − log θ) →d N

(
0, 1−θ

θ

)
.

Exercise 62 (#1.149). Let X1, ..., Xn be independent and identically
distributed random variables such that for x = 3, 4, ..., P (X1 = ±x) =
(2cx2 log x)−1, where c =

∑∞
x=3 x−2/ log x. Show that E|X1| = ∞ but

n−1∑n
i=1 Xi →p 0.

Solution. Note that

E|X1| = c−1
∞∑

x=3

1
x log x

≥ c−1
∫ ∞

3

1
x log x

dx = ∞.

For any positive integer n, E[X1I(−n,n)(X1)] = 0. For sufficiently large x,

x[1 − F (x) + F (−x)] < c−1x

∞∑
k=x

1
k2 log k

≤ c−1x

∫ ∞

x−1

1
t2 log t

dt

≤ c−1x

log(x − 1)

∫ ∞

x−1

1
t2

dt

=
c−1x

log(x − 1)
· 1
x − 1

→ 0

as x → ∞. By the weak law of large numbers (e.g., Theorem 1.13(i) in
Shao, 2003), n−1∑n

i=1 Xi →p 0.

Exercise 63 (#1.151). Let X1, X2, ... be independent random variables.
Assume that limn

∑n
i=1P (|Xi| > n)=0 and limn n−2∑n

i=1E(X2
i I{|Xi|≤n})

= 0. Show that (
∑n

i=1 Xi − bn)/n →p 0, where bn =
∑n

i=1 E(XiI{|Xi|≤n}).
Solution. For any n, let Yni = XiI{|Xi|≤n}, i = 1, ..., n. Define Tn =∑n

i=1 Xi and Zn =
∑n

i=1 Yni. Then

P (Tn 
= Zn) ≤
n∑

i=1

P (Yni 
= Xi) =
n∑

i=1

P (|Xi| > n) → 0
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as n → ∞. For any ε > 0,

P

(
|Zn − EZn|

n
≥ ε

)
≤ Var(Zn)

ε2n2

=
1

ε2n2

n∑
i=1

Var(Yni)

≤ 1
ε2n2

n∑
i=1

EY 2
ni

=
1

ε2n2

n∑
i=1

E(X2
i I{|Xi|≤n})

→ 0

as n → ∞, where the first equality follows from the fact that Yn1, ..., Ynn

are independent since X1, ..., Xn are independent. Thus,

P

(
|Tn − EZn|

n
≥ ε

)
≤ P

(
|Tn − EZn|

n
≥ ε, Tn = Zn

)
+ P (Tn 
= Zn)

≤ P

(
|Zn − EZn|

n
≥ ε

)
+ P (Tn 
= Zn)

→ 0

under the established results. Hence the result follows from the fact that
bn = EZn.

Exercise 64 (#1.154). Let X1, ..., Xn be independent and identically
distributed random variables with Var(X1) < ∞. Show that

1
n(n + 1)

n∑
j=1

jXj →p EX1.

Note. A simple way to solve a problem of showing Yn →p a is to establish
limn EYn = a and limn Var(Yn) = 0.
Solution. Note that

E

⎛
⎝ 2

n(n + 1)

n∑
j=1

jXj

⎞
⎠ =

2
n(n + 1)

n∑
j=1

jEXj = EX1.

Let σ2 = Var(X1). Then,

Var

⎛
⎝ 2

n(n + 1)

n∑
j=1

jXj

⎞
⎠ =

4σ2

n2(n + 1)2

n∑
j=1

j2 =
2σ2(2n + 1)
3n(n + 1)

→ 0
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as n → ∞.

Exercise 65 (#1.165). Let X1, X2, ... be independent random variables.
Suppose that

∑n
j=1(Xj −EXj)/σn →d N(0, 1), where σ2

n = Var(
∑n

j=1 Xj).
Show that n−1∑n

j=1(Xj − EXj) →p 0 if and only if limn σn/n = 0.
Solution. If limn σn/n = 0, then by Slutsky’s theorem (e.g., Theorem 1.11
in Shao, 2003),

1
n

n∑
j=1

(Xj − EXj) =
σn

n

1
σn

n∑
j=1

(Xj − EXj) →d 0.

Assume now σn/n does not converge to 0 but n−1∑n
j=1(Xj − EXj) →p

0. Without loss of generality, assume that limn σn/n = c ∈ (0,∞]. By
Slutsky’s theorem,

1
σn

n∑
j=1

(Xj − EXj) =
n

σn

1
n

n∑
j=1

(Xj − EXj) →p 0.

This contradicts the fact that
∑n

j=1(Xj − EXj)/σn →d N(0, 1). Hence,
n−1∑n

j=1(Xj − EXj) does not converge to 0 in probability.

Exercise 66 (#1.152, #1.166). Let Tn =
∑n

i=1 Xi, where Xn’s are
independent random variables satisfying P (Xn = ±nθ) = 0.5 and θ > 0 is
a constant. Show that
(i) Tn/

√
Var(Tn) →d N(0, 1);

(ii) when θ < 0.5, limn Tn/n = 0 a.s.;
(iii) when θ ≥ 0.5, Tn/n does not converge to 0 in probability.
Solution. (i) Note that ETn = 0 and Var(Xn) = n2θ for any n. Hence,
σ2

n = Var(Tn) =
∑n

j=1 j2θ. Since

n−1∑
j=1

j2θ ≤
n−1∑
j=1

∫ j+1

j

x2θdx ≤
n∑

j=2

j2θ

and
n−1∑
j=1

∫ j+1

j

x2θdx =
∫ n

1
x2θdx =

n2θ+1 − 1
2θ + 1

,

we conclude that

lim
n

σ2
n

n2θ+1 = lim
n

1
n2θ+1

n∑
j=1

j2θ =
1

2θ + 1
.

Then limn nθ/σn = 0 and, for any ε > 0, nθ < εσn for sufficiently large n.
Since |Xn| ≤ nθ, when n is sufficiently large, I{|Xj |>εσn} = 0, j = 1, ..., n,
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and, hence,
∑n

j=1 E(X2
j I{|Xj |>εσn}) = 0. Thus, Lindeberg’s condition holds

and, by the Lindeberg central limit theorem (e.g., Theorem 1.15 in Shao,
2003), Tn/

√
Var(Tn) →d N(0, 1).

(ii) When θ < 0.5,
∞∑

n=1

EX2
n

n2 =
∞∑

n=1

n2θ

n2 < ∞.

By the Kolmogorov strong law of large numbers (e.g., Theorem 1.14 in
Shao, 2003), limn Tn/n = 0 a.s.
(iii) From the result in (i) and the result in the previous exercise, Tn/n →p 0
if and only if limn σn/n = 0. In part (i), we have shown that limn σ2

n/n2θ+1

equals a positive constant. Hence, the result follows since limn σn/n 
= 0
when θ ≥ 0.5.

Exercise 67 (#1.162). Let X1, X2, ... be independent random variables
such that Xj has the uniform distribution on [−j, j], j = 1, 2,.... Show that
Lindeberg’s condition is satisfied.
Solution. Note that EXj = 0 and Var(Xj) =

∫ j

−j
x2dx = 2j3/3 for all j.

Hence

σ2
n = Var

⎛
⎝ n∑

j=1

Xj

⎞
⎠ =

2
3

n∑
j=1

j3 =
n2(n + 1)2

6
.

For any ε > 0, n < εσn for sufficiently large n, since limn n/σn = 0. Since
|Xj | ≤ j ≤ n, when n is sufficiently large,

n∑
j=1

E(X2
j I{|Xj |>εσn}) = 0.

Thus, Lindeberg’s condition holds.

Exercise 68 (#1.163). Let X1, X2, ... be independent random variables
such that for j = 1, 2,..., P (Xj = ±ja) = 6−1j−2(a−1) and P (Xj = 0) =
1−3−1j−2(a−1), where a > 1 is a constant. Show that Lindeberg’s condition
is satisfied if and only if a < 1.5.
Solution. Note that EXj = 0 and

σ2
n =

n∑
j=1

Var(Xj) =
n∑

j=1

2j2a

6j2(a−1) =
1
3

n∑
j=1

j2 =
n(n + 1)(2n + 1)

18
.

Assume first a < 1.5. For any ε > 0, na < εσn for sufficiently large n,
since limn na/σn = 0. Note that |Xn| ≤ na for all n. Therefore, when n is
sufficiently large, I{|Xj |>εσn} = 0, j = 1, ..., n, and, hence,

n∑
j=1

E(X2
j I{|Xj |>εσn}) = 0.



Chapter 1. Probability Theory 49

Thus, Lindeberg’s condition holds.
Assume now a ≥ 1.5. For ε ∈ (0, 1

3 ), let kn be the integer part of
(εσn)1/a. Then

1
σ2

n

n∑
j=1

E(X2
j I{|Xj |>εσn}) =

1
σ2

n

⎛
⎝ n∑

j=1

j2

3
−

kn∑
j=1

j2

3

⎞
⎠

= 1 − kn(kn + 1)(2kn + 1)
18σ2

n

,

which converges, as n → ∞, to 1 if a > 1.5 (since limn kn/n = 0) and to
1 − ε2/9 if a = 1.5 (since limn k3

n/σ2
n = ε2). Hence, Lindeberg’s condition

does not hold.

Exercise 69 (#1.155). Let {Xn} be a sequence of random variables and
let X̄n =

∑n
i=1 Xi/n. Show that

(i) if limn Xn = 0 a.s., then limn X̄n = 0 a.s.;
(ii) if supn E|Xn|r < ∞ and limn E|Xn|r = 0, then limn E|X̄n|r = 0, where
r ≥ 1 is a constant;
(iii) the result in part (ii) may not be true for r ∈ (0, 1);
(iv) Xn →p 0 may not imply X̄n →p 0.
Solution. (i) The result in this part is actually a well known result in
mathematical analysis. It suffices to show that if {xn} is a sequence of
real numbers satisfying limn xn = 0, then n−1∑n

i=1 xi = 0. Assume that
limn xn = 0. Then M = supn |xn| < ∞ and, for any ε > 0, there is an N
such that |xn| ≤ ε for all n > N . Then, for n > max{N, NM/ε},∣∣∣∣ 1n

n∑
i=1

xi

∣∣∣∣ ≤ 1
n

(
N∑

i=1

|xi| +
n∑

i=N+1

|xi|
)

≤ 1
n

(
N∑

i=1

M +
n∑

i=N+1

ε

)

=
NM

n
+

ε(n − N)
n

< ε + ε = 2ε.

(ii) When r ≥ 1, |x|r is a convex function. By Jensen’s inequality, E|X̄n|r ≤
n−1∑n

i=1 E|Xi|r. When limn E|Xn|r = 0, limn n−1∑n
i=1 E|Xi|r = 0 (the

result in part (i)). Hence, limn E|X̄n|r = 0.
(iii)-(iv) Consider the Xi’s in the previous exercise, i.e., X1, X2, ... are inde-
pendent, P (Xj = ±ja) = 6−1j−2(a−1) and P (Xj = 0) = 1 − 3−1j−2(a−1),
where a is a constant satisfying 1 < a < 1.5. Let r be a constant such that
0 < r < 2(a − 1)/a. Then 0 < r < 1. Note that

lim
n

E|Xn|r = lim
n

3−1nar−2(a−1) = 0
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and, hence, Xn →p 0. From the result in the previous exercise,
∑n

i=1 Xi/σn

→d N(0, 1) with σ2
n = n(n+1)(2n+1)/18. Since limn σn/n = ∞, X̄n does

not converge to 0 in probability. This shows that Xn →p 0 may not imply
X̄n →p 0. Furthermore, E|X̄n|r does not converge to 0, because if it does,
then X̄n →p 0. This shows that the result in part (ii) may not be true for
r ∈ (0, 1).

Exercise 70 (#1.164). Let X1, X2, ... be independent random variables
satisfying P (Xj = ±ja) = P (Xj = 0) = 1/3, where a > 0, j = 1, 2,....
Show that Liapounov’s condition holds, i.e.,

lim
n

1
σ2+δ

n

n∑
j=1

E|Xj − EXj |2+δ = 0

for some δ > 0, where σ2
n = Var(

∑n
j=1 Xj).

Solution. Note that EXj = 0 and

σ2
n =

n∑
j=1

Var(Xj) =
2
3

n∑
j=1

j2a.

For any δ > 0,

n∑
j=1

E|Xj − E(Xj)|2+δ =
2
3

n∑
j=1

j(2+δ)a.

From the proof of Exercise 66,

lim
n

1
nt+1

n∑
j=1

jt =
1

t + 1

for any t > 0. Thus,

lim
n

1
σ2+δ

n

n∑
j=1

E|Xj − EXj |2+δ = lim
n

2
3

∑n
j=1 j(2+δ)a(

2
3

∑n
j=1 j2a

)1+δ/2

= lim
n

(
3
2

)δ/2 (2a + 1)1+δ/2

(2 + δ)a + 1
n(2+δ)a+1

n(2a+1)(1+δ)

=
(

3
2

)δ/2 (2a + 1)1+δ/2

(2 + δ)a + 1
lim
n

1
nδ/2

= 0.
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Fundamentals of Statistics

Exercise 1 (#2.9). Consider the family of double exponential distribu-
tions: P =

{
2−1e−|t−µ| : −∞ < µ < ∞

}
. Show that P is not an expo-

nential family.
Solution. Assume that P is an exponential family. Then there exist p-
dimensional Borel functions T (X) and η(µ) (p ≥ 1) and one-dimensional
Borel functions h(X) and ξ(µ) such that

2−1 exp{−|t − µ|} = exp{[η(µ)]τT (t) − ξ(µ)}h(t)

for any t and µ. Let X = (X1, ..., Xn) be a random sample from P ∈ P
(i.e., X1, ..., Xn are independent and identically distributed with P ∈ P),
where n > p, Tn(X) =

∑n
i=1 T (Xi), and hn(X) = Πn

i=1h(Xi). Then the
joint Lebesgue density of X is

2−n exp

{
−

n∑
i=1

|xi − µ|
}

= exp {[η(µ)]τTn(x) − nξ(µ)} hn(x)

for any x = (x1, ..., xn) and µ, which implies that
n∑

i=1

|xi| −
n∑

i=1

|xi − µ| = [η̃(µ)]τTn(x) − nξ̃(µ)

for any x and µ, where η̃(µ) = η(µ) − η(0) and ξ̃(µ) = ξ(µ) − ξ(0). Define
ψµ(x) =

∑n
i=1 |xi| −

∑n
i=1 |xi − µ|. We conclude that if x = (x1, ..., xn)

and y = (y1, ..., yn) such that Tn(x) = Tn(y), then ψµ(x) = ψµ(y) for all µ,
which implies that vector of the ordered xi’s is the same as the vector of
the ordered yi’s.

On the other hand, we may choose real numbers µ1, ..., µp such that
η̃(µi), i = 1, ..., p, are linearly independent vectors. Since

ψµi(x) = [η̃(µi)]τTn(x) − nξ̃(µi), i = 1, ..., p,

51
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for any x, Tn(x) is then a function of the p functions ψµi(x), i = 1, ..., p.
Since n > p, it can be shown that there exist x and y in Rn such that
ψµi

(x) = ψµi(y), i = 1, ..., p, (which implies Tn(x) = Tn(y)), but the vector
of ordered xi’s is not the same as the vector of ordered yi’s. This contradicts
the previous conclusion. Hence, P is not an exponential family.

Exercise 2 (#2.13). A discrete random variable X with

P (X = x) = γ(x)θx/c(θ), x = 0, 1, 2, ...,

where γ(x) ≥ 0, θ > 0, and c(θ) =
∑∞

x=0 γ(x)θx, is called a random vari-
able with a power series distribution. Show that
(i) {γ(x)θx/c(θ) : θ > 0} is an exponential family;
(ii) if X1, ..., Xn are independent and identically distributed with a power
series distribution γ(x)θx/c(θ), then

∑n
i=1 Xi has the power series distribu-

tion γn(x)θx/[c(θ)]n, where γn(x) is the coefficient of θx in the power series
expansion of [c(θ)]n.
Solution. (i) Note that

γ(x)θx/c(θ) = exp{x log θ − log(c(θ))}γ(x).

Thus, {γ(x)θx/c(θ) : θ > 0} is an exponential family.
(ii) From part (i), we know that the natural parameter η = log θ, and
also ζ(η) = log (c(eη)). From the properties of exponential families (e.g.,
Theorem 2.1 in Shao, 2003), the moment generating function of X is
ψX(t) = eζ(η+t)/eζ(η) = c(θet)/c(θ). The moment generating function of∑n

i=1 Xi is [c(θet)]n /[c(θ)]n, which is the moment generating function of
the power series distribution γn(x)θx/[c(θ)]n.

Exercise 3 (#2.17). Let X be a random variable having the gamma
distribution with shape parameter α and scale parameter γ, where α is
know and γ is unknown. let Y = σ log X. Show that
(i) if σ > 0 is unknown, then the distribution of Y is in a location-scale
family;
(ii) if σ > 0 is known, then the distribution of Y is in an exponential family.
Solution. (i) The Lebesgue density of X is

1
Γ(α)γα

xα−1e−x/γI(0,∞)(x).

Applying the result in the note of Exercise 17 in Chapter 1, the Lebesgue
density for Y = σ log X is

1
Γ(α)σ

eα(y−σ log γ)/σ exp
{

−e(y−σ log γ)/σ
}

.

It belongs to a location-scale family with location parameter η = σ log γ
and scale parameter σ.
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(ii) When σ is known, we rewrite the density of Y as

1
σΓ(α)

exp{αy/σ} exp
{

−ey/σ

γ
− α log γ

}
.

Therefore, the distribution of Y is from an exponential family.

Exercise 4. Let (X1, ..., Xn) be a random sample from N(0, 1). Show that
X2

i /
∑n

j=1 X2
j and

∑n
j=1 X2

j are independent, i = 1, ..., n.
Solution. Note that X2

1 , ..., X2
n are independent and have the chi-square

distribution χ2
1. Hence their joint Lebesgue density is

ce−(y1+···+yn)/2

√
y1 · · · yn

, yj > 0,

where c is a constant. Let U =
∑n

j=1 X2
j and Vi = X2

i /U , i = 1, ..., n. Then
X2

i = UVi and
∑n

j=1 Vj = 1. The Lebesgue density for (U, V1, ..., Vn−1) is

ce−u/2vnun−1
√

unv1 · · · vn
= cun/2−1e−u/2

√
1 − v1 · · · vn−1

v1 · · · vn−1
, u > 0, vj > 0.

Hence U and (V1/U, ..., Vn−1/U) are independent. Since Vn = 1 − (V1 +
· · · + Vn−1), we conclude that U and Vn/U are independent.

An alternative solution can be obtained by using Basu’s theorem (e.g.,
Theorem 2.4 in Shao, 2003).

Exercise 5. Let X = (X1, ..., Xn) be a random n-vector having the mul-
tivariate normal distribution Nn(µJ, D), where J is the n-vector of 1’s,

D = σ2

⎛
⎜⎜⎝

1 ρ · · · ρ

ρ 1 · · · ρ

· · · · · · · · · · · ·
ρ ρ · · · 1

⎞
⎟⎟⎠ ,

and |ρ| < 1. Show that X̄ = n−1∑n
i=1 Xi and W =

∑n
i=1(Xi − X̄)2

are independent, X̄ has the normal distribution N
(
µ, 1+(n−1)ρ

n σ2
)
, and

W/[(1 − ρ)σ2] has the chi-square distribution χ2
n−1.

Solution. Define

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
n

1√
n

1√
n

1√
n

· · · 1√
n

1√
2·1

−1√
2·1 0 0 · · · 0

1√
3·2

1√
3·2

−2√
3·2 0 · · · 0

· · · · · · · · · · · · · · · · · ·
1√

n(n−1)
1√

n(n−1)
1√

n(n−1)
1√

n(n−1)
· · · −(n−1)√

n(n−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

.



54 Chapter 2. Fundamentals of Statistics

Then AAτ = I (the identity matrix) and

ADAτ = σ2

⎛
⎜⎜⎝

1 + (n − 1)ρ 0 · · · 0
0 1 − ρ · · · 0

· · · · · · · · · · · ·
0 0 · · · 1 − ρ

⎞
⎟⎟⎠ .

Let Y = AX. Then Y is normally distributed with E(Y ) = AE(X) =
(
√

nµ, 0, ..., 0) and Var(Y ) = ADAτ , i.e., the components of Y are in-
dependent. Let Yi be the ith component of Y . Then, Y1 =

√
nX̄ and∑n

i=1 Y 2
i = Y τY = XτAτAX = XτX =

∑n
i=1 X2

i . Hence X̄ = Y1/
√

n
and W =

∑n
i=1(Xi − X̄)2 =

∑n
i=1 X2

i − nX̄2 =
∑n

i=1 Y 2
i − Y 2

1 =
∑n

i=2 Y 2
i .

Since Yi’s are independent, X̄ and W are independent.
Since Y1 has distribution N(

√
nµ, [1 + (n − 1)ρ]σ2), X̄ = Y1/

√
n has

distribution N
(
µ, 1+(n−1)ρ

n σ2
)
. Since Y2, ..., Yn are independent and iden-

tically distributed as N(0, (1−ρ)σ2), W/[(1−ρ)σ2] =
∑n

i=2 Y 2
i /[(1−ρ)σ2]

has the χ2
n−1 distribution.

Exercise 6. Let (X1, ..., Xn) be a random sample from the uniform dis-
tribution on the interval [0, 1] and let R = X(n) − X(1), where X(i) is the
ith order statistic. Derive the Lebesgue density of R and show that the
limiting distribution of 2n(1 − R) is the chi-square distribution χ2

4.
Solution. The joint Lebesgue density of X(1) and X(n) is

f(x, y) =
{

n(n − 1)(y − x)n−2 0 < x < y < 1
0 otherwise

(see, e.g., Example 2.9 in Shao, 2003). Then, the joint Lebesgue density of
R and X(n) is

g(x, y) =
{

n(n − 1)xn−2 0 < x < y < 1
0 otherwise

and, when 0 < x < 1, the Lebesgue density of R is∫
g(x, y)dy =

∫ 1

x

n(n − 1)yn−2ds = n(n − 1)xn−2(1 − x)

for 0 < x < 1. Consequently, the Lebesgue density of 2n(1 − R) is

hn(x) =

{
n−1
4n x
(
1 − x

2n

)n−2 0 < x < 2n

0 otherwise.

Since limn

(
1 − x

2n

)n−2 = e−x/2, limn hn(x) = 4−1xex/2I(0,∞)(x), which is
the Lebesgue density of the χ2

4 distribution. By Scheffé’s theorem (e.g.,
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Proposition 1.18 in Shao, 2003), the limiting distribution of 2n(1 − R) is
the χ2

4 distribution.

Exercise 7. Let (X1, ..., Xn) be a random sample from the exponential
distribution with Lebesgue density θ−1e(a−x)/θI(0,∞)(x), where a ∈ R and
θ > 0 are parameters. Let X(1) ≤ · · · ≤ X(n) be order statistics, X(0) = 0,
and Zi = X(i) − X(i−1), i = 1, ..., n. Show that
(i) Z1, ..., Zn are independent and 2(n − i + 1)Zi/θ has the χ2

2 distribution;
(ii) 2[
∑r

i=1 X(i) + (n − r)X(r) − na]/θ has the χ2
2r distribution, r = 1, ..., n;

(iii) X(1) and Y are independent and (X(1)−a)/Y has the Lebesgue density

n
(
1 + nt

n−1

)−n

I(0,∞)(t), where Y = (n − 1)−1∑n
i=1(Xi − X(1)).

Solution. If we can prove the result for the case of a = 0 and θ = 1, then
the result for the general case follows by considering the transformation
(Xi − a)/θ, i = 1, ..., n. Hence, we assume that a = 0 and θ = 1.
(i) The joint Lebesgue density of X(1), ..., X(n) is

f(x1, ..., xn) =
{

n!e−x1−···−xn 0 < x1 < · · · < xn

0 otherwise.

Then the joint Lebesgue density of Zi, i = 1, ..., n, is

g(x1, ..., xn) =
{

n!e−nx1−···−(n−i+1)xi−···−xn xi > 0, i = 1, ..., n,

0 otherwise.

Hence Z1, ..., Zn are independent and, for each i, the Lebesgue density of
2Zi is (n − i + 1)e−(n−i+1)xiI(0,∞)(xi). Then the density of 2(n − i + 1)Zi

is 2−1e−xi/2I(0,∞)(xi), which is the density of the χ2
2 distribution.

(ii) For r = 1, ..., n,

r∑
i=1

X(i) + (n − r)X(r) =
r∑

i=1

(n − i + 1)Zi.

From (i), Z1, ..., Zn are independent and 2(n − i + 1)Zi has the χ2
2 distri-

bution. Hence 2
∑r

i=1 X(i) +(n− r)X(r) has the χ2
2r distribution for any r.

(iii) Note that

Y =
1

n − 1

n∑
i=2

(X(i) − X(1)) =
1

n − 1

n∑
i=2

(n − i + 1)Zi.

From the result in (i), Y and X(1) are independent and 2(n − 1)Y has
the χ2

2(n−1) distribution. Hence the Lebesgue density of Y is fY (y) =
(n−1)n

(n−1)! y
n−2e−(n−1)yI(0,∞)(y). Note that the Lebesgue density of X(1) is
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fX(1)(x) = ne−nxI(0,∞)(x). Hence, for t > 0, the density of the ratio
X(1)/Y is (e.g., Example 1.15 in Shao, 2003)

f(t) =
∫

|x|fY (x)fX(1)(tx)dx

=
∫ ∞

0

n(n − 1)n

(n − 1)!
xn−1e−(n+nt−1)xdx

= n

(
1 +

nt

n − 1

)−n ∫ ∞

0

(n + nt − 1)n

(n − 1)!
xn−1e−(n+nt−1)xdx

= n

(
1 +

nt

n − 1

)−n

.

Exercise 8 (#2.19). Let (X1, ..., Xn) be a random sample from the
gamma distribution with shape parameter α and scale parameter γx and let
(Y1, ..., Yn) be a random sample from the gamma distribution with shape
parameter α and scale parameter γy. Assume that Xi’s and Yi’s are inde-
pendent. Derive the distribution of the statistic X̄/Ȳ , where X̄ and Ȳ are
the sample means based on Xi’s and Yi’s, respectively.
Solution. From the property of the gamma distribution, nX̄ has the
gamma distribution with shape parameter nα and scale parameter γx and
nȲ has the gamma distribution with shape parameter nα and scale param-
eter γy. Since X̄ and Ȳ are independent, the Lebesgue density of the ratio
X̄/Ȳ is, for t > 0,

f(t) =
1

[Γ(nα)]2(γxγy)nα

∫ ∞

0
(tx)nα−1e−tx/γxxnαe−x/γydx

=
Γ(2nα)tnα−1

[Γ(nα)]2(γxγy)nα

(
t

γx
+

1
γy

)−2nα

.

Exercise 9 (#2.22). Let (Yi, Zi), i = 1, ..., n, be independent and iden-
tically distributed random 2-vectors. The sample correlation coefficient is
defined to be

T =
1

(n − 1)SY SZ

n∑
i=1

(Yi − Ȳ )(Zi − Z̄),

where Ȳ =n−1∑n
i=1 Yi, Z̄ =n−1∑n

i=1 Zi, S2
Y =(n−1)−1∑n

i=1(Yi−Ȳ )2, and
S2

Z =(n−1)−1∑n
i=1(Zi−Z̄)2.

(i) Assume that E|Yi|4 < ∞ and E|Zi|4 < ∞. Show that
√

n(T − ρ) →d N(0, c2),
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where ρ is the correlation coefficient between Y1 and Z1 and c is a constant.
Identify c in terms of moments of (Y1, Z1).
(ii) Assume that Yi and Zi are independently distributed as N(µ1, σ

2
1) and

N(µ2, σ
2
2), respectively. Show that T has the Lebesgue density

Γ
(

n−1
2

)
√

πΓ
(

n−2
2

) (1 − t2)(n−4)/2I(−1,1)(t).

(iii) Under the conditions of part (ii), show that the result in (i) is the same
as that obtained by applying Scheffé’s theorem to the density of

√
nT .

Solution. (i) Consider first the special case of EY1 = EZ1 = 0 and Var(Y1)
= Var(Z1) = 1. Let Wi =

(
Yi, Zi, Y

2
i , Z2

i , YiZi

)
and W̄ = n−1∑n

i=1 Wi.
Since W1, ..., Wn are independent and identically distributed and Var(W1)
is finite under the assumption of E|Y1|4 < ∞ and E|Z1|4 < ∞, by the
central limit theorem,

√
n(W̄ −θ) →d N5(0, Σ), where θ = (0, 0, 1, 1, ρ) and

Σ=

⎛
⎜⎜⎜⎜⎝

1 ρ E(Y 3
1 ) E(Y1Z

2
1 ) E(Y 2

1 Z1)
ρ 1 E(Y 2

1 Z1) E(Z3
1 ) E(Y1Z

2
1 )

E(Y 3
1 ) E(Y 2

1 Z1) E(Y 4
1 ) − 1 E(Y 2

1 Z2
1 ) − 1 E(Y 3

1 Z1) − ρ

E(Y1Z
2
1 ) E(Z3

1 ) E(Y 2
1 Z2

1 ) − 1 E(Z4
1 ) − 1 E(Y1Z

3
1 ) − ρ

E(Y 2
1 Z1) E(Y1Z

2
1 ) E(Y 3

1 Z1) − ρ E(Y1Z
3
1 ) − ρ E(Y 2

1 Z2
1 ) − ρ2

⎞
⎟⎟⎟⎟⎠.

Define
h(x1, x2, x3, x4, x5) =

x5 − x1x2√
(x3 − x2

1)(x4 − x2
2)

.

Then T = h(W̄ ) and ρ = h(θ). By the δ-method (e.g., Theorem 1.12 in
Shao, 2003),

√
n[h(W̄ ) − h(θ)] →d N(0, c2), where c2 = ξτΣξ and ξ =

∂h(w)
∂w

∣∣
w=θ

= (0, 0,−ρ/2,−ρ/2, 1). Hence

c2 = ρ2[E(Y 4
1 ) + E(Z4

1 ) + 2E(Y 2
1 Z2

1 )]/4
− ρ[E(Y 3

1 Z1) + E(Y1Z
3
1 )] + E(Y 2

1 Z2
1 ).

The result for the general case can be obtained by considering the trans-
formation (Yi − EYi)/

√
Var(Yi) and (Zi − EZi)/

√
Var(Zi). The value of

c2 is then given by the previous expression with Y1 and Z1 replaced by
(Y1 − EY1)/

√
Var(Y1) and (Z1 − EZ1)/

√
Var(Z1), respectively.

(ii) We only need to consider the case of µ1 = µ2 = 0 and σ2
1 = σ2

2 = 1.
Let Y = (Y1, ..., Yn), Z = (Z1, ..., Zn), and AZ be the n-vector whose ith
component is (Zi − Z̄)/(

√
n − 1SZ). Note that

(n − 1)S2
Y − (Aτ

ZY )2 = Y τBZY

with BZ = In − n−1JJτ − AZAτ
Z , where In is the identity matrix of order

n and J is the n-vector of 1’s. Since Aτ
ZAZ = 1 and JτAZ = 0, BZAZ = 0,
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B2
Z = BZ and tr(BZ) = n − 2. Consequently, when Z is considered to

be a fixed vector, Y τBZY and Aτ
ZY are independent, Aτ

ZY is distributed
as N(0, 1), Y τBZY has the χ2

n−2 distribution, and
√

n − 2Aτ
ZY/

√
Y τBZY

has the t-distribution tn−2. Since T = Aτ
ZY/(

√
n − 1SY ),

P (T ≤ t) = E[P (T ≤ t|Z)]

= E

[
P

(
Aτ

ZY√
Y τBZY + (Aτ

ZY )2
≤ t

∣∣∣∣Z
)]

= E

[
P

(
Aτ

ZY√
Y τBZY

≤ t√
1 − t2

∣∣∣∣Z
)]

= E

[
P

(
tn−2 ≤ t

√
n − 2√
1 − t2

)]

=
Γ(n−1

2 )√
(n − 2)πΓ(n−2

2 )

∫ t
√

n−2√
1−t2

0

(
1 +

x2

n − 2

)−(n−1)/2

dx,

where tn−2 denotes a random variable having the t-distribution tn−2 and
the third equality follows from the fact that a√

a2+b2
≤ t if and only if

a√
b2

≤ t√
1−t2

for real numbers a and b and t ∈ (0, 1). Thus, T has Lebesgue
density

d

dt
P (T ≤ t) =

Γ(n−1
2 )

√
πΓ(n−2

2 )
(1 − t2)(n−4)/2I(−1,1)(t).

(iii) Under the conditions of part (ii), ρ = 0 and, from the result in (i),
c = 1 and

√
nT →d N(0, 1). From the result in (ii),

√
nT has Lebesgue

density

Γ(n−1
2 )

√
nπΓ(n−2

2 )

(
1 − t2

n

)(n−4)/2

I(−√
n,

√
n)(t) → 1√

2π
e−t2/2

by Stirling’s formula. By Scheffé’s Theorem,
√

nT →d N(0, 1).

Exercise 10 (#2.23). Let X1, ..., Xn be independent and identically dis-
tributed random variables with EX4

1 < ∞, T = (Y, Z), and T1 = Y/
√

Z,
where Y = n−1∑n

i=1 |Xi| and Z = n−1∑n
i=1 X2

i .
(i) Show that

√
n(T −θ) →d N2(0, Σ) and

√
n(T1−ϑ) →d N(0, c2). Identify

θ, Σ, ϑ, and c2 in terms of moments of X1.
(ii) Repeat (i) when X1 has the normal distribution N(0, σ2).
(iii) Repeat (i) when X1 has Lebesgue density (2σ)−1e−|x|/σ.
Solution. (i) Define θj = E|X1|j , j = 1, 2, 3, 4, and Wi = (|Xi|, X2

i ),
i = 1, ..., n. Then T = n−1∑n

i=1 Wi. Let θ = EW1 = (θ1, θ2). By the
central limit theorem,

√
n(T − θ) →d N2(0, Σ), where

Σ =
(

Var(|X1|) Cov(|X1|, X2
1 )

Cov(|X1|, X2
1 ) Var(X2

1 )

)
=
(

θ2 − θ2
1 θ3 − θ1θ2

θ3 − θ1θ2 θ4 − θ2
2

)
.
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Let g(y, z) = y/
√

z. Then T1 = g(T ), g(θ) = θ1/
√

θ2, ∂g
∂y

∣∣
(y,z)=θ

= 1/
√

θ2,

and ∂g
∂z

∣∣
(y,z)=θ

= −θ1/(2θ
3/2
2 ). Then, by the δ-method,

√
n(T1 − ϑ) →d

N(0, c2) with ϑ = θ1/
√

θ2 and

c2 = 1 +
θ2
1θ4

4θ3
2

− θ1θ3

θ2
2

− θ2
1

4θ3
.

(ii) We only need to calculate θj . When X1 is distributed as N(0, σ2), a
direct calculation shows that θ1 =

√
2σ/

√
π, θ2 = σ2, θ3 = 2

√
2σ3/

√
π, and

θ4 = 3σ4.
(iii) Note that |X1| has the exponential distribution with Lebesgue density
σ−1e−x/σI(0,∞)(x). Hence, θj = σjj!.

Exercise 11 (#2.25). Let X be a sample from P ∈ P, where P is a
family of distributions on the Borel σ-field on Rn. Show that if T (X) is
a sufficient statistic for P ∈ P and T = ψ(S), where ψ is measurable and
S(X) is another statistic, then S(X) is sufficient for P ∈ P.
Solution. Assume first that all P in P are dominated by a σ-finite measure
ν. Then, by the factorization theorem (e.g., Theorem 2.2 in Shao, 2003),

dP

dν
(x) = g

P
(T (x))h(x),

where h is a Borel function of x (not depending on P ) and g
P
(t) is a Borel

function of t. If T = ψ(S), then

dP

dν
(x) = g

P
(ψ(S(x)))h(x)

and, by the factorization theorem again, S(X) is sufficient for P ∈ P.
Consider the general case. Suppose that S(X) is not sufficient for P ∈

P. By definition, there exist at least two measures P1 ∈ P and P2 ∈ P
such that the conditional distributions of X given S(X) under P1 and P2
are different. Let P0 = {P1, P2}, which is a sub-family of P. Since T (X) is
sufficient for P ∈ P, it is also sufficient for P ∈ P0. Since all P in P0 are
dominated by the measure P1 + P2, by the previously proved result, S(X)
is sufficient for P ∈ P0. Hence, the conditional distributions of X given
S(X) under P1 and P2 are the same. This contradiction proves that S(X)
is sufficient for P ∈ P.

Exercise 12. Let P = {fθ : θ ∈ Θ}, where fθ’s are probability densities,
fθ(x) > 0 for all x ∈ R and, for any θ ∈ Θ, fθ(x) is continuous in x. Let
X1 and X2 be independent and identically distributed as fθ. Show that if
X1 + X2 is sufficient for θ, then P is an exponential family indexed by θ.
Solution. The joint density of X1 and X2 is fθ(x1)fθ(x2). By the factor-
ization theorem, there exist functions gθ(t) and h(x1, x2) such that

fθ(x1)fθ(x2) = gθ(x1 + x2)h(x1, x2).
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Then
log fθ(x1) + log fθ(x2) = g(x1 + x2, θ) + h1(x1, x2),

where g(t, θ) = log gθ(t) and h1(x1, x2) = log h(x1, x2). Let θ0 ∈ Θ and
r(x, θ) = log fθ(x) − log fθ0(x) and q(x, θ) = g(x, θ) − g(x, θ0). Then

q(x1 + x2, θ) = log fθ(x1) + log fθ(x2) + h1(x1, x2)
− log fθ0(x1) − log fθ0(x2) − h1(x1, x2)

= r(x1, θ) + r(x2, θ).

Consequently,

r(x1 + x2, θ) + r(0, θ) = q(x1 + x2, θ) = r(x1, θ) + r(x2, θ)

for any x1, x2, and θ. Let s(x, θ) = r(x, θ) − r(0, θ). Then

s(x1, θ) + s(x2, θ) = s(x1 + x2, θ)

for any x1, x2, and θ. Hence,

s(n, θ) = ns(1, θ) n = 0,±1,±2, ....

For any rational number n
m (n and m are integers and m 
= 0),

s
(

n
m , θ
)

= ns
( 1

m , θ
)

= m
mns
( 1

m , θ
)

= n
ms
(

m
m , θ
)

= n
ms (1, θ) .

Hence s(x, θ) = xs(1, θ) for any rational x. From the continuity of fθ, we
conclude that s(x, θ) = xs(1, θ) for any x ∈ R, i.e.,

r(x, θ) = s(1, θ)x + r(0, θ)

any x ∈ R. Then, for any x and θ,

fθ(x) = exp{r(x, θ) + log fθ0(x)}
= exp{s(1, θ)x + r(0, θ) + log fθ0(x)}
= exp{η(θ)x − ξ(θ)}h(x),

where η(θ) = s(1, θ), ξ(θ) = −r(0, θ), and h(x) = fθ0(x). This shows that
P is an exponential family indexed by θ.

Exercise 13 (#2.30). Let X and Y be two random variables such that
Y has the binomial distribution with size N and probability π and, given
Y = y, X has the binomial distribution with size y and probability p.
(i) Suppose that p ∈ (0, 1) and π ∈ (0, 1) are unknown and N is known.
Show that (X, Y ) is minimal sufficient for (p, π).
(ii) Suppose that π and N are known and p ∈ (0, 1) is unknown. Show
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whether X is sufficient for p and whether Y is sufficient for p.
Solution. (i) Let A = {(x, y) : x = 0, 1, ..., y, y = 0, 1, ..., N}. The joint
probability density of (X, Y ) with respect to the counting measure is(

N

y

)
πy(1 − π)N−y

(
y

x

)
px(1 − p)y−xIA

= exp
{

x log
p

1 − p
+ y log

π(1 − p)
1 − π

+ N log(1 − π)
}(

N

y

)(
y

x

)
IA.

Hence, (X, Y ) has a distribution from an exponential family of full rank
(0 < p < 1 and 0 < π < 1). This implies that (X, Y ) is minimal sufficient
for (p, π).
(ii) The joint probability density of (X, Y ) can be written as

exp
{

x log
p

1 − p
+ y log(1 − p)

}
πy(1 − π)N−y

(
N

y

)(
y

x

)
IA.

This is from an exponential family not of full rank. Let p0 = 1
2 , p1 = 1

3 ,
p2 = 2

3 , and η(p) = (log p
1−p , log(1 − p)). Then, two vectors in R2, η(p1) −

η(p0) = (− log 2, 2 log 2 − log 3) and η(p2) − η(p0) = (log 2, log 2 − log 3),
are linearly independent. By the properties of exponential families (e.g.,
Example 2.14 in Shao, 2003), (X, Y ) is minimal sufficient for p. Thus,
neither X nor Y is sufficient for p.

Exercise 14 (#2.34). Let X1, ..., Xn be independent and identically dis-
tributed random variables having the Lebesgue density

exp
{

−
(

x−µ
σ

)4 − ξ(θ)
}

,

where θ = (µ, σ) ∈ Θ = R × (0,∞). Show that P = {Pθ : θ ∈ Θ} is
an exponential family, where Pθ is the joint distribution of X1, ..., Xn, and
that the statistic T =

(∑n
i=1 Xi,

∑n
i=1 X2

i ,
∑n

i=1 X3
i ,
∑n

i=1 X4
i

)
is minimal

sufficient for θ ∈ Θ.
Solution. Let T (x) = (

∑n
i=1 xi,

∑n
i=1 x2

i ,
∑n

i=1 x3
i ,
∑n

i=3 x4
i ) for any x =

(x1, ..., xn) and let η(θ) = σ−4(−4µ3, 6µ2,−4µ, 1). The joint density of
(X1, ..., Xn) is

fθ(x) = exp
{
[η(θ)]τT (x) − nµ4/σ4 − nξ(θ)

}
,

which belongs to an exponential family. For any two sample points x =
(x1, ..., xn) and y = (y1, ..., yn),

fθ(x)
fθ(y)

= exp

{
− 1

σ4

[(
n∑

i=1

x4
i −

n∑
i=1

y4
i

)
− 4µ

(
n∑

i=1

x3
i −

n∑
i=1

y3
i

)

+ 6µ2

(
n∑

i=1

x2
i −

n∑
i=1

y2
i

)
− 4µ3

(
n∑

i=1

xi −
n∑

i=1

yi

)]}
,
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which is free of parameter (µ, σ) if and only if T (x) = T (y). By Theorem
2.3(iii) in Shao (2003), T (X) is minimal sufficient for θ.

Exercise 15 (#2.35). Let (X1, ..., Xn) be a random sample of random
variables having the Lebesgue density fθ(x)=(2θ)−1

[
I(0,θ)(x)+I(2θ,3θ)(x)

]
.

Find a minimal sufficient statistic for θ ∈ (0,∞).
Solution. We use the idea of Theorem 2.3(i)-(ii) in Shao (2003). Let Θr =
{θ1, θ2, ...} be the set of positive rational numbers, P0 = {gθ : θ ∈ Θr}, and
P = {gθ : θ > 0}, where gθ(x) =

∏n
i=1 fθ(xi) for x = (x1, ..., xn). Then

P0 ⊂ P and a.s. P0 implies a.s. P (i.e., if an event A satisfying P (A) = 0
for all P ∈ P0, then P (A) = 0 for all P ∈ P). Let {ci} be a sequence
of positive numbers satisfying

∑∞
i=1 ci = 1 and g∞(x) =

∑∞
i=1 cigθi(x).

Define T = (T1, T2, ...) with Ti(x) = gθi
(x)/g∞(x). By Theorem 2.3(ii) in

Shao (2003), T is minimal sufficient for θ ∈ Θ0 (or P ∈ P0). For any θ > 0,
there is a sequence {θik

} ⊂ {θi} such that limk θik
= θ. Then

gθ(x) = lim
k

gθik
(x) = lim

k
Tik

(x)g∞(x)

holds for all x ∈ C with P (C) = 1 for all P ∈ P. By the factorization
theorem, T is sufficient for θ > 0 (or P ∈ P). By Theorem 2.3(i) in Shao
(2003), T is minimal sufficient for θ > 0.

Exercise 16 (#2.36). Let (X1, ..., Xn) be a random sample of random
variables having the Cauchy distribution with location parameter µ and
scale parameter σ, where µ ∈ R and σ > 0 are unknown parameters. Show
that the vector of order statistics is minimal sufficient for (µ, σ).
Solution. The joint Lebesgue density of (X1, ..., Xn) is

fµ,σ(x) =
σn

πn

n∏
i=1

1
σ2 + (xi − µ)2

, x = (x1, ..., xn).

For any x = (x1, ..., xn) and y = (y1, ..., yn), suppose that

fµ,σ(x)
fµ,σ(y)

= ψ(x, y)

holds for any µ and σ, where ψ does not depend on (µ, σ). Let σ = 1. Then
we must have

n∏
i=1

[
1 + (yi − µ)2

]
= ψ(x, y)

n∏
i=1

[
1 + (xi − µ)2

]

for all µ. Both sides of the above identity can be viewed as polynomials of
degree 2n in µ. Comparison of the coefficients to the highest terms gives
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ψ(x, y) = 1. Thus,

n∏
i=1

[
1 + (yi − µ)2

]
=

n∏
i=1

[
1 + (xi − µ)2

]

for all µ. As a polynomial of µ, the left-hand side of the above identity
has 2n complex roots xi ±

√
−1, i = 1, ..., n, while the right-hand side of

the above identity has 2n complex roots yi ±
√

−1, i = 1, ..., n. By the
unique factorization theorem for the entire functions in complex analysis,
we conclude that the two sets of roots must agree. This means that the
ordered values of xi’s are the same as the ordered values of yi’s. By Theorem
2.3(iii) in Shao (2003), the order statistics of X1, ..., Xn is minimal sufficient
for (µ, σ).

Exercise 17 (#2.40). Let (X1, ..., Xn), n ≥ 2, be a random sample from a
distribution having Lebesgue density fθ,j , where θ > 0, j = 1, 2, fθ,1 is the
density of N(0, θ2), and fθ,2(x) = (2θ)−1e−|x|/θ. Show that T = (T1, T2) is
minimal sufficient for (θ, j), where T1 =

∑n
i=1 X2

i and T2 =
∑n

i=1 |Xi|.
Solution A. Let P be the joint distribution of X1, ..., Xn. By the factor-
ization theorem, T is sufficient for (θ, j). Let P = {P : θ > 0, j = 1, 2},
P1 = {P : θ > 0, j = 1}, and P2 = {P : θ > 0, j = 2}. Let S be a statistic
sufficient for P ∈ P. Then S is sufficient for P ∈ Pj , j = 1, 2. Note that P1
is an exponential family with T1 as a minimal sufficient statistic. Hence,
there exists a Borel function ψ1 such that T1 = ψ1(S) a.s. P1. Since all
densities in P are dominated by those in P1, we conclude that T1 = ψ1(S)
a.s. P. Similarly, P2 is an exponential family with T2 as a minimal sufficient
statistic and, thus, there exists a Borel function ψ2 such that T2 = ψ2(S)
a.s. P. This proves that T = (ψ1(S), ψ2(S)) a.s. P. Hence T is minimal
sufficient for (θ, j).
Solution B. Let P be the joint distribution of X1, ..., Xn. The Lebesgue
density of P can be written as

exp
{

−
I{1}(j)

2θ2 T1 −
I{2}(j)

θ
T2

}[
I{1}(j)

(2πθ2)n/2 +
I{2}(j)
(2θ)n

]
.

Hence P = {P : θ > 0, j = 1, 2} is an exponential family. Let

η(θ, j) = −
(

I{1}(j)
2θ2 ,

I{2}(j)
θ

)
.

Note that η(1, 1) = (− 1
2 , 0), η(2−1/2, 1) = (−1, 0), and η(1, 2) = (0,−1).

Then, η(2−1/2, 1) − η(1, 1) = (− 1
2 , 0) and η(1, 2) − η(1, 1) = (1

2 ,−1) are
two linearly independent vectors in R2. Hence T = (T1, T2) is minimal
sufficient for (θ, j) (e.g., Example 2.14 in Shao, 2003).



64 Chapter 2. Fundamentals of Statistics

Exercise 18 (#2.41). Let (X1, ..., Xn), n ≥ 2, be a random sample from
a distribution with discrete probability density fθ,j , where θ ∈ (0, 1), j =
1, 2, fθ,1 is the Poisson distribution with mean θ, and fθ,2 is the binomial
distribution with size 1 and probability θ.
(i) Show that T =

∑n
i=1 Xi is not sufficient for (θ, j).

(ii) Find a two-dimensional minimal sufficient statistic for (θ, j).
Solution. (i) To show that T is not sufficient for (θ, j), it suffices to
show that, for some x ≤ t, P (Xn = x|T = t) for j = 1 is different from
P (Xn = x|T = t) for j = 2. When j = 1,

P (Xn = x|T = t) =
(

t

x

)
(n − 1)t−x

nt
> 0,

whereas when j = 2, P (Xn = x|T = t) = 0 as long as x > 1.
(ii) Let gθ,j be the joint probability density of X1, ..., Xn. Let P0 =
{g 1

4 ,1, g 1
2 ,1, g 1

2 ,2}. Then, a.s. P0 implies a.s. P. By Theorem 2.3(ii) in
Shao (2003), the two-dimensional statistic

S =

(
g 1

2 ,1

g 1
4 ,1

,
g 1

2 ,2

g 1
4 ,1

)
=
(
en/42−T , en/2W2T−n

)

is minimal sufficient for the family P0, where

W =
{

1 Xi = 0 or 1, i = 1, ..., n,

0 otherwise.

Since there is a one-to-one transformation between S and (T, W ), we con-
clude that (T, W ) is minimal sufficient for the family P0. For any x =
(x1, ..., xn), the joint density of X1, ..., Xn is

enθI{1}(j)(1 − θ)nI{2}(j)W I{2}(j)eT [I{1}(j) log θ+I{2}(j) log θ
(1−θ) ]

n∏
i=1

1
xi!

.

Hence, by the factorization theorem, (T, W ) is sufficient for (θ, j). By
Theorem 2.3(i) in Shao (2003), (T, W ) is minimal sufficient for (θ, j).

Exercise 19 (#2.44). Let (X1, ..., Xn) be a random sample from a dis-
tribution on R having the Lebesgue density θ−1e−(x−θ)/θI(θ,∞)(x), where
θ > 0 is an unknown parameter.
(i) Find a statistic that is minimal sufficient for θ.
(ii) Show whether the minimal sufficient statistic in (i) is complete.
Solution. (i) Let T (x) =

∑n
i=1 xi and W (x) = min1≤i≤n xi, where

x = (x1, ..., xn). The joint density of X = (X1, ..., Xn) is

fθ(x) =
en

θn
e−T (x)/θI(θ,∞)(W (x)).
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For x = (x1, ..., xn) and y = (y1, ..., yn),

fθ(x)
fθ(y)

= e[T (y)−T (x)]/θ I(θ,∞)(W (x))
I(θ,∞)(W (y))

is free of θ if and only if T (x) = T (y) and W (x) = W (y). Hence, the
two-dimensional statistic (T (X), W (X)) is minimal sufficient for θ.
(ii) A direct calculation shows that, for any θ, E[T (X)] = 2nθ and E[W (X)]
= (1 + n−1)θ. Hence E[(2n)−1T − (1 + n−1)−1W (X)] = 0 for any θ and
(2n)−1T − (1 + n−1)−1W (X) is not a constant. Thus, (T, W ) is not com-
plete.

Exercise 20 (#2.48). Let T be a complete (or boundedly complete)
and sufficient statistic. Suppose that there is a minimal sufficient statistic
S. Show that T is minimal sufficient and S is complete (or boundedly
complete).
Solution. We prove the case when T is complete. The case in which T
is boundedly complete is similar. Since S is minimal sufficient and T is
sufficient, there exists a Borel function h such that S = h(T ) a.s. Since
h cannot be a constant function and T is complete, we conclude that S is
complete. Consider T −E(T |S) = T −E[T |h(T )], which is a Borel function
of T and hence can be denoted as g(T ). Note that E[g(T )] = 0. By the
completeness of T , g(T ) = 0 a.s., that is, T = E(T |S) a.s. This means that
T is also a function of S and, therefore, T is minimal sufficient.

Exercise 21 (#2.53). Let X be a discrete random variable with proba-
bility density

fθ(x) =

⎧⎨
⎩

θ x = 0
(1 − θ)2θx−1 x = 1, 2, ...

0 otherwise,

where θ ∈ (0, 1). Show that X is boundedly complete, but not complete.
Solution. Consider any Borel function h(x) such that

E[h(X)] = h(0)θ +
∞∑

x=1

h(x)(1 − θ)2θx−1 = 0

for any θ ∈ (0, 1). Rewriting the left-hand side of the above equation in the
ascending order of the powers of θ, we obtain that

h(1) +
∞∑

x=1

[h(x − 1) − 2h(x) + h(x + 1)] θx = 0

for any θ ∈ (0, 1). Comparing the coefficients of both sides, we obtain that
h(1) = 0 and h(x−1)−h(x) = h(x)−h(x+1). Therefore, h(x) = (1−x)h(0)
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for x = 1, 2, .... This function is bounded if and only if h(0) = 0. If h(x) is
assumed to be bounded, then h(0) = 0 and, hence, h(x) ≡ 0. This means
that X is boundedly complete. For h(x) = 1 − x, E[h(X)] = 0 for any θ
but h(X) 
= 0. Therefore, X is not complete.

Exercise 22. Let X be a discrete random variable with

Pθ(X = x) =

(
θ
x

)(
N−θ
n−x

)
(
N
n

) , x = 0, 1, 2, ...,min{θ, n}, n − x ≤ N − θ,

where n and N are positive integers, N ≥ n, and θ = 0, 1, ..., N . Show that
X is complete.
Solution. Let g(x) be a function of x ∈ {0, 1, ..., n}. Assume Eθ[g(X)] = 0
for any θ, where Eθ is the expectation with respect to Pθ. When θ = 0,
P0(X = x) = 1 if x = 0 and E0[g(X)] = g(0). Thus, g(0) = 0. When θ = 1,
P1(X ≥ 2) = 0 and

E1[g(X)] = g(0)P1(X = 0) + g(1)P1(X = 1) = g(1)

(
N−1
n−1

)
(
N
n

) .

Since E1[g(X)] = 0, we obtain that g(1) = 0. Similarly, we can show that
g(2) = · · · = g(n) = 0. Hence X is complete.

Exercise 23. Let X be a random variable having the uniform distribution
on the interval (θ, θ + 1), θ ∈ R. Show that X is not complete.
Solution. Consider g(X) = cos(2πX). Then g(X) 
= 0 but

E[g(X)] =
∫ θ+1

θ

cos(2πx)dx =
sin(2π(θ + 1)) − sin(2πθ)

2π
= 0

for any θ. Hence X is not complete.

Exercise 24 (#2.57). Let (X1, ..., Xn) be a random sample from the
N(θ, θ2) distribution, where θ > 0 is a parameter. Find a minimal sufficient
statistic for θ and show whether it is complete.
Solution. The joint Lebesgue density of X1, ..., Xn is

1
(2πθ2)n

exp

{
− 1

2θ2

n∑
i=1

x2
i +

1
θ

n∑
i=1

xi − 1
2

}
.

Let

η(θ) =
(

− 1
2θ2 ,

1
θ

)
.

Then η( 1
2 ) − η(1) = (− 3

2 , 1) and η( 1√
2
) − η(1) = (− 1

2 ,
√

2) are linearly
independent vectors in R2. Hence T = (

∑n
i=1 X2

i ,
∑n

i=1 Xi) is minimal
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sufficient for θ. Note that

E

(
n∑

i=1

X2
i

)
= nEX2

1 = 2nθ2

and

E

(
n∑

i=1

Xi

)2

= nθ2 + (nθ)2 = (n + n2)θ2.

Let h(t1, t2) = 1
2n t1 − 1

n(n+1) t
2
2. Then h(t1, t2) 
= 0 but E[h(T )] = 0 for any

θ. Hence T is not complete.

Exercise 25 (#2.56). Suppose that (X1, Y1), ..., (Xn, Yn) are indepen-
dent and identically distributed random 2-vectors and Xi and Yi are in-
dependently distributed as N(µ, σ2

X) and N(µ, σ2
Y ), respectively, with θ =

(µ, σ2
X , σ2

Y ) ∈ R × (0,∞) × (0,∞). Let X̄ and S2
X be the sample mean

and variance for Xi’s and Ȳ and S2
Y be the sample mean and variance for

Yi’s. Show that T = (X̄, Ȳ , S2
X , S2

Y ) is minimal sufficient for θ but T is not
boundedly complete.
Solution. Let

η =
(

− 1
2σ2

X

,
µ

σ2
X

,− 1
2σ2

Y

,
µ

σ2
Y

)
and

S =

(
n∑

i=1

X2
i ,

n∑
i=1

Y 2
i ,

n∑
i=1

Xi,

n∑
i=1

Yi

)
.

Then the joint Lebesgue density of (X1, Y1), ..., (Xn, Yn) is

1
(2π)n

exp
{

ητS − nµ2

2σ2
X

− nµ2

2σ2
Y

− n log(σXσY )
}

.

Since the parameter space {η : µ ∈ R, σ2
X > 0, σ2

Y > 0} is a three-
dimensional curved hyper-surface in R4, we conclude that S is minimal
sufficient. Note that there is a one-to-one correspondence between T and
S. Hence T is also minimal sufficient.

To show that T is not boundedly complete, consider h(T ) = I{X̄>Ȳ }− 1
2 .

Then |h(T )| ≤ 0.5 and E[h(T )] = 0 for any η, but h(T ) 
= 0. Hence T is
not boundedly complete.

Exercise 26 (#2.58). Suppose that (X1, Y1), ..., (Xn, Yn) are independent
and identically distributed random 2-vectors having the normal distribution
with EX1 = EY1 = 0, Var(X1) = Var(Y1) = 1, and Cov(X1, Y1) = θ ∈
(−1, 1).
(i) Find a minimal sufficient statistic for θ.
(ii) Show whether the minimal sufficient statistic in (i) is complete or not.
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(iii) Prove that T1 =
∑n

i=1 X2
i and T2 =

∑n
i=1 Y 2

i are both ancillary but
(T1, T2) is not ancillary.
Solution. (i) The joint Lebesgue density of (X1, Y1), ..., (Xn, Yn) is

(
1

2π
√

1 − θ2

)n

exp

{
− 1

1 − θ2

n∑
i=1

(x2
i + y2

i ) +
2θ

1 − θ2

n∑
i=1

xiyi

}
.

Let

η =
(

− 1
1 − θ2 ,

2θ

1 − θ2

)
.

The parameter space {η : −1 < θ < 1} is a curve in R2. Therefore,
(
∑n

i=1(X
2
i + Y 2

i ),
∑n

i=1 XiYi) is minimal sufficient.
(ii) Note that E[

∑n
i=1(X

2
i + Y 2

i )] − 2n = 0, but
∑n

i=1(X
2
i + Y 2

i ) − 2n 
= 0.
Therefore, the minimal sufficient statistic is not complete.
(iii) Both T1 and T2 have the chi-square distribution χ2

n, which does not
depend on θ. Hence both T1 and T2 are ancillary. Note that

E(T1T2) = E

(
n∑

i=1

X2
i

)⎛⎝ n∑
j=1

Y 2
j

⎞
⎠

= E

(
n∑

i=1

X2
i Y 2

i

)
+ E

⎛
⎝∑

i 	=j

X2
i Y 2

j

⎞
⎠

= nE(X2
1Y 2

1 ) + n(n − 1)E(X2
1 )E(Y 2

1 )
= n(1 + 2θ2) + 2n(n − 1),

which depends on θ. Therefore the distribution of (T1, T2) depends on θ
and (T1, T2) is not ancillary.

Exercise 27 (#2.59). Let (X1, ..., Xn), n > 2, be a random sample from
the exponential distribution on (a,∞) with scale parameter θ. Show that
(i)
∑n

i=1(Xi − X(1)) and X(1) are independent for any (a, θ), where X(j) is
the jth order statistic;
(ii) Zi = (X(n) − X(i))/(X(n) − X(n−1)), i = 1, ..., n − 2, are independent of
(X(1),

∑n
i=1(Xi − X(1))).

Solution: (i) Let θ be arbitrarily fixed. Since the joint density of X1, ..., Xn

is

θ−nena/θ exp

{
−1

θ

n∑
i=1

xi

}
I(a,∞)(x(1)),

where only a is considered as an unknown parameter, we conclude that X(1)

is sufficient for a. Note that n
θ e−n(x−a)/θI(a,∞)(x) is the Lebesgue density
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for X(1). For any Borel function g,

E[g(X(1))] =
n

θ

∫ ∞

a

g(x)e−n(x−a)/θdx = 0

for any a is equivalent to ∫ ∞

a

g(x)e−nx/θdx = 0

for any a, which implies g(x) = 0 a.e. with respect to Lebesgue measure.
Hence, for any fixed θ, X(1) is sufficient and complete for a. The Lebesgue
density of Xi −a is θ−1e−x/θI(0,∞)(x), which does not depend on a. There-
fore, for any fixed θ,

∑n
i=1(Xi−X(1)) =

∑n
i=1[(Xi−a)−(X(1)−a)] is ancil-

lary. By Basu’s theorem (e.g., Theorem 2.4 in Shao, 2003),
∑n

i=1(Xi−X(1))
and X(1) are independent for any fixed θ. Since θ is arbitrary, we conclude
that
∑n

i=1(Xi − X(1)) and X(1) are independent for any (a, θ).
(ii) From Example 5.14 in Lehmann (1983, p. 47), (X(1),

∑n
i=1(Xi −X(1)))

is sufficient and complete for (a, θ). Note that (Xi − a)/θ has Lebesgue
density e−xI(0,∞)(x), which does not depend on (a, θ). Since

Zi =
X(n) − X(i)

X(n) − X(n−1)
=

X(n)−a

θ − X(i)−a

θ
X(n)−a

θ − X(n−1)−a

θ

,

the statistic (Z1, ..., Zn−2) is ancillary. By Basu’s Theorem, (Z1, ..., Zn−2)
is independent of

(
X(1),
∑n

i=1(Xi − X(1))
)
.

Exercise 28 (#2.61). Let (X1, ..., Xn), n > 2, be a random sample
of random variables having the uniform distribution on the interval [a, b],
where −∞ < a < b < ∞. Show that Zi = (X(i) − X(1))/(X(n) − X(1)),
i = 2, ..., n − 1, are independent of (X(1), X(n)) for any a and b, where X(j)
is the jth order statistic.
Solution. Note that (Xi − a)/(b − a) has the uniform distribution on the
interval [0, 1], which does not depend on any (a, b). Since

Zi =
X(i) − X(1)

X(n) − X(1)
=

X(i)−a

b−a − X(1)−a

b−a
X(n)−a

b−a − X(1)−a

b−a

,

the statistic (Z2, ..., Zn−1) is ancillary. By Basu’s Theorem, the result fol-
lows if (X(1), X(n)) is sufficient and complete for (a, b). The joint Lebesgue
density of X1, ..., Xn is (b − a)−nI{a<x(1)<x(n)<b}. By the factorization the-
orem, (X(1), X(n)) is sufficient for (a, b). The joint Lebesgue density of
(X(1), X(n)) is

n(n − 1)
(b − a)n

(y − x)n−2I{a<x<y<b}.
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For any Borel function g(x, y), E[g(X(1), X(n))] = 0 for any a < b implies
that ∫

a<x<y<b

g(x, y)(y − x)n−2dxdy = 0

for any a < b. Hence g(x, y)(y − x)n−2 = 0 a.e. m2, where m2 is the
Lebesgue measure on R2. Since (y − x)n−2 
= 0 a.e. m2, we conclude that
g(x, y) = 0 a.e. m2. Hence, (X(1), X(n)) is complete.

Exercise 29 (#2.62). Let (X1, ..., Xn), n > 2, be a random sample from
a distribution P on R with EX2

1 < ∞, X̄ be the sample mean, X(j) be the
jth order statistic, and T = (X(1) + X(n))/2. Consider the estimation of a
parameter θ ∈ R under the squared error loss.
(i) Show that X̄ is better than T if P = N(θ, σ2), θ ∈ R, σ > 0.
(ii) Show that T is better than X̄ if P is the uniform distribution on the
interval (θ − 1

2 , θ + 1
2 ), θ ∈ R.

(iii) Find a family P for which neither X̄ nor T is better than the other.
Solution. (i) Since X̄ is complete and sufficient for θ and T −X̄ is ancillary
to θ, by Basu’s theorem, T − X̄ and X̄ are independent. Then

RT (θ) = E[(T − X̄) + (X̄ − θ)]2 = E(T − X̄)2 + RX̄(θ) > RX̄(θ),

where the last inequality follows from the fact that T 
= X̄ a.s. Therefore
X̄ is better.
(ii) Let W = X(1)−θ+X(n)−θ

2 . Then the Lebesgue density of W is

f(w) =

⎧⎪⎨
⎪⎩

n2n−1
(
w + 1

2

)n−1 − 1
2 < w < 0

n2n−1
( 1

2 − w
)n−1 0 < w < 1

2
0 otherwise.

Therefore ET = EW + θ = θ and

RT (θ) = Var(T ) = Var(W ) =
1

2(n + 1)(n + 2)
.

On the other hand,

RX̄(θ) = Var(X̄) =
Var(X1)

n
=

1
12n

.

Hence, when n > 2, RT (θ) < RX̄(θ).
(iii) Consider the family P = P1 ∪ P2, where P1 is the family in part (i)
and P2 is the family in part (ii). When P ∈ P1, X̄ is better than T . When
P ∈ P2, T is better than X̄. Therefore, neither of them is better than the
other for P ∈ P.

Exercise 30 (#2.64). Let (X1, ..., Xn) be a random sample of binary
random variables with P (Xi = 1) = θ ∈ (0, 1). Consider estimating θ with
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the squared error loss. Calculate the risks of the following estimators:
(i) the nonrandomized estimators X̄ (the sample mean) and

T0(X) =

⎧⎨
⎩

0 if more than half of Xi’s are 0
1 if more than half of Xi’s are 1
1
2 if exactly half of Xi’s are 0;

(ii) the randomized estimators

T1(X) =
{

X̄ with probability 1
2

T0 with probability 1
2

and

T2(X) =
{

X̄ with probability X̄
1
2 with probability 1 − X̄.

Solution. (i) Note that

RT0(θ) = E(T0 − θ)2

= θ2P (X̄ < 0.5) + (1 − θ)2P (X̄ > 0.5) + (0.5 − θ)2P (X̄ = 0.5).

When n = 2k,

P (X̄ < 0.5) =
k−1∑
j=1

(
2k

j

)
θj(1 − θ)2k−j ,

P (X̄ > 0.5) =
2k∑

j=k+1

(
2k

j

)
θj(1 − θ)2k−j ,

and

P (X̄ = 0.5) =
(

2k

k

)
θk(1 − θ)k.

When n = 2k + 1,

P (X̄ < 0.5) =
k∑

j=0

(
2k + 1

j

)
θj(1 − θ)2k+1−j ,

P (X̄ > 0.5) =
2k+1∑

j=k+1

(
2k + 1

j

)
θj(1 − θ)2k+1−j ,

and P (X̄ = 0.5) = 0.
(ii) A direct calculation shows that

RT1(θ) = E(T1 − θ)2

=
1
2
E(X̄ − θ)2 +

1
2
E(T0 − θ)2

=
θ(1 − θ)

2n
+

1
2
RT0(θ),
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where RT0(θ) is given in part (i), and

RT2(θ) = E(T2 − θ)2

= E

[
X̄(X̄ − θ)2 +

(
1
2

− θ

)2

(1 − X̄)

]

= E(X̄ − θ)3 + θE(X̄ − θ)2 +
(

1
2

− θ

)2

(1 − θ)

=
1
n3

n∑
i=1

n∑
j=1

n∑
k=1

E(Xi − θ)(Xj − θ)(Xk − θ)

+
θ2(1 − θ)

n
+
(

1
2

− θ

)2

(1 − θ)

=
E(X1 − θ)3

n2 +
θ2(1 − θ)

n
+
(

1
2

− θ

)2

(1 − θ)

=
θ(1 − θ)3 − θ3(1 − θ)

n2 +
θ2(1 − θ)

n
+
(

1
2

− θ

)2

(1 − θ),

where the fourth equality follows from E(X̄ − θ)2 = Var(X̄) = θ(1 − θ)/n
and the fifth equality follows from the fact that E(Xi−θ)(Xj −θ)(Xk−θ) 
=
0 if and only if i = j = k.

Exercise 31 (#2.66). Consider the estimation of an unknown parameter
θ ≥ 0 under the squared error loss. Show that if T and U are two estimators
such that T ≤ U and RT (P ) < RU (P ), then RT+(P ) < RU+(P ), where
RT (P ) is the risk of an estimator T and T+ denotes the positive part of T .
Solution. Note that T = T+−T−, where T− = max{−T, 0} is the negative
part of T , and T+T− = 0. Then

RT (P ) = E(T − θ)2

= E(T+ − T− − θ)2

= E(T+ − θ)2 + E(T 2
−) + 2θE(T−) − 2E(T+T−)

= RT+(P ) + E(T 2
−) + 2θE(T−).

Similarly,
RU (P ) = RU+(P ) + E(U2

−) + 2θE(U−).

Since T ≤ U , T− ≥ U−. Also, θ ≥ 0. Hence,

E(T 2
−) + 2θE(T−) ≥ E(U2

−) + 2θE(U−).

Since RT (P ) < RU (P ), we must have RT+(P ) < RU+(P ).

Exercise 32. Consider the estimation of an unknown parameter θ ∈ R
under the squared error loss. Show that if T and U are two estimators such



Chapter 2. Fundamentals of Statistics 73

that P (θ − t < T < θ + t) ≥ P (θ − t < U < θ + t) for any t > 0, then
RT (P ) ≤ RU (P ).
Solution. From the condition,

P ((T − θ)2 > s) ≤ P ((U − θ)2 > s)

for any s > 0. Hence,

RT (P ) = E(T − θ)2

=
∫ ∞

0
P ((T − θ)2 > s)ds

≤
∫ ∞

0
P ((U − θ)2 > s)ds

= E(U − θ)2

= RU (P ).

Exercise 33 (#2.67). Let (X1, ..., Xn) be a random sample from the
exponential distribution on (0,∞) with scale parameter θ ∈ (0,∞). Con-
sider the hypotheses H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 > 0 is a
fixed constant. Obtain the risk function (in terms of θ) of the test rule
Tc = I(c,∞)(X̄) under the 0-1 loss, where X̄ is the sample mean and c > 0
is a constant.
Solution. Let L(θ, a) be the loss function. Then L(θ, 1) = 0 when θ > θ0,
L(θ, 1) = 1 when θ ≤ θ0, L(θ, 0) = 0 when θ ≤ θ0, and L(θ, 0) = 1 when
θ > θ0. Hence,

RTc(θ) = E[L(θ, I(c,∞)(X̄))]

= E
[
L(θ, 1)I(c,∞)(X̄) + L(θ, 0)I(0,c](X̄)

]
= L(θ, 1)P (X̄ > c) + L(θ, 0)P (X̄ ≤ c)

=
{

P (X̄ > c) θ ≤ θ0

P (X̄ ≤ c) θ > θ0.

Since nX̄ has the gamma distribution with shape parameter n and scale
parameter θ,

P (X̄ > c) =
1

θn(n − 1)!

∫ ∞

nc

xn−1e−x/θdx.

Exercise 34 (#2.71). Consider an estimation problem with a parametric
family P = {Pθ : θ ∈ Θ} and the squared error loss. If θ0 ∈ Θ satisfies that
Pθ � Pθ0 for any θ ∈ Θ, show that the estimator T ≡ θ0 is admissible.
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Solution. Note that the risk RT (θ) = 0 when θ = θ0. Suppose that U is an
estimator of θ and RU (θ) = E(U −θ)2 ≤ RT (θ) for all θ. Then RU (θ0) = 0,
i.e., E(U − θ0)2 = 0 under Pθ0 . Therefore, U = θ0 a.s. Pθ0 . Since Pθ � Pθ0

for any θ, we conclude that U = θ0 a.s. P. Hence U = T a.s. P. Thus, T
is admissible.

Exercise 35 (#2.73). Let (X1, ..., Xn) be a random sample of random
variables with EX2

1 < ∞. Consider estimating µ = EX1 under the squared
error loss. Show that
(i) any estimator of the form aX̄ + b is inadmissible, where X̄ is the sample
mean, a and b are constants, and a > 1;
(ii) any estimator of the form X̄ + b is inadmissible, where b 
= 0 is a
constant.
Solution. (i) Note that

RaX̄+b(P ) = E(aX̄ + b − µ)2

= a2Var(X̄) + (aµ + b − µ)2

≥ a2Var(X̄)
= a2RX̄(P )
> RX̄(P )

when a > 1. Hence X̄ is better than aX̄ + b with a > 1.
(ii) For b 
= 0,

RX̄+b(P ) = E(X̄ + b − µ)2 = Var(X̄) + b2 > Var(X̄) = RX̄(P ).

Hence X̄ is better than X̄ + b with b 
= 0.

Exercise 36 (#2.74). Consider an estimation problem with ϑ ∈ [c, d] ⊂
R, where c and d are known. Suppose that the action space contains [c, d]
and the loss function is L(|ϑ − a|), where L(·) is an increasing function on
[0,∞). Show that any decision rule T with P (T (X) 
∈ [c, d]) > 0 for some
P ∈ P is inadmissible.
Solution. Consider the decision rule

T1 = cI(−∞,c)(T ) + TI[c,d](T ) + dI(d,∞)(T ).

Then |T1 − ϑ| ≤ |T − ϑ| and, since L is an increasing function,

RT1(P ) = E[L(|T1 − ϑ|)] ≤ E[L(|T − ϑ|)] = RT (P )

for any P ∈ P. Since

P (|T1(X) − ϑ| < |T (X) − ϑ|) = P (T (X) /∈ [a, b]) > 0

holds for some P∗ ∈ P,
RT1(P∗) < RT (P∗).
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Hence T1 is better than T and T is inadmissible.

Exercise 37 (#2.75). Let X be a sample from P ∈ P, δ0(X) be a
nonrandomized rule in a decision problem with Rk as the action space,
and T be a sufficient statistic for P ∈ P. Show that if E[IA(δ0(X))|T ]
is a nonrandomized rule, i.e., E[IA(δ0(X))|T ] = IA(h(T )) for any Borel
A ⊂ Rk, where h is a Borel function, then δ0(X) = h(T (X)) a.s. P .
Solution. From the assumption,

E

[
n∑

i=1

ciIAi(δ0(X))
∣∣∣∣T
]

=
n∑

i=1

ciIAi(h(T ))

for any positive integer n, constants c1, ..., cn, and Borel sets A1, ..., An.
Using the results in Exercise 39 of Chapter 1, we conclude that for any
bounded continuous function f , E[f(δ0(X))|T ] = f(h(T )) a.s. P . Then, by
the result in Exercise 45 of Chapter 1, δ0(X) = h(T ) a.s. P .

Exercise 38 (#2.76). Let X be a sample from P ∈ P, δ0(X) be a decision
rule (which may be randomized) in a problem with Rk as the action space,
and T be a sufficient statistic for P ∈ P. For any Borel A ⊂ Rk, define

δ1(T, A) = E[δ0(X, A)|T ].

Let L(P, a) be a loss function. Show that∫
Rk

L(P, a)dδ1(X, a) = E

[∫
Rk

L(P, a)dδ0(X, a)
∣∣∣∣T
]

a.s. P .

Solution. If L is a simple function (a linear combination of indicator
functions), then the result follows from the definition of δ1. For nonnegative
L, it is the limit of a sequence of nonnegative increasing simple functions.
Then the result follows from the result for simple L and the monotone
convergence theorem for conditional expectations (Exercise 38 in Chapter
1).

Exercise 39 (#2.80). Let X1, ..., Xn be random variables with a finite
common mean µ = EXi and finite variances. Consider the estimation of µ
under the squared error loss.
(i) Show that there is no optimal rule in � if � contains all possible esti-
mators.
(ii) Find an optimal rule in

�2 =

{
n∑

i=1

ciXi : ci ∈ R,

n∑
i=1

ci = 1

}

if Var(Xi) = σ2/ai with an unknown σ2 and known ai, i = 1, ..., n.
(iii) Find an optimal rule in �2 if X1, ..., Xn are identically distributed but
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are correlated with correlation coefficient ρ.
Solution. (i) Suppose that there exists an optimal rule T ∗. Let P1 and
P2 be two possible distributions of X = (X1, ..., Xn) such that µ = µj

under Pj and µ1 
= µ2. Let RT (P ) be the risk of T . For T1(X) ≡ µ1,
RT1(P1) = 0. Since T ∗ is better than T1, RT ∗(P1) ≤ RT1(P1) = 0 and,
hence, T ∗ ≡ µ1 a.s. P1. Let P̄ = (P1 +P2)/2. If X has distribution P̄ , then
µ = (µ1 + µ2)/2. Let T0(X) ≡ (µ1 + µ2)/2. Then RT0(P̄ ) = 0. Since T ∗

is better than T0, RT ∗(P̄ ) = 0 and, hence, T ∗ ≡ (µ1 + µ2)/2 a.s. P̄ , which
implies that T ∗ ≡ (µ1 + µ2)/2 a.s. P1 since P1 � P̄ . This is impossible
since µ1 
= (µ1 + µ2)/2.
(ii) Let T =

∑n
i=1 ciXi and T ∗ =

∑n
i=1 aiXi/

∑n
i=1 ai. Then

RT ∗(P ) = Var(T ∗)

= Var

(
n∑

i=1

aiXi

)/( n∑
i=1

ai

)2

=
n∑

i=1

a2
i Var(Xi)

/( n∑
i=1

ai

)2

=
n∑

i=1

aiσ
2
/( n∑

i=1

ai

)2

= σ2
/( n∑

i=1

ai

)
.

By the Cauchy-Schwarz inequality,(
n∑

i=1

ai

)(
n∑

i=1

c2
i

ai

)
≥
(

n∑
i=1

ci

)2

= 1.

Hence,

RT ∗(P ) ≤ σ2
n∑

i=1

c2
i

ai
= Var

(
n∑

i=1

ciXi

)
= Var(T ) = RT (P ).

Therefore T ∗ is optimal.
(iii) For any T =

∑n
i=1 ciXi,

RT (P ) = Var(T )

=
n∑

i=1

c2
i σ

2 +
∑
i 	=j

cicjρσ2

=
n∑

i=1

c2
i σ

2 + ρσ2

⎡
⎣( n∑

i=1

ci

)2

−
n∑

i=1

c2
i

⎤
⎦
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= σ2

[
(1 − ρ)

n∑
i=1

c2
i + ρ

]

≥ σ2

⎡
⎣(1 − ρ)

(
n∑

i=1

ci

)2/
n + ρ

⎤
⎦

= σ2 [(1 − ρ)/n + ρ]
= Var(X̄),

where the last equality follows from the Cauchy–Schwarz inequality(
n∑

i=1

ci

)2

≤ n

n∑
i=1

c2
i .

Hence, the sample mean X̄ is optimal.

Exercise 40 (#2.83). Let X be a discrete random variable with

P (X = −1) = p, P (X = k) = (1 − p)2pk, k = 0, 1, 2, ...,

where p ∈ (0, 1) is unknown. Show that
(i) U(X) is an unbiased estimator of 0 if and only if U(k) = ak for all
k = −1, 0, 1, 2, ... and some a;
(ii) T0(X) = I{0}(X) is unbiased for (1 − p)2 and, under the squared error
loss, T0 is an optimal rule in �, where � is the class of all unbiased estima-
tors of (1 − p)2;
(iii) T0(X) = I{−1}(X) is unbiased for p and, under the squared error loss,
there is no optimal rule in �, where � is the class of all unbiased estimators
of p.
Solution. (i) If U(X) is unbiased for 0, then

E[U(X)] = U(−1)p +
∞∑

k=0

U(k)(1 − p)2pk

=
∞∑

k=0

U(k)pk − 2
∞∑

k=0

U(k)pk+1 + U(−1)p +
∞∑

k=0

U(k)pk+2

= U(0) +
∞∑

k=−1

U(k + 2)pk+2 − 2
∞∑

k=−1

U(k + 1)pk+2

+
∞∑

k=−1

U(k)pk+2

=
∞∑

k=−1

[U(k) − 2U(k + 1) + U(k + 2)]pk+2

= 0



78 Chapter 2. Fundamentals of Statistics

for all p, which implies U(0) = 0 and U(k) − 2U(k + 1) + U(k + 2) = 0 for
k = −1, 0, 1, 2, ..., or equivalently, U(k) = ak, where a = U(1).
(ii) Since

E[T0(X)] = P (X = 0) = (1 − p)2,

T0 is unbiased. Let T be another unbiased estimator of (1 − p)2. Then
T (X)−T0(X) is unbiased for 0 and, by the result in (i), T (X) = T0(X)+aX
for some a. Then,

RT (p) = E[T0(X) + aX − (1 − p)2]2

= E(T0 + aX)2 + (1 − p)4 − 2(1 − p)2E[T0(X) + aX]
= E(T0 + aX)2 − (1 − p)4

= a2P (X = −1) + P (X = 0) + a2
∞∑

k=1

k2P (X = k) − (1 − p)4

≥ P (X = 0) − (1 − p)4

= Var(T0).

Hence T0 is a optimal rule in �.
(iii) Since

E[T0(X)] = P (X = −1) = p,

T0 is unbiased. Let T be another unbiased estimator of p. Then T (X) =
T0(X) + aX for some a and

RT (p) = E(T0 + aX)2 − p2

= (1 − a)2p + a2
∞∑

k=0

k2(1 − p)p2 − p2,

which is a quadratic function in a with minimum

a =

[
1 + (1 − p)

∞∑
k=1

k2pk−1

]−1

depending on p. Therefore, there is no optimal rule in �.

Exercise 41. Let X be a random sample from a population and θ be
an unknown parameter. Suppose that there are k + 1 estimators of θ,
T1, ..., Tk+1, such that ETi = θ+

∑k
j=1 ci,jbj(θ), i = 1, ..., k+1, where ci,j ’s

are constants and bj(θ) are functions of θ. Suppose that the determinant

C =

∣∣∣∣∣∣∣∣
1 1 · · · 1

c1,1 c2,1 · · · ck+1,1

· · · · · · · · · · · ·
c1,k c2,k · · · ck+1,k

∣∣∣∣∣∣∣∣

= 0.
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Show that

T ∗ =
1
C

∣∣∣∣∣∣∣∣
T1 T2 · · · Tk+1

c1,1 c2,1 · · · ck+1,1

· · · · · · · · · · · ·
c1,k c2,k · · · ck+1,k

∣∣∣∣∣∣∣∣
is an unbiased estimator of θ.
Solution. From the properties of a determinant,

ET ∗ =
1
C

∣∣∣∣∣∣∣∣
ET1 ET2 · · · ETk+1

c1,1 c2,1 · · · ck+1,1

· · · · · · · · · · · ·
c1,k c2,k · · · ck+1,k

∣∣∣∣∣∣∣∣

=
1
C

∣∣∣∣∣∣∣∣∣

θ +
∑k

j=1 c1,jbj(θ) · · · θ +
∑k

j=1 ck+1,jbj(θ)
c1,1 · · · ck+1,1

· · · · · · · · ·
c1,k · · · ck+1,k

∣∣∣∣∣∣∣∣∣

=
θ

C

∣∣∣∣∣∣∣∣
1 · · · 1

c1,1 · · · ck+1,1

· · · · · · · · ·
c1,k · · · ck+1,k

∣∣∣∣∣∣∣∣

+
1
C

∣∣∣∣∣∣∣∣∣

∑k
j=1 c1,jbj(θ) · · ·

∑k
j=1 ck+1,jbj(θ)

c1,1 · · · ck+1,1

· · · · · · · · ·
c1,k · · · ck+1,k

∣∣∣∣∣∣∣∣∣
= θ,

where the last equality follows from the fact that the last determinant is 0
because its first row is a linear combination of its other k rows.

Exercise 42 (#2.84). Let X be a random variable having the binomial
distribution with size n and probability p ∈ (0, 1). Show that there is no
unbiased estimator of p−1.
Solution. Suppose that T (X) is an unbiased estimator of p−1. Then

E[T (X)] =
n∑

k=0

(
n

k

)
T (k)pk(1 − p)n−k =

1
p

for all p. However,

n∑
k=0

(
n

k

)
T (k)pk(1 − p)n−k ≤

n∑
k=0

(
n

k

)
T (k) < ∞
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for any p but p−1 diverges to ∞ as p → 0. This is impossible. Hence, there
is no unbiased estimator of p−1.

Exercise 43 (#2.85). Let X = (X1, ..., Xn) be a random sample from
N(θ, 1), where θ = 0 or 1. Consider the estimation of θ with action space
{0, 1}, i.e., the range of any estimator is {0, 1}.
(i) Show that there does not exist any unbiased estimator of θ.
(ii) Find an estimator θ̂ of θ that is approximately unbiased, that is,
limn E(θ̂) = θ.
Solution. (i) Since the action space is {0, 1}, any randomized estimator θ̂
can be written as T (X), where T is Borel, 0 ≤ T (X) ≤ 1, and

θ̂ =
{

1 with probability T (X)
0 with probability 1 − T (X).

Then E(θ̂) = E[T (X)]. If θ̂ is unbiased, then E[T (X)] = θ for θ = 0, 1.
This implies that, when θ = 0, T (X) = 0 a.e. Lebesgue measure, whereas
when θ = 1, T (X) = 1 a.e. Lebesgue measure. This is impossible. Hence
there does not exist any unbiased estimator of θ.
(ii) Consider θ̂ = I(n−1/4,∞)(|X̄|), where X̄ is the sample mean. Since X̄ is
distributed as N(θ, n−1),

E(θ̂) = P (|X̄| > n−1/4) = 1 − Φ
(
n1/4 − θ

√
n
)

+ Φ
(
−n1/4 − θ

√
n
)

,

where Φ is the cumulative distribution function of N(0, 1). Hence, when
θ = 0, limn E(θ̂) = 1 − Φ(∞) + Φ(−∞) = 0 and, when θ = 1, limn E(θ̂) =
1 − Φ(−∞) + Φ(−∞) = 1.

Exercise 44 (#2.92(c)). Let X be a sample from Pθ, where θ ∈ Θ ⊂ R.
Consider the estimation of θ under the absolute error loss function |a − θ|.
Let Π be a given distribution on Θ with finite mean. Find a Bayes rule.
Solution. Let Pθ|X be the posterior distribution of θ and PX be the
marginal of X. By Fubini’s theorem,∫ ∫

|θ|dPθ|XdPX =
∫ ∫

|θ|dPθdΠ =
∫

|θ|dΠ < ∞.

Hence, for almost all X,
∫

|θ|dPθ|X < ∞. From Exercise 11 in Chapter 1,
if mX is a median of Pθ|X , then∫

|θ − mX |dPθ|X ≤
∫

|θ − a|dPθ|X for almost all X

holds for any a. Hence, E|θ − mX | ≤ E|θ − T (X)| for any other estimator
T (X). This shows that mX is a Bayes rule.
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Exercise 45 (#2.93). Let X be a sample having a probability density
fj(x) with respect to a σ-finite measure ν, where j is unknown and j ∈
{1, ..., J} with a known integer J ≥ 2. Consider a decision problem in
which the action space is {1, ..., J} and the loss function is

L(j, a) =
{

0 if a = j

1 if a 
= j.

(i) Obtain the risk of a decision rule (which may be randomized).
(ii) Let Π be a prior probability measure on {1, ..., J} with Π({j}) = πj ,
j = 1, ..., J . Obtain the Bayes risk of a decision rule.
(iii) Obtain a Bayes rule under the prior Π in (ii).
(iv) Assume that J = 2, π1 = π2 = 0.5, and fj(x) = φ(x − µj), where
φ(x) is the Lebesgue density of the standard normal distribution and µj ,
j = 1, 2, are known constants. Obtain the Bayes rule in (iii).
(v) Obtain a minimax rule when J = 2.
Solution. (i) Let δ be a randomized decision rule. For any X, let δ(X, j)
be the probability of taking action j under the rule δ. Let Ej be the
expectation taking under fj . Then

Rδ(j) = Ej

[
J∑

k=1

L(j, k)δ(X, k)

]
=
∑
k 	=j

Ej [δ(X, k)] = 1 − Ej [δ(X, j)],

since
∑J

k=1 δ(X, k) = 1.
(ii) The Bayes risk of a decision rule δ is

r
δ

=
J∑

j=1

πjRδ(j) = 1 −
J∑

j=1

πjEj [δ(X, j)].

(iii) Let δ∗ be a rule satisfying δ∗(X, j) = 1 if and only if πjfj(X) = g(X),
where g(X) = max1≤k≤J πkfk(X). Then δ∗ is a Bayes rule, since, for any
rule δ,

r
δ

= 1 −
J∑

j=1

∫
πjδ(x, j)fj(x)dν

≥ 1 −
J∑

j=1

∫
δ(x, j)g(x)dν

= 1 −
∫

g(x)dν

= 1 −
J∑

j=1

∫
g(x)=πjfj(x)

πjfj(x)dν

= r
δ∗ .
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(iv) From the result in (iii), the Bayes rule δ∗(X, j) = 1 if and only if
φ(x − µj) > φ(x − µk), k 
= j. Since φ(x − µj) = e−(x−µj)2/2/

√
2π, we

can obtain a nonrandomized Bayes rule that takes action 1 if and only if
|X − µ1| < |X − µ2|.
(v) Let c be a positive constant and consider a rule δc such that δc(X, 1) = 1
if f1(X) > cf2(X), δc(X, 2) = 1 if f1(X) < cf2(X), and δc(X, 1) = γ if
f1(X) = cf2(X). Since δc(X, j) = 1 if and only if πjfj(X)=maxk πkfk(X),
where π1 = 1/(c + 1) and π2 = c/(c + 1), it follows from part (iii) of the
solution that δc is a Bayes rule. Let Pj be the probability corresponding
to fj . The risk of δc is P1(f1(X) ≤ cf2(X)) − γP1(f1(x) = cf2(X)) when
j = 1 and 1 − P2(f1(X) ≤ cf2(X)) + γP2(f1(x) = cf2(X)) when j = 2.
Let ψ(c) = P1(f1(X) ≤ cf2(X)) + P2(f1(X) ≤ cf2(X)) − 1. Then ψ is
nondecreasing in c, ψ(0) = −1, limc→∞ ψ(c) = 1, and ψ(c) − ψ(c−) =
P1(f1(X) = cf2(X)) + P2(f1(X) = cf2(X)). Let c∗ = inf{c : ψ(c) ≥ 0}. If
ψ(c∗) = ψ(c∗−), we set γ = 0; otherwise, we set γ = ψ(c∗)/[ψ(c∗)−ψ(c∗−)].
Then, the risk of δc∗ is a constant. For any rule δ, supj Rδ(j) ≥ r

δ
≥ r

δc∗
=

Rδc∗ (j) = supj Rδc∗ (j). Hence, δc∗ is a minimax rule.

Exercise 46 (#2.94). Let θ̂ be an unbiased estimator of an unknown
θ ∈ R.
(i) Under the squared error loss, show that the estimator θ̂+c is not minimax
unless supθ RT (θ) = ∞ for any estimator T , where c 
= 0 is a known
constant.
(ii) Under the squared error loss, show that the estimator cθ̂ is not minimax
unless supθ RT (θ) = ∞ for any estimator T , where c ∈ (0, 1) is a known
constant.
(iii) Consider the loss function L(θ, a) = (a − θ)2/θ2 (assuming θ 
= 0).
Show that θ̂ is not minimax unless supθ RT (θ) = ∞ for any T .
Solution. (i) Under the squared error loss, the risk of θ̂ + c is

Rθ̂+c(P ) = E(θ̂ + c − θ)2 = c2 + Var(θ̂) = c2 + Rθ̂(P ).

Then
sup
P

Rθ̂+c(P ) = c2 + sup
P

Rθ̂(P )

and either supP Rθ̂+c(P ) = ∞ or supP Rθ̂+c(P ) > supP Rθ̂(P ). Hence,
the only case where θ̂ + c is minimax is when supP RT (P ) = ∞ for any
estimator T .
(ii) Under the squared error loss, the risk of cθ̂ is

Rcθ̂(P ) = E(cθ̂ − θ)2 = (1 − c)2θ2 + c2Var(θ̂) = (1 − c)2θ2 + c2Rθ̂(P ).

Then, supP Rθ̂+c(P ) = ∞ and the only case where θ̂+c is minimax is when
supP RT (P ) = ∞ for any estimator T .
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(iii) Under the given loss function, the risk of cθ̂ is

Rcθ̂(P ) = (1 − c)2 + c2Rθ̂(P ).

If supP Rθ̂(P ) = ∞, then the result follows. Assume ξ = supP Rθ̂(P ) < ∞.
Let c = ξ/(ξ + 1). Then

sup
P

Rcθ̂(P ) = (1 − c)2 + c2ξ =
ξ2

(ξ + 1)2
+

ξ

(ξ + 1)2
=

ξ

ξ + 1
< ξ.

Hence θ̂ is not minimax.

Exercise 47 (#2.96). Let X be an observation from the binomial distri-
bution with size n and probability θ ∈ (0, 1), where n is a known integer
≥ 2. Consider testing hypotheses H0 : θ ≤ θ0 versus H1 : θ > θ0, where
θ0 ∈ (0, 1) is a fixed value. Let � = {Tj : j = 0, 1, ..., n − 1} be a class of
nonrandomized decision rules, where Tj(X) = 1 (rejecting H0) if and only
if X ≥ j + 1. Consider the 0-1 loss function.
(i) When the uniform distribution on (0, 1) is used as the prior, show that
the Bayes rule within the class � is Tj∗(X), where j∗ is the largest integer
in {0, 1, ..., n − 1} such that Bj+1,n−j+1(θ0) ≥ 1

2 and Ba,b(·) denotes the
cumulative distribution function of the beta distribution with parameter
(a, b).
(ii) Derive a minimax rule over the class �.
Solution. (i) Let Pθ be the probability law of X. Under the 0-1 loss, the
risk of Tj is

RTj (θ) = Pθ(X > j)I(0,θ0](θ) + Pθ(X ≤ j)I(θ0,1)(θ)

=
n∑

k=j+1

(
n

k

)
θk(1 − θ)n−kI(0,θ0](θ) +

j∑
k=0

(
n

k

)
θk(1 − θ)n−kI(θ0,1)(θ).

Hence, the Bayes risk of Tj is

r
Tj

=
n∑

k=j+1

(
n

k

)∫ θ0

0
θk(1 − θ)n−kdθ +

j∑
k=0

(
n

k

)∫ 1

θ0

θk(1 − θ)n−kdθ

=
n∑

k=j+1

Bk+1,n−k+1(θ0) +
j∑

k=0

[1 − Bk+1,n−k+1(θ0)].

Then, for j = 1, ..., n − 1,

r
Tj−1

− r
Tj

= 2Bj+1,n−j+1(θ0) − 1.

The family {Bβ+1,n−β+1(y) : β > 0} is an exponential family having mono-
tone likelihood ratio in log y − log(1 − y). By Lemma 6.3 in Shao (2003), if



84 Chapter 2. Fundamentals of Statistics

Y has distribution Bβ+1,n−β+1, then P (Y ≤ t) = P (log Y − log(1 − Y ) ≤
log t− log(1− t)) is decreasing in β for any fixed t ∈ (0, 1). This shows that
Bj+1,n−j+1(θ0) is decreasing in j. Hence, if j∗ is the largest integer j such
that Bj+1,n−j+1(θ0) ≥ 1

2 , then

r
Tj−1

− r
Tj

≥ 0 j = 1, ..., j∗

and
r

Tj−1
− r

Tj
≤ 0 j = j∗ + 1, ..., n − 1.

Consequently,
r

Tj∗ = min
j=0,1,...,n−1

r
Tj

.

This shows that Tj∗ is the Bayes rule over the class �.
(ii) Again, by Lemma 6.3 in Shao (2003), Pθ(X ≤ j) is decreasing in θ and
Pθ(X > j) is increasing in θ. Hence,

sup
θ∈(0,1)

RTj (θ) = Pθ0(X > j) =
n∑

k=j+1

(
n

k

)
θk
0 (1 − θ0)n−k.

Then, the minimax rule over the class � is Tn−1.

Exercise 48 (#2.99). Let (X1, ..., Xn) be a random sample from the
Cauchy distribution with location parameter µ ∈ R and a known scale
parameter σ > 0. Consider the hypotheses H0 : µ ≤ µ0 versus H1 : µ > µ0,
where µ0 is a fixed constant. Calculate the size of the nonrandomized test
Tc(X) = I(c,∞)(X̄), where c is a fixed constant; find a cα such that Tcα has
size α ∈ (0, 1); and find the p-value for Tcα

.
Solution: Note that X̄ has the same distribution as X1. Hence, the size
of Tc(X) is

sup
µ≤µ0

E(Tc(X)) = sup
µ≤µ0

P (X̄ > c)

= sup
µ≤µ0

P

(
X̄ − µ

σ
>

c − µ

σ

)

= sup
µ≤µ0

[
1
2

− 1
π

arctan
(

c − µ

σ

)]

=
1
2

− 1
π

arctan
(

c − µ0

σ

)
.

Therefore, if cα = µ0 + σ tan
(
π( 1

2 − α)
)
, then the size of Tcα(X) is exactly

α. Note that

α =
1
2

− 1
π

arctan
(

cα − µ0

σ

)
>

1
2

− 1
π

arctan
(

X̄ − µ0

σ

)
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if and only if X̄ > cα (i.e., Tcα(X) = 1). Hence, the p-value of Tcα(X) is

inf{α|Tcα
(X) = 1} =

1
2

− 1
π

arctan
(

X̄ − µ0

σ

)
.

Exercise 49 (#2.101). Let (X1, ..., Xn) be a random sample from the
exponential distribution on (a,∞) with scale parameter θ, where a ∈ R
and θ > 0 are unknown parameters. Let α ∈ (0, 1) be given.
(i) Using T1(X) =

∑n
i=1(Xi −X(1)), where X(1) is the smallest order statis-

tic, construct a confidence interval for θ with confidence coefficient 1 − α
and find the expected interval length.
(ii) Using T1(X) and T2(X) = X(1), construct a confidence interval for a
with confidence coefficient 1 − α and find the expected interval length.
(iii) Construct a confidence set for the two-dimensional parameter (a, θ)
with confidence coefficient 1 − α.
Solution. (i) Let W = T1(X)/θ. Then W has the gamma distribution
with shape parameter n − 1 and scale parameter 1. Let c1 < c2 such that
P (c1 < W < c2) = 1 − α. Then c1 and c2 can be chosen so that they
do not depend on unknown parameters. A confidence interval for θ with
confidence coefficient 1 − α is(

T1(X)
c2

,
T1(X)

c1

)
.

Its expected length is(
1
c1

− 1
c2

)
E(T1) =

(
1
c1

− 1
c2

)
(n − 1)θ.

(ii) Using the result in Exercise 7(iii), [T2(X) − a]/T1(X) has the Lebesgue

density n
(
1 + nt

n−1

)−n

I(0,∞)(t), which does not depend on any unknown
parameter. Choose two constants 0 < c1 < c2 such that∫ c2

c1

n

(
1 +

nt

n − 1

)−n

dt = 1 − α.

Then a confidence interval for a with confidence coefficient 1 − α is

(T2 − c2T1, T2 − c1T1).

Its expected length is

E[(c2 − c1)T1] = (c2 − c1)(n − 1)θ.

(iii) Let 0 < a1 < a2 be constants such that

P (a1 < W < a2) =
√

1 − α
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and let 0 < b1 < b2 be constants such that

P

(
b1 <

T2(X) − a

θ
< b2

)
= e−nb1 − e−nb2 =

√
1 − α.

Consider the region

C(X) =
{

(θ, a):
T1(X)

a2
< θ <

T1(X)
a1

, T2(X) − b2θ < a < T2(X) − b1θ

}
.

By the result in Exercise 7(iii), T1(X) and T2(X) are independent. Hence

P
(
(a, θ) ∈ C(X)

)
= P

(
a1 <

T1(X)
θ

< a2, b1 <
T2(X) − a

θ
< b2

)

= P

(
a1 <

T1(X)
θ

< a2

)
P

(
b1 <

T2(X) − a

θ
< b2

)
=

√
1 − α

√
1 − α

= 1 − α.

Hence, C(X) is a confidence region for (a, θ) with confidence coefficient
1 − α.

Exercise 50 (#2.104). Let (X1, ..., Xn) be a random sample from the
uniform distribution on the interval (θ− 1

2 , θ+ 1
2 ), where θ ∈ R is unknown.

Let X(j) be the jth order statistic. Show that (X(1) + X(n))/2 is strongly
consistent for θ and also consistent in mean squared error.
Solution. (i) For any ε > 0,

P
(
|X(1) − (θ − 1

2 )| > ε
)

= P
(
X(1) > ε + (θ − 1

2 )
)

=
[
P
(
X1 > ε + θ − 1

2

)]n
= (1 − ε)n

and

P
(
|X(n) − (θ + 1

2 )| > ε
)

= P
(
X(n) < (θ + 1

2 ) − ε
)

=
[
P
(
X1 < θ + 1

2 − ε
)]n

= (1 − ε)n.

Since
∑n

i=1(1 − ε)n < ∞, we conclude that limn X(1) = θ − 1
2 a.s. and

limn X(n) = θ + 1
2 a.s. Hence limn(X(1) + X(n))/2 = θ a.s.

(ii) A direct calculation shows that

E[X(n) − (θ + 1
2 )] = n

∫ 1

0
xndx − 1 = − 1

n + 1
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and

E[X(1) − (θ − 1
2 )] = n

∫ 1

0
x(1 − x)n−1dx =

1
n + 1

.

Hence (X(1) + X(n))/2 is unbiased for θ. Note that

Var(X(n)) = Var
(
X(n) − (θ − 1

2 )
)

= E[X(n) − (θ − 1
2 )]2 − [EX(n) − (θ − 1

2 )]2

= n

∫ 1

0
xn+1dx −

[
θ + 1

2 − 1
n + 1

− (θ − 1
2 )
]2

=
n

n + 2
−
(

n

n + 1

)2

→ 0

as n → ∞. Similarly, limn Var(X(1)) = 0. By the Cauchy-Schwarz inequal-
ity, [Cov(X(1), X(n))]2 ≤ Var(X(1))Var(X(n)). Thus, limn Cov(X(1), X(n))
= 0 and, consequently, limn E[(X(1) +X(n))/2− θ]2 = limn 4−1[Var(X(1) +
Var(X(n)) + 2Cov(X(1), X(n))] = 0.

Exercise 51 (#2.105). Let (X1, ..., Xn) be a random sample from a
population with the Lebesgue density fθ(x) = 2−1(1+ θx)I(−1,1)(x), where
θ ∈ (−1, 1) is an unknown parameter. Find an estimator of θ that is
strongly consistent and consistent in mean squared error.
Solution. By the strong law of large numbers, the sample mean X̄ is
strongly consistent for

EX1 =
1
2

∫ 1

−1
x(1 + θx)dx =

θ

2

∫ 1

−1
x2dx =

θ

3
.

Hence 3X̄ is a strongly consistent estimator of θ. Since 3X̄ is unbiased for
θ and Var(3X̄) = 9Var(X1)/n, where

Var(X1) = EX2
1 − (EX1)2 =

1
2

∫ 1

−1
x2(1 + θx)dx − θ2

9
=

1
2

− θ2

9
,

we conclude that 3X̄ is consistent in mean squared error.

Exercise 52 (#2.106). Let X1, ..., Xn be a random sample. Suppose that
Tn is an unbiased estimator of ϑ based on X1, ..., Xn such that for any n,
Var(Tn) < ∞ and Var(Tn) ≤ Var(Un) for any other unbiased estimator Un

of ϑ based on X1, ..., Xn. Show that Tn is consistent in mean squared error.
Solution. Let Un = n−1∑n

i=1 T1(Xi). Then Un is unbiased for ϑ since
T1(X1) is unbiased for ϑ. By the assumption, Var(Tn) ≤ Var(Un). Hence
limn Var(Tn) = 0 since limn Var(Un) = limn Var

(
T1(X1)

)
/n = 0.
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Exercise 53 (#2.111). Let X1, ..., Xn be a random sample from P with
unknown mean µ ∈ R and variance σ2 > 0, and let g(µ) = 0 if µ 
= 0 and
g(0) = 1. Find a consistent estimator of g(µ).
Solution. Consider the estimator T (X) = I(0,n−1/4)(|X̄|), where X̄ is the
sample mean. Note that T = 0 or 1. Hence, we only need to show that
limn P (T = 1) = 1 when g(µ) = 1 (i.e., µ = 0) and limn P (T = 1) = 0
when g(µ) = 0 (i.e., µ 
= 0). If µ = 0, by the central limit theorem,√

nX̄ →d N(0, σ2) and, thus

lim
n

P (T (X) = 1) = lim
n

P (
√

n|X̄| < n1/4) = lim
n

Φ(n1/4) = 1,

where Φ is the cumulative distribution function of N(0, 1). If µ 
= 0, then
by the law of large numbers, |X̄| →p |µ| > 0 and, hence, n−1/4/|X̄| →p 0.
Then

lim
n

P (T (X) = 1) = lim
n

P (1 < n−1/4/|X̄|) = 0.

Exercise 54 (#2.115). Let (X1, ..., Xn) be a random sample of random
variables from a population P with EX2

1 < ∞ and X̄ be the sample mean.
Consider the estimation of µ = EX1.
(i) Let Tn = X̄ + ξn/

√
n, where ξn is a random variable satisfying ξn = 0

with probability 1 − n−1 and ξn = n3/2 with probability n−1. Show that
the bias of Tn is not the same as the asymptotic bias of Tn for any P .
(ii) Let Tn = X̄ + ηn/

√
n, where ηn is a random variable that is indepen-

dent of X1, ..., Xn and equals 0 with probability 1 − 2n−1 and ±
√

n with
probability n−1. Show that the asymptotic mean squared error of Tn, the
asymptotic mean squared error of X̄, and the mean squared error of X̄ are
the same, but the mean squared error of Tn is larger than the mean squared
error of X̄ for any P .
Note. The asymptotic bias and mean squared error are defined according
to Definitions 2.11 and 2.12 in Shao (2003).
Solution. (i) Since E(ξn) = n3/2n−1 = n1/2, E(Tn) = E(X̄)+n−1/2E(ξn)
= µ + 1. This means that the bias of Tn is 1. Since ξn →p 0 and X̄ →p µ,
Tn →p µ. Thus, the asymptotic bias of Tn is 0.
(ii) Since ηn →p 0 and

√
n(X̄ − µ) →d N(0, σ2), where σ2 = Var(X1), by

Slutsky’s theorem,
√

n(Tn − µ) =
√

n(X̄ − µ) + ηn →d N(0, σ2). Hence,
the asymptotic mean squared error of Tn is the same as that of X̄ and is
equal to σ2/n, which is the mean squared error of X̄. Since E(ηn) = 0,
E(Tn) = E(X̄) = µ and the mean squared error of Tn is

Var(Tn) = Var(X̄) + Var(ηn/
√

n) =
σ2

n
+

2
n

>
σ2

n
,

which is the mean squared error of X̄.
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Exercise 55 (#2.116(b)). Let (X1, ..., Xn) be a random sample of ran-
dom variables with finite θ = EX1 and Var(X1) = θ, where θ > 0 is
unknown. Consider the estimation of

√
θ. Let T1n =

√
X̄ and T2n = X̄/S,

where X̄ and S2 are the sample mean and sample variance. Obtain the
asymptotic relative efficiency of T1n with respect to T2n.
Solution. Since

√
n(X̄ − θ) →d N(0, θ), by the δ-method with g(t) =

√
t

and g′(t) = (2
√

t)−1,
√

n(
√

X̄ −
√

θ) →d N(0, 1
4 ). From Example 2.8 in

Shao (2003), √
n(X̄ − θ, S2 − θ) →d N2(0, Σ),

where

Σ =
(

θ µ3

µ3 µ4 − θ2

)

and µk = E(X1 − θ)k, k = 3, 4. By the δ-method with g(x, y) = x/
√

y,
∂g/∂x = 1/

√
y and ∂g/∂y = −x/(2y3/2), we obtain that

√
n(T2n −

√
θ) →d N

(
0, θ−1[θ2 − µ3 + (µ4 − θ2)/4]

)
.

Hence, the asymptotic relative efficiency of T1n with respect to T2n is 4θ −
4θ−1µ3 + θ−1(µ4 − θ2).

Exercise 56 (#2.118). Let (X1, ..., Xn) be a random sample from the
N(0, σ2) distribution with an unknown σ > 0. Consider the estimation of
σ. Find the asymptotic relative efficiency of T1n =

√
π/2
∑n

i=1 |Xi|/n with
respect to T2n = (

∑n
i=1 X2

i /n)1/2.
Solution. Since E(

√
π/2|X1|) = σ and Var(

√
π/2|X1|) = (π

2 − 1)σ2, by
the central limit theorem, we obtain that

√
n(T1n − σ) →d N

(
0,
(

π
2 − 1
)
σ2) .

Since EX2
1 = σ2 and Var(X1) = 2σ4,

√
n(n−1∑n

i=1 X2
i −σ2) →d N(0, 2σ4).

By the δ-method with g(t) =
√

t and g′(t) = (2
√

t)−1, we obtain that
√

n(T2n − σ) →d N
(
0, 1

2σ2) .
Hence, the asymptotic relative efficiency of T1n with respect to T2n is equal
to 1

2/(π
2 − 1) = (π − 2)−1.

Exercise 57 (#2.121). Let X1, ..., Xn be a random sample of random
variables with EXi = µ, Var(Xi) = 1, and EX4

i < ∞. Let T1n =
n−1∑n

i=1 X2
i − 1 and T2n = X̄2 − n−1 be estimators of µ2, where X̄ is

the sample mean.
(i) Find the asymptotic relative efficiency of T1n with respect to T2n.
(ii) Show that the asymptotic relative efficiency of T1n with respect to T2n

is no larger than 1 if the distribution of Xi − µ is symmetric about 0 and
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µ 
= 0.
(iii) Find a distribution P for which the asymptotic relative efficiency of
T1n with respect to T2n is larger than 1.
Solution. (i) Since EX2

1 = Var(X1)+µ2 = 1+µ2, by applying the central
limit theorem to {X2

i } we obtain that

√
n(T1n − µ2) =

√
n

[
1
n

n∑
i=1

X2
i − (1 + µ2)

]
→d N(0, γ),

where γ = Var(X2
1 ). Also, by the central limit theorem,

√
n(X̄ − µ) →d

N(0, 1). When µ 
= 0, by the δ-method and Slutsky’s theorem,

√
n(T2n − µ2) =

√
n(X̄2 − µ2) − 1√

n
→d N(0, 4µ2).

When µ = 0,
√

nX̄ →d N(0, 1) and, thus,

n(T2n − µ2) = nX̄2 − 1 = (
√

nX̄)2 − 1 →d W − 1,

where W has the chi-square distribution χ2
1. Note that E(W − 1) = 0 and

Var(W − 1) = 2. Therefore, the asymptotic relative efficiency of T1n with
respect to T2n is equal to

e =

{
4µ2

Var(X2
1 ) µ 
= 0

2
nVar(X2

1 ) µ = 0.

(ii) If the distribution of X1 −µ is symmetric about 0, then E(X1 −µ)3 = 0
and, thus,

Var(X2
1 ) = EX4

1 − (EX2
1 )2

= E[(X1 − µ) + µ]4 − (1 + µ2)2

= E(X1 − µ)4 + 4µE(X1 − µ)3 + 6µ2E(X1 − µ)2

+ 4µ3E(X1 − µ) + µ4 − (1 + 2µ2 + µ4)
= E(X1 − µ)4 + 4µ2 − 1
≥ 4µ2,

where the inequality follows from the Jensen’s inequality E(X1 − µ)4 ≥
[E(X1−µ)2]2 = 1. Therefore, when µ 
= 0, the asymptotic relative efficiency
e ≤ 1.
(iii) Let the common distribution of Xi be the distribution of Y/

√
p(1 − p),

where Y is a binary random variable with P (Y = 1) = p and P (Y = 0) =
1 − p. Then EXi =

√
p/(1 − p) = µ, Var(X1) = 1, and EX4

1 < ∞. Note
that

Var(X2
1 ) = Var(Y 2)/[p2(1 − p)2] = Var(Y )/[p2(1 − p)2] = [p(1 − p)]−1.
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Then the asymptotic relative efficiency is e = 4µ2/Var(X2
1 ) = 4p2, which

is larger than 1 if p ∈ (1/2, 1).

Exercise 58 (#2.119). Let (X1, ..., Xn) be a random sample of ran-
dom variables with unknown mean µ ∈ R, unknown variance σ2 > 0, and
EX4

1 < ∞. Consider the estimation of µ2 and the following three estima-
tors: T1n = X̄2, T2n = X̄2 − S2/n, T3n = max{0, T2n}, where X̄ and S2

are the sample mean and variance.
(i) Show that the asymptotic mean squared errors of Tjn, j = 1, 2, 3, are
the same when µ 
= 0.
(ii) When µ = 0, obtain the asymptotic relative efficiency of T2n with re-
spect to T1n and the asymptotic relative efficiency of T3n with respect to
T2n. Find out which estimator is asymptotically more efficient.
Solution. (i) By the central limit theorem and the δ-method,

√
n(X̄2 − µ2) →d N(0, 4µ2σ2).

By the law of large numbers, S2 →p σ2 and, hence, S2/
√

n →p 0. By
Slutsky’s theorem,

√
n(T2n − µ2) =

√
nX̄2 − S2/

√
n →d N(0, 4µ2σ2).

This shows that, when µ 
= 0, the asymptotic mean squared error of T2n is
the same as that of T1n = X̄2. When µ 
= 0, X̄2 →p µ2 > 0. Hence

lim
n

P (T2n 
= T3n) = lim
n

P (T2n < 0) = lim
n

P (X̄2 < S2/n) = 0,

since S2/n →p 0. Therefore, the limiting distribution of
√

n(T3n − µ2) is
the same as that of

√
n(T2n − µ2).

(ii) Assume µ = 0. From
√

nX̄ →d N(0, σ2), we conclude that nX̄2 →d

σ2W , where W has the chi-square distribution χ2
1. Since µ = 0, this shows

that n(T1n − µ2) →d σ2W and, hence, the asymptotic mean squared error
of T1n is σ4EW 2/n2 = 3σ4/n2. On the other hand, by Slutsky’s theorem,
n(T2n − µ2) = nX̄ − S2 →p σ2W − σ2, since S2 →p σ2. Hence, the asymp-
totic mean squared error of T2n is σ4E(W − 1)2/n2 = σ4Var(W )/n2 =
2σ4/n2. The asymptotic relative efficiency of T2n with respect to T1n is
3/2. Hence T2n is asymptotically more efficient than T1n. Note that

n(T3n − µ2) = n max{0, T2n} = max{0, nT2n} →d max{0, σ2(W − 1)},

since max{0, t} is a continuous function of t. Then the asymptotic mean
squared error of T3n is σ4E(max{0, W − 1})2/n2 and The asymptotic rela-
tive efficiency of T3n with respect to T2n is E(W −1)2/E(max{0, W −1})2.
Since

E(max{0, W − 1})2 = E[(W − 1)2I{W>1}] < E(W − 1)2,
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we conclude that T3n is asymptotically more efficient than Tjn, j = 1, 2.

Exercise 59. Let (X1, ..., Xn) be a random sample from the exponential
distribution θ−1e−x/θI(0,∞)(x), where θ ∈ (0,∞). Consider the hypotheses
H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 > 0 is a fixed constant. Let
Tc = I(c,∞)(X̄), where X̄ is the sample mean.
(i) For any given level of significance α ∈ (0, 1), find a cn,α such that the
test Tcn,α

has size α and show that Tcn,α is a consistent test, i.e., the power
of Tcn,α

converges to 1 as n → ∞ for any θ > θ0.
(ii) Find a sequence {bn} such that the test Tbn

is consistent and the size
of Tbn converges to 0 as n → ∞.
Solution. (i) Note that X̄/θ has the gamma distribution with shape pa-
rameter n and scale parameter θ/n. Let Gn,θ denote the cumulative dis-
tribution function of this distribution and cn,α be the constant satisfying
Gn,θ0(cn,α) = 1 − α. Then,

sup
θ≤θ0

P (Tcn,α
= 1) = sup

θ≤θ0

[1 − Gn,θ(cn,α)] = 1 − Gn,θ0(cn,α) = α,

i.e., the size of Tcn,α
is α.

Since the power of Tcn,α is P (Tcn,α = 1) = P (X̄ > cn,α) for θ > θ0
and, by the law of large numbers, X̄ →p θ, the consistency of the test Tcn,α

follows if we can show that limn cn,α = θ0. By the central limit theorem,√
n(X̄ − θ) →d N(0, θ2). Hence,

√
n( X̄

θ − 1) →d N(0, 1). By Pólya’s
theorem (e.g., Proposition 1.16 in Shao, 2003),

lim
n

sup
t

∣∣∣∣P
(√

n
(

X̄
θ − 1
)

≤ t

)
− Φ(t)

∣∣∣∣ = 0,

where Φ is the cumulative distribution function of the standard normal
distribution. When θ = θ0,

α = P (X̄ ≥ cn,α) = P

(√
n
(

X̄
θ0

− 1
)

≥
√

n
(

cn,α

θ0
− 1
))

.

Hence

lim
n

Φ
(√

n
(

cn,α

θ0
− 1
))

= 1 − α,

which implies limn
√

n( cn,α

θ0
− 1) = Φ−1(1 − α) and, thus, limn cn,α = θ0.

(ii) Let {an} be a sequence of positive numbers such that limn an = 0 and
limn

√
nan = ∞. Let αn = 1 − Φ(

√
nan) and bn = cn,αn , where cn,α is

defined in the proof of part (i). From the proof of part (i), the size of Tbn

is αn, which converges to 0 as n → ∞ since limn
√

nan = ∞.
Using the same argument as that in the proof of part (i), we can show

that

lim
n

∣∣∣∣1 − αn − Φ
(√

n
(

cn,αn

θ0
− 1
))∣∣∣∣ = 0,
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which implies that

lim
n

√
n

Φ−1(1 − αn)

(
cn,αn

θ0
− 1
)

= 1.

Since 1 − αn = Φ(
√

nan), this implies that limn cn,αn = θ0. Since bn =
cn,αn

, the test Tbn
is consistent.

Exercise 60 (#2.130). Let (Yi, Zi), i = 1, ..., n, be a random sample from
a bivariate normal distribution and let ρ be the correlation coefficient be-
tween Y1 and Z1. Construct a confidence interval for ρ that has asymptotic
significance level 1 − α, based on the sample correlation coefficient

ρ̂ =
1

(n − 1)
√

S2
Y S2

Z

n∑
i=1

(Yi − Ȳ )(Zi − Z̄),

where Ȳ =n−1∑n
i=1 Yi, Z̄ =n−1∑n

i=1 Zi, S2
Y =(n−1)−1∑n

i=1(Yi−Ȳ )2, and
S2

Z =(n−1)−1∑n
i=1(Zi−Z̄)2.

Solution. Assume first that EY1 = EZ1 = 0 and Var(Y1) = Var(Z1) = 1.
From Exercise 9,

√
n(ρ̂ − ρ) →d N(0, c2) with

c2 = ρ2[E(Y 4
1 ) + E(Z4

1 ) + 2E(Y 2
1 Z2

1 )]/4
− ρ[E(Y 3

1 Z1) + E(Y1Z
3
1 )] + E(Y 2

1 Z2
1 ).

We now derive the value of c2. Under the normality assumption, E(Y 4
1 ) =

E(Z4
1 ) = 3. Let U = Y1 + Z1 and V = Y1 − Z1. Then U is distributed

as N(0, 2(1 + ρ)), V is distributed as N(0, 2(1 − ρ)) and U and V are
independent, since Cov(U, V ) = E(UV ) = E(Y 2

1 − Z2
1 ) = 0. Note that

Y1 = (U + V )/2 and Z1 = (U − V )/2. Then,

E(Y 2
1 Z2

1 ) =
E
[
(U + V )2(U − V )2

]
16

=
E
(
U4 + V 4 − 2U2V 2

)
16

=
EU4 + EV 4 − 2EU2EV 2

16

=
3[2(1 + ρ)]2 + 3[2(1 − ρ)]2 − 2[2(1 + ρ)][2(1 − ρ)]

16

=
3[(1 + ρ)2 + (1 − ρ)2] − 2(1 − ρ2)

4

=
3(2 + 2ρ2) − 2 + 2ρ2

4
= 1 + 2ρ2
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and

E(Y 3
1 Z1) =

E[(U + V )3(U − V )]
16

=
E[(U + V )3U ] − E[(U + V )3V ]

16

=
EU4 + 3E(U2V 2) − EV 4 − 3E(U2V 2)

16

=
3[2(1 + ρ)]2 − 3[2(1 − ρ)]2

16

=
3(1 + ρ)2 − 3(1 − ρ)2

4
= 3ρ.

By symmetry, E(Y1Z
3
1 ) = 3ρ. Using these results, we obtain that

c2 = ρ2[3 + 3 + 2(1 + 2ρ2)]/4 − 2ρ(3ρ) + 1 + 2ρ2

= ρ2(2 + ρ2) − 6ρ2 + 1 + 2ρ2

= ρ4 − 2ρ2 + 1
= (1 − ρ2)2.

In general, the distribution of ρ̂ does not depend on the parameter vec-
tor (EY1, EZ1, Var(Y1), Var(Z1)), which can be shown by considering the
transformation (Yi − EYi)/

√
Var(Yi) and (Zi − EZi)/

√
Var(Zi). Hence,

√
n(ρ̂ − ρ) →d N(0, (1 − ρ)2)

always holds, which implies that ρ̂ →p ρ. By Slutsky’s theorem,
√

n(ρ̂ − ρ)
1 − ρ̂2 →d N(0, 1).

Hence

lim
n

P

(
−zα/2 ≤

√
n(ρ̂ − ρ)
1 − ρ̂2 ≤ zα/2

)
= 1 − α,

where za is the (1−a)th quantile of the standard normal distribution. Thus,
a confidence interval for ρ that has asymptotic significance level 1 − α is[

ρ̂ − (1 − ρ̂2)zα/2/
√

n, ρ̂ + (1 − ρ̂2)zα/2/
√

n
]
.



Chapter 3

Unbiased Estimation

Exercise 1. Let X be a sample from P ∈ P and θ be a parameter. Show
that if both T1(X) and T2(X) are UMVUE’s (uniformly minimum variance
unbiased estimators) of θ with finite variances, then T1(X) = T2(X) a.s. P
for any P ∈ P.
Solution. Since both T1 and T2 are unbiased, T1 − T2 is unbiased for 0.
By the necessary and sufficient condition for UMVUE (e.g., Theorem 3.2
in Shao, 2003),

E[T1(T1 − T2)] = 0 and E[T2(T1 − T2)] = 0

for any P . Then, for any P ∈ P,

E(T1 − T2)2 = E[T1(T1 − T2)] − E[T2(T1 − T2)] = 0,

which implies that T1 = T2 a.s. P .

Exercise 2 (#3.1). Let (X1, ..., Xn) be a sample of binary random vari-
ables with P (Xi = 1) = p ∈ (0, 1).
(i) Find the UMVUE of pm, where m is a positive integer and m ≤ n.
(ii) Find the UMVUE of P (X1 + · · ·+Xm = k), where m and k are positive
integers and k ≤ m ≤ n.
(iii) Find the UMVUE of P (X1 + · · · + Xn−1 > Xn).
Solution. (i) Let T =

∑n
i=1 Xi. Then T is a complete and sufficient statis-

tic for p. By Lehmann-Scheffé’s theorem (e.g., Theorem 3.1 in Shao, 2003),
the UMVUE should be hm(T ) with a Borel hm satisfying E[hm(T )] = pm.
We now try to find such a function hm. Note that T has the binomial
distribution with size n and probability p. Hence

E[hm(T )] =
n∑

k=0

(
n

k

)
hm(k)pk(1 − p)n−k.

95
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Setting E[hm(T )] = pm, we obtain that

n∑
k=0

(
n

k

)
hm(k)pk−m(1 − p)n−m−(k−m) = 1

for all p. If m < k, pk−m → ∞ as p → 0. Hence, we must have hm(k) = 0
for k = 0, 1, ..., m − 1. Then

n∑
k=m

(
n

k

)
hm(k)pk−m(1 − p)n−m−(k−m) = 1

for all p. On the other hand, from the property of a binomial distribution,

n∑
k=m

(
n − m

k − m

)
pk−m(1 − p)n−m−(k−m) = 1

for all p. Hence,
(
n
k

)
hm(k) =

(
n−m
k−m

)
for k = m, ..., n. The UMVUE of pm is

hm(T ) =

⎧⎨
⎩

(n−m
T −m)
(n

T) T = m, ..., n

0 T = 0, 1, ..., m − 1.

(ii) Note that

P (X1 + · · · + Xm = k) =
(

m

k

)
pk(1 − p)m−k

=
(

m

k

)
pk

m−k∑
j=0

(
m − k

j

)
(−1)jpj

=
(

m

k

)m−k∑
j=0

(
m − k

j

)
(−1)jpj+k.

By the result in part (i), the UMVUE of pj+k is hj+k(T ), where the function
hj+k is given in part (i) of the solution, j = 0, 1, ..., m − k. By Corollary
3.1 in Shao (2003), the UMVUE of P (X1 + · · · + Xm = k) is

(
m

k

)m−k∑
j=0

(
m − k

j

)
(−1)jhj+k(T ).

(iii) Let Sn−1 = X1 + · · · + Xn−1. Then Sn−1 and Xn are independent
and Sn−1 has the binomial distribution with size n − 1 and probability p.
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Hence,

P (Sn−1 > Xn) = P (Xn = 0)P (Sn−1 > 0) + P (Xn = 1)P (Sn−1 > 1)
= P (Sn−1 > 0) − P (Xn = 1)P (Sn−1 = 1)
= 1 − (1 − p)n−1 − (n − 1)p2(1 − p)n−2

=
n−1∑
j=1

(
n − 1

j

)
(−1)j+1pj − (n − 1)

n−2∑
j=0

(
n − 2

j

)
(−1)jpj+2

=
n∑

j=1

cjp
j ,

where c1 = n − 1, cn = (−1)n+1(n − 1), and

cj = (−1)j+1
[(

n − 1
j

)
+ (n − 1)

(
n − 2
j − 2

)]
, j = 2, ..., n − 1.

The UMVUE of P (Sn−1 > Xn) is
∑n

j=1 cjhj(T ) with hj defined in part (i)
of the solution.

Exercise 3 (#3.2). Let (X1, ..., Xn) be a random sample from N(µ, σ2)
with an unknown µ ∈ R and a known σ2 > 0.
(i) Find the UMVUE’s of µ3 and µ4.
(ii) Find the UMVUE’s of P (X1 ≤ t) and d

dtP (X1 ≤ t) with a fixed t ∈ R.
Solution. (i) Let X̄ be the sample mean, which is complete and sufficient
for µ. Since

0 = E(X̄ − µ)3 = E(X̄3 − 3µX̄2 + 3µ2X̄ − µ3) = E(X̄3) − 3µσ2/n − µ3,

we obtain that

E[X̄3 − (3σ2/n)X̄] = E(X̄3) − 3µσ2/n = µ3

for all µ. By Lehmann-Scheffé’s theorem, the UMVUE of µ3 is X̄3 −
(3σ2/n)X̄. Similarly,

3σ4 = E(X̄ − µ)4

= E[X̄(X̄ − µ)3]
= E[X̄4 − 3µX̄3 + 3µ2X̄2 − µ3X̄]
= E(X̄4) − 3µ(3µσ2/n + µ3) + 3µ2(σ2/n + µ2) − µ4

= E(X̄4) − 6µ2σ2/n − 4µ4

= E(X̄4) − (6σ2/n)E(X̄2 − σ2/n) − 4µ4.

Hence, the UMVUE of µ4 is [X̄4 − (6σ2/n)(X̄2 − σ2/n) − 3σ4]/4.
(ii) Since E[P (X1 ≤ t|X̄)] = P (X1 ≤ t), the UMVUE of P (X1 ≤ t) is
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P (X1 ≤ t|X̄). From the properties of normal distributions, (X1, X̄) is
bivariate normal with mean (µ, µ) and covariance matrix

σ2
(

1 n−1

n−1 n−1

)
.

Consequently, the conditional distribution of X1 given X̄ is the normal
distribution N(X̄, (1 − n−1)σ2). Then, the UMVUE of P (X1 ≤ t) is

Φ
(

t − X̄

σ
√

1 − n−1

)
,

where Φ is the cumulative distribution function of N(0, 1). By the domi-
nated convergence theorem,

d

dt
P (X1 ≤ t) =

d

dt
E

[
Φ
(

t − X̄

σ
√

1 − n−1

)]
= E

[
d

dt
Φ
(

t − X̄

σ
√

1 − n−1

)]
.

Hence, the UMVUE of d
dtP (X1 ≤ t) is

d

dt
Φ
(

t − X̄

σ
√

1 − n−1

)
=

1
σ
√

1 − n−1
Φ′
(

t − X̄

σ
√

1 − n−1

)
.

Exercise 4 (#3.4). Let (X1, ..., Xm) be a random sample from N(µx, σ2
x)

and let Y1, ..., Yn be a random sample from N(µy, σ2
y). Assume that Xi’s

and Yj ’s are independent.
(i) Assume that µx ∈ R, µy ∈ R, σ2

x > 0, and σ2
y > 0. Find the UMVUE’s

of µx − µy and (σx/σy)r, where r > 0 and r < n.
(ii) Assume that µx ∈ R, µy ∈ R, and σ2

x = σ2
y > 0. Find the UMVUE’s

of σ2
x and (µx − µy)/σx.

(iii) Assume that µx = µy ∈ R, σ2
x > 0, σ2

y > 0, and σ2
x/σ2

y = γ is known.
Find the UMVUE of µx.
(iv) Assume that µx = µy ∈ R, σ2

x > 0, and σ2
y > 0. Show that a UMVUE

of µx does not exist.
(v) Assume that µx ∈ R, µy ∈ R, σ2

x > 0, and σ2
y > 0. Find the UMVUE

of P (X1 ≤ Y1).
(vi) Repeat (v) under the assumption that σx = σy.
Solution: (i) The complete and sufficient statistic for (µx, µy, σ2

x, σ2
y) is

(X̄, Ȳ , S2
X , S2

Y ), where X̄ and S2
X are the sample mean and variance based

on Xi’s and Ȳ and S2
Y are the sample mean and variance based on Yi’s.

Therefore X̄ − Ȳ is the UMVUE of µx − µy. A direct calculation shows
that

E(Sr
X) = σr

x/κm−1,r,
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where

κm,r =
mr/2Γ(m

2 )
2r/2Γ(m+r

2 )
.

Hence, the UMVUE of σr
x is κm−1,rS

r
X . Similarly, the UMVUE of σ−r

y is
κn−1,−rS

−r
Y . Since SX and SY are independent, the UMVUE of (σx/σy)r

is κm−1,rκn−1,−rS
r
XS−r

Y .
(ii) The complete and sufficient statistic for (µx, µy, σ2

x) is (X̄, Ȳ , S2), where

S2 =
1

m + n − 2

⎡
⎣ m∑

i=1

(Xi − X̄)2 +
n∑

j=1

(Yj − Ȳ )2

⎤
⎦ .

Since (m+n−2)S2/σ2
x has the chi-square distribution χ2

m+n−2, the UMVUE
of σ2

x is S2 and the UMVUE of σ−1
x is κm+n−2,−1S

−1. Since X̄ − Ȳ and S2

are independent, κm+n−2,−1(X̄ − Ȳ )/S is the UMVUE of (µx − µy)/σx.
(iii) The joint distribution of Xi’s and Yj ’s is from an exponential family
with (mX̄ + γnȲ ,

∑m
i=1 X2

i + γ
∑n

j=1 Y 2
j ) as the complete and sufficient

statistic for (µx, σ2
x). Hence, the UMVUE of µx is (mX̄ + γnȲ )/(m + γn).

(iv) Let P be the family of all possible distributions of (X1, ..., Xm,Y1, ..., Yn)
and Pγ be the sub-family of P with σ2

x = γσ2
y. Suppose that T is a

UMVUE of µx. By the result in (iii), Tγ = (mX̄ + γnȲ )/(m + γn) is
a UMVUE of µx when Pγ is considered as the family of distributions for
(X1, ..., Xm, Y1, ..., Yn). Since E(T − Tγ) = 0 for any P ∈ P and T is a
UMVUE, E[T (T − Tγ)] = 0 for any P ∈ P. Similarly, E[Tγ(T − Tγ)] = 0
for any P ∈ Pγ . Then, E(T − Tγ)2 = 0 for any P ∈ Pγ and, thus, T = Tγ

a.s. Pγ . Since a.s. Pγ implies a.s. P, T = Tγ a.s. P for any γ > 0. This
shows that T depends on γ = σ2

x/σ2
y, which is impossible.

(v) Since U = (X̄, Ȳ , S2
X , S2

Y ) is complete and sufficient for (µx, µy, σ2
x, σ2

y),
P (X1 ≤ Y1|U) is UMVUE for P (X1 ≤ Y1). Note that

P
(
X1 ≤ t, Y1 ≤ v|U = (x̄, ȳ, s2

x, s2
y)
)

= P

(
Z ≤ t − x̄

sx
, W ≤ v − ȳ

sy

)
,

where Z = (X1 − X̄)/SX and W = (Y1 − Ȳ )/SY . From Example 3.4 in
Shao (2003), Z has Lebesgue density fm(z) and W has Lebesgue density
fn(w), where

fk(z) =

√
kΓ
(

k−1
2

)
√

π(k − 1)Γ
(

k−2
2

) [1 − kz2

(k − 1)2

](k/2)−2

I(0,(k−1)/
√

k)(|z|).

Since Z and W are independent, the conditional density of (X1, Y1) given
U is

1
SX

fm

(
t − X̄

SX

)
1

SY
fn

(
v − Ȳ

SY

)
.
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Hence, the UMVUE is

P (X1 ≤ Y1|U) =
1

SXSY

∫ 0

−∞

∫ ∞

−∞
fm

(
v − X̄

SX

)
fn

(
t − v − Ȳ

SY

)
dv.

(vi) In this case, U = (X̄, Ȳ , S2) with S2 defined in (ii) is complete and
sufficient for (µx, µy, σ2

x). Similar to part (v) of the solution, we have

P (X1 ≤ Y1|U = u) = P

(
(X1 − X̄) − (Y1 − Ȳ )√

m + n − 2S
≤ r

)
,

where r is the observed value of R = −(X̄ − Ȳ )/(
√

m + n − 2S). If we
denote the Lebesgue density of T = [(X1 − X̄) − (Y1 − Ȳ )]/(

√
m + n − 2S)

by f(t), then the UMVUE of P (X1 ≤ Y1) is
∫ R

−∞ f(t)dt. To determine f ,
we consider the orthogonal transformation

(Z1, ..., Zm+n)τ = A(X1, ..., Xm, Y1, ..., Yn)τ ,

where A is an orthogonal matrix of order m + n whose first three rows are

(m−1/2Jm, 0Jn),

(0Jm, n−1/2Jn),

and

(2 − m−1 − n−1)−1/2(1 − m−1,−m−1Jm−1, n
−1 − 1, n−1Jn−1

)
,

and Jk denotes a row of 1’s with dimension k. Then Z1 =
√

mX̄, Z2 =√
nȲ , Z3 = (2 − m−1 − n−1)−1[(X1 − X̄) − (Y1 − Ȳ )], (m + n − 2)S2 =∑m+n
i=3 Z2

3 , and Zi, i = 3, ..., m + n, are independent and identically dis-
tributed as N(0, σ2

x). Note that

T =
√

2 − m−1 − n−1Z3√
Z2

3 + Z2
4 + · · · + Z2

m+n

.

Then, a direct calculation shows that

f(t) = cm,n

(
1 − t2

2 − m−1 − n−1

)(m+n−5)/2

I
(0,

√
2−m−1−n−1)

(|t|),

where

cm,n =
Γ(m+n−2

2 )√
π(2 − m−1 − n−1)Γ(m+n−3

2 )
.
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Exercise 5 (#3.5). Let (X1, ..., Xn), n > 2, be a random sample from
the uniform distribution on the interval (θ1 − θ2, θ1 + θ2), where θ1 ∈ R
and θ2 > 0. Find the UMVUE’s of θj , j = 1, 2, and θ1/θ2.
Solution. Let X(j) be the jth order statistic. Then (X(1), X(n)) is complete
and sufficient for (θ1, θ2). Hence, it suffices to find a function of (X(1), X(n))
that is unbiased for the parameter of interest. Let Yi = [Xi−(θ1−θ2)]/(2θ2),
i = 1, ..., n. Then Yi’s are independent and identically distributed as the
uniform distribution on the interval (0, 1). Let Y(j) be the jth order statistic
of Yi’s. Then,

E(X(n)) = 2θ2E(Y(n)) + θ1 − θ2

= 2θ2n

∫ 1

0
yndy + θ1 − θ2

=
2θ2n

n + 1
+ θ1 − θ2

and

E(X(1)) = 2θ2E(Y(1)) + θ1 − θ2

= 2θ2n

∫ 1

0
y(1 − y)n−1dy + θ1 − θ2

= − 2θ2n

n + 1
+ θ1 + θ2.

Hence, E(X(n) + X(1))/2 = θ1 and E(X(n) − X(1)) = 2θ2(n − 1)/(n + 1).
Therefore, the UMVUE’s of θ1 and θ2 are, respectively, (X(n) + X(1))/2
and (n + 1)(X(n) + X(1))/[2(n − 1)]. Furthermore,

E

(
X(n) + X(1)

X(n) − X(1)

)
= E

(
Y(n) + Y(1)

Y(n) − Y(1)

)
+

θ1 − θ2

θ2
E

(
1

Y(n) − Y(1)

)

= n(n − 1)
∫ 1

0

∫ y

0
(x + y)(y − x)n−3dxdy

+
θ1 − θ2

θ2
n(n − 1)

∫ 1

0

∫ y

0
(y − x)n−3dxdy

=
n

n − 2
+

θ1 − θ2

θ2

n

n − 2

=
n

n − 2
θ1

θ2
.

Hence the UMVUE of θ1/θ2 is n−2
n (X(n) + X(1))/(X(n) − X(1)).

Exercise 6 (#3.6). Let (X1, ..., Xn) be a random sample from the ex-
ponential distribution on (a,∞) with scale parameter θ, where θ > 0 and



102 Chapter 3. Unbiased Estimation

a ∈ R.
(i) Find the UMVUE of a when θ is known.
(ii) Find the UMVUE of θ when a is known.
(iii) Find the UMVUE’s of θ and a.
(iv) Assume that θ is known. Find the UMVUE of P (X1 ≥ t) and the
UMVUE of d

dtP (X1 ≥ t) for a fixed t > a.
(v) Find the UMVUE of P (X1 ≥ t) for a fixed t > a.
Solution: (i) When θ is known, the smallest order statistic X(1) is com-
plete and sufficient for a. Since EX(1) = a+θ/n, X(1)−θ/n is the UMVUE
of a.
(ii) When a is known, T =

∑n
i=1 Xi is complete and sufficient for θ. Since

ET = n(a + θ), T/n − a is the UMVUE of θ.
(iii) Note that (X(1), T − nX(1)) is complete and sufficient for (a, θ) and
2(T −nX(1))/θ has the chi-square distribution χ2

2(n−1). Then E(T −nX(1))
= (n − 1)θ and the UMVUE of θ is (T − nX(1))/(n − 1). Since EX(1) =
a + θ/n, the UMVUE of a is X(1) − (T − nX(1))/[n(n − 1)].
(iv) Since X(1) is complete and sufficient for a, the UMVUE of

P (X1 ≥ t) =
{

e(a−t)/θ t > a

1 t ≤ a

is g(X(1)) satisfying

P (X1 ≥ t) = E[g(X(1))] =
n

θ

∫ ∞

a

g(x)e−n(x−a)/θdx

for any a, which is the same as

net/θ

θ

∫ ∞

a

g(x)e−nx/θdx = e−(n−1)a/θ

for any a < t and g(a) = 1 for a ≥ t. Differentiating both sides of the above
expression with respect to a, we obtain that

net/θg(a)e−na/θ = (n − 1)e−(n−1)a/θ.

Hence,

g(x) =
{

(1 − n−1)e(x−t)/θ x < t

1 x ≥ t

and the UMVUE of P (X1 > t) is g(X(1)). The UMVUE of d
dtP (X1 ≥ t) =

−θ−1e(a−t)/θ is then −θ−1g(X(1)).
(v) The complete and sufficient statistic for (a, θ) is U = (X(1), T −nX(1)).
The UMVUE is P (X1 ≥ t|U). Let Y = T − nX(1) and Aj = {X(1) = Xj}.
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Then P (Aj) = n−1. If t < X(1), obviously P (X1 ≥ t|U) = 1. For t ≥ X(1),
consider U = u = (x(1), y) and

P
(
X1 ≥ t|U = u

)
= P

(
X1 − X(1)

Y
≥

t − x(1)

y

∣∣∣∣U = u

)

= P

(
X1 − X(1)

Y
≥

t − x(1)

y

)

=
n∑

j=1

P (Aj)P
(

X1 − X(1)

Y
≥

t − x(1)

y

∣∣∣∣Aj

)

=
n − 1

n
P

(
X1 − X(1)

Y
≥

t − x(1)

y

∣∣∣∣An

)

=
n − 1

n
P

(
X1 − X(1)∑n−1

i=1 (Xi − X(1))
≥

t − x(1)

y

∣∣∣∣An

)

=
n − 1

n

(
1 −

t − x(1)

y

)n−2

,

where the second equality follows from the fact that U and (X1 − X(1))/Y
are independent (Basu’s theorem), the fourth equality follows from the fact
that the conditional probability given A1 is 0 and the conditional probabil-
ities given Aj , j = 2, ..., n, are all the same, the fifth equality follows from
the fact that Y =

∑n−1
i=1 (Xi − X(1)) on the event An, and the last equality

follows from the fact that conditional on An, Xi −X(1), i = 1, ..., n− 1, are
independent and identically distributed as the exponential distribution on
(0,∞) with scale parameter θ and (X1 − X(1))/

∑n−1
i=1 (Xi − X(1)) has the

beta distribution with density (n − 2)(1 − x)n−3I(0,1)(x). Therefore, the
UMVUE is equal to 1 when t < X(1) and(

1 − 1
n

)[
1 −

t − X(1)∑n
i=1(Xi − X(1))

]n−2

when X(1) ≤ t.

Exercise 7 (#3.7). Let (X1, ..., Xn) be a random sample from the Pareto
distribution with Lebesgue density θaθx−(θ+1)I(a,∞)(x), where θ > 0 and
a > 0.
(i) Find the UMVUE of θ when a is known.
(ii) Find the UMVUE of a when θ is known.
(iii) Find the UMVUE’s of a and θ.
Solution: (i) The joint Lebesgue density of X1, ..., Xn is

f(x1, ..., xn) = θnanθ exp

{
−(θ + 1)

n∑
i=1

log xi

}
I(a,∞)(x(1)),
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where x(1) = min1≤i≤n xi. When a is known, T =
∑n

i=1 log Xi is complete
and sufficient for θ and T − n log a has the gamma distribution with shape
parameter n and scale parameter θ−1. Hence, ET−1 = θ/(n−1) and, thus,
(n − 1)/T is the UMVUE of θ.
(ii) When θ is known, X(1) is complete and sufficient for a. Since X(1)

has the Lebesgue density nθanθx−(nθ+1)I(a,∞)(x), EX(1) = nθa/(nθ − 1).
Therefore, (1 − nθ)X(1)/(nθ) is the UMVUE of a.
(iii) When both a and θ are unknown, (Y, X(1)) is complete and sufficient
for (a, θ), where Y =

∑
i(log Xi − log X(1)). Also, Y has the gamma distri-

bution with shape parameter n − 1 and scale parameter θ−1 and X(1) and
Y are independent. Since EY −1 = θ/(n − 2), (n − 2)/Y is the UMVUE of
θ. Since

E

{[
1 − Y

n(n − 1)

]
X(1)

}
=
[
1 − EY

n(n − 1)

]
EX(1)

=
(

1 − 1
nθ

)
nθa

nθ − 1
= a,[

1 − Y
n(n−1)

]
X(1) is the UMVUE of a.

Exercise 8 (#3.11). Let X be a random variable having the negative
binomial distribution with

P (X = x) =
(

x − 1
r − 1

)
pr(1 − p)x−r, x = r, r + 1, ...,

where p ∈ (0, 1) and r is a known positive integer.
(i) Find the UMVUE of pt, where t is a positive integer and t < r.
(ii) Find the UMVUE of Var(X).
(iii) Find the UMVUE of log p.
Solution. (i) Since X is complete and sufficient for p, the UMVUE of pt

is h(X) with a function h satisfying E[h(X)] = pt for any p, i.e.,
∞∑

x=r

h(x)
(

x − 1
r − 1

)
pr(1 − p)x−r = pt

for any p. Let q = 1 − p. Then
∞∑

x=r

h(x)
(

x − 1
r − 1

)
qx =

qr

(1 − q)r−t

for any q ∈ (0, 1). From the negative binomial identity
∞∑

x=j

(
x − 1
j − 1

)
qx =

qj

(1 − q)j
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with any positive integer j, we obtain that

∞∑
x=r

h(x)
(

x − 1
r − 1

)
qx =

∞∑
x=r−t

(
x − 1

r − t − 1

)
qx+t =

∞∑
x=r

(
x − t − 1
r − t − 1

)
qx

for any q. Comparing the coefficients of qx, we obtain that

h(x) =

(
x−t−1
r−t−1

)
(
x−1
r−1

) , x = r, r + 1, ....

(ii) Note that Var(X) = r(1−p)/p2 = rq/(1−q)2. The UMVUE of Var(X)
is h(X) with E[h(X)] = rq/(1 − q)2 for any q ∈ (0, 1). That is,

∞∑
x=r

h(x)
(

x − 1
r − 1

)
qx =

qr

(1 − q)r
Var(X) = r

qr+1

(1 − q)r+2

for any q. Using the negative binomial identity, this means that

∞∑
x=r

h(x)
(

x − 1
r − 1

)
qx = r

∞∑
x=r+2

(
x − 1
r + 1

)
qx−1 = r

∞∑
x=r+1

(
x

r + 1

)
qx

for any q, which yields

h(x) =

⎧⎨
⎩

0 x = r
r( x

r+1)
(x−1

r−1)
x = r + 1, r + 2, ....

(iii) Let h(X) be the UMVUE of log p = log(1−q). Then, for any q ∈ (0, 1),

∞∑
x=r

h(x)
(

x − 1
r − 1

)
qx =

qr

(1 − q)r
log(1 − q)

= −
∞∑

x=r

(
x − 1
r − 1

)
qx

∞∑
i=1

qi

i

=
∞∑

x=r+1

x−r−1∑
k=0

(
r + k − 1

k

)
qx

k + r − x
.

Hence h(r) = 0 and

h(x) =
1(

x−1
r−1

) x−r−1∑
k=0

(
r + k − 1

k

)
1

k + r − x

for x = r + 1, r + 2, ....
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Exercise 9 (#3.12). Let (X1, ..., Xn) be a random sample from the
Poisson distribution truncated at 0, i.e., P (Xi = x) = (eθ − 1)−1θx/x!,
x = 1, 2, ..., θ > 0. Find the UMVUE of θ when n = 1, 2.
Solution. Assume n = 1. Then X is complete and sufficient for θ and the
UMVUE of θ is h(X) with E[h(X)] = θ for any θ. Since

E[h(X)] =
1

eθ − 1

∞∑
x=1

h(x)
θx

x!
,

we must have
∞∑

x=1

h(x)θx

x!
= θ(eθ − 1) = θ

∞∑
x=1

θx

x!
=

∞∑
x=2

θx

(x − 1)!

for any θ. Comparing the coefficient of θx leads to h(1) = 0 and h(x) = x
for x = 2, 3, ....

Assume n = 2. Then T = X1 +X2 is complete and sufficient for θ. The
UMVUE of θ is h(T ) with E[h(T )] = θ for any θ. Then

θ(eθ − 1)2 =
∞∑

i=1

∞∑
j=1

h(i + j)ei+j

i!j!
=

∞∑
t=2

h(t)θt
t−1∑
i=0

1
i!(t − i)!

.

On the other hand,

θ(eθ − 1)2 = θ

( ∞∑
i=1

θi

i!

)2

=
∞∑

i=1

∞∑
j=1

θiθj+1

i!j!
=

∞∑
t=3

θt
t−2∑
i=0

1
i!(t − 1 − i)!

.

Comparing the coefficient of θx leads to h(2) = 0 and

h(t) =
t−2∑
i=0

1
i!(t − 1 − i)!

/ t−1∑
i=0

1
i!(t − i)!

for t = 3, 4, ....

Exercise 10 (#3.14). Let X1, ..., Xn be a random sample from the log-
distribution with

P (X1 = x) = −(1 − p)x/(x log p), x = 1, 2, ...,

p ∈ (0, 1). Let k be a fixed positive integer.
(i) For n = 1, 2, 3, find the UMVUE of pk.
(ii) For n = 1, 2, 3, find the UMVUE of P (X = k).
Solution. (i) Let θ = 1−p. Then pk =

∑k
r=0

(
k
r

)
(−1)rθr. Hence, it suffices

to obtain the UMVUE for θr. Note that the distribution of X1 is from a
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power series distribution with γ(x) = x−1 and c(θ) = − log(1 − θ) (see
Example 3.5 in Shao, 2003). The statistic T =

∑n
i=1 Xi is complete and

sufficient for θ. By the result in Example 3.5 of Shao (2003), the UMVUE
of θr is

γn(T − r)
γn(T )

I{r,r+1,...}(T ),

where γn(t) is the coefficient of θt in
(∑∞

y=1
θy

y

)n
, i.e., γn(t) = 0 for t < n

and
γn(t) =

∑
y1+···+yn=t−n,yi≥0

1
(y1 + 1) · · · (yn + 1)

for t = n, n + 1, .... When n = 1, 2, 3, γn(t) has a simpler form. In fact,
γ1(1) = 0 and

γ1(t) = t−1, t = 2, 3, ...;

γ2(1) = γ2(2) = 0 and

γ2(t) =
t−2∑
l=0

1
(l + 1)(t − l − 1)

, t = 3, 4, ...;

γ3(1) = γ3(2) = γ3(3) = 0 and

γ3(t) =
t−3∑
l1=0

t−3∑
l2=0

1
(l1 + 1)(l2 + 1)(t − l1 − l2 − 2)

, t = 4, 5, ....

(ii) By Example 3.5 in Shao (2003), the UMVUE of P (X1 = k) is

γn−1(T − k)
kγn(T )

I{k,k+1,...}(T ),

where γn(t) is given in the solution of part (i).

Exercise 11 (#3.19). Let Y1, ..., Yn be a random sample from the uniform
distribution on the interval (0, θ) with an unknown θ ∈ (1,∞).
(i) Suppose that we only observe

Xi =
{

Yi if Yi ≥ 1
1 if Yi < 1,

i = 1, ..., n.

Derive a UMVUE of θ.
(ii) Suppose that we only observe

Xi =
{

Yi if Yi ≤ 1
1 if Yi > 1,

i = 1, ..., n.



108 Chapter 3. Unbiased Estimation

Derive a UMVUE of the probability P (Y1 > 1).
Solution. (i) Let m be the Lebesgue measure and δ be the point mass on
{1}. The joint probability density of X1, ..., Xn with respect to δ+m is (see,
e.g., Exercise 16 in Chapter 1) θ−nI(0,θ)(X(n)), where X(n) = max1≤i≤n Xi.
Hence X(n) is complete and sufficient for θ and the UMVUE of θ is h(X(n))
satisfying E[h(X(n))] = θ for all θ > 1. The probability density of X(n)
with respect to δ + m is θ−nI{1}(x) + nθ−nxn−1I(1,θ)(x). Hence

E[h(X(n))] =
h(1)
θn

+
n

θn

∫ θ

1
h(x)xn−1dx.

Then

θn+1 = h(1) + n

∫ θ

1
h(x)xn−1dx

for all θ > 1. Letting θ → 1 we obtain that h(1) = 1. Differentiating both
sides of the previous expression with respect to θ we obtain that

(n + 1)θn = nh(θ)θn−1 θ > 1.

Hence h(x) = (n + 1)x/n when x > 1.
(ii) The joint probability density of X1, ..., Xn with respect to δ + m is
θ−r(1 − θ−1)n−r, where r is the observed value of R = the number of
Xi’s that are less than 1. Hence, R is complete and sufficient for θ. Note
that R has the binomial distribution with size n and probability θ−1 and
P (Y1 > 1) = 1 − θ−1. Hence, the UMVUE of P (Y1 > 1) is 1 − R/n.

Exercise 12 (#3.22). Let (X1, ..., Xn) be a random sample from P ∈ P
containing all symmetric distributions with finite means and with Lebesgue
densities on R.
(i) When n = 1, show that X1 is the UMVUE of µ.
(ii) When n > 1, show that there is no UMVUE of µ = EX1.
Solution. (i) Consider the sub-family P1 = {N(µ, 1) : µ ∈ R}. Then X1
is complete for P ∈ P1. Hence, E[h(X1)] = 0 for any P ∈ P implies that
E[h(X1)] = 0 for any P ∈ P1 and, thus, h = 0 a.e. Lebesgue measure. This
shows that 0 is the unique estimator of 0 when the family P is considered.
Since EX1 = µ, X1 is the unique unbiased estimator of µ and, hence, it is
the UMVUE of µ.
(ii) Suppose that T is a UMVUE of µ. Let P1 = {N(µ, 1) : µ ∈ R}. Since
the sample mean X̄ is UMVUE when P1 is considered, by using the same
argument in the solution for Exercise 4(iv), we can show that T = X̄ a.s. P
for any P ∈ P1. Since the Lebesgue measure is dominated by any P ∈ P1,
we conclude that T = X̄ a.e. Lebesgue measure. Let P2 be the family given
in Exercise 5. Then (X(1) +X(n))/2 is the UMVUE when P2 is considered,
where X(j) is the jth order statistic. Then X̄ = (X(1) + X(n))/2 a.s. P for
any P ∈ P2, which is impossible. Hence, there is no UMVUE of µ.
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Exercise 13 (#3.24). Suppose that T is a UMVUE of an unknown
parameter θ. Show that T k is a UMVUE of E(T k), where k is any positive
integer for which E(T 2k) < ∞.
Solution. Let U be an unbiased estimator of 0. Since T is a UMVUE of
θ, E(TU) = 0 for any P , which means that TU is an unbiased estimator
of 0. Then E(T 2U) = E[T (TU)] = 0 if ET 4 < ∞. By Theorem 3.2 in
Shao (2003), T 2 is a UMVUE of ET 2. Similarly, we can show that T 3 is a
UMVUE of ET 3,..., T k is a UMVUE of ET k.

Exercise 14 (#3.27). Let X be a random variable having the Lebesgue
density [(1 − θ) + θ/(2

√
x)]I(0,1)(x), where θ ∈ [0, 1]. Show that there is no

UMVUE of θ based on an observation X.
Solution. Consider estimators of the form h(X) = a(X−1/2 + b)I(c,1)(X)
for some real numbers a and b, and c ∈ (0, 1). Note that∫ 1

0
h(x)dx = a

∫ 1

c

x−1/2dx + ab

∫ 1

c

dx = 2a(1 −
√

c) + ab(1 − c).

If b = −2/(1 +
√

c), then
∫ 1
0 h(x)dx = 0 for any a and c. Also,

∫ 1

0

h(x)
2
√

x
dx =

a

2

∫ 1

c

x−1dx +
ab

2

∫ 1

c

x−1/2dx = −a

2
log c + ab(1 −

√
c).

If a = [b(1 −
√

c) − 2−1 log c]−1, then
∫ 1
0

h(x)
2
√

x
dx = 1 for any b and c. Let

gc = h with b = −2/(1 +
√

c) and a = [b(1 −
√

c) − 2−1 log c]−1, c ∈ (0, 1).
Then

E[gc(X)] = (1 − θ)
∫ 1

0
gc(x)dx + θ

∫ 1

0

gc(x)
2
√

x
dx = θ

for any θ, i.e., gc(X) is unbiased for θ for any c ∈ (0, 1). The variance of
gc(X) when θ = 0 is

E[gc(X)]2 = a2
∫ 1

c

(x−1 + b2 + 2bx−1/2)dx

= a2[− log c + b2(1 − c) + 4b(1 −
√

c)]

=
− log c + b2(1 − c) + 4b(1 −

√
c)

[b(1 −
√

c) − 2−1 log c]2
,

where b = −2/(1 +
√

c). Letting c → 0, we obtain that b → −2 and, thus,
E[gc(X)]2 → 0. This means that no minimum variance estimator within
the class of estimators gc(X). Hence, there is no UMVUE of θ.

Exercise 15 (#3.28). Let X be a random sample with P (X = −1) =
2p(1 − p) and P (X = k) = pk(1 − p)3−k, k = 0, 1, 2, 3, where p ∈ (0, 1).
(i) Determine whether there is a UMVUE of p.
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(ii) Determine whether there is a UMVUE of p(1 − p).
Solution. (i) Suppose that f(X) is an unbiased estimator of p. Then

p = 2f(−1)p(1 − p) + f(0)(1 − p)3 + f(1)p(1 − p)2 + f(2)p2(1 − p) + f(3)p3

for any p. Letting p → 0, we obtain that f(0) = 0. Letting p → 1, we
obtain that f(3) = 1. Then

1 = 2f(−1)(1 − p) + f(1)(1 − p)2 + f(2)p(1 − p) + p2

= 2f(−1) + f(1) + [f(2) − 2f(−1) − 2f(1)]p + [f(1) − f(2) + 1]p2.

Thus, 2f(−1)+f(1) = 1, f(2)−2f(−1)−2f(1) = 0, and f(1)−f(2)+1 = 0.
These three equations are not independent; in fact the second equation is a
consequence of the first and the last equations. Let f(2) = c. Then f(1) =
c − 1 and f(−1) = 1 − c/2. Let gc(2) = c, gc(1) = c − 1, gc(−1) = 1 − c/2,
gc(0) = 0, and gc(3) = 1. Then the class of unbiased estimators of p is
{gc(X) : c ∈ R}. The variance of gc(X) is

E[gc(X)]2−p2 = 2(1−c/2)2p(1−p)+(c−1)2p(1−p)2+c2p2(1−p)+p3−p2.

Denote the right hand side of the above equation by h(c). Then

h′(c) = −(2 − c)p(1 − p) + 2(c − 1)p(1 − p)2 + 2cp2(1 − p).

Setting h′(c) = 0 we obtain that

0 = c − 2 + 2(c − 1)(1 − p) + 2cp = c − 2 + 2c − 2(1 − p).

Hence, the function h(c) reaches its minimum at c = (4 − 2p)/3, which
depends on p. Therefore, there is no UMVUE of p.
(ii) Suppose that f(X) is an unbiased estimator of p(1 − p). Then

p(1 − p) = 2f(−1)p(1 − p) + f(0)(1 − p)3 + f(1)p(1 − p)2

+ f(2)p2(1 − p) + f(3)p3

for any p. Letting p → 0 we obtain that f(0) = 0. Letting p → 1 we obtain
that f(3) = 0. Then

1 = 2f(−1) + f(1)(1 − p) + f(2)p

for any p, which implies that f(2) = f(1) and 2f(−1) + f(1) = 1. Let
f(−1) = c. Then f(1) = f(2) = 1 − 2c. Let gc(−1) = c, gc(0) = gc(3) = 0,
and gc(1) = gc(2) = 1−2c. Then the class of unbiased estimators of p(1−p)
is {gc(X) : c ∈ R}. The variance of gc(X) is

E[gc(X)]2 − p2 = 2c2p(1 − p) + (1 − 2c)2p(1 − p)2

+ (1 − 2c)2p2(1 − p) − p2

= 2c2p(1 − p) + (1 − 2c)2p(1 − p) − p2

= [2c2 + (1 − 2c)2]p(1 − p) − p2,
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which reaches its minimum at c = 1/3 for any p. Thus, the UMVUE of
p(1 − p) is g1/3(X).

Exercise 16 (#3.29(a)). Let (X1, ..., Xn) be a random sample from the
exponential distribution with density θ−1e−(x−a)/θI(a,∞)(x), where a ≤ 0
and θ is known. Obtain a UMVUE of a.
Note. The minimum order statistic, X(1), is sufficient for a but not com-
plete because a ≤ 0.
Solution. Let U(X(1)) be an unbiased estimator of 0. Then E[U(X(1))] =
0 implies ∫ 0

a

U(x)e−x/θdx +
∫ ∞

0
U(x)e−x/θdx = 0

for all a ≤ 0. Hence, U(x) = 0 a.e. for x ≤ 0 and
∫∞
0 U(x)e−x/θdx = 0.

Consider
h(X(1)) = (bX(1) + c)I(−∞,0](X(1))

with constants b and c. Then E[h(X(1))U(X(1))] = 0 for any a. By Theorem
3.2 in Shao (2003), h(X(1)) is a UMVUE of its expectation

E[h(X(1))] =
nena/θ

θ

∫ 0

a

(bx + c)e−nx/θdx

= c
(
1 − ena/θ

)
+ ab +

bθ

n

(
1 − ena/θ

)
,

which equals a when b = 1 and c = −θ/n. Therefore, the UMVUE of a is

h(X(1)) = (X(1) − θ/n)I(−∞,0](X(1)).

Exercise 17 (#3.29(b)). Let (X1, ..., Xn) be a random sample from
the distribution on R with Lebesgue density θaθx−(θ+1)I(a,∞)(x), where
a ∈ (0, 1] and θ is known. Obtain a UMVUE of a.
Solution. The minimum order statistic X(1) is sufficient for a and has
Lebesgue density nθanθx−(nθ+1)I(a,∞)(x). Let U(X(1)) be an unbiased es-
timator of 0. Then E[U(X(1))] = 0 implies∫ 1

a

U(x)x−(nθ+1)dx +
∫ ∞

1
U(x)x−(nθ+1)dx = 0

for all a ∈ (0, 1]. Hence, U(x) = 0 a.e. for x ∈ (0, 1] and
∫∞
1 U(x)x−(nθ+1)dx

= 0. Let
h(X(1)) = cI(1,∞)(X(1)) + bX(1)I(0,1](X(1))

with some constants b and c. Then

E[h(X(1))U(X(1))] = c

∫ ∞

1
U(x)x−(nθ+1)dx = 0.
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By Theorem 3.2 in Shao (2003), h(X(1)) is a UMVUE of its expectation

E[h(X(1))] = bnθanθ

∫ 1

a

x−nθdx + cnθanθ

∫ ∞

1
x−(nθ+1)dx

=
(

c − bnθ

nθ − 1

)
anθ +

abnθ

nθ − 1
,

which equals a when b = 1 − 1
nθ and c = 1. Hence, the UMVUE of a is

h(X(1)) = I(1,∞)(X(1)) +
(

1 − 1
nθ

)
X(1)I(0,1](X(1)).

Exercise 18 (#3.30). Let (X1, ..., Xn) be a random sample from the
population in a family P as described in Exercise 18 of Chapter 2. Find a
UMVUE of θ.
Solution. Note that P = P1 ∪ P2, where P1 is the family of Poisson
distributions with the mean parameter θ ∈ (0, 1) and P2 is the family of
binomial distributions with size 1 and probability θ. The sample mean X̄
is the UMVUE of θ when either P1 or P2 is considered as the family of
distributions. Hence X̄ is the UMVUE of θ when P is considered as the
family of distributions.

Exercise 19 (#3.33). Find a function of θ for which the amount of
information is independent of θ, when Pθ is
(i) the Poisson distribution with unknown mean θ > 0;
(b) the binomial distribution with known size r and unknown probability
θ ∈ (0, 1);
(c) the gamma distribution with known shape parameter α and unknown
scale parameter θ > 0.
Solution. (i) The Fisher information about θ is I(θ) = 1

θ . Let η = η(θ).
If the Fisher information about η is

Ĩ(η) =
(

dθ

dη

)2

I(θ) =
(

dθ

dη

)2 1
θ

= c

not depending on θ, then dη
dθ = 1/

√
cθ. Hence, η(θ) = 2

√
θ/

√
c.

(ii) The Fisher information about θ is I(θ) = r
θ(1−θ) . Let η = η(θ). If the

Fisher information about η is

Ĩ(η) =
(

dθ

dη

)2

I(θ) =
(

dθ

dη

)2
r

θ(1 − θ)
= c

not depending on θ, then dη
dθ =

√
r/
√

cθ(1 − θ). Choose c = 4r. Then
η(θ) = arcsin(

√
θ).
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(iii) The Fisher information about θ is I(θ) = α
θ2 . Let η = η(θ). If the

Fisher information about η is

Ĩ(η) =
(

dθ

dη

)2

I(θ) =
(

dθ

dη

)2
α

θ2 = α,

then dη
dθ = θ−1 and, hence, η(θ) = log θ.

Exercise 20 (#3.34). Let (X1, ..., Xn) be a random sample from a dis-
tribution on R with the Lebesgue density 1

σ f
(

x−µ
σ

)
, where f(x) > 0 is a

known Lebesgue density and f ′(x) exists for all x ∈ R, µ ∈ R, and σ > 0.
Let θ = (µ, σ). Show that the Fisher information about θ contained in
X1, ..., Xn is

I(θ) =
n

σ2

⎛
⎜⎝

∫ [f ′(x)]2

f(x) dx
∫ f ′(x)[xf ′(x)+f(x)]

f(x) dx

∫ f ′(x)[xf ′(x)+f(x)]
f(x) dx

∫ [xf ′(x)+f(x)]2

f(x) dx

⎞
⎟⎠ ,

assuming that all integrals are finite.
Solution. Let g(µ, σ, x) = log 1

σ f
(

x−µ
σ

)
. Then

∂

∂µ
g(µ, σ, x) = −

f ′ (x−µ
σ

)
σf
(

x−µ
σ

)
and

∂

∂σ
g(µ, σ, x) = −

(x − µ)f ′ (x−µ
σ

)
σf
(

x−µ
σ

) − 1
σ

.

Then

E

[
∂

∂µ
g(µ, σ, X1)

]2
=

1
σ2

∫ [
f ′ (x−µ

σ

)
f
(

x−µ
σ

)
]2

1
σ

f

(
x − µ

σ

)
dx

=
1
σ2

∫ [
f ′ (x−µ

σ

)]2
f
(

x−µ
σ

) d
(x

σ

)

=
1
σ2

∫
[f ′(x)]2

f(x)
dx,

E

[
∂

∂σ
g(µ, σ, X1)

]2
=

1
σ2

∫ [
x − µ

σ

f ′ (x−µ
σ

)
f
(

x−µ
σ

) + 1

]2
1
σ

f

(
x − µ

σ

)
dx

=
1
σ2

∫ [
x

f ′ (x)
f (x)

+ 1
]2

f(x)dx

=
1
σ2

∫
[xf ′(x) + f(x)]2

f(x)
dx,
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and

E

[
∂

∂µ
g(µ, σ, X1)

∂

∂σ
g(µ, σ, X1)

]

=
1
σ2

∫
f ′ (x−µ

σ

)
f
(

x−µ
σ

)
[

x − µ

σ

f ′ (x−µ
σ

)
f
(

x−µ
σ

) + 1

]
1
σ

f

(
x − µ

σ

)
dx

=
∫

f ′(x)[xf ′(x) + f(x)]
f(x)

dx.

The result follows since

I(θ) = nE

[
∂

∂θ
log 1

σ f
(

X1−µ
σ

)] [ ∂

∂θ
log 1

σ f
(

X1−µ
σ

)]τ
.

Exercise 21 (#3.36). Let X be a sample having a probability density
fθ(x) with respect to ν, where θ is a k-vector of unknown parameters. Let
T (X) be a statistic having a probability density gθ(t) with respect to λ.
Suppose that ∂

∂θ fθ(x) and ∂
∂θ gθ(t) exist for any x and t and that, on any set

{‖θ‖ ≤ c}, there are functions uc(x) and vc(t) such that | ∂
∂θ fθ(x)| ≤ uc(x),

| ∂
∂θ gθ(t)| ≤ vc(t),

∫
uc(x)dν < ∞, and

∫
vc(t)dλ < ∞. Show that

(i) IX(θ) − IT (θ) is nonnegative definite, where IX(θ) is the Fisher infor-
mation about θ contained in X and IT (θ) is the Fisher information about
θ contained in T ;
(ii) IX(θ) = IT (θ) if T is sufficient for θ.
Solution. (i) For any event T−1(B),∫

T −1(B)

∂

∂θ
log fθ(X)dP =

∫
T −1(B)

∂

∂θ
fθ(x)dν

=
∂

∂θ

∫
T −1(B)

fθ(x)dν

=
∂

∂θ
P
(
T−1(B)

)
=

∂

∂θ

∫
B

gθ(t)dλ

=
∫

B

∂

∂θ
gθ(t)dλ

=
∫

B

[
∂

∂θ
log gθ(t)

]
gθ(t)dλ

=
∫

T −1(B)

∂

∂θ
log gθ(T )dP,

where the exchange of differentiation and integration is justified by the
dominated convergence theorem under the given conditions. This shows
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that

E

[
∂

∂θ
log fθ(X)

∣∣∣∣T
]

=
∂

∂θ
log gθ(T ) a.s.

Then

E

[
∂

∂θ
log fθ(X)

] [
∂

∂θ
log gθ(T )

]τ
= E

{
E

[
∂

∂θ
log fθ(X)

∣∣∣∣T
] [

∂

∂θ
log gθ(T )

]τ}

= E

[
∂

∂θ
log gθ(T )

] [
∂

∂θ
log gθ(T )

]τ
= IT (θ).

Then the nonnegative definite matrix

E

[
∂

∂θ
log fθ(X) − ∂

∂θ
log gθ(T )

] [
∂

∂θ
log fθ(X) − ∂

∂θ
log gθ(T )

]τ

is equal to IX(θ) + IT (θ) − 2IT (θ) = IX(θ) − IT (θ). Hence IX(θ) − IT (θ)
is nonnegative definite.
(ii) If T is sufficient, then by the factorization theorem, fθ(x) = g̃θ(t)h(x).
Since ∂

∂θ log fθ(x) = ∂
∂θ log g̃θ(t), the result in part (i) of the solution implies

that
∂

∂θ
log g̃θ(T ) =

∂

∂θ
log gθ(T ) a.s.

Therefore, IX(θ) = IT (θ).

Exercise 22 (#3.37). Let (X1, ..., Xn) be a random sample from the
uniform distribution on the interval (0, θ) with θ > 0.
(i) Show that d

dθ

∫
xfθ(x)dx 
=

∫
x d

dθfθ(x)dx, where fθ is the density of
X(n), the largest order statistic.
(ii) Show that the Fisher information inequality does not hold for the
UMVUE of θ.
Solution. (i) Note that fθ(x) = nθ−nxn−1I(0,θ)(x). Then

∫
x

d

dθ
fθ(x)dx = − n2

θn+1

∫ θ

0
xndx = − n2

n + 1
.

On the other hand,

d

dθ

∫
xfθ(x)dx =

d

dθ

(
n

θn

∫ θ

0
xndx

)
=

d

dθ

(
nθ

n + 1

)
=

n

n + 1
.

(ii) The UMVUE of θ is (n + 1)X(n)/n with variance θ2/[n(n + 2)]. On
the other hand, the Fisher information is I(θ) = nθ−2. Hence [I(θ)]−1 =
θ2/n > θ2/[n(n + 2)].
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Exercise 23 (#3.39). Let X be an observation with Lebesgue density
(2θ)−1e−|x|/θ with unknown θ > 0. Find the UMVUE’s of the parameters
θ, θr (r > 1), and (1 + θ)−1 and, in each case, determine whether the
variance of the UMVUE attains the Cramér-Rao lower bound.
Solution. For θ, Cramér-Rao lower bound is θ2 and |X| is the UMVUE of
θ with Var(|X|) = θ2, which attains the lower bound.

For θr, Cramér-Rao lower bound is r2θ2r. Since E[|X|r/Γ(r + 1)] = θr,
|X|r/Γ(r + 1) is the UMVUE of θr with

Var
(

|X|r
Γ(r + 1)

)
= θ2r

[
Γ(2r + 1)

Γ(r + 1)Γ(r + 1)
− 1
]

> r2θ2r

when r > 1.
For (1+θ)−1. Cramér-Rao lower bound is θ2/(1+θ)4. Since E

(
e−|X|) =

(1 + θ)−1, e−|X| is the UMVUE of (1 + θ)−1 with

Var
(
e−|X|
)

=
1

1 + 2θ
− 1

(1 + θ)2
>

θ2

(1 + θ)4
.

Exercise 24 (#3.42). Let (X1, ..., Xn) be a random sample from N(µ, σ2)
with an unknown µ ∈ R and a known σ2 > 0. Find the UMVUE of etµ

with a fixed t 
= 0 and show that the variance of the UMVUE is larger than
the Cramér-Rao lower bound but the ratio of the variance of the UMVUE
over the Cramér-Rao lower bound converges to 1 as n → ∞.
Solution. The sample mean X̄ is complete and sufficient for µ. Since

E
(
etX̄
)

= eµt+σ2t2/(2n),

the UMVUE of etµ is T (X) = e−σ2t2/(2n)+tX̄ .
The Fisher information I(µ) = n/σ2. Then the Cramér-Rao lower

bound is
(

d
dµetµ
)2

/I(µ) = σ2t2e2tµ/n. On the other hand,

Var(T ) = e−σ2t2/nEe2tX̄ − e2tµ =
(
eσ2t2/n − 1

)
e2tµ >

σ2t2e2tµ

n
,

the Cramér-Rao lower bound. The ratio of the variance of the UMVUE over
the Cramér-Rao lower bound is (eσ2t2/n − 1)/(σ2t2/n), which converges to
1 as n → ∞, since limx→0(ex − 1)/x = 1.

Exercise 25 (#3.46, #3.47). Let X1, X2, ... be independent and identi-
cally distributed random variables, m be a positive integer, and h(x1,..., xm)
be a function on Rm such that E[h(X1, ..., Xm)]2 < ∞ and h is symmetric
in its m arguments. A U-statistic with kernel h (of order m) is defined as

Un =
(

n

m

)−1 ∑
1≤i1<···<im≤n

h(Xi1 , ..., Xim),
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where
∑

1≤i1<···<im≤n denotes the summation over the
(

n
m

)
combinations

of m distinct elements {i1, ..., im} from {1, ..., n}. For k = 1, ..., m, define
hk(x1, ..., xk)=E[h(x1, ..., xk, Xk+1, ..., Xm)] and ζk = Var(hk(X1, ..., Xk)).
Show that
(i) ζ1 ≤ ζ2 ≤ · · · ≤ ζm;
(ii) (n + 1)Var(Un+1) ≤ nVar(Un) for any n ≥ m;
(iii) if ζj = 0 for j < k and ζk > 0, where 1 ≤ k ≤ m, then

Var(Un) =
k!
(
m
k

)2
ζk

nk
+ O

(
1

nk+1

)
;

(iv) m2ζ1 ≤ nVar(Un) ≤ mζm for any n ≥ m.
Solution. (i) For any k = 1, ..., m−1, let W = hk+1(X1, ..., Xk, Xk+1) and
Y = (X1, ..., Xk). Then ζk+1 = Var(W ) and ζk = Var(E(W |Y )), since

E(W |Y ) = E[hk+1(X1, ..., Xk, Xk+1)|X1, ..., Xk)] = hk(X1, ..., Xk).

The result follows from

Var(W ) = E{E[(W −EW )2|Y ]} ≥ E{[E(W |Y )−EW ]2} = Var(E(W |Y )),

where the inequality follows from Jensen’s inequality for conditional expec-
tations and the equality follows from EW = E[E(W |Y )].
(ii) We use induction. The result is obvious when m = 1, since U is an
average of independent and identically distributed random variables when
m = 1. Assume that the result holds for any U-statistic with a kernel of
order m − 1. From Hoeffding’s representation (e.g., Serfling, 1980, p. 178),

Un − EUn = Wn + Sn,

where Wn is a U-statistic with a kernel of order m−1, Sn is a U-statistic with
variance

(
n
m

)−1
ηm, ηm is a constant not depending on n, and Var(Un) =

Var(Wn) + Var(Sn). By the induction assumption, (n + 1)Var(Wn+1) ≤
nVar(Wn). Then, for any n ≥ m,

nVar(Un) = nVar(Wn) + nVar(Sn)

= nVar(Wn) + n

(
n

m

)−1

ηm

= nVar(Wn) +
m!ηm

(n − 1)(n − 2) · · · (n − m + 1)

≥ (n + 1)Var(Wn+1) +
m!ηm

n(n − 1) · · · (n − m + 2)

= (n + 1)Var(Wn+1) + (n + 1)
(

n + 1
m

)−1

ηm

= (n + 1)Var(Wn+1) + (n + 1)Var(Sn+1)
= (n + 1)Var(Un+1).
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(iii) From Hoeffding’s theorem (e.g., Theorem 3.4 in Shao, 2003),

Var(Un) =
m∑

l=1

(
m
l

)(
n−m
m−l

)
(

n
m

) ζl.

For any l = 1, ..., m,(
m
l

)(
n−m
m−l

)
(

n
m

) = l!
(

m

l

)2 (n − m)(n − m − 1) · · · [n − m − (m − l − 1)]
n(n − 1) · · · [n − (m − 1)]

= l!
(

m

l

)2 [ 1
nl

+ O

(
1

nl+1

)]

= O

(
1
nl

)
.

If ζj = 0 for j < k and ζk > 0, where 1 ≤ k ≤ m, then

Var(Un) =
m∑

l=k

(
m
l

)(
n−m
m−l

)
(

n
m

) ζl

=

(
m
k

)(
n−m
m−k

)
(

n
m

) ζk +
m∑

l=k+1

(
m
l

)(
n−m
m−l

)
(

n
m

) ζl

=
k!
(
m
k

)2
ζk

nk
+ O

(
1

nk+1

)
+

m∑
l=k+1

O

(
1
nl

)

=
k!
(
m
k

)2
ζk

nk
+ O

(
1

nk+1

)
.

(iv) From the result in (ii), nVar(Un) is nonincreasing in n. Hence nVar(Un)
≤ mVar(Um) = mζm for any n ≥ m. Also, limn[nVar(Un)] ≤ nVar(Un)
for any n ≥ m. If ζ1 > 0, from the result in (iii), limn[nVar(Un)] = m2ζ1.
Hence, m2ζ1 ≤ nVar(Un) for any n ≥ m, which obviously also holds if
ζ1 = 0.

Exercise 26 (#3.53). Let h(x1, x2, x3) = I(−∞,0)(x1 + x2 + x3). Find hk

and ζk, k = 1, 2, 3, for the U-statistic with kernel h based on independent
random variables X1, X2, ... with a common cumulative distribution func-
tion F .
Solution. Let G ∗ H denote the convolution of the two cumulative distri-
bution functions G and H. Then

h1(x1) = E[I(−∞,0)(x1 + X2 + X3)] = F ∗ F (−x1),

h2(x1, x2) = E[I(−∞,0)(x1 + x2 + X3)] = F (−x1 − x2),
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h3(x1, x2, x3) = I(−∞,0)(x1 + x2 + x3),

ζ1 = Var(F ∗ F (−X1)),

ζ2 = Var(F (−X1 − X2)),

and
ζ3 = F ∗ F ∗ F (0)[1 − F ∗ F ∗ F (0)].

Exercise 27 (#3.54). Let X1, ..., Xn be a random sample of random
variables having finite EX2

1 and EX−2
1 . Let µ = EX1 and µ̄ = EX−1

1 .
Find a U-statistic that is an unbiased estimator of µµ̄ and derive its variance
and asymptotic distribution.
Solution. Consider h(x1, x2) = (x1

x2
+ x2

x1
)/2. Then the U-statistic

Un =
1

n(n − 1)

∑
1≤i<j≤n

(
Xi

Xj
+

Xj

Xi

)

is unbiased for E[h(X1, X2)] = µµ̄. Define h1(x) = (xµ̄ + x−1µ)/2. Then

ζ1 = Var(h(X1)) =
µ̄2V (X1) + µ2Var(X−1

1 ) + 2µµ̄(1 − µµ̄)
4

.

By Theorem 3.5 in Shao (2003),
√

n(Un − µµ̄) →d N(0, 4ζ1).

Using the formula for the variance of U-statistics given in the solution of the
previous exercise, we obtain the variance of Un as [4(n−2)ζ1+2ζ2]/[n(n−1)],
where ζ2 = Var(h(X1, X2)).

Exercise 28 (#3.58). Suppose that

Xij = αi + θtij + εij , i = 1, ..., a, j = 1, ..., b,

where αi and θ are unknown parameters, tij are known constants, and εij

are independent and identically distributed random variables with mean
0. Find explicit forms for the least squares estimators (LSE’s) of θ, αi,
i = 1, ..., a.
Solution. Write the model in the form of X = Zβ + ε, where

X = (X11, ..., X1b, ..., Xa1, ..., Xab),

β = (α1, ..., αa, θ),

and
ε = (ε11, ..., ε1b, ..., εa1, ..., εab).
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Then the design matrix Z is

Z =

⎛
⎜⎝

Jb 0 0 t1
...

...
...

...
0 0 Jb ta

⎞
⎟⎠ ,

where ti = (ti1, ..., tib) and Jb is the b-vector of 1’s. Solving the normal
equation (ZtauZ)β̂ = ZτX, we obtain the LSE’s

θ̂ =

∑a
i=1
∑b

j=1 tijXij − b
∑

i t̄i.X̄i.∑b
j=1(tij − t̄i.)2

,

where t̄i. = 1
b

∑b
j=1 tij , X̄i. = 1

b

∑b
j=1 Xij , and

α̂i = X̄i. − θ̂t̄i., i = 1, ..., a.

Exercise 29 (#3.59). Consider the polynomial model

Xi = β0 + β1ti + β2t
2
i + β3t

3
i + εi, i = 1, ..., n,

where εi’s are independent and identically distributed random variables
with mean 0. Suppose that n = 12, ti = −1, i = 1, ..., 4, ti = 0, i =
5, ..., 8, and ti = 1, i = 9, ..., 12. Show whether the following parameters
are estimable (i.e., they can be unbiasedly estimated): β0 +β2, β1, β0 −β1,
β1 + β3, and β0 + β1 + β2 + β3.
Solution. Let X = (X1, ..., X12), ε = (ε1, ..., ε12), and β = (β0, β1, β2, β3).
Then X = Zβ + ε with

Zτ =

⎛
⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1
−1 −1 −1 −1 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 1 1 1 1
−1 −1 −1 −1 0 0 0 0 1 1 1 1

⎞
⎟⎟⎠

and

ZτZ =

⎛
⎜⎜⎝

12 0 8 0
0 8 0 8
8 0 8 0
0 8 0 8

⎞
⎟⎟⎠ .

From the theory of linear models (e.g., Theorem 3.6 in Shao, 2003), a
parameter lτβ with a known vector l is estimable if and only if l ∈ R(ZτZ).
Note that β0 + β2 = lτβ with l = (1, 0, 1, 0), which is the third row of
ZτZ divided by 8. Hence β0 + β2 is estimable. Similarly, β1 + β3 = lτβ
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with l = (0, 1, 0, 1), which is the second row of ZτZ divided by 8 and,
hence, β1 + β3 is estimable. Then β0 + β1 + β2 + β3 is estimable, since any
linear combination of estimable functions is estimable. We now show that
β0 −β1 = lτβ with l = (1,−1, 0, 0) is not estimable. If β0 −β1 is estimable,
then there is c = (c1, ..., c4) such that l = ZτZc, i.e.,

12c1 + 8c3 = 1
8c2 + 8c4 = −1
8c1 + 8c3 = 0
8c2 + 8c4 = 0,

where the second and the last equations have no solution. Similarly, the
parameter β1 is not estimable, since 8c2 + 8c4 = 1 and 8c2 + 8c4 = 0 can
not hold at the same time.

Exercise 30 (#3.60). Consider the one-way ANOVA model

Xij = µ + αi + εij , j = 1, ..., ni, i = 1, ..., m,

where µ and αi are unknown parameters and εij are independent and iden-
tically distributed random variables with mean 0. Let

X = (X11, ..., X1n1 , ..., Xm1, ..., Xmnm),

ε = (ε11, ..., ε1n1 , ..., εm1, ..., εmnm
),

and β = (µ, α1, ..., αm). Find the matrix Z in the linear model X = Zβ+ε,
the matrix ZτZ, and the form of l for estimable lτβ.
Solution. Let n = n1 + · · · + nm and Ja be the a-vector of 1’s. Then

Z =

⎛
⎜⎜⎝

Jn1 Jn1 0 · · · 0
Jn2 0 Jn2 · · · 0
· · · · · · · · · · · · · · ·
Jnm 0 0 · · · Jnm

⎞
⎟⎟⎠

and

ZτZ =

⎛
⎜⎜⎜⎜⎜⎝

n n1 n2 · · · nm

n1 n1 0 · · · 0
n2 0 n2 · · · 0
· · · · · · · · · · · · · · ·
nm 0 0 · · · nm

⎞
⎟⎟⎟⎟⎟⎠ .

Note that lτβ is estimable if and only if l ∈ R(ZτZ), the linear space
generated by the rows of ZτZ. We now show that lτβ is estimable if and
only if l0 = l1 + · · · + lm for l = (l0, l1, ..., lm) ∈ Rm+1.
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If l ∈ R(ZτZ), then there is a c = (c0, c1, ..., cm) ∈ Rm+1 such that
l = ZτZc, i.e.,

nc0 + n1c1 + · · · + nmcm = l0
n1c0 + n1c1 = l1
· · · · · · · · · · · ·
nmc0 + nmcm = lm

holds. Then l0 = l1 + · · · + lm. On the other hand, if l0 = l1 + · · · + lm,
then the previous m+1 equations with c0, c1, ..., cm considered as variables
have infinitely many solutions. Hence l ∈ R(ZτZ).

Exercise 31 (#3.61). Consider the two-way balanced ANOVA model

Xijk = µ + αi + βj + γij + εijk, i = 1, ..., a, j = 1, ..., b, k = 1, ..., c,

where a, b, and c are some positive integers, εijk’s are independent and
identically distributed random variables with mean 0, and µ, αi’s, βj ’s,
and γij ’s are unknown parameters. Let X be the vector of Xijk’s, ε be the
vector of εijk’s, and β = (µ, α1, ..., αa, β1, ..., βb, γ11, ..., γ1b, ..., γa1, ..., γab).
(i) Obtain the design matrix Z in the model X = Zβ + ε and show that
the rank of Z is ab.
(ii) Find the form of estimable lτβ, l ∈ R1+a+b+ab.
(iii) Obtain an LSE of β.
Solution. (i) Let Jt be the t-vector of 1’s, It be the identity matrix of
order t, A be the ab × b block diagonal matrix whose jth diagonal block is
Ja, j = 1, ..., b,

B = (Ib Ib · · · Ib),

and
Λ = (Jab A Bτ Iab),

which is an ab× (1+a+ b+ab) matrix. Then Z is the (1+a+ b+ab)×abc
matrix whose transpose is

Zτ = (Λτ Λτ · · ·Λτ )

and

ZτZ = cΛτΛ = c

(
Λτ

0Λ0 Λτ
0

Λ0 Iab

)
,

where Λ0 = (Jab A Bτ ). Clearly, the last ab rows of ZτZ are linearly
independent. Hence the rank of Z, which is the same as the rank of ZτZ,
is no smaller than ab. On the other hand, the rank of Λ is no larger than
ab and, hence, the rank of ZτZ is no larger than ab. Thus, the rank of Z
is ab.
(ii) A function lτβ with l ∈ R1+a+b+ab is estimable if and only if l is a
linear combination of the rows of ZτZ. From the discussion in part (i)
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of the solution, we know that lτβ is estimable if and only if l is a linear
combination of the rows in the matrix (Λτ

0 Iab).
(iii) Any solution of ZτZβ̂ = ZτX is an LSE of β. A direct calculation
shows that an LSE of β is (µ̂, α̂1, ..., α̂a, β̂1, ..., β̂b, γ̂11, ..., γ̂1b, ..., γ̂a1, ..., γ̂ab),
where µ̂ = X̄···, α̂i = X̄i··−X̄···, β̂j = X̄·j·−X̄···, γ̂ij = X̄ij·−X̄i··−X̄·j·+X̄···,
and a dot is used to denote averaging over the indicated subscript.

Exercise 32 (#3.63). Assume that X is a random n-vector from the
multivariate normal distribution Nn(Zβ, σ2In), where Z is an n× p known
matrix of rank r ≤ p < n, β is a p-vector of unknown parameters, In is the
identity matrix of order n, and σ2 > 0 is unknown. Find the UMVUE’s of
(lτβ)2, lτβ/σ, and (lτβ/σ)2 for an estimable lτβ.
Solution. Let β̂ be the LSE of β and σ̂2 = ‖X − Zβ̂‖2/(n − r). Note
that (ZτX, σ̂2) is complete and sufficient for (β, σ2), lτ β̂ has the normal
distribution N(lτβ, σ2lτ (ZτZ)−l), and (n−r)σ̂2/σ2 has the chi-square dis-
tribution χ2

n−r, where A− is a generalized inverse of A. Since E(lτ β̂)2 =
[E(lτ β̂)]2 + Var(lτ β̂) = (lτβ)2 + σ2lτ (ZτZ)−l, the UMVUE of (lτβ)2 is
(lτ β̂)2 − σ̂2lτ (ZτZ)−l. Since κn−r,−1σ̂

−1 is the UMVUE of σ−1, where
κn−r,−1 is given in Exercise 4, and lτ β̂ is independent of σ̂2, κn−r,−1l

τ β̂σ̂−1

is the UMVUE of lτβ/σ. A similar argument yields the UMVUE of (lτβ/σ)2

as (κn−r,−2l
τ β̂)2σ̂−2 − lτ (ZτZ)−l.

Exercise 33 (#3.65). Consider the one-way random effects model

Xij = µ + Ai + eij , j = 1, ..., n, i = 1, ..., m,

where µ ∈ R is an unknown parameter, Ai’s are independent and iden-
tically distributed as N(0, σ2

a), eij ’s are independent and identically dis-
tributed as N(0, σ2), and Ai’s and eij ’s are independent. Based on ob-
served Xij ’s, show that the family of populations is an exponential family
with sufficient and complete statistics X̄··, SA = n

∑m
i=1(X̄i· − X̄··)2, and

SE =
∑m

i=1
∑n

j=1(Xij − X̄i·)2, where X̄·· = (nm)−1∑m
i=1
∑n

j=1 Xij and
X̄i· = n−1∑n

j=1 Xij . Find the UMVUE’s of µ, σ2
a, and σ2.

Solution. Let Xi = (Xi1, ..., Xin), i = 1, ..., m. Then X1, ..., Xm are inde-
pendent and identically distributed as the multivariate normal distribution
Nn(µJn, Σ), where Jn is the n-vector of 1’s and Σ = σ2

aJnJτ
n + σ2In. The

joint Lebesgue density of Xij ’s is

(2π)− mn
2 |Σ|− m

2 exp

{
−1

2

n∑
i=1

(Xi − µJn)τΣ−1(Xi − µJn)

}
.

Note that

Σ−1 = (σ2
aJnJτ

n + σ2In)−1 =
1
σ2 In − σ2

a

σ2(σ2 + nσ2
a)

JnJτ
n .
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Hence, the sum in the exponent of the joint density is equal to

m∑
i=1

(Xi − µJn)τΣ−1(Xi − µJn)

=
1
σ2

m∑
i=1

n∑
j=1

(Xij − µ)2 − n2σ2
a

σ2(σ2 + nσ2
a)

m∑
i=1

(X̄i· − µ)2

=
1
σ2

m∑
i=1

n∑
j=1

(Xij − X̄i·)2 +
n

σ2 + nσ2
a

m∑
i=1

(X̄i· − µ)2

=
SE

σ2 +
SA

σ2 + nσ2
a

+
nm

σ2 + nσ2
a

m∑
i=1

(X̄·· − µ)2.

Therefore, the joint density of Xij ’s is from an exponential family with
(X̄··, SA, SE) as the sufficient and complete statistics for (µ, σ2

a, σ2). The
UMVUE of µ is X̄··, since EX̄·· = µ. Since E(SE) = m(n − 1)σ2, the
UMVUE of σ2 is SE/[m(n − 1)]. Since X̄i·, i = 1, ..., m are independently
from N(µ, σ2

a +σ2/n), E(SA) = (m− 1)(σ2 +nσ2
a) and, thus, the UMVUE

of σ2
a is SA/[n(m − 1)] − SE/[mn(n − 1)].

Exercise 34 (#3.66). Consider the linear model X = Zβ + ε, where Z
is a known n × p matrix, β is a p-vector of unknown parameters, and ε is
a random n-vector whose components are independent and identically dis-
tributed with mean 0 and Lebesgue density σ−1f(x/σ), where f is a known
Lebesgue density and σ > 0 is unknown. Find the Fisher information about
(β, σ) contained in X.
Solution. Let Zi be the ith row of Z, i = 1, ..., n. Consider a fixed i and
let θ = (Zτ

i β, σ2). The Lebesgue density of Xi, the ith component of X,
is σ−1f((x − θ)/σ). From Exercise 20, the Fisher information about (θ, σ)
contained in Xi is

I(θ) =
1
σ2

⎛
⎜⎝

∫ [f ′(x)]2

f(x) dx
∫ f ′(x)[xf ′(x)+f(x)]

f(x) dx

∫ f ′(x)[xf ′(x)+f(x)]
f(x) dx

∫ [xf ′(x)+f(x)]2

f(x) dx

⎞
⎟⎠ .

Let aij be the (i, j)th element of the matrix σ2I(θ). Since Xi’s are inde-
pendent, ∂θ

∂β = Zτ
i and ∂θ

∂σ = 1, the Fisher information about η = (β, σ)
contained in X is

n∑
i=1

∂θ
∂η I(θ)∂θτ

∂η =
1
σ2

n∑
i=1

(
Zi 0
0 1

)(
a11 a12

a21 a22

)(
Zτ

i 0
0 1

)

=
1
σ2

n∑
i=1

(
a11ZiZ

τ
i a12Zi

a21Z
τ
i a22

)
.
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Exercise 35 (#3.67). Consider the linear model X = Zβ + ε, where Z
is a known n × p matrix, β is a p-vector of unknown parameters, and ε
is a random n-vector whose components are independent and identically
distributed with mean 0 and variance σ2. Let c ∈ Rp. Show that if the
equation c = Zτy has a solution, then there is a unique solution y0 ∈ R(Zτ )
such that Var(yτ

0X) ≤ Var(yτX) for any other solution of c = Zτy.
Solution. Since c = Zτy has a solution, c ∈ R(Z) = R(ZτZ). Then,
there is λ ∈ Rp such that c = (ZτZ)λ = Zτy0 with y0 = Zλ ∈ R(Z). This
shows that c = Zτy has a solution in R(Zτ ). Suppose that there is another
y1 ∈ R(Zτ ) such that c = Zτy1. Then yτ

0Zβ = cτβ = yτ
1Zβ for all β ∈ Rp.

Since R(Zτ ) = {Zβ : β ∈ Rp}, y0 = y1, i.e., the solution of c = Zτy in
R(Zτ ) is unique. For any y ∈ Rn satisfying c = Zτy,

Var(yτX) = Var(yτX − yτ
0X + yτ

0X)
= Var(yτX − yτ

0X) + Var(yτ
0X) + 2Cov((y − y0)τX, yτ

0X)
= Var(yτX − yτ

0X) + Var(yτ
0X) + 2E[(y − y0)τXXτy0]

= Var(yτX − yτ
0X) + Var(yτ

0X) + 2σ2(y − y0)τy0

= Var(yτX − yτ
0X) + Var(yτ

0X) + 2(yτ − yτ
0 )Zλ

= Var(yτX − yτ
0X) + Var(yτ

0X) + 2(cτ − cτ )λ
= Var(yτX − yτ

0X) + Var(yτ
0X)

≥ Var(yτ
0X).

Exercise 36 (#3.69). Consider the linear model X = Zβ + ε, where Z
is a known n × p matrix, β is a p-vector of unknown parameters, and ε
is a random n-vector whose components are independent and identically
distributed with mean 0 and variance σ2. Let Xi be the ith component
of X, Zi be the ith row of Z, hij be the (i, j)th element of Z(ZτZ)−Zτ ,
hi = hii, β̂ be an LSE of β, and X̂i = Zτ

i β̂. Show that
(i) Var(X̂i) = σ2hi;
(ii) Var(Xi − X̂i) = σ2(1 − hi);
(iii) Cov(X̂i, X̂j) = σ2hij ;
(iv) Cov(Xi − X̂i, Xj − X̂j) = −σ2hij , i 
= j;
(v) Cov(X̂i, Xj − X̂j) = 0.
Solution. (i) Since Zi ∈ R(Z), Zτ

i β is estimable and

Var(Zτ
i β̂) = σ2Zτ

i (ZτZ)−Zi = σ2hi.

(ii) Note that

X̂i = Zτ
i β̂ = Zτ

i (ZτZ)−ZτX =
n∑

j=1

hijXj .
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Hence,
Xi − X̂i = (1 − hi)Xi −

∑
j 	=i

hijXj .

Since Xi’s are independent and Var(Xi) = σ2, we obtain that

Var(Xi − X̂i) = (1 − hi)2σ2 + σ2
∑
j 	=i

h2
ij

= (1 − hi)2σ2 + (hi − h2
i )σ

2

= (1 − hi)σ2,

where the second equality follows from the fact that
∑n

j=1 h2
ij = hii = hi,

a property of the projection matrix Z(ZτZ)−Zτ .
(iii) Using the formula for X̂i in part (ii) of the solution and the indepen-
dence of Xi’s,

Cov(X̂i, X̂j) = Cov

(
n∑

k=1

hikXk,

n∑
l=1

hjlXl

)
= σ2

m∑
k=1

hikhjk = σ2hij ,

where the last equality follows from the fact that Z(ZτZ)−Zτ is a projec-
tion matrix.
(iv) For i 
= j,

Cov(Xi, X̂j) = Cov

(
Xi,

n∑
k=1

hjkXk

)
= σ2hij

and, thus,

Cov(Xi − X̂i, Xj − X̂j) = −Cov(Xi, X̂j) − Cov(Xj , X̂i) + Cov(X̂i, X̂j)
= −σ2hij − σ2hji + σ2hij

= −σ2hij .

(v) From part (iii) and part (iv) of the solution,

Cov(X̂i, Xj − X̂j) = Cov(X̂i, Xj) − Cov(X̂i, X̂j) = σ2hij − σ2hij = 0.

Exercise 37 (#3.70). Consider the linear model X = Zβ + ε, where Z
is a known n × p matrix, β is a p-vector of unknown parameters, and ε
is a random n-vector whose components are independent and identically
distributed with mean 0 and variance σ2. Let Z = (Z1, Z2) and β =
(β1, β2), where Zj is n × pj and βj is a pj-vector, j = 1, 2. Assume that
(Zτ

1 Z1)−1 and [Zτ
2 Z2 − Zτ

2 Z1(Zτ
1 Z1)−1Zτ

1 Z2]−1 exist.
(i) Derive the LSE of β in terms of Z1, Z2, and X.
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(ii) Let β̂ = (β̂1, β̂2) be the LSE in (i). Calculate the covariance between
β̂1 and β̂2.
(iii) Suppose that it is known that β2 = 0. Let β̃1 be the LSE of β1 under
the reduced model X = Z1β1+ε. Show that, for any l ∈ Rp1 , lτ β̃1 is better
than lτ β̂1 in terms of their variances.
Solution. (i) Note that

ZτZ =
(

Zτ
1 Z1 Zτ

1 Z2

Zτ
2 Z1 Zτ

2 Z2

)
.

From matrix algebra,

(ZτZ)−1 =
(

A B

Bτ C

)
,

where
C = [Zτ

2 Z2 − Zτ
2 Z1(Zτ

1 Z1)−1Zτ
1 Z2]−1,

B = −(Zτ
1 Z1)−1C

and
A = (Zτ

1 Z1)−1 + (Zτ
1 Z1)−1Zτ

1 Z2CZτ
2 Z1(Zτ

1 Z1)−1.

The LSE of β is

β̂ = (ZτZ)−1ZτX =
(

A B

Bτ C

)(
Zτ

1 X

Zτ
2 X

)
=
(

AZτ
1 X + BZτ

2 X

BτZτ
1 X + CZτ

2 X

)
.

(ii) Since Var(β̂) = σ2(ZτZ)−1, Cov(β̂1, β̂2) = σ2B.
(iii) Note that Var(lτ β̃1) = σ2lτ (Zτ

1 Z1)−1l. From part (i) of the solution,

Var(lτ β̂1) = σ2lτAl ≥ σ2lτ (Zτ
1 Z1)−1l.

Exercise 38 (#3.71, #3.72). Consider the linear model X = Zβ + ε,
where Z is a known n × p matrix, β is a p-vector of unknown parameters,
and ε is a random n-vector with E(ε) = 0 and finite Var(ε) = Σ. Show the
following statements are equivalent:
(a) The LSE lτ β̂ is the best linear unbiased estimator (BLUE) of lτβ.
(e) Var(ε) = ZΛ1Z

τ + UΛ2U
τ for some matrices Λ1 and Λ2, where U is a

matrix such that ZτU = 0 and R(Uτ ) + R(Zτ ) = Rn.
(f) Var(ε)Z = ZB for some matrix B.
(g) R(Zτ ) is generated by r eigenvectors of Var(ε), where r is the rank of
Z.
Solution. (i) From the proof in Shao (2003, p. 191), (a) is equivalent to
(c) ZτVar(ε)U = 0 and (c) implies (e). Hence, to show that (a) and (e) are
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equivalent, it suffices to show that (e) implies (c). Since Z(ZτZ)−ZτZ = Z,
(e) implies that

ZτVar(ε)U = ZτZZ(ZτZ)−ZτVar(ε)U = ZτZVar(ε)Z(ZτZ)−ZτU = 0.

(ii) We now show that (f) and (c) are equivalent. If (f) holds, then Var(ε)Z
= ZB for some matrix B and

ZτVar(ε)U = BτZτU = 0.

If (c) holds, then (e) holds. Then

Var(ε)Z = Var(ε)Z(ZτZ)−ZτZ = Z(ZτZ)−ZτVar(ε)Z

and (f) holds with B = (ZτZ)−ZτVar(ε)Z.
(iii) Assume that (g) holds. Then R(Zτ ) = R(ξ1, ..., ξr), the linear space
generated by r linearly independent eigenvectors ξ1, ..., ξr of Var(ε). Let
ξr+1, ..., ξn be the other n − r linearly independent eigenvectors of Var(ε)
that are orthogonal to ξ1, ..., ξr. Then R(Uτ ) = R(ξr+1, ..., ξn). For j ≤ r,
Var(ε)ξj = ajξj for some constant aj . For k ≥ r +1, ξτ

j Var(ε)ξk = aξτ
j ξk =

0. Hence, ZτVar(ε)U = 0, i.e., (c) holds.
Now, assume (c) holds. Let ξ1, ..., ξn be n orthogonal eigenvectors of

Var(ε) and M be the matrix with ξi as the ith column. Decompose M as
M = MZ + MU , where columns of MZ are in R(Zτ ) and columns of MU

are in R(Uτ ). Then

Var(ε)MZ + Var(ε)MU = MZD + MUD,

where D is a diagonal matrix. Multiplying the transposes of both sides of
the above equation by MU from the right, we obtain that, by (c),

Mτ
UVar(ε)MU = DMτ

UMU

which is the same as
Var(ε)MU = MUD,

and, hence,
Var(ε)MZ = MZD.

This means that column vectors of MZ are eigenvectors of Var(ε). Then
(g) follows from R(Z) = R(MZ).

Exercise 39 (#3.74). Suppose that

X = µJn + Hξ + e,

where µ ∈ R is an unknown parameter, Jn is the n-vector of 1’s, H is an
n × p known matrix of full rank, ξ is a random p-vector with E(ξ) = 0 and
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Var(ξ) = σ2
ξIp, e is a random n-vector with E(e) = 0 and Var(e) = σ2In,

and ξ and e are independent. Show that the LSE of µ is the BLUE if and
only if the row totals of HHτ are the same.
Solution. From the result in the previous exercise, it suffices to show that
the LSE of µ is the BLUE if and only if Jn is an eigenvector of Var(Hξ+e) =
σ2

ξHHτ + σ2In. Since

(σ2
ξHHτ + σ2In)Jn = σ2

ξη + σ2Jn,

where η is the vector of row totals of HHτ , Jn is an eigenvector of the
matrix Var(Hξ + e) if and only if η = cJn for some constant.

Exercise 40 (#3.75). Consider a linear model

Xij = µ + αi + βj + εij , i = 1, ..., a, j = 1, ..., b,

where µ, αi’s, and βj ’s are unknown parameters, E(εij) = 0, Var(εij) = σ2,
Cov(εij , εi′j′) = 0 if i 
= i′, and Cov(εij , εij′) = σ2ρ if j 
= j′. Show that
the LSE of lτβ is the BLUE for any l ∈ R(Z).
Solution. Write the model in the form of X = Zβ + ε. Then Var(ε) is a
block diagonal matrix whose jth diagonal block is σ2(1 − ρ)Ia + σ2ρJaJτ

a ,
j = 1, ..., b, where Ia is the identity matrix of order a and Ja is the a-vector
of 1’s. Let A and B be as defined in Exercise 31. Then Z = (Jab A Bτ ).
Let Λ be the (1 + a + b) × (1 + a + b) matrix whose first element is σ2ρ and
all the other elements are 0. Then, ZΛZτ is a block diagonal matrix whose
jth diagonal block is σ2ρJaJτ

a , j = 1, ..., b. Thus,

Var(ε) = σ2(1 − ρ)Iab + ZΛZτ .

This shows that (c) in Exercise 38 holds. Hence, the LSE of lτβ is the
BLUE for any l ∈ R(Z).

Exercise 41 (#3.76). Consider the linear model X = Zβ + ε, where Z
is a known n × p matrix, β is a p-vector of unknown parameters, and ε is
a random n-vector with E(ε) = 0 and Var(ε) = a block diagonal matrix
whose ith block diagonal Vi is ni × ni and has a single eigenvalue λi with
eigenvector Jni (the ni-vector of 1’s) and a repeated eigenvalue ρi with
multiplicity ni − 1, i = 1, ..., k,

∑k
i=1 ni = n. Let U be the n × k matrix

whose ith column is Ui, where U1 = (Jτ
n1

, 0, ..., 0), U2 = (0, Jτ
n2

, ..., 0),...,
Uk = (0, 0, ..., Jτ

nk
), and let β̂ be the LSE of β.

(i) If R(Zτ ) ⊂ R(Uτ ) and λi ≡ λ, show that lτ β̂ is the BLUE of lτβ for
any l ∈ R(Z).
(ii) If ZτUi = 0 for all i and ρi ≡ ρ, show that lτ β̂ is the BLUE of lτβ for
any l ∈ R(Z).
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Solution. (i) Condition R(Zτ ) ⊂ R(Uτ ) implies that there exists a matrix
B such that Z = UB. Then

Var(ε)Z = Var(ε)UB = λUB = λZ

and, thus,
Z(ZτZ)−ZτVar(ε) = λZ(ZτZ)−Zτ ,

which is symmetric. Hence the result follows from the result in Exercise
38.
(ii) Let Λρ be the (n − k) × (n − k) matrix whose columns are the n − k
eigenvectors corresponding to the eigenvalue ρ. Then ZτUi = 0 for all
i implies that R(Zτ ) ⊂ R(Λτ

ρ) and there exists a matrix C such that
Z = ΛρC. Since

Var(ε)Z = Var(ε)ΛρC = ρΛρC = ρZ,

we obtain that

Z(ZτZ)−ZτVar(ε) = ρZ(ZτZ)−Zτ ,

which is symmetric. Hence the result follows from the result in Exercise
38.

Exercise 42 (#3.80). Consider the linear model X = Zβ + ε, where
Z is a known n × p matrix, β is a p-vector of unknown parameters, and
ε = (ε1, ..., εn) with independent and identically distributed ε1, ..., εn having
E(εi) = 0 and Var(εi) = σ2. Let Zi be the ith row of Z, X̂i = Zτ

i β̂, β̂ be
the LSE of β, and hi = Zτ

i (ZτZ)−Zi.
(i) Show that for any ε > 0,

P (|X̂i − EX̂i| ≥ ε) ≥ min{P (εi ≥ ε/hi), P (εi ≤ −ε/hi)}.

(ii) Show that X̂i − EX̂i →p 0 if and only if limn hi = 0.
Solution. (i) For independent random variables U and Y and ε > 0,

P (|U + Y | ≥ ε) ≥ P (U ≥ ε)P (Y ≥ 0) + P (U ≤ −ε)P (Y < 0)
≥ min{P (U ≥ ε), P (U ≤ −ε)}.

Using the result in the solution of Exercise 36,

X̂i − EX̂i =
n∑

j=1

hij(Xj − EXj) =
n∑

j=1

hijεj = hiεi +
∑
j 	=i

hijεj .

Then the result follows by taking U = hiεi and Y =
∑

j 	=i hijεj .
(ii) If X̂i − EX̂i →p 0, then it follows from the result in (i) that

lim
n

min{P (εi ≥ ε/hi), P (εi ≤ −ε/hi)} = 0,
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which holds only if limn hi = 0. Suppose now that limn hi = 0. From
Exercise 36, limn Var(X̂i) = limn σ2hi = 0. Therefore, X̂i − EX̂i →p 0.

Exercise 43 (#3.81). Let Z be an n × p matrix, Zi be the ith row of Z,
hi = Zτ

i (ZτZ)−Zi, and λn be the largest eigenvalue of (ZτZ)−. Show that
if limn λn = 0 and limn Zτ

n(ZτZ)−Zn = 0, then limn max1≤i≤n hi = 0.
Solution. Since ZτZ depends on n, we denote (ZτZ)− by An. Let in be
the integer such that hin

= max1≤i≤n hi. If limn in = ∞, then

lim
n

hin = lim
n

Zτ
in

AnZin
≤ lim

n
Zτ

in
AinZin = 0,

where the inequality follows from in ≤ n and, thus, Ain −An is nonnegative
definite. If in ≤ c for all n, then

lim
n

hin = lim
n

Zτ
in

AnZin ≤ lim
n

λn max
1≤i≤c

‖Zi‖2 = 0.

Therefore, for any subsequence {jn} ⊂ {in} with limn jn = a ∈ (0,∞],
limn hjn = 0. This shows that limn hin = 0.

Exercise 44 (#3.84). Consider the one-way random effects model

Xij = µ + Ai + eij , j = 1, ..., ni, i = 1, ..., m,

where µ ∈ R is an unknown parameter, Ai’s are independent and identically
distributed with mean 0 and variance σ2

a, eij ’s are independent with mean
0, and Ai’s and eij ’s are independent. Assume that {ni} is bounded and
E|eij |2+δ < ∞ for some δ > 0. Show that the LSE µ̂ of µ is asymptotically
normal and derive an explicit form of Var(µ̂).
Solution. The LSE of µ is µ̂ = X̄.., the average of Xij ’s. The model under
consideration can be written as X = Zµ + ε with Z = Jn, ZτZ = n, and

lim
n

max
1≤i≤n

Zτ
i (ZτZ)−Zi = lim

n

1
n

= 0.

Since we also have E|eij |2+δ < ∞ and {ni} is bounded, by Theorem 3.12(i)
in Shao (2003),

µ̂ − µ√
Var(µ̂)

→d N(0, 1),

where Var(µ̂) = Var(X̄..) = n−2∑m
i=1(n

2
i σ

2
a + niσ

2).

Exercise 45 (#3.85). Suppose that

Xi = ρti + εi, i = 1, ..., n,

where ρ ∈ R is an unknown parameter, ti’s are known and in (a, b), a and
b are known positive constants, and εi’s are independent random variables
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satisfying E(εi) = 0, E|εi|2+δ < ∞ for some δ > 0, and Var(εi) = σ2ti with
an unknown σ2 > 0.
(i) Obtain the LSE of ρ.
(ii) Obtain the BLUE of ρ.
(iii) Show that both the LSE and BLUE are asymptotically normal and
obtain the asymptotic relative efficiency of the BLUE with respect to the
LSE.
Solution. (i) The LSE of ρ is

ρ̂ =
∑n

i=1 tiXi∑n
i=1 t2i

.

(iii) Let X = (X1, ..., Xn) and c = (c1, ..., cn). Consider minimizing

E(cτX − ρ)2 =
n∑

i=1

tic
2
i

under the constraint
∑n

i=1 citi = 1 (to ensure unbiasedness), which yields
ci = (
∑n

i=1 ti)−1. Hence, the BLUE of ρ is

ρ̃ =
∑n

i=1 Xi∑n
i=1 ti

.

(iii) The asymptotic normality of the LSE and BLUE follows directly from
Lindeberg’s central limit theorem. Since

Var(ρ̂) =
σ2∑n

i=1 t3i

(
∑n

i=1 t2i )
2

and

Var(ρ̃) =
σ2∑n
i=1 ti

,

the asymptotic relative efficiency of the BLUE with respect to the LSE is(∑n
i=1 t2i
)2

(
∑n

i=1 t3i ) (
∑n

i=1 ti)
.

Exercise 46 (#3.87). Suppose that X = (X1, ..., Xn) is a simple random
sample without replacement from a finite population P = {y1, ..., yN} with
all yi ∈ R.
(i) Show that a necessary condition for h(y1, ..., yN ) to be estimable is that
h is symmetric in its N arguments.
(ii) Find the UMVUE of P (Xi ≤ Xj), i 
= j.
(iii) Find the UMVUE of Cov(Xi, Xj), i 
= j.
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Solution. (i) If h(y1, ..., yN ) is estimable, then there exists a function
u(x1, ..., xn) that is symmetric in its arguments and satisfies

h(y1, ..., yN ) = E[u(X1, ..., Xn)] =
1(
N
n

) ∑
1≤i1<···<in≤N

u(yi1 , ..., yin).

Hence, h is symmetric in its arguments.
(ii) From Watson-Royall’s theorem (e.g., Theorem 3.13 in Shao, 2003), the
order statistics are complete and sufficient. Hence, for any estimable param-
eter, its UMVUE is the unbiased estimator g(X1, ..., Xn) that is symmetric
in its arguments. Thus, the UMVUE of P (Xi ≤ Xj), i 
= j, is

1(
n
2

) ∑
1≤i<j≤n

I(−∞,Xi](Xj) + I(−∞,Xj ](Xi)
2

.

(iii) From the argument in part (ii) of the solution, the UMVUE of E(XiXj)
when i 
= j is

U1 =
1(
n
2

) ∑
1≤i<j≤n

XiXj .

Let X̄ be the sample mean. Since

E(X̄2) =
1

nN

N∑
i=1

y2
i +

2(n − 1)
nN(N − 1)

∑
1≤i<j≤N

yiyj

and

E

(
1
n

n∑
i=1

X2
i

)
=

1
N

N∑
i=1

y2
i ,

the UMVUE of 2
∑

1≤i<j≤N yiyj is

U2 =
nN(N − 1)

n − 1

(
X̄2 − 1

n2

n∑
i=1

X2
i

)
.

From

Cov(Xi, Xj) = E(XiXj) −
(

1
N

N∑
i=1

yi

)2

= E(XiXj) − 1
N2

N∑
i=1

y2
i − 2

N2

∑
1≤i<j≤n

yiyj ,

the UMVUE of Cov(Xi, Xj), i 
= j, is

U1 − 1
nN

n∑
i=1

X2
i − U2

N2 .
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Exercise 47 (#3.100). Let (X1, ..., Xn) be a random sample from the
normal distribution N(µ, σ2), where µ ∈ R and σ2 > 0. Consider the
estimation of ϑ = E[Φ(a + bX1)], where Φ is the cumulative distribution
function of N(0, 1) and a and b are known constants. Obtain an explicit
form of a function g(µ, σ2) = ϑ and the asymptotic mean squared error of
ϑ̂ = g(X̄, S2), where X̄ and S2 are the sample mean and variance.
Solution. Let Z be a random variable that has distribution N(0, 1) and
is independent of X1. Define Y = Z − bX1. Then Y has distribution
N(−bµ, 1 + b2σ2) and

E[Φ(a + bX1)] = E[P (Z ≤ a + bX1)]
= P (Z − bX1 ≤ a)
= P (Y ≤ a)

= Φ
(

a + bµ√
1 + b2σ2

)
.

Hence

g(µ, σ2) = Φ
(

a + bµ√
1 + b2σ2

)
.

From Example 2.8 in Shao (2003),

√
n

(
X̄ − µ

S2 − σ2

)
→d N2

((
0
0

)
,

(
σ2 0
0 2σ4

))
.

Then, by the δ-method,
√

n(ϑ̂ − ϑ) =
√

n[g(X̄, S2) − ϑ] →d N(0, κ),

where

κ =
[

b2σ2

1 + b2σ2 +
(a + bµ)2b4σ2

2(1 + b2σ2)

] [
Φ′
(

a + bµ√
1 + b2σ2

)]2
.

The asymptotic mean squared error of ϑ̂ is κ/n.

Exercise 48 (#3.103). Let (X1, ..., Xn) be a random sample from P
in a parametric family. Obtain moment estimators of parameters in the
following cases.
(i) P is the gamma distribution with shape parameter α > 0 and scale
parameter γ > 0.
(ii) P has Lebesgue density θ−1e−(x−a)/θI(a,∞)(x), a ∈ R, θ > 0.
(iii) P has Lebesgue density Γ(α+β)

Γ(α)Γ(β)x
α−1(1−x)β−1I(0,1)(x), α > 0, β > 0.

(iv) P is the log-normal distribution with parameter (µ, σ2) (i.e., log X1
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has distribution N(µ, σ2), µ ∈ R, σ > 0.
(v) P is the negative binomial distribution with discrete probability density(
x−1
r−1

)
pr(1 − p)x−r, x = r, r + 1, ..., p ∈ (0, 1), r = 1, 2,....

Solution. Let µk = E(Xk
1 ) and µ̂k = n−1∑n

i=1 Xk
i .

(i) Note that µ1 = αγ and µ2 − µ2
1 = αγ2. Hence, the moment estimators

are γ̂ = (µ̂2 − µ̂2
1)/µ̂1 and α̂ = µ̂2

1/(µ̂2 − µ̂2
1).

(ii) Note that µ1 = a + θ and µ2 − µ2
1 = θ2. Hence, the moment estimators

are θ̂ =
√

µ̂2 − µ̂2
1 and â = µ̂1 − θ̂.

(iii) Note that µ1 = α/(α + β) and µ2 = α(α + 1)/[(α + β)(α + β + 1)].
Then 1 + β/α = µ−1

1 , which leads to µ2 = µ1(1 + α−1)/(µ−1
1 + α−1).

Then the moment estimators are α̂ = µ̂1(µ̂1 − µ̂2)/(µ̂2 − µ̂2
1) and β̂ =

(µ̂1 − µ̂2)(1 − µ̂1)/(µ̂2 − µ̂2
1).

(iv) Note that µ1 = eµ+σ2/2 and µ2 = e2µ+2σ2
. Then µ2/µ2

1 = eσ2
, i.e.,

σ2 = log(µ2/µ2
1). Then µ = log µ1 + σ2/2. Hence, the moment estimators

are σ̂2 = log(µ̂2/µ̂2
1) and µ̂ = log µ̂1 − 1

2 log(µ̂2/µ̂2
1).

(v) Note that µ1 = r/p and µ2 −µ2
1 = r(1−p)/p2. Then r = pµ1 and (µ2 −

µ2
1)p = µ1(1−p). Hence, the moment estimators are p̂ = µ̂1/(µ̂2 − µ̂2

1 + µ̂1)
and r̂ = µ̂2

1/(µ̂2 − µ̂2
1 + µ̂1).

Exercise 49 (#3.106). In Exercise 11(i), find a moment estimator of θ
and derive its asymptotic distribution. In Exercise 11(ii), obtain a moment
estimator of θ−1 and its asymptotic relative efficiency with respect to the
UMVUE of θ−1.
Solution. (i) From Exercise 11(i),

µ1 = EX1 = P (Y1 < 1) +
1
θ

∫ θ

1
xdx =

1
θ

+
θ2 − 1

2θ
=

θ2 + 1
2θ

.

Let X̄ be the sample mean. Setting X̄ = (θ2 + 1)/(2θ), we obtain that
θ2 − 2X̄θ + 1 = 0, which has solutions X̄ ±

√
X̄2 − 1. Since X̄ ≥ 1, X̄ −√

X̄2 − 1 < 1. Since θ ≥ 1, the moment estimator of θ is θ̂ = X̄ +
√

X̄2 − 1.
From the central limit theorem,

√
n(X̄ − µ1) →d N

(
0,

θ3 + 2
3θ

− (θ2 + 2)2

4θ2

)
.

By the δ-method with g(x) = x +
√

x2 − 1,

√
n(θ̂ − θ) →d N

(
0,

(
1 +

θ√
θ2 − 1

)2 [
θ3 + 2

3θ
− (θ2 + 2)2

4θ2

])
.

(ii) From Exercise 11(ii),

µ1 = EX1 =
1
θ

∫ 1

0
xdx + P (Y1 > 1) =

1
2θ

+ 1 − 1
θ

= 1 − 1
2θ

.
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Hence the moment estimator of θ−1 is 2(1 − X̄). From the central limit
theorem,

√
n(X̄ − µ1) →d N

(
0,

1
3θ

− 1
4θ2

)
.

By the δ-method with g(x) = 2(1 − x),

√
n[2(1 − X̄) − θ−1] →d N

(
0,

4
3θ

− 1
θ2

)
.

Let Ri = 0 if Xi = 1 and Ri = 1 if Xi 
= 1. From the solution of Exer-
cise 11(ii), the UMVUE of θ−1 is R̄ = n−1∑n

i=1 Ri. By the central limit
theorem,

√
n(R̄ − θ−1) →d N

(
0,

1
θ

− 1
θ2

)
.

Hence, the asymptotic relative efficiency of 2(1 − X̄) with respect to R̄ is
equal to (θ − 1)/( 4

3θ − 1).

Exercise 50 (#3.107). Let (X1, ..., Xn) be a random sample from a pop-
ulation having the Lebesgue density fα,β(x) = αβ−αxα−1I(0,β)(x), where
α > 0 and β > 0 are unknown. Obtain a moment estimator of θ = (α, β)
and its asymptotic distribution.
Solution. Let µj = EXj

1 . Note that

µ1 =
α

βα

∫ β

0
xαdx =

αβ

α + 1

and

µ2 =
α

βα

∫ β

0
xα+1dx =

αβ2

α + 2
.

Then β = (1 + 1
α )µ1 and

(
1 +

1
α

)2

µ2
1 =
(

1 +
2
α

)
µ2,

which leads to
1
α

=
µ2 − µ2

1 ±
√

µ2
2 − µ1µ2

µ2
1

.

Since α > 0, we obtain the moment estimators

α̂ =
µ̂2

1

µ̂2 − µ̂2
1 +
√

µ̂2
2 − µ̂1µ̂2

and

β̂ =
µ̂2 +
√

µ̂2
2 − µ̂1µ̂2

µ̂1
,
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where µ̂j = n−1∑n
i=1 Xj

i . Let γ = (µ1, µ2) and γ̂ = (µ̂1, µ̂2). From the
central limit theorem,

√
n(γ̂ − γ) →d N(0, Σ),

where

Σ =
(

µ2 − µ2
1 µ3 − µ1µ2

µ3 − µ1µ2 µ4 − µ2
2

)
.

Let α(x, y) = x2/(y − x2 +
√

y2 − xy) and β(x, y) = (y +
√

y2 − xy)/x.
Then

∂(α, β)
∂(x, y)

=

⎛
⎜⎜⎝

2x

y−x2+
√

y2−xy
+ x2(4x+y/

√
y2−xy)

2(y−x2+
√

y2−xy)2
−x2[1+(y−x/2)/

√
y2−xy]

(y−x2+
√

y2−xy)2

− y

2x
√

y2−xy
− y+

√
y2−xy

x2 + 1
x + 2y−x

2x
√

y2−xy

⎞
⎟⎟⎠ .

Let θ̂ = (α̂, β̂) and Λ = ∂(α,β)
∂(x,y) |x=µ1,y=µ2 . Then, by the δ-method,

√
n(θ̂ − θ) →d N(0, ΛΣΛτ ).

Exercise 51 (#3.108). Let (X1, ..., Xn) be a random sample from the
following discrete distribution:

P (X1 = 1) =
2(1 − θ)
2 − θ

, P (X1 = 2) =
θ

2 − θ
,

where θ ∈ (0, 1) is unknown. Obtain a moment estimator of θ and its
asymptotic distribution.
Solution. Note that

EX1 =
2(1 − θ)
2 − θ

+
2θ

2 − θ
=

2
2 − θ

.

Hence, a moment estimator of θ is θ̂ = 2(1 − X̄−1), where X̄ is the sample
mean. Note that

Var(X1) =
2(1 − θ)
2 − θ

+
4θ

2 − θ
− 4

(2 − θ)2
=

4θ − 2θ2 − 4
(2 − θ)2

.

By the central limit theorem and δ-method,

√
n(θ̂ − θ) →d N

(
0,

(2 − θ)2(2θ − θ2 − 2)
2

)
.
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Exercise 52 (#3.110). Let (X1, ..., Xn) be a random sample from a
population having the Lebesgue density

fθ1,θ2(x) =
{

(θ1 + θ2)−1e−x/θ1 x > 0
(θ1 + θ2)−1ex/θ2 x ≤ 0,

where θ1 > 0 and θ2 > 0 are unknown. Obtain a moment estimator of
(θ1, θ2) and its asymptotic distribution.
Solution. Let µj = EXj

1 and µ̂j = n−1∑n
i=1 Xj

i . Note that

µ1 =
1

θ1 + θ2

(∫ 0

−∞
xex/θ2dx +

∫ ∞

0
xe−x/θ1dx

)
= θ1 − θ2

and

µ2 =
1

θ1 + θ2

(∫ 0

−∞
x2ex/θ2dx +

∫ ∞

0
x2e−x/θ1dx

)
= 2(θ2

1 + θ2
2 − θ1θ2).

Then, µ2 − µ2
1 = θ2

1 + θ2
2. Since θ1 = µ1 + θ2, we obtain that

2θ2
2 + 2µ1θ2 + 2µ2

1 − µ2 = 0,

which has solutions
−µ1 ±

√
2µ2 − 3µ2

1

2
.

Since θ2 > 0, the moment estimators are

θ̂2 =
−µ̂1 +

√
2µ̂2 − 3µ̂2

1

2

and

θ̂1 =
µ̂1 +
√

2µ̂2 − 3µ̂2
1

2
.

Let g(x, y) = (
√

2y − 3x − x)/2 and h(x, y) = (
√

2y − 3x + x)/2. Then

∂(g, h)
∂(x, y)

=

⎛
⎝ − 1

2 − 3
4
√

2y−3x
1

2
√

2y−3x

1
2 − 3

4
√

2y−3x
1

2
√

2y−3x

⎞
⎠ .

Let γ = (µ1, µ2), γ̂ = (µ̂1, µ̂2), θ = (θ1, θ2), and θ̂ = (θ̂1, θ̂2). From the
central limit theorem,

√
n(γ̂ − γ) →d N(0, Σ),

where Σ is as defined in the solution of Exercise 50. By the δ method,
√

n(θ̂ − θ) →d N(0, ΛΣΛτ ),
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where Λ = ∂(g,h)
∂(x,y) |x=µ1,y=µ2 .

Exercise 53 (#3.111). Let (X1, ..., Xn) be a random sample from P
with discrete probability density fθ,j , where θ ∈ (0, 1), j = 1, 2, fθ,1 is the
Poisson distribution with mean θ, and fθ,2 is the binomial distribution with
size 1 and probability θ. Let hk(θ, j) = Eθ,j(Xk

1 ), k = 1, 2, where Eθ,j is
the expectation is with respect to fθ,j . Show that

lim
n

P (µ̂k = hk(θ, j) has a solution) = 0

when Xi’s are from the Poisson distribution, where µ̂k = n−1∑n
i=1 Xk

i ,
k = 1, 2.
Solution. Note that h1(θ, 1) = h1(θ, 2) = θ. Hence h1(θ, j) = µ̂1 has a
solution θ = µ̂1. Assume that Xi’s are from the Poisson distribution with
mean θ. Then µ̂2 →p θ + θ2. Since h2(θ, 1) = θ − θ2,

lim
n

P (µ̂2 = h2(θ, 1)) = 0.

It remains to show that

lim
n

P (µ̂2 = h2(θ, 2)) = 0.

Since h2(θ, 2) = θ + θ2 and θ = µ̂1 is a solution to the equation h1(θ, 1) =
h1(θ, 2) = θ, it suffices to show that

lim
n

P
(
µ̂2 = µ̂1 + µ̂2

1
)

= 0.

Let γ = (µ1, µ2) and γ̂ = (µ̂1, µ̂2). From the central limit theorem,
√

n(γ̂ − γ) →d N(0, Σ),

where Σ is as defined in the solution of Exercise 50. Then, we only need
to show that Σ is not singular. When X1 has the Poisson distribution with
mean θ, a direct calculation shows that µ1 = θ, µ2 = θ+θ2, µ3 = θ+3θ2+θ3,
and µ4 = θ + 7θ2 + 6θ3 + θ4. Hence,

Σ =
(

θ θ + 2θ2

θ + 2θ2 θ + 6θ2 + 4θ3

)
.

The determinant of Σ is equal to

θ2 + 6θ3 + 4θ4 − (θ + 2θ2)2 = 2θ3 > 0.

Hence Σ is not singular.

Exercise 54 (#3.115). Let X1, ..., Xn be a random sample from a pop-
ulation on R having a finite sixth moment. Consider the estimation of µ3,
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where µ = EX1. Let X̄ be the sample mean. When µ = 0, find the asymp-
totic relative efficiency of the V-statistic X̄3 with respect to the U-statistic
Un =

(
n
3

)−1∑
1≤i<j<k≤n XiXjXk.

Solution. We adopt the notation in Exercise 25. Note that Un is a U-
statistic with ζ1 = ζ2 = 0, since µ = 0. The order of the kernel of Un is 3.
Hence, by Exercise 25(iii),

Var(Un) =
6ζ3

n3 + O

(
1
n4

)
,

where ζ3 = Var(X1X2X3) = E(X2
1X2

2X2
3 ) = σ6 and σ2 = EX2

1 = Var(X1).
The asymptotic mean squared error of Un is then 6σ6/n3.

From the central limit theorem and µ = 0,
√

nX̄ →d N(0, σ2). Then
n3/2X̄3/σ3 →d Z3, where Z is a random variable having distribution
N(0, 1). Then the asymptotic mean square error of X̄3 is σ6EZ6/n3. Note
that EZ6 = 15. Hence, the asymptotic relative efficiency of X̄3 with respect
to Un is 6/15 = 2/5.
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Estimation in Parametric
Models

Exercise 1 (#4.1). Show that the priors in the following cases are con-
jugate priors:
(i) X = (X1, ..., Xn) is a random sample from Nk(θ, Ik), θ ∈ Rk, and the
prior is Nk(µ0, Σ0);
(ii) X = (X1, ..., Xn) is a random sample from the binomial distribution
with probability θ and size k (a known positive integer), θ ∈ (0, 1), and the
prior is the beta distribution with parameter (α, β);
(iii) X = (X1, ..., Xn) is a random sample from the uniform distribu-
tion on the interval (0, θ), θ > 0, and the prior has Lebesgue density
babθ−(b+1)I(a,∞)(θ);
(iv) X = (X1, ..., Xn) is a random sample from the exponential distribution
with Lebesgue density θ−1e−x/θI(0,∞)(x), θ > 0, and the prior of θ−1 is the
gamma distribution with shape parameter α and scale parameter γ.
Solution. (i) Let T =

∑n
i=1 Xi and A = nIk + Σ−1

0 . The product of the
density of X and the prior density is

CX exp
{

−‖T − nθ‖2

2
− (θ − µ0)τΣ−1

0 (θ − µ0)
2

}

= DX exp

{
−
[
θ − A−1(Σ−1

0 µ0 + T )
]τ

A
[
θ − A−1(Σ−1

0 µ0 + T )
]

2

}
,

where CX and DX are quantities depending on X but not θ. Thus, the
posterior distribution of θ given X is Nk

(
A−1(Σ−1

0 µ0 + T ), A−1
)
.

(ii) Let T =
∑n

i=1 Xi. The product of the density of X and the prior
density is

CXθT+α−1(1 − θ)nk−T+β−1,

141
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where CX does not depend on θ. Thus, the posterior distribution of θ given
X is the beta distribution with parameter (T + α, nk − T + β).
(iii) Let X(n) be the largest order statistic. The product of the density of
X and the prior density is

θ−nI(0,θ)(X(n))babθ−(b+1)I(a,∞)(θ) = θ−(n+b+1)I(max{X(n),a},∞)(θ).

Thus, the posterior distribution of θ given X has the same form as the prior
with a replaced by max{X(n), a} and b replaced by b + n.
(iv) Let T =

∑n
i=1 Xi. The product of the density of X and the prior

density is
CXθ−(n+α+1) exp

{
−(T + γ−1)/θ

}
,

where CX does not depend on θ. Thus, the posterior distribution of θ−1

given X is the gamma distribution with shape parameter n + α and scale
parameter (T + γ−1)−1.

Exercise 2 (#4.2). In Exercise 1, find the posterior mean and variance
for each case.
Solution. (i) Since the posterior is a normal distribution,

E(θ|X) = (Σ−1
0 µ0 + T )A−1

and
Var(θ|X) = A−1,

where T =
∑n

i=1 Xi and A = nIk + Σ−1
0 .

(ii) Since the posterior is a beta distribution,

E(θ|X) =
T + α

nk + α + β

and

Var(θ|X) =
(T + α)(nk − T + β)

(nk + α + β)2(nk + α + β + 1)
,

where T =
∑n

i=1 Xi.
(iii) A direct calculation shows that

E(θ|X) =
max{X(n), a}(b + n)

(b + n − 1)

and

Var(θ|X) =
max{X2

(n), a
2}(b + n)

(b + n − 1)2(b + n − 2)
.

(iv) Let T =
∑n

i=1 Xi. Then

E(θ|X) =
T + γ−1

α + n
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and

Var(θ|X) =
(T + γ−1)2

(n + α − 1)(n + α − 2)
− (T + γ−1)2

(n + α)2
.

Exercise 3 (#4.4). Let X = (X1, ..., Xn) be a random sample from the
uniform distribution on the interval (0, θ), where θ > 0 is unknown. Let
the prior of θ be the log-normal distribution with parameter (µ0, σ

2
0), where

µ0 ∈ R and σ0 > 0 are known constants.
(i) Find the posterior density of log θ.
(ii) Find the rth posterior moment of θ.
(iii) Find a value that maximizes the posterior density of θ.
Solution. (i) Let X(n) be the largest order statistic. The product of the
density of X and the prior density is proportional to

1
θn+1 exp

{
− (log θ − µ0)2

2σ2
0

}
I(X(n),∞)(θ).

Then the posterior density of ϑ = log θ given X is

1√
2πσ0CX

exp
{

− (ϑ − µ0 + nσ2
0)2

2σ2
0

}
I(log X(n),∞)(ϑ),

where

CX = Φ
(

µ0 − nσ2
0 − log X(n)

σ0

)

and Φ is the cumulative distribution function of the standard normal dis-
tribution.
(ii) Note that E(θr|X) = E

(
er log θ|X

)
and log θ given X has a truncated

normal distribution as specified in part (i) of the solution. Therefore,

E(θr|X) = C−1
X er[2µ0−(2n−r)σ2

0 ]/2Φ
(

µ0 − (n − r)σ2
0 − log X(n)

σ0

)
.

(iii) From part (i) of the solution, the posterior density of θ given X is

1√
2πσ0CXθ

exp
{

− (log θ − µ0 + nσ2
0)2

2σ2
0

}
I(X(n),∞)(θ).

Without the indicator function I(X(n),∞)(θ), the above function has a unique

maximum at eµ0−(n+1)σ2
0 . Therefore, the posterior of θ given X is maxi-

mized at max{eµ0−(n+1)σ2
0 , X(n)}.

Exercise 4 (#4.6). Let X̄ be the sample mean of a random sample of
size n from N(θ, σ2) with a known σ > 0 and an unknown θ ∈ R. Let π(θ)
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be a prior density with respect to a σ-finite measure ν on R.
(i) Show that the posterior mean of θ, given X̄ = x, is of the form

δ(x) = x +
σ2

n

d log(p(x))
dx

,

where p(x) is the marginal density of X̄, unconditional on θ.
(ii) Express the posterior variance of θ (given X̄ = x) as a function of the
first two derivatives of log p(x).
(iii) Find explicit expressions for p(x) and δ(x) in (i) when the prior is
N(µ0, σ

2
0) with probability 1− ε and a point mass at µ1 with probability ε,

where µ0, µ1, and σ2
0 are known constants.

Solution. (i) Note that X̄ has distribution N(θ, σ2/n). The product of
the density of X̄ and π(θ) is

√
n√

2πσ
e−n(x−θ)2/(2σ2)π(θ).

Hence,

p(x) =
∫ √

n√
2πσ

e−n(x−θ)2/(2σ2)π(θ)dν

and

p′(x) =
n

σ2

∫ √
n√

2πσ
(θ − x)e−n(x−θ)2/(2σ2)π(θ)dν.

Then, the posterior mean is

δ(x) =
1

p(x)

∫ √
n√

2πσ
θe−n(x−θ)2/(2σ2)π(θ)dν

= x +
1

p(x)

∫ √
n√

2πσ
(θ − x)e−n(x−θ)2/(2σ2)π(θ)dν

= x +
σ2

n

p′(x)
p(x)

= x +
σ2

n

d log(p(x))
dx

.

(ii) From the result in part (i) of the solution,

p′′(x) =
n2

σ4

∫ √
n√

2πσ
(θ − x)2e−n(x−θ)2/(2σ2)π(θ)dν − n

σ2 p(x).

Hence,

E[(θ − x)2|X̄ = x] =
σ4

n2

p′′(x)
p(x)

+
σ2

n
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and, therefore,

Var(θ|X̄ = x) = E[(θ − x)2|X̄ = x] −
[
E(θ − x|X̄ = x)

]2
=

σ4

n2

p′′(x)
p(x)

+
σ2

n
−
[
σ2

n

p′(x)
p(x)

]2

=
σ4

n2

d2 log p(x)
dx2 +

σ2

n
.

(iii) If the prior is N(µ0, σ
2
0), then the joint distribution of θ and X̄ is

normal and, hence, the marginal distribution of X̄ is normal. The mean
of X̄ conditional on θ is θ. Hence the marginal mean of X̄ is µ0. The
variance of X̄ conditional on θ is σ2/n. Hence the marginal variance of X̄
is σ2

0 + σ2/n. Thus, p(x) is the density of N(µ0, σ
2
0 + σ2/n) if the prior is

N(µ0, σ
2
0). If the prior is a point mass at µ1, then

p(x) =
√

n√
2πσ

e−n(x−µ1)2/(2σ2),

which is the density of N(µ1, σ
2/n). Therefore, p(x) is the density of the

mixture distribution (1 − ε)N(µ0, σ
2
0 + σ2/n) + εN(µ1, σ

2/n), i.e.,

p(x) = (1 − ε)φ

(
x − µ0√
σ2

0 + σ2/n

)
+ εφ

(
x − µ1√

σ2/n

)
,

where φ(x) = e−x2/2/
√

2π. Then

p′(x) =
(1 − ε)(µ0 − x)

σ2
0 + σ2/n

φ

(
x − µ0√
σ2

0 + σ2/n

)
+

ε(µ1 − x)
σ2/n

φ

(
x − µ1√

σ2/n

)

and δ(x) can be obtained using the formula in (i).

Exercise 5 (#4.8). Let X = (X1, ..., Xn) be a random sample from P
with discrete probability density fθ,j , where θ ∈ (0, 1), j = 1, 2, fθ,1 is the
Poisson distribution with mean θ, and fθ,2 is the binomial distribution with
size 1 and probability θ. Consider the estimation of θ under the squared
error loss. Suppose that the prior of θ is the uniform distribution on (0, 1),
the prior of j is P (j = 1) = P (j = 2) = 1

2 , and the joint prior of (θ, j) is
the product probability of the two marginal priors. Show that the Bayes
action is

δ(x) =
H(x)B(t + 1) + G(t + 1)

H(x)B(t) + G(t)
,

where x = (x1, ..., xn) is the vector of observations, t = x1 + · · · + xn,
B(t) =

∫ 1
0 θt(1 − θ)n−tdθ, G(t) =

∫ 1
0 θte−nθdθ, and H(x) is a function of x
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with range {0, 1}.
Note. Under the squared error loss, the Bayes action in an estimation
problem is the posterior mean.
Solution. The marginal density is

m(x) =
C(x)

2

∫ 1

0
e−nθθtdθ +

D(x)
2

∫ 1

0
θt(1 − θ)n−tdθ

=
C(x)G(t) + D(x)B(t)

2
,

where C(x) = (x1! · · ·xn!)−1 and D(x) = 1 if all components of x are 0 or
1 and is 0 otherwise. Then the Bayes action is

δ(x) =
C(x)
∫ 1
0 e−nθθt+1dθ + D(x)

∫ 1
0 θt+1(1 − θ)n−tdθ

2m(x)

=
H(x)B(t + 1) + G(t + 1)

H(x)B(t) + G(t)
,

where H(x) = D(x)/C(x) takes value 0 or 1.

Exercise 6 (#4.10). Let X be a sample from Pθ, θ ∈ Θ ⊂ R. Con-
sider the estimation of θ under the loss L(|θ − a|), where L is an increasing
function on [0,∞). Let π(θ|x) be the posterior density (with respect to
Lebesgue measure) of θ given X = x. Suppose that π(θ|x) is symmetric
about δ(x) ∈ Θ and that π(θ|x) is nondecreasing for θ ≤ δ(x) and nonin-
creasing for θ ≥ δ(x). Show that δ(x) is a Bayes action, assuming that all
integrals involved are finite.
Solution. Without loss of generality, assume that δ(x) = 0. Then π(θ|x)
is symmetric about 0. Hence, the posterior expected loss for any action a
is

ρ(a) =
∫

L(|θ − a|)π(θ|x)dθ

=
∫

L(| − θ − a|)π(θ|x)dθ

= ρ(−a).

For any a ≥ 0 and θ, define

H(θ, a) = [L(|θ + a|) − L(|θ − a|)][π(θ + a|x) − π(θ − a|x)].

If θ + a ≥ 0 and θ − a ≥ 0, then L(|θ + a|) ≥ L(|θ − a|) and π(θ + a|x) ≤
π(θ − a|x); if θ + a ≤ 0 and θ − a ≤ 0, then L(|θ + a|) ≤ L(|θ − a|) and
π(θ + a|x) ≥ π(θ − a|x); if θ − a ≤ 0 ≤ θ + a, then π(θ + a|x) ≤ π(θ − a|x)
and L(|θ + a|) ≥ L(|θ − a|) when θ ≥ 0 and π(θ + a|x) ≥ π(θ − a|x) and
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L(|θ + a|) ≤ L(|θ − a|) when θ ≤ 0. This shows that H(θ, a) ≤ 0 for any θ
and a ≥ 0. Then, for any a ≥ 0,

0 ≥
∫

H(θ, a)dθ

=
∫

L(|θ + a|)π(θ + a|x)dθ +
∫

L(|θ − a|)π(θ − a|x)dθ

−
∫

L(|θ + a|)π(θ − a|x)dθ −
∫

L(|θ − a|)π(θ + a|x)dθ

= 2
∫

L(|θ|)π(θ|x)dθ −
∫

L(|θ + 2a|)π(θ|x)dθ

−
∫

L(|θ − 2a|)π(θ|x)dθ

= 2ρ(0) − ρ(2a) − ρ(−2a)
= 2ρ(0) − 2ρ(2a).

This means that ρ(0) ≤ ρ(2a) = ρ(−2a) for any a ≥ 0, which proves that 0
is a Bayes action.

Exercise 7 (#4.11). Let X be a sample of size 1 from the geometric
distribution with mean p−1, where p ∈ (0, 1]. Consider the estimation of p
with the loss function L(p, a) = (p − a)2/p.
(i) Show that δ is a Bayes action with a prior Π if and only if δ(x) =
1 −
∫

(1 − p)xdΠ(p)/
∫

(1 − p)x−1dΠ(p), x = 1, 2, ....
(ii) Let δ0 be a rule such that δ0(1) = 1/2 and δ0(x) = 0 for all x > 1.
Show that δ0 is a limit of Bayes actions.
(iii) Let δ0 be a rule such that δ0(x) = 0 for all x > 1 and δ0(1) is arbitrary.
Show that δ0 is a generalized Bayes action.
Note. In estimating g(θ) under the family of densities {fθ : θ ∈ Θ} and the
loss function w(θ)[g(θ)−a]2, where Θ ⊂ R, w(θ) ≥ 0 and

∫
Θ w(θ)[g(θ)]2dΠ

< ∞, the Bayes action is

δ(x) =

∫
Θ w(θ)g(θ)fθ(x)dΠ∫

Θ w(θ)fθ(x)dΠ
.

Solution. (i) The discrete probability density of X is (1 − p)x−1p for
x = 1, 2, .... Hence, for estimating p with loss (p − a)2/p, the Bayes action
when X = x is

δ(x) =

∫ 1
0 p−1p(1 − p)x−1pdΠ∫ 1
0 p−1(1 − p)x−1pdΠ

= 1 −
∫ 1
0 (1 − p)xdΠ∫ 1

0 (1 − p)x−1dΠ
.

(ii) Consider the prior with Lebesgue density Γ(2α)
[Γ(α)]2 pα−1(1−p)α−1I(0,1)(p).
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The Bayes action is

δ(x) = 1 −
∫ 1
0 (1 − p)x+α−1pα−1dp∫ 1
0 (1 − p)x+α−2pα−1dp

= 1 −
Γ(x+2α−1)

Γ(x+α−1)Γ(α)
Γ(x+2α)

Γ(x+α)Γ(α)

= 1 − x + α − 1
x + 2α − 1

=
α

x + 2α − 1
.

Since
lim
α→0

δ(x) =
1
2
I{1}(x) = δ0(x),

δ0(x) is a limit of Bayes actions.
(iii) Consider the improper prior density dΠ

dp = [p2(1 − p)]−1. Then the
posterior risk for action a is

∫ 1

0
(p − a)2(1 − p)x−2p−2dp.

When x = 1, the above integral diverges to infinity and, therefore, any a
is a Bayes action. When x > 1, the above integral converges if and only if
a = 0. Hence δ0 is a Bayes action.

Exercise 8 (#4.13). Let X be a sample from Pθ having probability
density fθ(x) = h(x) exp{θτx−ζ(θ)} with respect to ν on Rp, where θ ∈ Rp.
Let the prior be the Lebesgue measure on Rp. Show that the generalized
Bayes action under the loss L(θ, a) = ‖E(X)−a‖2 is δ(x) = x when X = x
with
∫

fθ(x)dθ < ∞.
Solution. Let m(x) =

∫
fθ(x)dθ and µ(θ) = E(X). Similar to the case of

univariate θ, the generalized Bayes action under loss ‖µ(θ) − a‖2 is δ(x) =∫
µ(θ)fθ(x)dθ/m(x). Let Ac = (−∞, c1]×· · ·×(−∞, cp] for c = (c1, ..., cp) ∈

Rp. Note that fc(x) =
∫

Ac

∂fθ(x)
∂θ dθ, c ∈ Rp. Since m(x) =

∫
fc(x)dc < ∞,

limci→∞,i=1,...,p fc(x) = 0. Hence,
∫ ∂fθ(x)

∂θ dθ = 0. Since

∂fθ(x)
∂θ

=
[
x − ∂ζ(θ)

∂θ

]
fθ(x) = [x − µ(θ)] fθ(x),

we obtain that x
∫

fθ(x)dθ =
∫

µ(θ)fθ(x)dθ. This proves that δ(x) = x.

Exercise 9 (#4.14). Let (X1, ..., Xn) be a random sample of random
variables with the Lebesgue density

√
2/πe−(x−θ)2/2I(θ,∞)(x), where θ ∈ R
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is unknown. Find the generalized Bayes action for estimating θ under the
squared error loss, when the (improper) prior of θ is the Lebesgue measure
on R.
Solution. Let X̄ be the sample mean and X(1) be the smallest order
statistic. Then the product of the density of X1, ..., Xn and the prior density
is (

2
π

)n/2

exp

{
−1

2

n∑
i=1

(Xi − θ)2
}

I(θ,∞)(X(1))

and, thus, the generalized Bayes action is

δ =

∫X(1)

0 θe−n(X̄−θ)2/2dθ∫X(1)

0 e−n(X̄−θ)2/2dθ
= X̄ +

∫X(1)

0 (θ − X̄)e−n(X̄−θ)2/2dθ∫X(1)

0 e−n(X̄−θ)2/2dθ
.

Let Φ be the cumulative distribution function of the standard normal dis-
tribution. Then∫ X(1)

0
e−n(X̄−θ)2/2dθ =

√
2π[Φ(

√
n(X(1) − X̄)) − Φ(−

√
nX̄)]√

n

and∫ X(1)

0
(θ − X̄)e−n(X̄−θ)2/2dθ =

√
2π[Φ′(−

√
nX̄) − Φ′(

√
n(X(1) − X̄))]

n
.

Hence, the generalized Bayes action is

δ = X̄ +
Φ′(−

√
nX̄) − Φ′(

√
n(X(1) − X̄))

√
n[Φ(

√
n(X(1) − X̄)) − Φ(−

√
nX̄)]

.

Exercise 10 (#4.15). Let (X1, ..., Xn) be a random sample from N(µ, σ2)
and π(µ, σ2) = σ−2I(0,∞)(σ2) be an improper prior for (µ, σ2) with respect
to the Lebesgue measure on R2.
(i) Show that the posterior density of (µ, σ2) given x = (x1, ..., xn) is
π(µ, σ2|x) = π1(µ|σ2, x)π2(σ2|x), where π1(µ|σ2, x) is the density of the
normal distribution N(x̄, σ2/n), x̄ is the sample mean of xi’s, π2(σ2|x) is
the density of ω−1, and ω has the gamma distribution with shape parame-
ter (n − 1)/2 and scale parameter [

∑n
i=1(xi − x̄)2/2]−1.

(ii) Show that the marginal posterior density of µ given x is f
(

µ−x̄
τ

)
, where

τ2 =
∑n

i=1(xi − x̄)2/[n(n − 1)] and f is the density of the t-distribution
tn−1.
(iii) Obtain the generalized Bayes action for estimating µ/σ under the
squared error loss.
Solution. (i) The posterior density π(µ, σ2|x) is proportional to

σ−(n+2) exp

{
− 1

2σ2

n∑
i=1

(xi − x̄)2
}

exp
{

− (µ − x̄)2

2σ2/n

}
I(0,∞)(σ2),
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which is proportional to π1(µ|σ2, x)π2(σ2|x).
(ii) The marginal posterior density of µ is

π(µ|x) =
∫ ∞

0
π(µ, σ2|x)dσ2

∝
∫ ∞

0
σ−(n+2) exp

{
−n(x̄ − µ)2

2σ2 − 1
2σ2

n∑
i=1

(xi − x̄)2
}

dσ2

∝
[
1 +

1
n − 1

(
µ − x̄

τ

)2
]−n/2

.

Hence, π(µ|x) is f(µ−x̄
τ ) with f being the density of the t-distribution tn−1.

(iii) The generalized Bayes action is

δ =
∫

µ

σ
π1(µ|σ2, x)π2(σ2|x)dµdσ2

= x̄

∫
σ−1π2(σ2|x)dσ2

=
Γ(n/2)x̄

Γ((n − 1)/2)
√∑n

i=1(xi − x̄)2/2
.

Exercise 11 (#4.19). In (ii)-(iv) of Exercise 1, assume that the parame-
ters in priors are unknown. Using the method of moments, find empirical
Bayes actions under the squared error loss.
Solution. Define µ̂1 = X̄ (the sample mean) and µ̂2 = n−1∑n

i=1 X2
i .

(i) In Exercise 1(ii),

EX1 = E[E(X1|p)] = E(kp) =
kα

α + β

and

EX2
1 = E[E(X2

1 |p)] = E[kp(1 − p) + k2p2] =
kα

α + β
+

(k2 − k)α(α + 1)
(α + β)(α + β + 1)

.

Setting µ̂1 = EX1 and µ̂2 = EX2
1 , we obtain that

α̂ =
µ̂2 − µ̂1 − µ̂1(k − 1)

µ̂1(k − 1) + k(1 − µ̂2/µ̂1)

and

β̂ =
kα̂

µ̂1
− α̂.
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Then the empirical Bayes action is (nX̄ + α̂)/(kn + α̂ + β̂).
(ii) In Exercise 1(iii),

EX1 = E[E(X1|θ)] = E(θ/2) =
ab

2(b − 1)

and

EX2
1 = E[E(X2

1 |θ)] = E[(θ/2)2 + θ2/12] = E(θ2/3) =
a2b

3(b − 2)
.

Setting µ̂1 = EX1 and µ̂2 = EX2
1 , we obtain that

b̂ = 1 +
√

3µ̂2/(3µ̂2 − 4µ̂2
1)

and
â = 2µ̂1(b̂ − 1)/b̂.

Therefore, the empirical Bayes action is (n + b̂) max{X(n), â}/(n + b̂ − 1),
where X(n) is the largest order statistic.
(iii) In Exercise 1(iv),

EX1 = E[E(X1|θ)] = E(θ) =
1

γ(α − 1)

and

EX2
1 = E[E(X2

1 |θ)] = E(2θ2) =
2

γ2(α − 1)(α − 2)
.

Setting µ̂1 = EX1 and µ̂2 = EX2
1 , we obtain that

α̂ =
2µ̂2 − 2µ̂2

1

µ̂2 − 2µ̂2
1

and

γ̂ =
1

(α̂ − 1)µ̂1
.

The empirical Bayes action is (γ̂nX̄ + 1)/[γ̂(n + α̂ − 1)].

Exercise 12 (#4.20). Let X = (X1, ..., Xn) be a random sample from
N(µ, σ2) with an unknown µ ∈ R and a known σ2 > 0. Consider the prior
Πµ|ξ = N(µ0, σ

2
0), ξ = (µ0, σ

2
0), and the second-stage improper joint prior

for ξ be the product of N(a, v2) and the Lebesgue measure on (0,∞), where
a and v are known. Under the squared error loss, obtain a formula for the
generalized Bayes action in terms of a one-dimensional integral.
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Solution. Let x̄ be the observed sample mean. From Exercise 2, the Bayes
action when ξ is known is

δ(x, ξ) =
σ2

nσ2
0 + σ2 µ0 +

nσ2
0

nσ2
0 + σ2 x̄.

By formula (4.8) in Shao (2003), the Bayes action is∫
δ(x, ξ)f(ξ|x)dξ,

where f(ξ|x) is the conditional density of ξ given X = x. The joint density
of (X, µ, ξ) is

(
1√
2πσ

)n 1
2πσ0v

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2 − (µ − µ0)2

2σ2
0

− (µ0 − µ)2

2v2

}
.

Integrating out µ in the joint density of (X, µ, ξ) and using the identity

∫ ∞

−∞
exp
{

−at2 − 2bt + c

2

}
dt =

√
2π

a
exp
{

b2

2a
− c

2

}

for any a > 0 and real b and c, we obtain the joint density of (X, ξ) as

d

σ0

√
n
σ2 + 1

σ2
0

exp

⎧⎪⎨
⎪⎩− y

2σ2 − (µ0 − a)2

2v2 − µ2
0

2σ2
0

+

(
nx̄
σ2 + µ0

σ2
0

)2
2
(

n
σ2 + 1

σ2
0

)
⎫⎪⎬
⎪⎭ ,

where y is the observed value of
∑n

i=1 X2
i and d = (2π)−(n+1)/2σ−nv−1.

This implies that

E(µ0|σ2
0 , x) =

aσ2
0(nσ2

0 + σ2) − nσ2
0v2x̄

σ2
0(nσ2

0 + σ2) + nσ2
0v2 .

Integrating out µ0 in the joint density of (X, ξ) and using the previous
identity again yields the joint density of (X, σ2

0) as

f(x, σ2
0) =

de−y/(2σ2)

σ0

√
n
σ2 + 1

σ2
0

√√√√ 1
v2 +

1
σ2

0
−

1
σ4
0

n
σ2 + 1

σ2
0

× exp

⎧⎨
⎩
(

a

v2 −
nx̄

σ2
0σ2

n
σ2 + 1

σ2
0

)2/[
2

(
1
v2 +

1
σ2

0
−

1
σ4
0

n
σ2 + 1

σ2
0

)]
−

n2x̄2

2σ4

n
σ2 + 1

σ2
0

⎫⎬
⎭
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Then the generalized Bayes action is

∫
δ(x, ξ)f(ξ|x)dξ =

∫∞
0

[
σ2E(µ0|σ2

0 ,x)
nσ2

0+σ2 + nσ2
0

nσ2
0+σ2 x̄

]
f(σ2

0 , x)dσ2
0∫∞

0 f(σ2
0 , x)dσ2

0
.

Exercise 13 (#4.21). Let X = (X1, ..., Xn) be a random sample from
the uniform distribution on (0, θ), where θ > 0 is unknown. Let π(θ) =
babθ−(b+1)I(a,∞)(θ) be a prior density with respect to the Lebesgue measure,
where b > 1 is known but a > 0 is an unknown hyperparameter. Consider
the estimation of θ under the squared error loss.
(i) Show that the empirical Bayes method using the method of moments
produces the empirical Bayes action δ(â), where δ(a)= b+n

b+n−1 max{a, X(n)},

â = 2(b−1)
bn

∑n
i=1 Xi, and X(n) is the largest order statistic.

(ii) Let h(a) = a−1I(0,∞)(a) be an improper Lebesgue prior density for a.
Obtain explicitly the generalized Bayes action.
Solution. (i) Note that EX1 = E[E(X1|θ)] = E(θ/2) = ab/[2(b − 1)].
Then â = 2(b−1)

bn

∑n
i=1 Xi is the moment estimator of a. From Exercise 2,

the empirical Bayes action is δ(â).
(ii) The joint density for (X, θ, a) is

bab−1θ−(n+b+1)I(X(n),∞)(θ)I(0,θ)(a).

Hence, the joint density for (X, θ) is∫ θ

0
bab−1θ−n−(b+1)I(X(n),∞)(θ)da = θ−(n+1)I(X(n),∞)(θ)

and the generalized Bayes action is∫∞
X(n)

θ−ndθ∫∞
X(n)

θ−(n+1)dθ
=

nX(n)

n − 1
.

Exercise 14 (#4.25). Let (X1, ..., Xn) be a random sample from the
exponential distribution on (0,∞) with scale parameter 1. Suppose that
we observe T = X1 + · · · + Xθ, where θ is an unknown positive integer.
Consider the estimation of θ under the loss function L(θ, a) = (θ − a)2/θ
and the geometric distribution with mean p−1 as the prior for θ, where
p ∈ (0, 1) is known.
(i) Show that the posterior expected loss is

E[L(θ, a)|T = t] = 1 + ξ − 2a + (1 − e−ξ)a2/ξ,

where ξ = (1 − p)t.
(ii) Find the Bayes estimator of θ and show that its posterior expected loss
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is 1 − ξ
∑∞

m=1 e−mξ.
(iii) Find the marginal distribution of (1 − p)T , unconditional on θ.
(iv) Obtain an explicit expression for the Bayes risk of the Bayes estimator
in part (ii).
Solution. (i) For a given θ, T has the gamma distribution with shape
parameter θ and scale parameter 1. Hence, the joint probability density of
(T, θ) is

f(t, θ) =
1

(θ − 1)!
tθ−1e−tp(1 − p)θ−1, t > 0, θ = 1, 2, ...

and ∞∑
θ=1

f(t, θ) = pe−t
∞∑

θ=1

[(1 − p)t]θ−1

(θ − 1)!
= pe−pt.

Then,

E[L(θ, a)|T = t] = p−1ept
∞∑

θ=1

(θ − a)2

θ
f(t, θ)

= e−ξ
∞∑

θ=1

ξθ−1

θ!
θ2 − 2ae−ξ

∞∑
θ=1

ξθ−1

θ!
θ

+ a2e−ξ
∞∑

θ=1

ξθ−1

θ!

= 1 + ξ − 2a + (1 − e−ξ)a2/ξ.

(ii) Since E[L(θ, a)|T = t] is a quadratic function of a, the Bayes estimator
is δ(T ) = (1 − p)T/(1 − e−(1−p)T ). The posterior expected loss when T = t
is

E[L(θ, δ(t))|T = t] = 1 − ξe−ξ

1 − e−ξ
= 1 − ξ

∞∑
m=1

e−mξ.

(iii) As shown in part (i) of the solution, the marginal density of T is∑∞
θ=1 f(t, θ) = pe−pt, which is the density of the exponential distribution

on (0,∞) with scale parameter p−1.
(iv) The Bayes risk of δ(T ) is

E{E[L(θ, δ(T ))|T ]} = 1 − E

{
(1 − p)T

∞∑
m=1

e−m(1−p)T

}

= 1 − (1 − p)p
∞∑

m=1

∫ ∞

0
te−m(1−p)te−ptdt

= 1 − (1 − p)p
∞∑

m=1

1
[m(1 − p) + p]2

,
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where the first equality follows from the result in (ii) and the second equality
follows from the result in (iii).

Exercise 15 (#4.27). Let (X1, ..., Xn) be a random sample of binary
random variables with P (X1 = 1) = p ∈ (0, 1).
(i) Show that the sample mean X̄ is an admissible estimator of p under the
loss function (a − p)2/[p(1 − p)].
(ii) Show that X̄ is an admissible estimator of p under the squared error
loss.
Note. A unique Bayes estimator under a given proper prior is admissible.
Solution. (i) Let T = nX̄. Consider the uniform distribution on the
interval (0, 1) as the prior for p. Then the Bayes estimator under the loss
function (a − p)2/[p(1 − p)] is∫ 1

0 pT (1 − p)n−T−1dp∫ 1
0 pT−1(1 − p)n−T−1dp

=
T

n
= X̄.

Since the Bayes estimator is unique, X̄ is an admissible estimator under
the given loss function.
(ii) From the result in (i), there does not exist an estimator U such that

E(U − p)2

p(1 − p)
≤ E(X̄ − p)2

p(1 − p)

for any p ∈ (0, 1) and with strict inequality holds for some p. Since p ∈
(0, 1), this implies that there does not exist an estimator U such that

E(U − p)2 ≤ E(X̄ − p)2

for any p ∈ (0, 1) and with strict inequality holds for some p. Hence X̄ is
an admissible estimator of p under the squared error loss.

Exercise 16 (#4.28). Let X = (X1, ..., Xn) be a random sample from
N(µ, 1), µ ∈ R. Show that the sample mean X̄ is an admissible estimator
of µ under the loss function L(µ, a) = |µ − a|.
Solution. Consider a sequence of priors, N(0, j), j = 1, 2, .... From
Exercise 1, the posterior mean under the jth prior is δj = ajX̄, where
aj = nj/(nj + 1). From Exercise 6, δj is a Bayes estimator of µ. Let r

T
be

the Bayes risk for an estimator T . Then, for any j, r
X̄

≥ r
δj

and

r
δj

= E[E(|ajX̄ − µ|
∣∣µ)] = ajE[E(|X̄ − a−1

j µ|
∣∣µ)] ≥ ajrX̄

,

where the last inequality follows from Exercise 11 in Chapter 1 and the fact
that given µ, µ is a median of X̄. Hence,

0 ≥ r
δj

− r
X̄

≥ (aj − 1)r
X̄

= −(nj + 1)−1r
X̄

,



156 Chapter 4. Estimation in Parametric Models

which implies that r
δj

− r
X̄

converges to 0 at rate j−1 as j → ∞. On the
other hand, for any finite interval (a, b), the prior probability of µ ∈ (a, b)
is Φ(b/

√
j) − Φ(a/

√
j), which converges to 0 at rate j−1/2, where Φ is

the cumulative distribution of N(0, 1). Thus, by Blyth’s theorem (e.g.,
Theorem 4.3 in Shao, 2003), X̄ is admissible.

Exercise 17. Let X be an observation from the negative binomial distri-
bution with a known size r and an unknown probability p ∈ (0, 1). Show
that (X + 1)/(r + 1) is an admissible estimator of p−1 under the squared
error loss.
Solution. It suffices to show that δ0(X) = (X + 1)/(r + 1) is admissible
under the loss function p2(a − p−1)2. The posterior distribution of p given
X is the beta distribution with parameter (r + α, X − r + β). Under the
loss function p2(a − p−1)2, the Bayes estimator is

δ(X) =
E(p|X)
E(p2|X)

=
X + α + β + 1

r + α + 1
,

which has risk

Rδ(p) =
r(1 − p)

(r + α + 1)2
+

[(α + β + 1)p − (α + 1)]2

(r + α + 1)2

and Bayes risk

r
δ

=
rβ

(α + β)(r + α + 1)2
+

β2

(α + β)2(r + α + 1)2
+

αβ(α + β + 1)
(α + β)2(r + α + 1)2

.

Also, δ0(X) has risk

Rδ0(p) =
r(1 − p) + (1 − p)2

(r + 1)2

and Bayes risk

r
δ0

=
rβ

(α + β)(r + 1)2
+

β2

(α + β)2(r + 1)2
+

αβ

(α + β + 1)(α + β)2(r + 1)2
.

Note that
α + β

αβ
(r

δ0
− r

δ
) = A + B + C,

where

A =
r

α

[
1

(r + 1)2
− 1

(r + α + 1)2

]
→ 2r

(r + 1)3

if α → 0 and β → 0,

B =
β

α(α + β)

[
1

(r + 1)2
− 1

(r + α + 1)2

]
→ 2

(r + 1)3
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if α → 0, β → 0 and α/β → 0, and

C =
1

α + β

[
1

(r + 1)2(α + β + 1)
− α + β + 1

(r + α + 1)2

]

=
[α − (α + β)(r + 1)][r + α + 1 + (α + β + 1)(r + 1)]

(α + β)(α + β + 1)(r + 1)2(r + α + 1)2

→ − 2
(r + 1)2

if α → 0, β → 0 and α/β → 0. Therefore,

α + β

αβ
(r

δ0
− r

δ
) → 0

if α → 0, β → 0 and α/β → 0. For any 0 < a < b < 1, the prior probability
of p ∈ (a, b) is

πα,β =
Γ(α + β)
Γ(α)Γ(β)

∫ b

a

pα−1(1 − p)β−1dp.

Note that aΓ(a) = Γ(a + 1) → 1 as a → 0. Hence,

α + β

αβ
πα,β →

∫ b

a

p−1(1 − p)−1dp

as α → 0 and β → 0. From this and the proved result, (r
δ0

− r
δ
)/πα,β → 0

if α → 0, β → 0 and α/β → 0. By Blyth’s theorem, δ0(X) is admissible.

Exercise 18 (#4.30). Let (X1, ..., Xn) be a random sample of binary
random variables with P (X1 = 1) = p ∈ (0, 1).
(i) Obtain the Bayes estimator of p(1 − p) when the prior is the beta dis-
tribution with known parameter (α, β), under the squared error loss.
(ii) Compare the Bayes estimator in (i) with the UMVUE of p(1 − p).
(iii) Discuss the bias, consistency, and admissibility of the Bayes estimator
in (i).
(iv) Let [p(1 − p)]−1I(0,1)(p) be an improper Lebesgue prior density for p.
Show that the posterior of p given Xi’s is a probability density provided
that the sample mean X̄ ∈ (0, 1).
(v) Under the squared error loss, find the generalized Bayes estimator of
p(1 − p) under the improper prior in (iv).
Solution. (i) Let T =

∑n
i=1 Xi. Since the posterior density given T = t is

proportional to
pt+α−1(1 − p)n−t+β−1I(0,1)(p),

the Bayes estimator of p(1 − p) is

δ(T ) =

∫ 1
0 pT+α(1 − p)n−T+βdp∫ 1

0 pT+α−1(1 − p)n−T+β−1dp
=

(T + α + 1)(n − T + β)
(n + α + β + 2)(n + α + β + 1)

.
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(ii) By considering functions of the form aT 2 + bT of the complete and
sufficient statistic T , we obtain the UMVUE of p(1 − p) as

U(T ) =
T (n − T )
n(n − 1)

.

(iii) From part (ii) of the solution, E[T (n − T )] = n(n − 1)p(1 − p). Then
the bias of δ(T ) is[

n(n − 1)
(n + α + β + 2)(n + α + β + 1)

− 1
]

p(1 − p)

+
(α + 1)(n + β) + pn(β − α − 1)
(n + α + β + 2)(n + α + β + 1)

,

which is of the order O(n−1). Since limn(T/n) = p a.s. by the strong law
of large numbers, limn δ(T ) = p(1−p) a.s. Hence the Bayes estimator δ(T )
is consistent. Since δ(T ) is a unique Bayes estimator, it is admissible.
(iv) The posterior density when T = t is proportional to

pt−1(1 − p)n−t−1I(0,1)(p),

which is proper if and only if 0 < t < n.
(v) The generalized Bayes estimator is∫ 1

0 pT (1 − p)n−T dp∫ 1
0 pT−1(1 − p)n−T−1dp

=
T (n − T )
n(n + 1)

.

Exercise 19 (#4.35(a)). Let X = (X1, ..., Xn) be a random sample from
the uniform distribution on (θ, θ + 1), θ ∈ R. Consider the estimation
of θ under the squared error loss. Let π(θ) be a continuous and positive
Lebesgue density on R. Derive the Bayes estimator under the prior π and
show that it is a consistent estimator of θ.
Solution. Let X(j) be the jth order statistic. The joint density of X is

I(θ,θ+1)(X(1))I(θ,θ+1)(X(n)) = I(X(n)−1,X(1))(θ).

Hence, the Bayes estimator is

δ(X) =

∫X(1)

X(n)−1 θπ(θ)dθ∫X(1)

X(n)−1 π(θ)dθ
.

Note that limn X(1) = θ a.s. and limn X(n) = θ + 1 a.s. Hence, almost
surely, the interval (X(n) − 1, X(1)) shrinks to a single point θ as n → ∞.
Since π is continuous, this implies that limn δ(X) = θ a.s.
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Exercise 20 (#4.36). Consider the linear model with observed vector
X having distribution Nn(Zβ, σ2In), where Z is an n × p known matrix,
p < n, β ∈ Rp, and σ2 > 0.
(i) Assume that σ2 is known. Derive the posterior distribution of β when
the prior distribution for β is Np(β0, σ

2V ), where β0 ∈ Rp is known and
V is a known positive definite matrix, and find the Bayes estimator of lτβ
under the squared error loss, where l ∈ Rp is known.
(ii) Show that the Bayes estimator in (i) is admissible and consistent as
n → ∞, assuming that the minimum eigenvalue of ZτZ → ∞.
(iii) Repeat (i) and (ii) when σ2 is unknown and σ−2 has the gamma dis-
tribution with shape parameter α and scale parameter γ, where α and γ
are known.
(iv) In part (iii), obtain Bayes estimators of σ2 and lτβ/σ under the squared
error loss and show that they are consistent under the condition in (ii).
Solution. (i) The product of the joint density of X and the prior is pro-
portional to

σ−n exp
{

−‖X − Zβ‖2

2σ2

}
exp
{

− (β − β0)τV −1(β − β0)
2σ2

}
.

Since

exp
{

−‖X − Zβ‖2

2σ2

}
= exp

{
−SSR

2σ2

}
exp

{
− (β̂ − β)τZτZ(β̂ − β)

2σ2

}
,

where β̂ is the LSE of β and SSR = ‖X − Zβ̂‖2, the product of the joint
density of X and the prior is proportional to

exp

{
−βτ (ZτZ + V −1)β − 2βτ (V −1β0 + ZτZβ̂)

2σ2

}
,

which is proportional to

exp
{

− (β − β∗)τ (ZτZ + V −1)(β − β∗)
2σ2

}
,

where
β∗ = (ZτZ + V −1)−1(V −1β0 + ZτZβ̂).

This shows that the posterior of β is Np(β∗, σ2(ZτZ +V −1)−1). The Bayes
estimator of lτβ under the squared error loss is then lτβ∗.
(ii) Since the Bayes estimator lτβ∗ is unique, it is admissible. If the mini-
mum eigenvalue of ZτZ → ∞ as n → ∞, then β̂ →p β,

lim
n

lτ (ZτZ + V −1)−1V −1β0 = 0,
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and
lim
n

(ZτZ + V −1)−1ZτZl = l.

Hence, lτβ∗ →p β.
(iii) Let ω = σ−2. Then the product of the joint density of X and the prior
is proportional to

ωα−1e−ω/γωn/2 exp
{

−ω‖X − Zβ‖2

2

}
exp
{

−ω(β − β0)τV −1(β − β0)
2

}
,

which is proportional to (under the argument in part (i) of the solution),

ωn/2+α−1e−ω/γ exp
{

−ωSSR
2

}
exp
{

− (β − β∗)τ (ZτZ + V −1)(β − β∗)
2σ2

}
.

Hence, the posterior of (β, ω) is p(β|ω)p(ω) with p(β|ω) being the density
of N(β∗, ω−1(ZτZ + V −1)−1) and p(ω) being the density of the gamma
distribution with shape parameter n/2 + α and scale parameter (γ−1 +
SSR/2)−1. The Bayes estimator of lτβ is still lτβ∗ and the proof of its
admissibility and consistency is the same as that in part (ii) of the solution.
(iv) From the result in part (iii) of the solution, the Bayes estimator of
σ2 = ω−1 is ∫ ∞

0
ω−1p(ω)dω =

γ−1 + SSR/2
n/2 + α − 1

.

It is consistent since SSR/n →p σ2. Using

E(β/σ) = E[E(β/σ|σ)] = E[σ−1E(β|σ)]

and the fact that β∗ does not depend on σ2, we obtain the Bayes estimator
of lτβ/σ as

lτβ∗
∫ ∞

0
ω1/2p(ω)dω = lτβ∗ Γ(n/2 + α + 1/2)

Γ(n/2 + α)
√

γ−1 + SSR/2
.

From the fact that

lim
n

Γ(n + α + 1/2)√
nΓ(n + α)

= 1,

the consistency of the Bayes estimator follows from the consistency of lτβ∗

and SSR/n.

Exercise 21 (#4.47). Let (X1, ..., Xn) be a random sample of random
variables with the Lebesgue density

√
2/πe−(x−θ)2/2I(θ,∞)(x), where θ ∈ R

is unknown. Find the MRIE (minimum risk invariant estimator) of θ under
the squared error loss.
Note. See Sections 2.3.2 and 4.2 in Shao (2003) for definition and discus-
sion of invariant estimators.
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Solution. Let f(x1, ..., xn) be the joint density of (X1, ..., Xn). When
θ = 0,

f(X1 − t, ..., Xn − t) =
(

2
π

)n/2

exp

{
−1

2

n∑
i=1

(Xi − t)2
}

I(t,∞)(X(1))

=
(

2
π

)n/2

e−(n−1)S2/2e−n(X̄−t)2/2I(t,∞)(X(1)),

where X̄ is the sample mean, S2 is the sample variance, and X(1) is the
smallest order statistic. Under the squared error loss, the MRIE of θ is
Pitman’s estimator (e.g., Theorem 4.6 in Shao, 2003)∫

tf(X1 − t, ..., Xn − t)dt∫
f(X1 − t, ..., Xn − t)dt

=

∫X(1)

0 te−n(X̄−t)2/2dt∫X(1)

0 e−n(X̄−t)2/2dt
,

which is the same as the estimator δ given in Exercise 9.

Exercise 22 (#4.48). Let (X1, ..., Xn) be a random sample from the
exponential distribution on (µ,∞) with a known scale parameter θ, where
µ ∈ R is unknown. Let X(1) be the smallest order statistic. Show that
(i) X(1)−θ log 2/n is an MRIE of µ under the absolute error loss L(µ−a) =
|µ − a|;
(ii) X(1) − t is an MRIE under the loss function L(µ − a) = I(t,∞)(|µ − a|).
Solution. Let D = (X1 − Xn, ..., Xn−1 − Xn). Then the distribution
of D does not depend on µ. Since X(1) is complete and sufficient for µ,
by Basu’s theorem, X(1) and D are independent. Since X(1) is location
invariant, by Theorem 4.5(iii) in Shao (2003), X(1) − u∗ is an MRIE of µ,
where u∗ minimizes E0[L(X(1) −u)] over u and E0 is the expectation taken
under µ = 0. Since E0[L(X(1) −u)] = E0|X(1) −u|, u∗ is the median of the
distribution of X(1) when µ = 0 (Exercise 11 in Chapter 1). Since X(1) has
Lebesgue density nθ−1e−nx/θI(0,∞)(x) when µ = 0,

1
2

=
n

θ

∫ u∗

0
e−nx/θdx = 1 − e−nu∗/θ

and, hence, u∗ = θ log 2/n.
(ii) Following the same argument in part (i) of the solution, we conclude
that an MRIE of µ is X(1) − u∗, where u∗ minimizes E0[L(X(1) − u)] =
P0(|X(1)−u| > t) over u and E0 and P0 are the expectation and probability
under µ = 0. When u ≤ 0, P0(|X(1) − u| > t) ≥ P0(X(1) > t). Hence, we
only need to consider u > 0. A direct calculation shows that

E0[L(X(1) − u)] = P0(X(1) > u + t) + P0(X(1) < u − t)

= 1 − e−n min{u−t,0}/θ + e−n(u+t)/θ,
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which is minimized at u∗ = t.

Exercise 23 (#4.52). Let X = (X1, ..., Xn) be a random sample from a
population in a location family with unknown location parameter µ ∈ R
and T be a location invariant estimator of µ. Show that T is an MRIE under
the squared error loss if and only if T is unbiased and E[T (X)U(X)] = 0 for
any U(X) satisfying U(X1 + c, ..., Xn + c) = U(X) for any c, Var(U) < ∞,
and E[U(X)] = 0 for any µ.
Solution. Suppose that T is an MRIE of µ. Then T is unbiased. For any
U(X) satisfying U(X1 + c, ..., Xn + c) = U(X) for any c and E[U(X)] = 0
for any µ, T + tU is location invariant and unbiased. Since T is an MRIE,

Var(T ) ≤ V (T + tU) = Var(T ) + 2tCov(T, U) + t2Var(U),

which is the same as 0 ≤ 2tE(TU) + t2Var(U). This is impossible unless
E(TU) = 0.

Suppose now that T is unbiased and E[T (X)U(X)] = 0 for any U(X)
satisfying U(X1 + c, ..., Xn + c) = U(X) for any c, Var(U) < ∞, and
E[U(X)] = 0 for any µ. Let T0 be Pitman’s estimator (MRIE). Then
U = T − T0 satisfies U(X1 + c, ..., Xn + c) = U(X) for any c, Var(U) < ∞,
and E[U(X)] = 0 for any µ. Then E[T (T − T0)] = 0. Since T0 is an
MRIE, from the previous proof we know that E[T0(T − T0)] = 0. Then
E(T − T0)2 = E[T (T − T0)]−E[T0(T − T0)]=0. Thus, T = T0 a.s. and T
is an MRIE.

Exercise 24 (#4.56). Let (X1, ..., Xn) be a random sample from the
uniform distribution on (0, σ) and consider the estimation of σ > 0. Show
that the MRIE of σ is 2(n+1)−1

X(n) when the loss is L(σ, a) = |1 − a/σ|,
where X(n) is the largest order statistic.
Solution. By Basu’s theorem, the scale invariant estimator X(n) is in-
dependent of Z = (Z1, ..., Zn), where Zi = Xi/Xn, i = 1, ..., n − 1, and
Zn = Xn/|Xn|. By Theorem 4.8 in Shao (2003), the MRIE is X(n)/u∗,
where u∗ minimizes E1|1 − X(n)/u| over u > 0 and E1 is the expectation
under σ = 1. If u ≥ 1, then |1−X(n)/u| = 1−X(n)/u ≥ 1−X(n) = |1−X(n)|.
Hence, we only need to consider 0 < u < 1. Since X(n) has Lebesgue density
nxn−1I(0,1)(x) when σ = 1,

E1|(X(n)/u) − 1| = n

∫ 1

0

∣∣∣∣xu − 1
∣∣∣∣xn−1dx

=
n

u

∫ u

0
(u − x)xn−1dx +

n

u

∫ 1

u

(x − u)xn−1dx

= un − n

n + 1
un +

n

n + 1
1 − un+1

u
− (1 − un)

=
2

n + 1
un +

n

n + 1
1
u

− 1,
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which is minimized at u∗ = 2−(n+1)−1
. Thus, the MRIE is 2(n+1)−1

X(n).

Exercise 25 (#4.59). Let (X1, ..., Xn) be a random sample from the
Pareto distribution with Lebesgue density ασαx−(α+1)I(σ,∞)(x), where σ >
0 is an unknown parameter and α > 2 is known. Find the MRIE of σ under
the loss function L(σ, a) = (1 − a/σ)2.
Solution. By Basu’s theorem, the scale invariant estimator X(1) is in-
dependent of Z = (Z1, ..., Zn), where X(1) is the smallest order statistic,
Zi = Xi/Xn, i = 1, ..., n − 1, and Zn = Xn/|Xn|. By Theorem 4.8 in Shao
(2003), the MRIE is X(1)/u∗, where u∗ minimizes E1(1 − X(1)/u)2 over
u > 0 and E1 is the expectation under σ = 1. Since X(1) has Lebesgue
density nαx−(nα+1)I(1,∞)(x) when σ = 1,

E1(1 − X(1)/u)2 =
E1(X2

(1)) − 2uE1(X(1)) + u2

u2

=
nα

(nα − 2)u2 − 2nα

(nα − 1)u
+ 1,

which is minimized at u∗ = (nα − 1)/(nα − 2). Hence, the MRIE is equal
to (nα − 2)X(1)/(nα − 1).

Exercise 26 (#4.62). Let (X1, ..., Xn) be a random sample from the
exponential distribution on (µ,∞) with scale parameter σ, where µ ∈ R
and σ > 0 are unknown.
(i) Find the MRIE of σ under the loss L(σ, a) = |1− a/σ|p with p = 1 or 2.
(ii) Under the loss function L(µ, σ, a) = (a − µ)2/σ2, find the MRIE of µ.
(iii) Compute the bias of the MRIE of µ in (ii).
Solution. Let X(1) = min1≤i≤n Xi and T =

∑n
i=1(Xi − X(1)). Then

(X(1), T ) is complete and sufficient for (µ, σ); X(1) and T are independent;
T is location-scale invariant and T/σ has the gamma distribution with
shape parameter n − 1 and scale parameter 1; and X(1) is location-scale
invariant and has Lebesgue density nσ−1e−n(x−µ)/σI(µ,∞)(x).
(i) Let W = (W1, ..., Wn−1), where Wi = (Xi − Xn)/(Xn−1 − Xn), i =
1, ..., n − 2, and Wn−1 = (Xn−1 − Xn)/|Xn−1 − Xn|. By Basu’s theorem,
T is independent of W . Hence, according to formula (4.28) in Shao (2003),
the MRIE of σ is T/u∗, where u∗ minimizes E1|1 − T/u|p over u > 0 and
E1 is the expectation taken under σ = 1.

When p = 1,

E1|1 − T/u| =
1
u

[∫ u

0
(u − t)fn(t)dt +

∫ ∞

u

(t − u)fn(t)dt

]

=
∫ u

0
fn(t)dt − 1

u

∫ u

0
tfn(t)dt

+
1
u

∫ ∞

u

tfn(t)dt −
∫ ∞

u

fn(t)dt,
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where fn(t) denotes the Lebesgue density of the gamma distribution with
shape parameter n − 1 and scale parameter 1. The derivative of the above
function with respect to u is

ψ(u) =
1
u2

(∫ u

0
tfn(t)dt −

∫ ∞

u

tfn(t)dt

)
.

The solution to ψ(u) = 0 is u∗ satisfying∫ u∗

0
tfn(t)dt =

∫ ∞

u∗
tfn(t)dt.

Since tfn(t) is proportional to the Lebesgue density of the gamma distri-
bution with shape parameter n and scale parameter 1, u∗ is the median of
the gamma distribution with shape parameter n and scale parameter 1.

When p = 2,

E1(1 − T/u)2 =
E1(T 2) − 2uE1(T ) + u2

u2 =
n(n − 1)

u2 − 2(n − 1)
u

+ 1,

which is minimized at u∗ = n.
(ii) By Basu’s theorem, (X(1), T ) is independent of W defined in part (i) of
the solution. By Theorem 4.9 in Shao (2003), an MRIE of µ is X(1) − u∗T ,
where u∗ minimizes E0,1(X(1) − uT )2 over u and E0,1 is the expectation
taken under µ = 0 and σ = 1. Note that

E0,1(X(1) − uT )2 = E0,1(X2
(1)) − 2uE0,1(X(1))E0,1(T ) + u2E0,1(T 2)

=
2
n2 − 2(n − 1)u

n
+ n(n − 1)u2,

which is minimized at u∗ = n−2. Hence the MRIE of µ is X(1) − n−2T .
(iii) Note that

E(X(1) − n−2T ) =
σ

n
+ µ − (n − 1)σ

n2 = µ +
σ

n2 .

Hence, the bias of the MRIE in (ii) is σ/n2.

Exercise 27 (#4.67). Let (X1, ..., Xn) be a random sample of binary
random variables with P (X1 = 1) = p ∈ (0, 1). Let T be a randomized
estimator of p with probability n/(n + 1) being the sample mean X̄ and
probability 1/(n + 1) being 1

2 . Under the squared error loss, show that T
has a constant risk that is smaller than the maximum risk of X̄.
Solution. The risk of T is

E

[
(p − X̄)2

n

n + 1
+
(
p − 1

2

)2 1
n + 1

]
=

1
4(n + 1)

.
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The maximum risk of X̄ is

max
0<p<1

p(1 − p)
n

=
1
4n

>
1

4(n + 1)
.

Exercise 28 (#4.68). Let X be a single sample from the geometric
distribution with mean p−1, where p ∈ (0, 1). Show that I{1}(X) is a
minimax estimator of p under the loss function L(p, a) = (a−p)2/[p(1−p)].
Solution A. The risk function of any estimator δ(X) of p is

Rδ(p) =
∞∑

x=1

[δ(x) − p]2(1 − p)x−2

=
[δ(1) − p]2

1 − p
+

∞∑
x=2

[δ(x) − p]2(1 − p)x−2.

If δ(1) 
= 1, then limp→1 Rδ(p) = ∞ and, hence, sup0<p<1 Rδ(p) = ∞. If
δ(1) = 1, then

sup
0<p<1

Rδ(p) ≥ lim
p→0

Rδ(p) = 1 +
∞∑

x=2

[δ(x)]2 ≥ 1.

The risk of I{1}(X) is

1 − p + p2
∞∑

x=2

(1 − p)x−2 = 1.

Therefore, I{1}(X) is minimax.
Solution B. From Solution A, I{1}(X) has constant risk 1. Let Πj be the
beta distribution with parameter (j−1, 1), j = 1, 2, .... Under prior Πj , the
Bayes estimator of p under loss (a − p)2/[p(1 − p)] is

δj(X) =

{
j−1

x−1+j−1 x ≥ 2
1 x = 1

and its Bayes risk is

r
δj

=
∫ 1

0

1 − p

jp
pj−1

dp +
∞∑

x=2

∫ 1

0

[δj(x) − p]2(1 − p)x−2

jp
pj−1

dp

=
j

j + 1
+

∞∑
x=2

[δj(x)]2Γ(x − 1)Γ(j−1)
jΓ(x + j−1 − 1)

−
∞∑

x=2

2δj(x)Γ(x − 1)Γ(j−1 + 1)
jΓ(x + j−1)

+
∞∑

x=2

Γ(x − 1)Γ(j−1 + 2)
jΓ(x + j−1 + 1)

.
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For any x = 2, 3, ... and j = 1, 2, ...,

[δj(x)]2Γ(x − 1)Γ(j−1)
jΓ(x + j−1 − 1)

≤ 1
j3(x − 1)2

.

Hence,

lim
j→∞

∞∑
x=2

[δj(x)]2Γ(x − 1)Γ(j−1)
jΓ(x + j−1 − 1)

= 0.

Similarly,

lim
j→∞

∞∑
x=2

2δj(x)Γ(x − 1)Γ(j−1 + 1)
jΓ(x + j−1)

= 0

and

lim
j→∞

∞∑
x=2

Γ(x − 1)Γ(j−1 + 2)
jΓ(x + j−1 + 1)

= 0.

Thus, limj→∞ r
δj

= 1. By Theorem 4.12 in Shao (2003), I{1}(X) is mini-
max.

Exercise 29 (#4.72). Let (X1, ..., Xm) be a random sample from
N(µx, σ2

x) and (Y1, ..., Yn) be a random sample from N(µy, σ2
y). Assume

that Xi’s and Yj ’s are independent. Consider the estimation of ∆ = µy −µx

under the squared error loss.
(i) Show that Ȳ − X̄ is a minimax estimator of ∆ when σx and σy are
known, where X̄ and Ȳ are the sample means based on Xi’s and Yi’s, re-
spectively.
(ii) Show that Ȳ − X̄ is a minimax estimator of ∆ when σx ∈ (0, cx] and
σy ∈ (0, cy], where cx and cy are constants.
Solution. (i) Let Πx,j = N(0, j) and Πy,j = N(0, j), j = 1, 2, ..., and let
Πx,j × Πy,j be the prior of (µx, µy). From Exercise 1, the Bayes estimators
for µx and µy are mj

mj+σ2
x
X̄ and nj

nj+σ2
y
Ȳ , respectively. Hence, the Bayes

estimator of ∆ is
δj =

nj

nj + σ2
y

Ȳ − mj

mj + σ2
x

X̄

with Bayes risk

r
δj

=
jσ2

y

nj + σ2
y

+
jσ2

x

mj + σ2
x

.

Since

lim
j→∞

r
δj

=
σ2

y

n
+

σ2
x

m
,

which does not depend on (µx, µy) and is equal to the risk of Ȳ − X̄, by
Theorem 4.12 in Shao (2003), Ȳ − X̄ is minimax.
(ii) Let Θ = {(µx, µy, σ2

x, σ2
y) : µx ∈ R, µy ∈ R, σx ∈ (0, cx], σy ∈ (0, cy]}
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and Θ0 = {(µx, µy, σ2
x, σ2

y) : µx ∈ R, µy ∈ R, σx = cx, σy = cy}. From
(i), Ȳ − X̄ is minimax when Θ0 is considered as the parameter space. Let
RȲ −X̄(θ) be the risk function of Ȳ − X̄. Since

sup
θ∈Θ

RȲ −X̄(θ) =
c2
x

m
+

c2
y

n
= sup

θ∈Θ0

RȲ −X̄(θ),

we conclude that Ȳ − X̄ is minimax.

Exercise 30 (#4.73). Consider the linear model with observed vector
X having distribution Nn(Zβ, σ2In), where Z is an n × p known matrix,
p < n, β ∈ Rp, and σ2 > 0, and the estimation of lτβ under the squared
error loss, where l ∈ R(Z). Show that the LSE lτ β̂ is minimax if σ2 ∈ (0, c]
with a constant c.
Solution. Using the same argument in the solution for the previous exer-
cise, we only need to show the minimaxity of lτβ in the case where σ2 is
known.

Assume that σ2 is known. The risk of lτ β̂ is σ2lτ (ZτZ)−l, which does
not depend on β. Consider a sequence of prior Np(0, j−1Ip), j = 1, 2, ....
From Exercise 20, the Bayes estimator of lτβ is

δj = AjZ
τZβ̂,

where Aj = (ZτZ + j−1Ip)−1. The risk of δj is

Var(δj) + (Eδj − lτβ)2 = σ2lτAjZ
τZAj l + ‖(lτAjZ

τZ − lτ )β‖2.

Hence, the Bayes risk of δj is

rj = Var(δj) + (lτAjZ
τZ − lτ )E(ββτ )(ZτZAj l − l)

= σ2lτAjZ
τZAj l + j‖ZτZAj l − l‖2.

Since l ∈ R(Z) = R(ZτZ), there is ζ ∈ Rp such that l = ZτZζ. Then

ZτZAj l − l = (ZτZAjZ
τZ − ZτZ)ζ.

Let Γ be an orthogonal matrix such that ΓτΓ = Ip and ΓτZτZΓ = Λ, a
diagonal matrix whose kth diagonal element is λk. Then

B = Γτ (ZτZAjZ
τZ − ZτZ)Γ

= ΓτZτZΓΓτAjΓΓτZτZΓ − Λ
= Λ[Γτ (ZτZ + j−1Ip)Γ]−1Λ − Λ
= Λ(Λ + j−1Ip)−1Λ − Λ,

which is a diagonal matrix whose kth diagonal element is equal to
−j−1λk/(λk + j−1). Then

j‖ZτZAj l − l‖2 = ζτΓB2Γτζ → 0



168 Chapter 4. Estimation in Parametric Models

as j → ∞. Similarly,

σ2lτAjZ
τZAj l → σ2lτ (ZτZ)−l

as j → ∞. This shows that limj→∞ rj = the risk of lτ β̂. Hence, by Theorem
4.12 in Shao (2003), lτ β̂ is minimax.

Exercise 31 (#4.74). Let X be an observation having the hypergeometric
distribution with discrete probability density(

θ
x

)(
N−θ
r−x

)
(
N
r

) , x = max{0, r − (N − θ)}, ...,min{r, θ},

where N and r are known and θ is an unknown integer between 1 and N .
Consider the estimation of θ/N under the squared error loss.
(i) Show that the risk function of T (X) = αX/r + β is constant, where
α = {1 +

√
(N − r)/[r(N − 1)]}−1 and β = (1 − α)/2.

(ii) Show that T in (i) is the minimax estimator of θ/N and the Bayes
estimator with the prior

Π({θ}) =
Γ(2c)
[Γ(c)]2

∫ 1

0

(
N

θ

)
tθ+c−1(1 − t)N−θ+c−1dt, θ = 1, ..., N,

where c = β/(α/r − 1/N).
Solution. (i) From the property of the hypergeometric distribution, E(X)
= rθ/N and Var(X) = rθ(N − θ)(N − r)/[N2(N − 1)]. Hence, the risk of
T is

E

(
T − θ

N

)2

=
α2

r2 Var(X) +
[
α

r
E(X) + β − θ

N

]2

=
α2θ(N − θ)(N − r)

rN2(N − 1)
+
[
(α − 1)θ

N
+ β

]2

= β2 +
[

α2(N − r)
rN(N − 1)

+
2(α − 1)

N

]
θ

+
[
(α − 1)2

N2 − α2(N − r)
rN2(N − 1)

]
θ2.

Setting the coefficients in front of θ and θ2 to 0, we conclude that T has a
constant risk if α = {1 +

√
(N − r)/[r(N − 1)]}−1 and β = (1 − α)/2.

(ii) The posterior of θ is proportional to

(
θ
x

)(
N−θ
r−x

)(
N
θ

)
(
N
r

) ∫ 1

0
tθ+c−1(1 − t)N−θ+c−1dt,
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which is proportional to(
N − r

θ − x

)∫ 1

0
tθ+c−1(1 − t)N−θ+c−1dt,

θ = x, ..., N − r + x. The posterior mean of θ is∑N−r+x
θ=x θ

(
N−r
θ−x

) ∫ 1
0 tθ+c−1(1 − t)N−θ+c−1dt∑N−r+x

θ=x

(
N−r
θ−x

) ∫ 1
0 tθ+c−1(1 − t)N−θ+c−1dt

.

From the property of the binomial distribution,

N−r+x∑
θ=x

(
N − r

θ − x

)
tθ−x(1 − t)N−r−θ+x = 1

and
N−r+x∑

θ=x

(θ − x)
(

N − r

θ − x

)
tθ−x(1 − t)N−r−θ+x = (N − r)t.

Hence, the posterior mean of θ is equal to

x +
(N − r)

∫ 1
0 tx+c(1 − t)r−x+c−1dt∫ 1

0 tx+c−1(1 − t)r−x+c−1dt
= x +

(N − r)(x + c)
r + 2c

.

Then, the Bayes estimator of θ/N is(
1 +

N − r

r + 2c

)
X

N
+

(N − r)c
N(r + 2c)

.

A direct calculation shows that when c = β/(α/r − 1/N) with β and α
defined in (i), the Bayes estimator is equal to T . Since T has constant risk
and is a unique Bayes estimator, T is minimax.

Exercise 32 (#4.75). Let X be an observation from N(µ, 1) and let µ
have the improper Lebesgue prior density π(µ) = eµ. Under the squared
error loss, show that the generalized Bayes estimator of µ is X + 1, which
is neither minimax nor admissible.
Solution. The posterior density of µ is proportional to

exp
{

− (µ − x)2

2
+ µ

}
∝ exp

{
− [µ − (x + 1)]2

2

}
.

Thus, the posterior distribution of µ is N(X + 1, 1) and the generalized
Bayes estimator is E(µ|X) = X+1. Since the risk of X+1 is E(X+1−µ)2 =
1+E(X −µ)2 > E(X −µ)2, which is the risk of X, we conclude that X +1
is neither minimax nor admissible.
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Exercise 33 (#4.76). Let X be an observation from the Poisson distri-
bution with unknown mean θ > 0. Consider the estimation of θ under the
squared error loss.
(i) Show that supθ RT (θ) = ∞ for any estimator T = T (X), where RT (θ)
is the risk of T .
(ii) Let � = {aX + b : a ∈ R, b ∈ R}. Show that 0 is an admissible estima-
tor of θ within �.
Solution. (i) When the gamma distribution with shape parameter α
and scale parameter γ is used as the prior for θ, the Bayes estimator is
δ(X) = γ(X + α)/(γ + 1) with Bayes risk r

δ
= αγ2/(γ + 1). Then, for any

estimator T ,

sup
θ>0

RT (θ) ≥ r
δ

=
αγ2

γ + 1
→ ∞

as γ → ∞.
(ii) The risk of 0 is θ2. The risk of aX + b is

a2Var(X) + [aE(X) + b − θ]2 = (a − 1)2θ2 + [2(a − 1)b + a2]θ + b2.

If 0 is inadmissible, then there are a and b such that

θ2 ≥ (a − 1)2θ2 + [2(a − 1)b + a2]θ + b2

for all θ > 0. Letting θ → 0, we obtain that b = 0. Then

θ ≥ (a − 1)2θ + a2

for all θ > 0. Letting θ → 0 again, we conclude that a = 0. This shows
that 0 is admissible within the class �.

Exercise 34 (#4.78). Let (X1, ..., Xn) be a random sample from the
uniform distribution on the interval (µ− 1

2 , µ+ 1
2 ) with an unknown µ ∈ R.

Under the squared error loss, show that (X(1) + X(n))/2 is the unique
minimax estimator of µ, where X(j) is the jth order statistic.
Solution. Let f(x1, ..., xn) be the joint density of X1, ..., Xn. Then

f(x1 − µ, ..., xn − µ) =
{

1 µ − 1
2 ≤ x(1) ≤ x(n) ≤ µ + 1

2
0 otherwise.

The Pitman estimator of µ is

∫∞
−∞ tf(X1 − t, ..., Xn − t)dt∫∞
−∞ f(X1 − t, ..., Xn − t)dt

=

∫X(1)+ 1
2

X(n)− 1
2

tdt∫X(1)+ 1
2

X(n)− 1
2

dt
=

X(1) + X(n)

2
.

Hence, (X(1) + X(n))/2 is admissible. Since (X(1) + X(n))/2 has constant
risk, it is the unique minimax estimator (otherwise (X(1) +X(n))/2 can not
be admissible).
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Exercise 35 (#4.80). Let (X1, ..., Xn) be a random sample from the
exponential distribution on (0,∞) with unknown mean θ > 0 and X̄ be
the sample mean. Show that (nX̄ + b)/(n + 1) is an admissible estimator
of θ under the squared error loss for any b ≥ 0 and that nX̄/(n + 1) is a
minimax estimator of θ under the loss function L(θ, a) = (a − θ)2/θ2.
Solution. The joint Lebesgue density of X1, ..., Xn is

θ−ne−nX̄/θI(0,∞)(X(1)),

where X(1) is the smallest order statistic. Let T (X) = X̄, ϑ = −θ−1, and
c(ϑ) = ϑn. Then the joint density is of the form c(ϑ)eϑT with respect a
σ-finite measure and the range of ϑ is (−∞, 0). For any ϑ0 ∈ (−∞, 0),

∫ ϑ0

−∞
e−bϑ/nϑ−1dϑ =

∫ 0

θ0

e−bϑ/nϑ−1dϑ = ∞.

By Karlin’s theorem (e.g., Theorem 4.14 in Shao, 2003), we conclude that
(nX̄ + b)/(n + 1) is admissible under the squared error loss. This implies
that (nX̄ + b)/(n + 1) is also admissible under the loss function L(θ, a) =
(a − θ)2/θ2. Since the risk of nX̄/(n + 1) is

1
θ2 E

(
nX̄ + b

n + 1
− θ

)2

=
1

n + 1
,

nX̄/(n + 1) is an admissible estimator with constant risk. Hence, it is
minimax.

Exercise 36 (#4.82). Let X be a single observation. Consider the esti-
mation of E(X) under the squared error loss.
(i) Find all possible values of α and β such that αX + β are admissible
when X has the Poisson distribution with unknown mean θ > 0.
(ii) When X has the negative binomial distribution with a known size r and
an unknown probability p ∈ (0, 1), show that αX + β is admissible when
α ≤ r

r+1 and β > r(1 − α).
Solution. (i) An application of the results in Exercises 35-36 of Chapter 2
shows that αX + β is an inadmissible estimator of EX when (a) α > 1 or
α < 0 or (b) α = 1 and β 
= 0. If α = 0, then, by Exercise 36 of Chapter 2,
αX + β is inadmissible when β ≤ 0; by Exercise 34 of Chapter 2, αX + β
is admissible when β > 0.

The discrete probability density X is θxe−θ/x! = e−eϑ

eϑx/x!, where
ϑ = log θ ∈ (−∞,∞). Consider α ∈ (0, 1]. Let α = (1 + λ)−1 and
β = γλ/(1 + λ). Since ∫ 0

−∞

e−γλϑ

e−λeϑ dϑ = ∞
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if and only if λγ ≥ 0, and ∫ ∞

0

e−γλϑ

e−λeϑ dϑ = ∞

if and only if λ ≥ 0, we conclude that αX +β is admissible when 0 < α < 1
and β ≥ 0; and αX + β is admissible when α = 1 and β = 0. By Exercise
36 of Chapter 2, αX + β is inadmissible if β < 0.

The conclusion is that αX + β is admissible if and only if (α, β) is in
the following set:

{α = 0, β > 0} ∪ {α = 1, β = 0} ∪ {0 < α < 1, β ≥ 0}.

(ii) The discrete probability density of X is
(
x−1
r−1

)
pr

(1−p)r ex log(1−p). Let
θ = log(1 − p) ∈ (−∞, 0), α = (1 + λ)−1, and β = γλ/(1 + λ). Note that

∫ 0

c

e−λγθ

(
eθ

1 − eθ

)λr

dθ = ∞

if and only if λr ≥ 1, i.e., α ≤ r
r+1 ;

∫ c

−∞
e−λγθ

(
eθ

1 − eθ

)λr

dθ = ∞

if and only if γ > r, i.e., β > rλ/(1 + λ) = r(1 − α). The result follows
from Karlin’s theorem.

Exercise 37 (#4.83). Let X be an observation from the distribution with
Lebesgue density 1

2c(θ)eθx−|x|, |θ| < 1.
(i) Show that c(θ) = 1 − θ2.
(ii) Show that if 0 ≤ α ≤ 1

2 , then αX +β is admissible for estimating E(X)
under the squared error loss.
Solution. (i) Note that

1
c(θ)

=
1
2

∫ ∞

−∞
eθx−|x|dx

=
1
2

(∫ 0

−∞
eθx+xdx +

∫ ∞

0
eθx−xdx

)

=
1
2

(∫ ∞

0
e−(1+θ)dx +

∫ ∞

0
e−(1−θ)xdx

)

=
1
2

(
1

1 + θ
+

1
1 − θ

)

=
1

1 − θ2 .
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(ii) Consider first α > 0. Let α = (1+λ)−1 and β = γλ/(1+λ). Note that∫ 0

−1

e−γλθ

(1 − θ2)λ
dθ =
∫ 1

0

e−γλθ

(1 − θ2)λ
dθ = ∞

if and only if λ ≥ 1, i.e., α ≤ 1
2 . Hence, αX + β is an admissible estimator

of E(X) when 0 < α ≤ 1
2 .

Consider α = 0. Since

E(X) =
1 − θ2

2

(∫ 0

−∞
xeθx+xdx +

∫ ∞

0
xeθx−xdx

)

=
1 − θ2

2

(
−
∫ ∞

0
xe−(1+θ)dx +

∫ ∞

0
xe−(1−θ)xdx

)

=
1 − θ2

2

(
1 + θ

1 − θ
− 1 − θ

1 + θ

)

=
2θ

1 − θ2 ,

which takes any value in (−∞,∞), the constant estimator β is an admissible
estimator of E(X) (Exercise 34 in Chapter 2).

Exercise 38 (#4.84). Let X be an observation with the discrete prob-
ability density fθ(x) = [x!(1 − e−θ)]−1θxe−θI{1,2,...}(x), where θ > 0 is
unknown. Consider the estimation of θ/(1 − e−θ) under the squared error
loss.
(i) Show that the estimator X is admissible.
(ii) Show that X is not minimax unless supθ RT (θ) = ∞ for the risk RT (θ)
of any estimator T = T (X).
(iii) Find a loss function under which X is minimax and admissible.
Solution. (i) Let ϑ = log θ. Then the range of ϑ is (−∞,∞). The proba-
bility density of X is proportional to

θxe−θ

1 − e−θ
=

e−eϑ

1 − e−eϑ eϑx.

Hence, by Corollary 4.3 in Shao (2003), X is admissible under the squared
error loss for E(X) = θ/(1 − e−θ).
(ii) The risk of X is

Var(X) = E(X2) − [E(X)]2 =
θ + θ2

1 − e−θ
− θ2

(1 − e−θ)2
=

θ − e−θ(θ + θ2)
(1 − e−θ)2

,

which diverges to ∞ as θ → ∞. Hence, X is not minimax unless supθ RT (θ)
= ∞ for any estimator T = T (X).
(iii) Consider the loss [E(X)−a]2/Var(X). Since X is admissible under the
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loss [E(X) − a]2, it is also admissible under the loss [E(X) − a]2/Var(X).
Since the risk of X under loss [E(X) − a]2/Var(X) is 1, it is minimax.

Exercise 39 (#4.91). Suppose that X is distributed as Np(θ, Ip), where
θ ∈ Rp. Consider the estimation of θ under the loss (a−θ)τQ(a−θ) with a
known positive definite p×p matrix Q. Show that the risk of the estimator

δQ
c,r = X − r(p − 2)

‖Q−1/2(X − c)‖2 Q−1(X − c)

is equal to

tr(Q) − (2r − r2)(p − 2)2E(‖Q−1/2(X − c)‖−2).

Solution. Without loss of generality, we assume that c = 0. Define δr =
δQ
0,r, Y = Q1/2X, µ = Q1/2θ,

h(µ) = Rδr (θ) = E

∥∥∥∥Y − r(p − 2)
‖Q−1Y ‖2 Q−1Y − µ

∥∥∥∥
2

,

and

g(µ) = tr(Q) − (2r − r2)(p − 2)2E(‖Q−1/2X‖−2)
= tr(Q) − (2r − r2)(p − 2)2E(‖Q−1Y ‖−2).

Let λ∗ > 0 be the largest eigenvalue of Q−1. Consider the following family
of priors for µ:

{Np(0, (α + λ∗)Q2 − Q) : α > 0}.

Then the marginal distribution of Y is Np(0, (α + λ∗)Q2) and

E[g(µ)] = tr(Q) − (2r − r2)(p − 2)2E(‖Q−1Y ‖−2)

= tr(Q) − (2r − r2)(p − 2)
α + λ∗

.

Note that the posterior distribution of µ given Y is

Np

((
Ip − Q−1

α + λ∗

)
Y, Q − 1

α + λ∗
Ip

)
.

Hence,

E[h(µ)] = E

∥∥∥∥Y − r(p − 2)
||Q−1Y ||2 Q−1Y − E(µ|Y ) + E(µ|Y ) − µ

∥∥∥∥
2

= E

∥∥∥∥Y − r(p − 2)
‖Q−1Y ‖2 Q−1Y − E(µ|Y )

∥∥∥∥
2

+ E‖E(µ|Y ) − µ‖2

=
p

α + λ∗
− (2r − r2)(p − 2)

α + λ∗
+ tr(Q) − p

α + λ∗

= tr(Q) − (2r − r2)(p − 2)
α + λ∗

.
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This shows that E[h(µ)] = E[g(µ)]. Using the same argument as that in
the proof of Theorem 4.15 in Shao (2003), we conclude that h(µ) = g(µ)
for any µ.

Exercise 40 (#4.92). Suppose that X is distributed as Np(θ, σ2D), where
θ ∈ Rp is unknown, σ2 > 0 is unknown, and D is a known p × p positive
definite matrix. Consider the estimation of θ under the loss ‖a−θ‖2. Show
that the risk of the estimator

δ̃c,r = X − r(p − 2)σ2

‖D−1(X − c)‖2 D−1(X − c)

is equal to

σ2 [tr(D) − (2r − r2)(p − 2)2σ2E(‖D−1(X − c)‖−2)
]
.

Solution. Define Z = σ−1D−1/2(X − c) and ψ = σ−1D−1/2(θ − c). Then
Z is distributed as Np(ψ, Ip) and

δ̃c,r − c = σD1/2Z − r(p − 2)σD−1/2Z

‖D−1/2Z‖2

= σD1/2
[
Z − r(p − 2)σD−1

‖D−1/2Z‖2 Z

]
= σD1/2δD

0,r,

where δD
0,r is defined in the previous exercise with Q = D. Then the risk of

δ̃c,r is

Rδ̃c,r
(θ) = E

[
(δ̃c,r − θ)τ (δ̃c,r − θ)

]
= σ2E

[
(δD

c,r − ψ)τD(δD
c,r − ψ)

]
= σ2
[
tr(D) − (2r − r2)(p − 2)2E(‖D−1/2Z‖−2)

]
= σ2 [tr(D) − (2r − r2)(p − 2)2σ2E(‖D−1(X − c)‖−2)

]
,

where the third equality follows from the result of the previous exercise.

Exercise 41 (#4.96). Let X = (X1, ..., Xn) be a random sample of
random variables with probability density fθ. Find an MLE (maximum
likelihood estimator) of θ in each of the following cases.
(i) fθ(x) = θ−1I{1,...,θ}(x), θ is an integer between 1 and θ0.
(ii) fθ(x) = e−(x−θ)I(θ,∞)(x), θ > 0.
(iii) fθ(x) = θ(1 − x)θ−1I(0,1)(x), θ > 1.
(iv) fθ(x) = θ

1−θ x(2θ−1)/(1−θ)I(0,1)(x), θ ∈ ( 1
2 , 1).
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(v) fθ(x) = 2−1e−|x−θ|, θ ∈ R.
(vi) fθ(x) = θx−2I(θ,∞)(x), θ > 0.
(vii) fθ(x) = θx(1 − θ)1−xI{0,1}(x), θ ∈ [ 12 , 3

4 ].
(viii) fθ(x) is the density of N(θ, θ2), θ ∈ R, θ 
= 0.
(ix) fθ(x) = σ−ne−(x−µ)/σI(µ,∞)(x), θ = (µ, σ) ∈ R × (0,∞).
(x) fθ(x) = 1√

2πσx
e−(log x−µ)2/(2σ2)I(0,∞)(x), θ = (µ, σ2) ∈ R × (0,∞).

(xi) fθ(x) = I(0,1)(x) if θ = 0 and fθ(x) = (2
√

x)−1I(0,1)(x) if θ = 1.
(xii) fθ(x) = β−ααxα−1I(0,β)(x), θ = (α, β) ∈ (0,∞) × (0,∞).
(xiii) fθ(x) =

(
θ
x

)
px(1 − p)θ−xI{0,1,...,θ}(x), θ = 1, 2, ..., where p ∈ (0, 1) is

known.
(xiv) fθ(x) = 1

2 (1 − θ2)eθx−|x|, θ ∈ (−1, 1).
Solution. (i) Let X(n) be the largest order statistic. The likelihood func-
tion is �(θ) = θ−nI{X(n),...,θ0}(θ), which is 0 when θ < X(n) and decreasing
on {X(n), ..., θ0}. Hence, the MLE of θ is X(n).
(ii) Let X(1) be the smallest order statistic. The likelihood function is
�(θ) = exp{−

∑n
i=1(Xi − θ)}I(0,X(1))(θ), which is 0 when θ > X(1) and

increasing on (0, X(1)). Hence, the MLE of θ is X(1).
(iii) Note that �(θ) = θn

∏n
i=1(1 − Xi)θ−1I(0,1)(Xi) and, when θ > 1,

∂ log �(θ)
∂θ

=
n

θ
+

n∑
i=1

log(1 − Xi) and
∂2 log �(θ)

∂θ2 = − n

θ2 < 0.

The equation ∂ log �(θ)
∂θ = 0 has a unique solution θ̂ = −n/

∑n
i=1 log(1−Xi).

If θ̂ > 1, then it maximizes �(θ). If θ̂ ≤ 1, then �(θ) is decreasing on the
interval (1,∞). Hence the MLE of θ is max{1, θ̂}.
(iv) Note that

∂ log �(θ)
∂θ

=
n

θ(1 − θ)
+

1
(1 − θ)2

n∑
i=1

log Xi

and ∂ log �(θ)
∂θ = 0 has a unique solution θ̂ = (1 − n−1∑n

i=1 log Xi)−1. Also,
∂ log �(θ)

∂θ < 0 when θ > θ̂ and ∂ log �(θ)
∂θ > 0 when θ < θ̂. Hence, the MLE of

θ is max{θ̂, 1
2}.

(v) Note that �(θ) = 2−n exp{−
∑n

i=1 |Xi − θ|}. Let Fn be the distribution
putting mass n−1 to each Xi. Then, by Exercise 11 in Chapter 1, any
median of Fn is an MLE of θ.
(vi) Since �(θ) = θn

∏n
i=1 X−2

i I(0,X(1))(θ), the same argument in part (ii)
of the solution yields the MLE X(1).
(vii) Let X̄ be the sample mean. Since

∂ log �(θ)
∂θ

=
nX̄

θ
− n − nX̄

1 − θ
,
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∂ log �(θ)
∂θ = 0 has a unique solution X̄, ∂ log �(θ)

∂θ < 0 when θ > X̄, and
∂ log �(θ)

∂θ > 0 when θ < X̄. Hence, the same argument in part (iv) of the
solution yields the MLE

θ̂ =

⎧⎪⎨
⎪⎩

1
2 if X̄ ∈ [0, 1

2 )

X̄ if X̄ ∈ [ 12 , 3
4 )

3
4 if X̄ ∈ ( 3

4 , 1].

(viii) Note that

∂ log �(θ)
∂θ

= − 1
θ3

(
nθ2 + θ

n∑
i=1

Xi −
n∑

i=1

X2
i

)
.

The equation ∂ log �(θ)
∂θ = 0 has two solutions

θ± =
−
∑n

i=1 Xi ±
√

(
∑n

i=1 Xi)2 + 4n
∑n

i=1 X2
i

2n
.

Note that limθ→0 log �(θ) = −∞. By checking the sign change at the neigh-
borhoods of θ±, we conclude that both θ− and θ+ are local maximum points.
Therefore, the MLE of θ is

θ̂ =
{

θ− if �(θ−) ≥ �(θ+)
θ+ if �(θ−) < �(θ+).

(ix) The likelihood function

�(θ) = σ−n exp

{
− 1

σ

n∑
i=1

(Xi − µ)

}
I(0,X(1))(µ)

is 0 when µ > X(1) and increasing on (0, X(1)). Hence, the MLE of µ
is X(1). Substituting µ = X(1) into �(θ) and maximizing the resulting
likelihood function yields that the MLE of σ is n−1∑n

i=1(Xi − X(1)).
(x) Let Yi = log Xi, i = 1, ..., n. Then

�(θ) =
1

(
√

2πσ)n
exp

{
− 1

2σ2

n∑
i=1

(Yi − µ)2 −
n∑

i=1

Yi

}
.

Solving ∂ log �(θ)
∂θ = 0, we obtain the MLE of µ as Ȳ = n−1∑n

i=1 Yi and the
MLE of σ2 as n−1∑n

i=1(Yi − Ȳ )2.
(xi) Since �(0) = 1 and �(1) = (2n

∏n
i=1

√
Xi)−1, the MLE is equal to 0 if

2n
∏n

i=1

√
Xi < 1 and is equal to 1 if 2n

∏n
i=1

√
Xi ≥ 1.

(xii) The likelihood function is �(θ) = αnβ−nα
∏n

i=1 Xα−1
i I(X(n),∞)(β),
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which is 0 when β < X(n) and decreasing in β otherwise. Hence the MLE
of β is X(n). Substituting β = X(n) into the likelihood function, we obtain
the MLE of α as n[

∑n
i=1 log(X(n)/Xi)]−1.

(xiii) Let X(n) be the largest Xi’s and T =
∑n

i=1 Xi. Then

�(θ) =
n∏

i=1

(
θ

Xi

)
pT (1 − p)nθ−T I{X(n),X(n)+1,...}(θ).

For θ = X(n), X(n) + 1, ...,

�(θ + 1)
�(θ)

= (1 − p)n
n∏

i=1

θ + 1
θ + 1 − Xi

.

Since (θ + 1)/(θ + 1 − Xi) is decreasing in θ, the function �(θ + 1)/�(θ) is
decreasing in θ. Also, limθ→∞ �(θ + 1)/�(θ) = (1 − p)n < 1. Therefore, the
MLE of θ is max{θ : θ ≥ X(n), �(θ + 1)/�(θ) ≥ 1}.
(xiv) Let X̄ be the sample mean. Then

∂ log �(θ)
∂θ

= nX̄ − 2nθ

1 − θ2 .

The equation ∂ log �(θ)
∂θ = 0 has two solutions θ± = ±

√
1 + X̄2 − 1. Since

θ− < −1 is not in the parameter space, we conclude that the MLE of θ is√
1 + X̄2 − 1.

Exercise 42. Let (X1, ..., Xn) be a random sample from the uniform dis-
tribution on the interval (θ, θ + |θ|). Find the MLE of θ when
(i) θ ∈ (0,∞);
(ii) θ ∈ (−∞, 0);
(iii) θ ∈ R, θ 
= 0.
Solution. (i) When θ ∈ (0,∞), the distribution of X1 is uniform on (θ, 2θ).
The likelihood function is

�(θ) = θ−nI(X(n)/2,X(1))(θ).

Since θ−n is decreasing, the MLE of θ is X(n)/2.
(ii) When θ ∈ (−∞, 0), the distribution of X1 is uniform on (θ, 0). Hence

�(θ) = |θ|−nI(−∞,X(1))(θ).

Since |θ|−n is decreasing, the MLE of θ is X(1).
(iii) Consider θ 
= 0. If θ > 0, then almost surely all Xi’s are positive. If
θ < 0, then almost surely all Xi’s are negative. Combining the results in
(i)-(ii), we conclude that the MLE of θ is X(n)/2 if X1 > 0 and is X(1) if
X1 < 0.
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Exercise 43 (#4.98). Suppose that n observations are taken from N(µ, 1)
with an unknown µ. Instead of recording all the observations, one records
only whether the observation is less than 0. Find an MLE of µ.
Solution. Let Yi = 1 if the ith observation is less than 0 and Yi = 0
otherwise. Then Y1, ..., Yn are the actual observations. Let p = P (Yi = 1)
= Φ(−µ), where Φ is the cumulative distribution function of N(0, 1), �(p)
be the likelihood function in p, and T =

∑n
i=1 Yi. Then

∂ log �(p)
∂p

=
T

θ
− n − T

1 − θ
.

The likelihood equation has a unique solution T/n. Hence the MLE of p is
T/n. Then, the MLE of µ is −Φ−1(T/n).

Exercise 44 (#4.100). Let (Y1, Z1), ..., (Yn, Zn) be independent and iden-
tically distributed random 2-vectors such that Y1 and Z1 are independently
distributed as the exponential distributions on (0,∞) with scale parameters
λ > 0 and µ > 0, respectively.
(i) Find the MLE of (λ, µ).
(ii) Suppose that we only observe Xi = min{Yi, Zi} and ∆i = 1 if Xi = Yi

and ∆i = 0 if Xi = Zi. Find the MLE of (λ, µ).
Solution. (i) Let �(λ, µ) be the likelihood function, Ȳ = n−1∑n

i=1 Yi, and
Z̄ = n−1∑n

i=1 Zi. Since Yi’s and Zi’s are independent,

∂ log �(λ, µ)
∂λ

= −n

λ
+

nȲ

λ2 and
∂ log �(λ, µ)

∂µ
= −n

µ
+

nZ̄

µ2 .

Hence, the MLE of (λ, µ) is (Ȳ , Z̄).
(ii) The probability density of (Xi, ∆i) is λ−∆iµ−(∆i−1)e−(λ−1+µ−1)xi . Let
T =
∑n

i=1 Xi and D =
∑n

i=1 ∆i. Then

�(λ, µ) = λ−DµD−ne−(λ−1+µ−1)T .

If 0 < D < n, then

∂ log �(λ, µ)
∂λ

= −D

λ
+

T

λ2 and
∂ log �(λ, µ)

∂λ
=

D − n

µ
+

T

µ2 .

The likelihood equation has a unique solution λ̂ = T/D and µ̂ = T/(n−D).
The MLE of (λ, µ) is (λ̂, µ̂).

If D = 0,
�(λ, µ) = µ−ne−(λ−1+µ−1)T ,

which is increasing in λ. Hence, there does not exist an MLE of λ. Similarly,
when D = n, there does not exist an MLE of µ.
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Exercise 45 (#4.101). Let (X1, ..., Xn) be a random sample from the
gamma distribution with shape parameter α > 0 and scale parameter γ > 0.
Show that almost surely the likelihood equation has a unique solution that
is the MLE of θ = (α, γ). Obtain the Newton-Raphson iteration equation
and the Fisher-scoring iteration equation.
Solution. Let X̄ be the sample mean and Y = n−1∑n

i=1 log Xi. The
log-likelihood function is

log �(θ) = −nα log γ − n log Γ(α) + (α − 1)nY − γ−1nX̄.

Then, the likelihood equations are

− log γ − Γ′(α)
Γ(α)

+ Y = 0 and − α

γ
+

X̄

γ2 = 0.

The second equation yields γ = X̄/α. Substituting γ = X̄/α into the first
equation we obtain that

h(α) = log α − Γ′(α)
Γ(α)

+ Y − log X̄ = 0.

From calculus,
Γ′(α)
Γ(α)

= −C +
∞∑

k=0

(
1

k + 1
− 1

k + α

)

and
d

dα

[
Γ′(α)
Γ(α)

]
=

∞∑
k=0

1
(k + α)2

,

where C is the Euler constant defined as

C = lim
m→∞

(
m−1∑
k=0

1
k + 1

− log m

)
.

Then

h′(α) =
1
α

−
∞∑

k=0

1
(k + α)2

<
1
α

−
∞∑

k=0

(
1

k + α
− 1

k + 1 + α

)

=
1
α

− Γ′(α)
Γ(α)

+
Γ′(α + 1)
Γ(α + 1)

=
1
α

+
d

dα
log

Γ(α + 1)
Γ(α)

=
1
α

+
d

dα
log

1
α

= 0.
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Hence, h(α) is decreasing. Also, it follows from the last two equalities of
the previous expression that, for m = 2, 3, ...,

Γ′(m)
Γ(m)

=
1

m − 1
+

1
m − 2

+ · · · + 1 +
Γ′(1)
Γ(1)

=
m−2∑
k=0

1
k + 1

− C.

Therefore,

lim
m→∞

[
log m − Γ′(m)

Γ(m)

]
= lim

m→∞

[
log m −

m−2∑
k=0

1
k + 1

+ C

]
= 0

by the definition of C. Hence, limα→∞ h(α) = Y − log X̄, which is negative
by Jensen’s inequality when Xi’s are not all the same. Since

lim
α→0

[
log α − Γ′(α)

Γ(α)

]
= lim

α→0

[
log α + C −

∞∑
k=0

(
1

k + 1
− 1

k + α

)]

= lim
α→0

[
log α + C +

1
α

− 1 +
∞∑

k=1

1 − α

(k + 1)(k + α)

]

= lim
α→0

(
log α +

1
α

)
+ C − 1 +

∞∑
k=1

1
(k + 1)k

= ∞,

we have limα→0 h(α) = ∞. Since h is continuous and decreasing, h(α) =
0 has a unique solution. Thus, the likelihood equations have a unique
solution, which is the MLE of θ.

Let

s(θ) =
∂ log �(θ)

∂θ
= n

(
− log γ − Γ′(α)

Γ(α)
+ Y,−α

γ
+

X̄

γ2

)
,

R(θ) =
∂2 log �(θ)

∂θ∂θτ
= n

⎛
⎝
[

Γ′(α)
Γ(α)

]2
− Γ′′(α)

Γ(α) − 1
γ

− 1
γ

α
γ2 − 2X̄

γ3

⎞
⎠ ,

and

F (θ) = E[R(θ)] = n

⎛
⎝
[

Γ′(α)
Γ(α)

]2
− Γ′′(α)

Γ(α) − 1
γ

− 1
γ − α

γ2

⎞
⎠ .

Then the Newton-Raphson iteration equation is

θ̂(k+1) = θ̂(k) − [R(θ̂(k))]−1s(θ̂(k)), k = 0, 1, 2, ...

and the Fisher-scoring iteration equation is

θ̂(k+1) = θ̂(k) − [F (θ̂(k))]−1s(θ̂(k)), k = 0, 1, 2, ....



182 Chapter 4. Estimation in Parametric Models

Exercise 46 (#4.102). Let (X1, ..., Xn) be a random sample from a pop-
ulation with discrete probability density [x!(1 − e−θ)]−1θxe−θI{1,2,...}(x),
where θ > 0 is unknown. Show that the likelihood equation has a unique
root when the sample mean X̄ > 1. Show whether this root is an MLE of
θ.
Solution. Let �(θ) be the likelihood function and

h(θ) =
∂ log �(θ)

∂θ
= n

(
X̄

θ
− 1 − 1

eθ − 1

)
.

Obviously, limθ→∞ h(θ) = −n. Since limθ→0 θ/(eθ − 1) = 1,

lim
θ→0

h(θ) = n lim
θ→0

1
θ

(
X̄ − θ

eθ − 1

)
− n = ∞

when X̄ > 1. Note that h is continuous. Hence, when X̄ > 1, h(θ) = 0 has
at least one solution. Note that

h′(θ) = n

[
X̄

θ2 +
eθ

(eθ − 1)2

]
< 0

because (eθ −1)2/eθ = (eθ −1)(1−e−θ) > θ2. Hence, h(θ) = 0 has a unique
solution and log �(θ) is convex. Therefore, the unique solution is the MLE
of θ.

Exercise 47 (#4.104). Let (X1, Y1), ..., (Xn, Yn) be independent and
identically distributed as the bivariate normal distribution with E(X1) =
E(Y1) = 0, Var(X1) = Var(Y1) = 1, and an unknown correlation coefficient
ρ ∈ (−1, 1). Show that the likelihood equation is a cubic in ρ and the
probability that it has a unique root tends to 1 as n → ∞.
Solution. Let T =

∑n
i=1(X

2
i + Y 2

i ) and R =
∑n

i=1 XiYi. The likelihood
function is

�(ρ) = (2π
√

1 − ρ2)−n exp
{

ρR

1 − ρ2 − T

2(1 − ρ2)

}
.

Hence,
∂ log �(ρ)

∂ρ
=

nρ

1 − ρ2 +
1 + ρ2

(1 − ρ2)2
R − ρ

(1 − ρ2)2
T

and the likelihood equation is h(ρ) = 0, where

h(ρ) = ρ(1 − ρ2) − n−1Tρ + n−1R(1 + ρ2)

is a cubic in ρ. Since h is continuous,

lim
ρ→1

h(ρ) = −n−1(T − 2R) = − 1
n

n∑
i=1

(Xi − Yi)2 < 0
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and

lim
ρ→−1

h(ρ) = n−1(T + 2R) =
1
n

n∑
i=1

(Xi + Yi)2 > 0,

the likelihood equation has at least one solution. Note that

h′(ρ) = 1 − 3ρ2 − n−1T + 2n−1Rρ.

As n → ∞, n−1T →p Var(X1) + Var(Y1) = 2 and n−1R →p E(X1Y1) = ρ.
Hence,

h′(ρ) →p 1 − 3ρ2 − 2 + 2ρ2 = −1 − ρ2 < 0.

Therefore, the probability that h(ρ) = 0 has a unique solution tends to 1.

Exercise 48 (#4.105). Let (X1, ..., Xn) be a random sample from the
Weibull distribution with Lebesgue density αθ−1xα−1e−xα/θI(0,∞)(x),
where α > 0 and θ > 0 are unknown. Show that the likelihood equa-
tions are equivalent to h(α) = n−1∑n

i=1 log Xi and θ = n−1∑n
i=1 Xα

i ,
where h(α) = (

∑n
i=1 Xα

i )−1∑n
i=1 Xα

i log Xi − α−1, and that the likelihood
equations have a unique solution.
Solution. The log-likelihood function is

log �(α, θ) = n log α − n log θ + (α − 1)
n∑

i=1

log Xi − 1
θ

n∑
i=1

Xα
i .

Hence, the likelihood equations are

∂ log �(α, θ)
∂α

=
n

α
+

n∑
i=1

log Xi − 1
θ

n∑
i=1

Xα
i log Xi = 0

and
∂ log �(α, θ)

∂θ
= −n

θ
+

1
θ2

n∑
i=1

Xα
i = 0,

which are equivalent to h(α) = n−1∑n
i=1 log Xi and θ = n−1∑n

i=1 Xα
i .

Note that

h′(α) =
∑n

i=1 Xα
i (log Xi)2

∑n
i=1 Xα

i − (
∑n

i=1 Xα
i log Xi)2

(
∑n

i=1 Xα
i )2

+
1
α2 > 0

by the Cauchy-Schwarz inequality. Thus, h(α) is increasing. Since h is
continuous, limα→0 h(α) = −∞, and

lim
α→∞ h(α) = lim

α→∞

∑n
i=1

(
Xi

X(n)

)α
log Xi∑n

i=1

(
Xi

X(n)

)α = log X(n) >
1
n

n∑
i=1

log Xi,
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where X(n) is the largest order statistic and the inequality holds as long
as Xi’s are not identical, we conclude that the likelihood equations have a
unique solution.

Exercise 49 (#4.106). Consider the one-way random effects model

Xij = µ + Ai + eij , j = 1, ..., n, i = 1, ..., m,

where µ ∈ R, Ai’s are independent and identically distributed as N(0, σ2
a),

eij ’s are independent and identically distributed as N(0, σ2), σ2
a and σ2 are

unknown, and Ai’s and eij ’s are independent.
(i) Find an MLE of (σ2

a, σ2) when µ = 0.
(ii) Find an MLE of (µ, σ2

a, σ2).
Solution. (i) From the solution of Exercise 33 in Chapter 3, the likelihood
function is

�(µ, σ2
a, σ2)=ξ exp

{
− SE

2σ2 − SA

2(σ2 + nσ2
a)

− nm

2(σ2 + nσ2
a)

m∑
i=1

(X̄·· − µ)2
}

,

where SA = n
∑m

i=1(X̄i· − X̄··)2, SE =
∑m

i=1
∑n

j=1(Xij − X̄i·)2, X̄·· =
(nm)−1∑m

i=1
∑n

j=1 Xij , X̄i· = n−1∑n
j=1 Xij , and ξ is a function of σ2

a and
σ2. In the case of µ = 0, the likelihood function becomes

�(σ2
a, σ2) = ξ exp

{
− SE

2σ2 − S̃A

2(σ2 + nσ2
a)

}
,

where S̃A = n
∑m

i=1 X̄2
i·. The statistic (S̃A, SE) is complete and sufficient

for (σ2
a, σ2). Hence, �(σ2

a, σ2) is proportional to the joint distribution of
S̃A and SE . Since Xij ’s are normal, SE/σ2 has the chi-square distribution
χ2

m(n−1) and S̃A/(σ2 + nσ2
a) has the chi-square distribution χ2

m. Since the
distribution of SE does not depend on σ2 and S̃A is complete and sufficient
for σ2

a when σ2 is known, by Basu’s theorem, S̃A and SE are independent.
Therefore, the likelihood equations are

∂ log �(σ2
a, σ2)

∂σ2
a

=
nS̃A

σ2 + nσ2
a

− nm

σ2 + nσ2
a

= 0

and

∂ log �(σ2
a, σ2)

∂σ2 =
nS̃A

σ2 + nσ2
a

− nm

σ2 + nσ2
a

+
SE

σ4 − m(n − 1)
σ2 = 0.

A unique solution is

σ̂2 =
SE

m(n − 1)
and σ̂2

a =
S̃A

nm
− SE

nm(n − 1)
.
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If σ̂2
a > 0, then the MLE of (σ2

a, σ2) is (σ̂2
a, σ̂2). If σ̂2

a ≤ 0, however, the
maximum of �(σ2

a, σ2) is achieved at the boundary of the parameter space
when σ2

a = 0. Note that

∂ log �(0, σ2)
∂σ2 =

nS̃A

σ2 − nm

σ2 +
SE

σ4 − m(n − 1)
σ2 = 0

has a unique solution σ̃2 = (nS̃A + SE)/[nm + m(n − 1)]. Thus, the MLE
of (σ2

a, σ2) is (0, σ̃2) when σ̂2
a ≤ 0.

(ii) It is easy to see that X̄·· maximizes �(µ, σ2
a, σ2) for any σ2

a and σ2.
Hence, X̄·· is the MLE of µ. To consider the MLE of (σ2

a, σ2), it suffices to
consider

�(X̄··, σ2
aσ2) = ξ exp

{
− SE

2σ2 − SA

2(σ2 + nσ2
a)

− nm

2(σ2 + nσ2
a)

}
.

Note that this is the same as �(σ2
a, σ2) in the solution of part (i) with S̃A

replaced by SA and SA/(σ2 + nσ2
a) has the chi-square distribution χ2

m−1.
Using the same argument in part (i) of the solution, we conclude that the
MLE of (σ2

a, σ2) is (σ̂2
a, σ̂2) if σ̂2

a > 0, where

σ̂2 =
SE

m(n − 1)
and σ̂2

a =
SA

n(m − 1)
− SE

nm(n − 1)
,

and is (0, σ̃2) if σ̂2
a ≤ 0, where σ̃2 = (nSA + SE)/[n(m − 1) + m(n − 1)].

Exercise 50 (#4.107). Let (X1, ..., Xn) be a random sample of random
variables with Lebesgue density θf(θx), where f is a Lebesgue density on
(0,∞) or symmetric about 0, and θ > 0 is an unknown parameter. Show
that the likelihood equation has a unique root if xf ′(x)/f(x) is continuous
and decreasing for x > 0. Verify that this condition is satisfied if f(x) =
π−1(1 + x2)−1.
Solution. Let �(θ) be the likelihood function and

h(θ) =
n∑

i=1

[
1 +

θXif
′(θXi)

f(θXi)

]
.

Then
∂ log �(θ)

∂θ
=

1
θ

n∑
i=1

[
1 +

θXif
′(θXi)

f(θXi)

]
= 0

is the same as h(θ) = 0. From the condition, h(θ) is decreasing in θ when
θ > 0. Hence, the likelihood equation has at most one solution. Define
g(t) = 1 + tf ′(t)/f(t). Suppose that g(t) ≥ 0 for all t ∈ (0,∞). Then tf(t)
is nondecreasing since its derivative is f(t)g(t) ≥ 0. Let t0 ∈ (0,∞). Then
tf(t) ≥ t0f(t0) for t ∈ (t0,∞) and

1 ≥
∫ ∞

t0

f(t)dt ≥
∫ ∞

t0

t0f(t0)
t

dt = ∞,
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which is impossible. Suppose that g(t) ≤ 0 for all t ∈ (0,∞). Then tf(t) is
nonincreasing and tf(t) ≥ t0f(t0) for t ∈ (0, t0). Then

1 ≥
∫ t0

0
f(t)dt ≥

∫ t0

0

t0f(t0)
t

dt = ∞,

which is impossible. Combining these results and the fact that g(t) is
nonincreasing, we conclude that

lim
θ→0

n∑
i=1

[
1 +

θXif
′(θXi)

f(θXi)

]
> 0 > lim

θ→∞

n∑
i=1

[
1 +

θXif
′(θXi)

f(θXi)

]

and, therefore, h(θ) = 0 has a unique solution.
For f(x) = π−1(1 + x2)−1,

xf ′(x)
f(x)

=
2x2

1 + x2 ,

which is clearly continuous and decreasing for x > 0.

Exercise 51 (#4.108). Let (X1, ..., Xn) be a random sample having
Lebesgue density fθ(x) = θf1(x)+(1−θ)f2(x), where fj ’s are two different
known Lebesgue densities and θ ∈ (0, 1) is unknown.
(i) Provide a necessary and sufficient condition for the likelihood equation
to have a unique solution and show that if there is a solution, it is the MLE
of θ.
(ii) Derive the MLE of θ when the likelihood equation has no solution.
Solution. (i) Let �(θ) be the likelihood function. Note that

s(θ) =
∂ log �(θ)

∂θ
=

n∑
i=1

f1(Xi) − f2(Xi)
f2(Xi) + θ[f1(Xi) − f2(Xi)]

,

which has derivative

s′(θ) = −
n∑

i=1

[f1(Xi) − f2(Xi)]2

{f2(Xi) + θ[f1(Xi) − f2(Xi)]}2 < 0.

Therefore, s(θ) = 0 has at most one solution. The necessary and sufficient
condition that s(θ) = 0 has a solution (which is unique if it exists) is that
limθ→0 s(θ) > 0 and limθ→1 s(θ) < 0, which is equivalent to

n∑
i=1

f1(Xi)
f2(Xi)

> n and
n∑

i=1

f2(Xi)
f1(Xi)

> n.

The solution, if it exists, is the MLE since s′(θ) < 0.
(ii) If

∑n
i=1

f2(Xi)
f1(Xi)

≤ n, then s(θ) ≥ 0 and �(θ) is nondecreasing and, thus,

the MLE of θ is 1. Similarly, if
∑n

i=1
f1(Xi)
f2(Xi)

≤ n, then the MLE of θ is 0.
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Exercise 52 (#4.111). Let Xij , j = 1, ..., r > 1, i = 1, ..., n, be inde-
pendently distributed as N(µi, σ

2). Find the MLE of θ = (µ1, ..., µn, σ2).
Show that the MLE of σ2 is not a consistent estimator (as n → ∞).
Solution. Let �(θ) be the likelihood function. Note that

log �(θ) = −nr

2
log(2πσ2) − 1

2σ2

n∑
i=1

r∑
j=1

(Xij − µi)2,

∂ log �(θ)
∂µi

=
1
σ2

r∑
j=1

(Xij − µi),

and
∂ log �(θ)

∂σ2 = − nr

2σ2 +
1

2σ4

n∑
i=1

r∑
j=1

(Xij − µi)2.

Hence, the MLE of µi is X̄i· = r−1∑r
j=1 Xij , i = 1, ..., n, and the MLE of

σ2 is

σ̂2 =
1
nr

n∑
i=1

r∑
j=1

(Xij − X̄i·)2.

Since

E

⎡
⎣ r∑

j=1

(Xij − X̄i·)2

⎤
⎦ = (r − 1)σ2,

by the law of large numbers,

σ̂2 →p
r − 1

r
σ2

as n → ∞. Hence, σ̂2 is inconsistent.

Exercise 53 (#4.112). Let (X1, ..., Xn) be a random sample from the
uniform distribution on (0, θ), where θ > 0 is unknown. Let θ̂ be the MLE
of θ and T be the UMVUE.
(i) Obtain the ratio of the mean squared error of T over the mean squared
error of θ̂ and show that the MLE is inadmissible when n ≥ 2.
(ii) Let Za,θ be a random variable having the exponential distribution on
(a,∞) with scale parameter θ. Prove n(θ − θ̂) →d Z0,θ and n(θ − T ) →d

Z−θ,θ. Obtain the asymptotic relative efficiency of θ̂ with respect to T .
Solution. (i) Let X(n) be the largest order statistic. Then θ̂ = X(n) and
T (X) = n+1

n X(n). The mean squared error of θ̂ is

E(X(n) − θ)2 =
2θ2

(n + 1)(n + 2)
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and the mean squared error of T is

E(T − θ)2 =
θ2

n(n + 2)
.

The ratio is (n + 1)/(2n). When n ≥ 2, this ratio is less than 1 and,
therefore, the MLE θ̂ is inadmissible.
(ii) From

P
(
n(θ − θ̂) ≤ x

)
= P
(
X(n) ≥ θ − x

n

)

= θ−n

∫ θ

θ−x/n

ntn−1dt

= 1 −
(
1 − x

nθ

)n
→ 1 − e−x/θ

as n → ∞, we conclude that n(θ − θ̂) →d Z0,θ. From

n(θ − T ) = n(θ − θ̂) − θ̂

and Slutsky’s theorem, we conclude that n(θ − T ) →d Z0,θ − θ, which has
the same distribution as Z−θ,θ. The asymptotic relative efficiency of θ̂ with
respect to T is E(Z2

−θ,θ)/E(Z2
0,θ) = θ2/(θ2 + θ2) = 1

2 .

Exercise 54 (#4.113). Let (X1, ..., Xn) be a random sample from the
exponential distribution on (a,∞) with scale parameter θ, where a ∈ R
and θ > 0 are unknown. Obtain the asymptotic relative efficiency of the
MLE of a (or θ) with respect to the UMVUE of a (or θ).
Solution. Let X(1) be the smallest order statistic. From Exercise 6 in
Chapter 3, the UMVUE of a and θ are, respectively,

ã = X(1) − 1
n(n − 1)

n∑
i=1

(Xi − X(1))

and

θ̃ =
1

n − 1

n∑
i=1

(Xi − X(1)).

From Exercise 41(ix), the MLE of (a, θ) is (â, θ̂), where

â = X(1) and θ̂ =
1
n

n∑
i=1

(Xi − X(1)).
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From part (iii) of the solution of Exercise 7 in Chapter 2, 2(n − 1)θ̃/θ has
the chi-square distribution χ2

2(n−1). Hence,

√
2(n − 1)

(
θ̃

θ
− 1

)
→d N(0, 1),

i.e.,
√

n
(
θ̃ − θ
)

→d N(0, 2θ2).

Since θ̂ = n−1
n θ̃, θ̂ has the same asymptotic distribution as θ̃ and the

asymptotic relative efficiency of θ̂ with respect to θ̃ is 1.
Note that n(â−a) = n(X(1) −a) has the same distribution as Z, where

Z is a random variable having the exponential distribution on (0,∞) with
scale parameter θ. Then

n(ã − a) = n(X(1) − a) − 1
n − 1

n∑
i=1

(Xi − X(1)) →d Z − θ,

since 1
n−1

∑n
i=1(Xi − X(1)) →p θ. Therefore, the asymptotic relative effi-

ciency of â with respect to ã is E(Z − θ)2/E(Z2) = 1
2 .

Exercise 55 (#4.115). Let (X1, ..., Xn), n ≥ 2, be a random sample from
a distribution having Lebesgue density fθ,j , where θ > 0, j = 1, 2, fθ,1 is
the density of N(0, θ2), and fθ,2(x) = (2θ)−1e−|x|/θ.
(i) Obtain an MLE of (θ, j).
(ii) Show whether the MLE of j in part (i) is consistent.
(iii) Show that the MLE of θ is consistent and derive its nondegenerated
asymptotic distribution.
Solution. (i) Let T1 =

∑n
i=1 X2

i and T2 =
∑n

i=1 |Xi|. The likelihood
function is

�(θ, j) =

{
(2π)−n/2θ−ne−T1/(2θ2) j = 1

2−nθ−ne−T2/θ j = 2.

Note that θ̂1 =
√

T1/n maximizes �(θ, 1) and θ̂2 = T2/n maximizes �(θ, 2).
Define

ĵ =

{
1 �(θ̂1, 1) ≥ �(θ̂2, 2)

2 �(θ̂1, 1) < �(θ̂2, 2),

which is the same as

ĵ =

⎧⎨
⎩

1 θ̂1

θ̂2
≤
√

2e
π

2 θ̂1

θ̂2
>
√

2e
π ,
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and define

θ̂ =

{
θ̂1 ĵ = 1

θ̂2 ĵ = 2.

Then
�(θ̂, ĵ) ≥ �(θ, j)

for any θ and j. This shows that (θ̂, ĵ) is an MLE of (θ, j).
(ii) The consistency of ĵ means that

lim
n

P (ĵ = j) = 1,

which is equivalent to

lim
n

P

(
θ̂1

θ̂2
≤
√

2e

π

)
=
{

1 if j = 1
0 if j = 2.

It suffices to consider the limit of θ̂1/θ̂2. When j = 1, θ̂1 →p θ and θ̂2 →p√
2
π θ (since E|X1| =

√
2
π θ). Then θ̂1/θ̂2 →p

√
π
2 <
√

2e
π (since π2 < 4e).

When j = 2, θ̂1 →p

√
2θ and θ̂2 →p θ. Then θ̂1/θ̂2 →p

√
2 >
√

2e
π (since

e < π). Therefore, ĵ is consistent.
(iii) When j = 1, by the result in part (ii) of the solution,

lim
n

P (θ̂ = θ̂1) = 1.

Hence, the asymptotic distribution of θ̂ is the same as that of θ̂1 under the
normal distribution assumption. By the central limit theorem and the δ-
method,

√
n(θ̂1 − θ) →d N(0, θ2/2). Similarly, when j = 2, the asymptotic

distribution of θ̂ is the same as that of θ̂2. By the central limit theorem,√
n(θ̂2 − θ) →d N(0, θ2).

Exercise 56 (#4.115). Let (X1, ..., Xn), n ≥ 2, be a random sample from
a distribution with discrete probability density fθ,j , where θ ∈ (0, 1), j =
1, 2, fθ,1 is the Poisson distribution with mean θ, and fθ,2 is the binomial
distribution with size 1 and probability θ.
(i) Obtain an MLE of (θ, j).
(ii) Show whether the MLE of j in part (i) is consistent.
(iii) Show that the MLE of θ is consistent and derive its nondegenerated
asymptotic distribution.
Solution. (i) Let X = (X1, ..., Xn), X̄ be the sample mean, g(X) =
(
∏n

i=1 Xi!)−1, and h(X) = 1 if all Xi’s are not larger than 1 and h(X) = 0
otherwise. The likelihood function is

�(θ, j) =

{
e−nθθnX̄g(X) j = 1

θnX̄(1 − θ)n−nX̄h(X) j = 2.



Chapter 4. Estimation in Parametric Models 191

Note that X̄ = T/n maximizes both �(θ, 1) and �(θ, 2). Define

ĵ =

{
1 �(X̄, 1) > �(X̄, 2)

2 �(X̄, 1) ≤ �(X̄, 2).

Then
�(X̄, ĵ) ≥ �(θ, j)

for any θ and j and, hence, (X̄, ĵ) is an MLE of (θ, j). We now simplify
the formula for ĵ. If at least one Xi is larger than 1, then h(X) = 0,
�(X̄, 1) > �(X̄, 2), and ĵ = 1. If all Xi’s are not larger than 1, then
h(X) = g(X) = 1 and

�(X̄, 2)
�(X̄, 1)

= (1 − X̄)n−nX̄enX̄ ≥ 1

because of the inequality (1 − t)1−t ≥ e−t for any t ∈ [0, 1). This shows
that

ĵ =
{

1 h(X) = 0
2 h(X) = 1.

(ii) If j = 2, h(X) = 1 always holds. Therefore, ĵ is consistent if we can
show that if j = 1, limn P (h(X) = 1) = 0. Since P (X1 = 0) = e−θ and
P (X1 = 1) = e−θθ,

P (h(X) = 1) =
n∑

k=0

(
n

k

)
(e−θθ)k(e−θ)n−k

=
n∑

k=0

(
n

k

)
θke−nθ

≤
n∑

k=0

(
n

k

)
θk(1 − θ)n(1−θ).

For any fixed θ ∈ (0, 1) and any ε > 0, there exists K such that (1−θ)k−θ <
ε whenever k ≥ K. Then, when n > K,

P (h(X) = 1) ≤
n∑

k=K

(
n

k

)
θk(1 − θ)n(1−θ) +

K∑
k=0

(
n

k

)
θk(1 − θ)n(1−θ)

≤ ε +
K∑

k=0

(
n

k

)
θk(1 − θ)n(1−θ).

For any fixed K,

lim
n

K∑
k=0

(
n

k

)
θk(1 − θ)n(1−θ) = 0.
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Hence, lim supn P (h(X) = 1) ≤ ε and the result follows since ε is arbitrary.
(iii) By the central limit theorem,

√
n(X̄ − θ) →d N(0, Var(X1)), since

E(X̄) = θ in any case. When j = 1, Var(X1) = θ and when j = 2,
Var(X1) = θ(1 − θ).

Exercise 57 (#4.122). Let θ̂n be an estimator of θ ∈ R satisfying√
n(θ̂n − θ) →d N(0, v(θ)) as the sample size n → ∞. Construct an esti-

mator θ̃n such that
√

n(θ̃n − θ) →d N(0, w(θ)) with w(θ) = v(θ) for θ 
= θ0
and w(θ0) = t2v(θ0), where t ∈ R and θ0 is a point in the parameter space.
Note. This is a generalized version of Hodges’ superefficiency example
(e.g., Example 4.38 in Shao, 2003).
Solution. Consider

θ̃n =

{
θ̂n if |θ̂n − θ0| ≥ n−1/4

tθ̂n + (1 − t)θ0 if |θ̂n − θ0| < n−1/4.

We now show that θ̃n has the desired property. If θ 
= θ0, then θ̂n −
θ0 →p θ − θ0 
= 0 and, therefore, limn P (|θ̂n − θ0| < n−1/4) = 0. On the
event {|θ̂n − θ| ≥ n−1/4}, θ̃n = θ̂n. Hence the asymptotic distribution of√

n(θ̃n − θ) is the same as that of
√

n(θ̂n − θ) when θ 
= θ0.
Consider now θ = θ0. Then

lim
n

P (|θ̂n − θ0| < n−1/4) = lim
n

P (
√

n|θ̂n − θ0| < n1/4)

= lim
n

[Φ(n1/4) − Φ(−n1/4)]

= 1,

where Φ is the cumulative distribution function of N(0, 1). On the event
{|θ̂n − θ| < n−1/4},

√
n(θ̃n − θ0) =

√
nt(θ̂n − θ0) →d N(0, t2v(θ0)).

Exercise 58 (#4.123). Let (X1, ..., Xn) be a random sample from a
distribution with probability density fθ with respect to a σ-finite measure
ν on (R,B), where θ ∈ Θ and Θ is an open set in R. Suppose that for
every x in the range of X1, fθ(x) is twice continuously differentiable in θ
and satisfies

∂

∂θ

∫
ψθ(x)dν =

∫
∂

∂θ
ψθ(x)dν

for ψθ(x) = fθ(x) and = ∂fθ(x)/∂θ; the Fisher information

I1(θ) = E

[
∂

∂θ
log fθ(X1)

]2

is finite and positive; and for any given θ ∈ Θ, there exists a positive
number cθ and a positive function hθ such that E[hθ(X1)] < ∞ and
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sup|γ−θ|<cθ

∣∣∂2 log fγ(x)
∂γ2

∣∣ ≤ hθ(x) for all x in the range of X1. Show that

log �(θ + n−1/2) − log �(θ) + I1(θ)/2√
I1(θ)

→d N(0, 1),

where �(θ) is the likelihood function.
Solution. Let L(γ) = log �(γ). By Taylor’s expansion,

L(θ + n−1/2) − L(θ) = n−1/2L′(θ) + (2n)−1L′′(ξn),

where ξn satisfies |ξn − θ| ≤ n−1/2. Let f ′
θ(x) = ∂fθ(x)/∂θ. Then

L′(θ) =
n∑

i=1

f ′
θ(Xi)

fθ(Xi)
.

Note that f ′
θ(Xi)

fθ(Xi)
, i = 1, ..., n, are independent and identically distributed

with

E
f ′

θ(Xi)
fθ(Xi)

= 0 and Var
(

f ′
θ(Xi)

fθ(Xi)

)
= I1(θ)

(under the given condition). Hence, by the central limit theorem,

n−1/2L′(θ) →d N(0, I1(θ)).

By the law of large numbers and the given condition,

n−1L′′(θ) =
1
n

n∑
i=1

∂2 log fθ(Xi)
∂θ2 →p E

(
∂2 log fθ(X1)

∂θ2

)
= −I1(θ).

Since ∂2 log fθ(x)/∂θ2 is continuous in θ, n−1[L′′(ξn) − L′′(θ)] → 0 for any
fixed X1, X2, ..., i.e., n−1L′′(ξn) →p −I1(θ) for any fixed X1, X2, .... Under
the given condition,

n−1|L′′(ξn)| ≤ n−1
n∑

i=1

hθ(Xi) →p E[hθ(X1)].

Hence, by the dominated convergence theorem, n−1E[L′′(ξn)−L′′(θ)] → 0,
which implies that n−1L′′(ξn) →p −I1(θ). Then, the result follows from
Slutsky’s theorem.

Exercise 59 (#4.124). Let (X1, ..., Xn) be a random sample from N(µ, 1)
truncated at two known points α < β, i.e., the Lebesgue density of X1 is

{
√

2π[Φ(β − µ) − Φ(α − µ)]}−1e−(x−µ)2/2I(α,β)(x),

where Φ is the cumulative distribution function of N(0, 1). Show that the
sample mean X̄ is the unique MLE of θ = EX1 and is asymptotically
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efficient.
Solution. The log-likelihood function is

log �(µ) = −n log(Φ(β − µ) − Φ(α − µ)) − 1
2

n∑
i=1

(Xi − µ)2.

Hence,
∂ log �(µ)

∂µ
= n[X̄ − g(µ)],

where

g(µ) = µ − Φ′(β − µ) − Φ′(α − µ)
Φ(β − µ) − Φ(α − µ)

.

Since the inverse function g−1 exists, g−1(X̄) is the unique solution of the
likelihood equation and, hence, it is the unique MLE of µ. Note that

Φ(β − µ) − Φ(α − µ) =
1√
2π

∫ β

α

e−(x−µ)2/2dx,

−[Φ′(β − µ) − Φ′(α − µ)] =
1√
2π

∫ β

α

(x − µ)e−(x−µ)2/2dx,

and

θ =
1√

2π[Φ(β − µ) − Φ(α − µ)]

∫ β

α

xe−(x−µ)2/2dx

= µ +
1√

2π[Φ(β − µ) − Φ(α − µ)]

∫ β

α

(x − µ)e−(x−µ)2/2dx

= g(µ).

Hence, X̄ is the unique MLE of θ. By the asymptotic property of the MLE
(e.g., Theorem 4.17 in Shao, 2003), X̄ is asymptotically efficient.

Exercise 60 (#4.127). Let (X1, ..., Xn) be a random sample such that
log Xi is distributed as N(θ, θ) with an unknown θ > 0. Show that one of
the solutions of the likelihood equation is the unique MLE of θ. Obtain the
asymptotic distribution of the MLE of θ.
Solution. Let Yi = log Xi, T = n−1∑n

i=1 Y 2
i , and �(θ) be the likelihood

function. Then

log �(θ) = −n log θ

2
− 1

2θ

n∑
i=1

(Yi − θ)2,

∂ log �(θ)
∂θ

=
n

2

(
T

θ2 − 1
θ

− 1
)
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and
∂2 log �(θ)

∂θ2 =
n

2θ2 − nT

θ3 .

The likelihood equation ∂ log �(θ)
∂θ = 0 has two solutions

±
√

1 + 4T − 1
2

.

At each solution, T = θ+θ2 and ∂2 log �(θ)
∂θ2 = −n( 1

2θ2 + 1
θ ) < 0. Hence, both

solutions are maximum points of the likelihood function. Since θ > 0, the
only positive solution, θ̂ = (

√
1 + 4T − 1)/2, is the unique MLE of θ. Since

EY 2
1 = θ + θ2, the Fisher information is

In(θ) = −E

(
∂2 log �(θ)

∂θ2

)
= E

(
n

2θ2 − nT

θ3

)
=

(2θ + 1)n
2θ2 .

Thus,
√

n(θ̂ − θ) →d N(0, 2θ2/(2θ + 1)).

Exercise 61 (#4.131). Let (X1, ..., Xn) be a random sample from the
distribution P (X1 = 0) = 6θ2 − 4θ + 1, P (X1 = 1) = θ − 2θ2, and
P (X1 = 2) = 3θ−4θ2, where θ ∈ (0, 1

2 ) is unknown. Obtain the asymptotic
distribution of an RLE (root of likelihood equation) of θ.
Solution. Let Y be the number of Xi’s that are 0 and Z be the number
of Xi’s that are 1. Then, the likelihood function is

�(θ) = (6θ2 − 4θ + 1)Y (θ − 2θ2)Z(3θ − 4θ2)n−Y −Z ,

∂ log �(θ)
∂θ

=
(12θ − 4)Y
6θ2 − 4θ + 1

+
(1 − 4θ)Z
θ − 2θ2 +

(3 − 8θ)(n − Y − Z)
3θ − 4θ2 ,

and

∂2 log �(θ)
∂θ2 = − (72θ2 − 48θ + 4)Y

(6θ2 − 4θ + 1)2
− (8θ2 − 4θ + 1)Z

(θ − 2θ2)2

− (32θ2 − 24θ + 9)(n − Y − Z)
(3θ − 4θ2)2

.

By the theorem for RLE (e.g., Theorem 4.17 in Shao, 2003), there exists
an RLE θ̂ such that

√
n(θ̂ − θ) →d N(0, I−1

1 (θ)), where

I1(θ) = − 1
n

E

[
∂2 log �(θ)

∂θ2

]

=
72θ2 − 48θ + 4
6θ2 − 4θ + 1

+
8θ2 − 4θ + 1

θ − 2θ2 +
32θ2 − 24θ + 9

3θ − 4θ2 .
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Exercise 62 (#4.132). Let (X1, ..., Xn) be a random sample from
N(µ, 1), where µ ∈ R is unknown. Let θ = P (X1 ≤ c), where c is a
known constant. Find the asymptotic relative efficiencies of the MLE of θ
with respect to the UMVUE of θ and the estimator n−1∑n

i=1 I(−∞,c](Xi).
Solution. The MLE of µ is the sample mean X̄. Let Φ be the cumu-
lative distribution function of N(0, 1). Then θ = Φ(c − µ) and the MLE
of θ is θ̂ = Φ(c − X̄). From the central limit theorem and the δ-method,√

n(θ̂ − θ) →d N(0, [Φ′(c − µ)]2). From Exercise 3(ii) in Chapter 3, the
UMVUE of θ is θ̃ = Φ((c − X̄)/

√
1 − n−1). Note that

√
n(θ̃ − θ̂) =

√
n

[
Φ
(

c − X̄√
1 − n−1

)
− Φ(c − X̄)

]

=
√

nΦ′(ξn)(c − X̄)
(

1√
1 − n−1

− 1
)

=
Φ′(ξn)(c − X̄)

√
n
√

1 − n−1(1 +
√

1 − n−1)
→p 0,

where ξn is a point between c − X̄ and (c − X̄)/
√

1 − n−1. Hence, the
asymptotic relative efficiency of θ̂ with respect to θ̃ is 1. For the estimator
T = n−1∑n

i=1 I(−∞,c](Xi), by the central limit theorem,
√

n(T − θ) →d

N(0, θ(1 − θ)). Hence, the asymptotic relative efficiency of θ̂ with respect
to T is θ(1 − θ)/[Φ′(c − µ)]2.

Exercise 63 (#4.135). Let (X1, ..., Xn) be a random sample from a
population having the Lebesgue density

fθ1,θ2(x) =
{

(θ1 + θ2)−1e−x/θ1 x > 0
(θ1 + θ2)−1ex/θ2 x ≤ 0,

where θ1 > 0 and θ2 > 0 are unknown.
(i) Find the MLE of θ = (θ1, θ2).
(ii) Obtain a nondegenerated asymptotic distribution of the MLE of θ.
(iii) Obtain the asymptotic relative efficiencies of the MLE’s with respect
to the moment estimators.
Solution. (i) Let T1 =

∑n
i=1 XiI(0,∞)(Xi) and T2 =−

∑n
i=1 XiI(−∞,0](Xi).

Then, the log-likelihood function is

log �(θ) = −n log(θ1 + θ2) − T1

θ1
− T2

θ2
,

∂ log �(θ)
∂θ

=
(

− n

θ1 + θ2
+

T1

θ2
1
,− n

θ1 + θ2
+

T2

θ2
2

)
,

and
∂2 log �(θ)

∂θ∂θτ
=

(
n

(θ1+θ2)2
− 2T1

θ3
1

n
(θ1+θ2)2

n
(θ1+θ2)2

n
(θ1+θ2)2

− 2T2
θ3
2

)
.
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Since the likelihood equation has a unique solution, the MLE of θ is

θ̂ = (θ̂1, θ̂2) = n−1(
√

T1T2 + T1,
√

T1T2 + T2).

(ii) By the asymptotic theorem for MLE (e.g., Theorem 4.17 in Shao, 2003),√
n(θ̂ − θ) →d N2(0, [I1(θ)]−1), where

I1(θ) = − 1
n

E

[
∂2 log �(θ)

∂θ∂θτ

]
=

1
(θ1 + θ2)2

(
1 + 2θ2

θ1
−1

−1 1 + 2θ1
θ2

)

and

[I1(θ)]−1 =
(θ1 + θ2)2(

1 + 2θ2
θ1

)(
1 + 2θ1

θ2

)
− 1

(
1 + 2θ1

θ2
1

1 1 + 2θ2
θ1

)
.

(iii) Let µj = EXj
1 , j = 1, 2. From Exercise 52 in Chapter 3,

θ1 + θ2 =
√

2µ2 − 3µ2
1

and
θ2

θ1
=

√
2µ2 − 3µ2

1 − µ1√
2µ2 − 3µ2

1 + µ1
.

Let τj(µ1, µ2) be the jth diagonal element of the matrix ΛΣΛτ in the solu-
tion of Exercise 52 in Chapter 3. Then, the asymptotic relative efficiency
of θ̂1 with respect to the moment estimator of θ1 given in the solution of
Exercise 52 in Chapter 3 is

τ1(µ1, µ2)
[(

1 + 2
√

2µ2−3µ2
1−µ1√

2µ2−3µ2
1+µ1

)(
1 + 2

√
2µ2−3µ2

1+µ1√
2µ2−3µ2

1−µ1

)
− 1
]

(2µ2 − 3µ1)
(

1 + 2
√

2µ2−3µ2
1+µ1√

2µ2−3µ2
1−µ1

)

and the asymptotic relative efficiency of θ̂2 with respect to the moment
estimator of θ2 is

τ2(µ1, µ2)
[(

1 + 2
√

2µ2−3µ2
1−µ1√

2µ2−3µ2
1+µ1

)(
1 + 2

√
2µ2−3µ2

1+µ1√
2µ2−3µ2

1−µ1

)
− 1
]

(2µ2 − 3µ1)
(

1 + 2
√

2µ2−3µ2
1−µ1√

2µ2−3µ2
1+µ1

) .

Exercise 64 (#4.136). In Exercise 47, show that the RLE ρ̂ of ρ satisfies√
n(ρ̂ − ρ) →d N

(
0, (1 − ρ2)2/(1 + ρ2)

)
.

Solution. Let �(ρ) be the likelihood function. From Exercise 47,

∂ log �(ρ)
∂ρ

= n(1 − ρ2)2h(ρ),
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where h(ρ) = ρ(1− ρ2)−n−1Tρ+n−1R(1+ ρ2), T =
∑n

i=1(X
2
i +Y 2

i ), and
R =
∑n

i=1 XiYi. Then,

∂2 log �(ρ)
∂ρ2 =

nh′(ρ)
(1 − ρ2)2

+
4nρh(ρ)
(1 − ρ2)3

.

Since E[h(ρ)] = 0 and E[h′(ρ)] = −(1 + ρ2),

I1(ρ) = − 1
n

E

[
∂2 log �(ρ)

∂ρ2

]
=

1 + ρ2

(1 − ρ2)2
.

By the asymptotic theorem for RLE,
√

n(ρ̂ − ρ) →d N
(
0, [I1(ρ)]−1

)
. The

result follows.

Exercise 65 (#4.137). In Exercise 50, obtain a nondegenerated asymp-
totic distribution of the RLE θ̂ of θ when f(x) = π−1(1 + x2)−1.
Solution. For f(x) = π−1(1 + x2)−1 and fθ(x) = θf(θx),

∂fθ(x)
∂θ

=
1 − θ2x2

π(1 + θ2x2)2
and

∂2fθ(x)
∂θ2 =

2θx2(θ2x2 − 3)
π(1 + θ2x2)3

,

which are continuous functions of θ. For any θ0 ∈ (0,∞),

sup
θ∈[θ0/2,2θ0]

∣∣∣∣∂fθ(x)
∂θ

∣∣∣∣ = sup
θ∈[θ0/2,2θ0]

∣∣∣∣ 1 − θ2x2

π(1 + θ2x2)2

∣∣∣∣
≤ sup

θ∈[θ0/2,2θ0]

1
π(1 + θ2x2)

=
1

π[1 + (θ0/2)2x2]
,

which is integrable with respect to the Lebesgue measure on (−∞,∞).
Also,

sup
θ∈[θ0/2,2θ0]

∣∣∣∣∂2fθ(x)
∂2θ

∣∣∣∣ = sup
θ∈[θ0/2,2θ0]

∣∣∣∣2θx2(θ2x2 − 3)
π(1 + θ2x2)3

∣∣∣∣
≤ sup

θ∈[θ0/2,2θ0]

2C

πθ(1 + θ2x2)

=
2C

π(θ0/2)[1 + (θ0/2)2x2]
,

which is integrable, where C does not depend on θ. Therefore, by the
dominated convergence theorem,

∂

∂θ

∫ ∞

−∞
ψθ(x)dx =

∫ ∞

−∞

∂

∂θ
ψθ(x)dx
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holds for both ψθ(x) = fθ(x) and ∂fθ(x)
∂θ . Note that

sup
θ∈[θ0/2,2θ0]

∣∣∣∣∂2 log fθ(x)
∂θ2

∣∣∣∣ = sup
θ∈[θ0/2,2θ0]

∣∣∣∣ 1θ2 +
2x2(1 − θ2x2)
(1 + θ2x2)2

∣∣∣∣
≤ sup

θ∈[θ0/2,2θ0]

∣∣∣∣ 1θ2 +
2x2

1 + θ2x2

∣∣∣∣
=

4
θ2
0

+
2x2

1 + (θ0/2)2x2

and, when X1 has density θ0f(θ0x),

E

[
4
θ2
0

+
2X2

1

1 + (θ0/2)2X2
1

]
< ∞.

Therefore, the regularity conditions in Theorem 4.17 of Shao (2003) are
satisfied and √

n(θ̂ − θ) →d N(0, [I1(θ)]−1).

It remains to compute I1(θ). Note that

I1(θ) = −E

[
∂2 log fθ(X1)

∂θ2

]

=
1
θ2 +

2θ

π

∫ ∞

−∞

x2(1 − θ2x2)
(1 + θ2x2)3

dx

=
1
θ2 +

2
θ2π

∫ ∞

−∞

x2(1 − x2)
(1 + x2)3

dx

=
1
θ2 +

2
θ2π

∫ ∞

−∞

3(1 + x2) − 2 − (1 + x2)2

(1 + x2)3
dx

=
1
θ2 +

2
θ2π

[
3
∫ ∞

−∞

1
(1 + x2)2

dx

− 2
∫ ∞

−∞

1
(1 + x2)3

dx −
∫ ∞

−∞

1
1 + x2 dx

]

=
1
θ2 +

2
θ2

(
3
2

− 3
4

− 1
)

=
1

2θ2 ,

where the identity ∫ ∞

−∞

1
(1 + x2)k

dx =
√

πΓ(k − 1
2 )

Γ(k)

is used.
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Exercise 66 (#4.138). Let (X1, ..., Xn) be a random sample from the
logistic distribution on R with Lebesgue density

fθ(x) = σ−1e−(x−µ)/σ/[1 + e−(x−µ)/σ]2,

where µ ∈ R and σ > 0 are unknown. Obtain a nondegenerated asymptotic
distribution of the RLE θ̂ of θ = (µ, σ).
Solution. Using the same argument as that in the solution for the previous
exercise, we can show that the conditions in Theorem 4.17 of Shao (2003)
are satisfied. Then

√
n(θ̂ − θ) →d N(0, [I1(θ)]−1).

To obtain I1(θ), we calculate

∂ log fθ(x)
∂µ

= − 1
σ

+
2

σ[1 + e−(x−µ)/σ]
,

∂2 log fθ(x)
∂µ2 = − 2e−(x−µ)/σ

σ2[1 + e−(x−µ)/σ]2
,

and

−E

[
∂2 log fθ(X1)

∂µ2

]
=

2
σ2

∫ ∞

−∞

e2(x−µ)/σ

σ[1 + e(x−µ)/σ]4
dx

=
2
σ2

∫ ∞

−∞

e2y

(1 + ey)4
dy

=
2
σ2

∫ 1

0

(1 − t)2

t2
t4
(

1
1 − t

+
1
t

)
dt

=
2
σ2

∫ 1

0
(1 − t)tdt

=
1

3σ2 ,

where the second equality follows from the transformation y = −(x − µ)/σ
and the third equality follows from the transformation t = (1 + ey)−1 (y =
log(1 − t) − log t). Note that

∂2 log fθ(x)
∂µ∂σ

=
e−(x−µ)/σ − 1

σ2[1 + e−(x−µ)/σ]
− 2(x − µ)e−(x−µ)/σ

σ2[1 + e−(x−µ)/σ]2

is odd symmetric about µ and fθ(x) is symmetric about µ. Hence,

E

[
∂2 log fθ(X1)

∂µ∂σ

]
= 0.
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Differentiating log fθ(x) with respect to σ gives

∂ log fθ(x)
∂σ

= − 1
σ

− x − µ

σ
+

2(x − µ)
σ2[1 + e−(x−µ)/σ]

and
∂2 log fθ(x)

∂σ2 =
1
σ2 +

2(x − µ)
σ3 − 4(x − µ)

σ3[1 + e−(x−µ)/σ]
− 2(x − µ)2e−(x−µ)/σ

σ4[1 + e−(x−µ)/σ]2
.

From E(X1 − µ) = 0 and the transformation y = −(x − µ)/σ, we obtain
that

−E

[
∂2 log fθ(x)

∂σ2

]
= − 1

σ2 +
4
σ2

∫ ∞

−∞

ye2y

(1 + ey)3
dy +

2
σ2

∫ ∞

−∞

y2e2y

(1 + ey)4
dy.

From integration by parts,∫ ∞

−∞

ye2y

(1 + ey)3
dy =

yey

2(1 + ey)2

∣∣∣∣
−∞

∞
+

1
2

∫ ∞

−∞

ey + yey

(1 + ey)2
dy

=
1
2

∫ ∞

−∞

ey

(1 + ey)2
dy +

1
2

∫ ∞

−∞

yey

(1 + ey)2
dy

=
1
2

and ∫ ∞

−∞

y2e2y

(1 + ey)4
dy = 2

∫ ∞

0

y2e2y

(1 + ey)4
dy

=
2y2ey

3(1 + ey)3

∣∣∣∣
0

∞
+

2
3

∫ ∞

0

(2y + y2)ey

(1 + ey)3
dy

=
(2y + y2)
3(1 + ey)2

∣∣∣∣
0

∞
+

2
3

∫ ∞

0

1 + y

(1 + ey)2
dy

=
2(1 + y)e−y

3(1 + ey)

∣∣∣∣
0

∞
− 2

3

∫ ∞

0

ye−y

1 + ey
dy

=
1
3

− 2
3

∫ ∞

0

ye−2y

1 + e−y
dy.

Using the series (1 + e−y)−1 =
∑∞

j=0(−e−y)j , we obtain that∫ ∞

0

ye−2y

1 + e−y
dy =
∫ ∞

0
ye−2y

∞∑
j=0

(−1)je−jydy

=
∞∑

j=0

(−1)j

∫ ∞

0
ye−(j+2)ydy

=
∞∑

j=0

(−1)j 1
(j + 2)2

.
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Noting that (−1)j = 1 when j is even and (−1)j = −1 when j is odd, we
obtain that

∞∑
j=0

(−1)j 1
(j + 2)2

=
∞∑

k=1

1
(2k)2

−
∞∑

k=1

1
(2k + 1)2

=
∞∑

k=1

1
(2k)2

−
∞∑

k=1

[
1

(2k + 1)2
+

1
(2k)2

− 1
(2k)2

]

= 2
∞∑

k=1

1
(2k)2

−
∞∑

j=2

1
j2

=
1
2

∞∑
k=1

1
k2 −

∞∑
j=1

1
j2 + 1

= 1 − 1
2

∞∑
k=1

1
k2

= 1 − π2

12
.

Combining these results, we obtain that

−E

[
∂2 log fθ(x)

∂σ2

]
= − 1

σ2 +
2
σ2 +

2
σ2

[
1
3

− 2
3

(
1 − π2

12

)]
=

1
3σ2 +

π2

9σ2 .

Therefore,

I1(θ) =
1
σ2

(
1
3 0
0 1

3 + π2

9

)
.

Exercise 67 (#4.140). Let (X1, ..., Xn) be a random sample of binary
random variables with P (X1 = 1) = p, where p ∈ (0, 1) is unknown. Let θ̂
be the MLE of θ = p(1 − p).
(i) Show that θ̂ is asymptotically normal when p 
= 1

2 .
(ii) When p = 1

2 , derive a nondegenerated asymptotic distribution of θ̂ with
an appropriate normalization.
Solution. (i) Since the sample mean X̄ is the MLE of p, the MLE of
θ = p(1 − p) is X̄(1 − X̄). From the central limit theorem,

√
n(X̄ − p) →d

N(0, θ). Using the δ-method with g(x) = x(1 − x) and g′(x) = 1 − 2x,
we obtain that

√
n(θ̂ − θ) →d N(0, (1 − 2p)2θ). Note that this asymptotic

distribution is degenerate when p = 1
2 .

(ii) When p = 1
2 ,

√
n(X̄ − 1

2 ) →d N(0, 1
4 ). Hence,

4n

(
1
4

− θ̂

)
= 4n
(

X̄ − 1
2

)2

→d χ2
1.
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Exercise 68 (#4.141). Let (X1, Y1), ..., (Xn, Yn) be independent and
identically distributed random 2-vectors satisfying 0 ≤ X1 ≤ 1, 0 ≤ Y1 ≤ 1,
and

P (X1 > x, Y1 > y) = (1 − x)(1 − y)(1 − max{x, y})θ

for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, where θ ≥ 0 is unknown.
(i) Obtain the likelihood function and the likelihood equation.
(ii) Obtain the asymptotic distribution of the MLE of θ.
Solution. (i) Let X = X1 and Y = Y1. Note that F (x, y) is differentiable
when x 
= y but not differentiable when x = y. Hence, when x 
= y, (X, Y )
has Lebesgue density

fθ(x, y) =
{

(θ + 1)(1 − x)θ x > y

(θ + 1)(1 − y)θ x < y

and

P (X > t, Y > t, X 
= Y ) = 2P (X > t, Y > t, X > Y )

= 2(θ + 1)
∫ 1

t

∫ x

t

(1 − x)θdydx

= 2(θ + 1)
∫ 1

t

(x − t)(1 − x)θdx

=
2(1 − t)θ+2

θ + 2
.

Also, P (X > t, Y > t) = (1 − t)θ+2. Hence,

P (X > t, X = Y ) = P (X > t, Y > t, X = Y )
= P (X > t, Y > t) − P (X > t, Y > t, X 
= Y )

=
θ(1 − t)θ+2

θ + 2
.

This means that on the line x = y, (X, Y ) has Lebesgue density θ(1−t)θ+1.
Let ν be the sum of the Lebesgue measure on R2 and the Lebesgue measure
on {(x, y) ∈ R2 : x = y}. Then the probability density of (X, Y ) with
respect to ν is

fθ(x, y) =

⎧⎨
⎩

(θ + 1)(1 − x)θ x > y

(θ + 1)(1 − y)θ x < y

θ(1 − x)θ+1 x = y.

Let T be the number of (Xi, Yi)’s with Xi = Yi and Zi = max{Xi, Yi}.
Then the likelihood function is

�(θ) = (θ + 1)n−T θT
n∏

i=1

(1 − Zi)θ
∏

i:Xi=Yi

(1 − Zi)
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and the likelihood equation is

∂ log �(θ)
∂θ

=
n − T

θ + 1
+

T

θ
+

n∑
i=1

log(1 − Zi) = 0,

which has a unique solution (in the parameter space)

θ̂ =

√
(n − W )2 + 4WT − (n − W )

2W
,

where W = −
∑n

i=1 log(1 − Zi).
(ii) Since

∂2 log �(θ)
∂θ2 = − n − T

(θ + 1)2
− T

θ2 < 0,

θ̂ is the MLE of θ. Since E(T ) = nθ/(θ + 2), we obtain that

I1(θ) = − 1
n

E

[
∂2 log �(θ)

∂θ2

]
=

θ2 + 4θ + 1
θ(θ + 2)(θ + 1)2

.

Hence,
√

n(θ̂ − θ) →d N

(
0,

θ(θ + 2)(θ + 1)2

θ2 + 4θ + 1

)
.

Exercise 69. Consider the one-way random effects model

Xij = µ + Ai + eij , j = 1, ..., n, i = 1, ..., m,

where µ ∈ R, Ai’s are independent and identically distributed as N(0, σ2
a),

eij ’s are independent and identically distributed as N(0, σ2), σ2
a and σ2

are unknown, and Ai’s and eij ’s are independent. Obtain nondegenerate
asymptotic distributions of the MLE’s of µ, σ2

a, and σ2.
Solution. From Exercise 49(ii), the MLE of µ is X̄··, which is always
normally distributed with mean µ and variance m−1(σ2

a + n−1σ2).
From Exercise 49(ii), the MLE of σ2 is σ̂2 = SE/[m(n − 1)] and the

MLE of σ2
a is σ̂2

a = SA/[n(m − 1)] − SE/[nm(n − 1)], provided that σ̂2
a > 0.

We now show that as long as nm → ∞, P (σ̂2
a ≤ 0) → 0, which implies that,

for the asymptotic distributions of the MLE’s, we may assume that σ̂2
a > 0.

Since SE/σ2 has the chi-square distribution χ2
m(n−1), SE/[m(n − 1)] →p

σ2 as nm → ∞ (either n → ∞ or m → ∞). Since SA/(σ2 + nσ2
a) has

the chi-square distribution χ2
m−1, the distribution of SA/[n(m − 1)] is the

same as that of (σ2
a + n−1σ2)Wm−1/(m − 1), where Wm−1 is a random

variable having the chi-square distribution χ2
m−1. We need to consider

three different cases.
Case 1: m → ∞ and n → ∞. In this case, SE/[nm(n − 1)] →p 0 and
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(σ2
a + n−1σ2)Wm−1/(m − 1) →p σ2

a > 0. Hence, σ̂2
a →p σ2

a > 0, which
implies P (σ̂2

a ≤ 0) → 0.
Case 2: m → ∞ but n is fixed. In this case, SE/[nm(n−1)] →p n−1σ2 and
(σ2

a +n−1σ2)Wm−1/(m−1) →p (σ2
a +n−1σ2). We still have σ̂2

a →p σ2
a > 0.

Case 3: n → ∞ but m is fixed. In this case, SE/[nm(n − 1)] →p 0 and
(σ2

a + n−1σ2)Wm−1/(m − 1) →d σ2
aWm−1/(m − 1). Hence, by Slutsky’s

theorem, σ̂2
a →d σ2

aWm−1/(m−1), which is a nonnegative random variable.
Hence, P (σ̂2

a ≤ 0) → 0.
Therefore, the asymptotic distributions of MLE’s are the same as those

of σ̂2
a and σ̂2. Since SE/σ2 has the chi-square distribution χ2

m(n−1),

√
nm
(
σ̂2 − σ2)→d N(0, 2σ4)

as nm → ∞ (either n → ∞ or m → ∞). For σ̂2
a, we need to consider the

three cases previously discussed.
Case 1: m → ∞ and n → ∞. In this case,

√
m

[
SE

nm(n − 1)
− σ2

n

]
→p 0

and
√

m

(
Wm−1

m − 1
− 1
)

→d N(0, 2).

Since SA/[n(m− 1)] and (σ2
a +n−1σ2)Wm−1/(m− 1) have the same distri-

bution,

√
m(σ̂2

a − σ2
a) =

√
m

[
SA

n(m − 1)
−
(

σ2
a +

σ2

n

)
+

σ2

n
− SE

nm(n − 1)

]

has the same asymptotic distribution as that of

√
m

(
σ2

a +
σ2

n

)(
Wm−1

m − 1
− 1
)

.

Thus, √
m(σ̂2

a − σ2
a) →d N(0, 2σ4

a).

Case 2: m → ∞ but n is fixed. In this case,

√
m

[
SE

nm(n − 1)
− σ2

n

]
→d N(0, 2σ4n−3).

From the argument in the previous case and the fact that SA and SE are
independent, we obtain that

√
m(σ̂2

a − σ2
a) →d N

(
0, 2(σ2

a + n−1σ2)2 + 2σ4n−3) .
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Case 3: n → ∞ but m is fixed. In this case, SE/[nm(n − 1)] − σ2/n →p 0
and (

σ2
a +

σ2

n

)(
Wm−1

m − 1
− 1
)

→d σ2
a

(
Wm−1

m − 1
− 1
)

.

Therefore,

σ̂2
a − σ2

a →d σ2
a

(
Wm−1

m − 1
− 1
)

.

Exercise 70 (#4.151). Let (X1, ..., Xn) be a random sample from the
logistic distribution on R with Lebesgue density

fθ(x) = σ−1e−(x−µ)/σ/[1 + e−(x−µ)/σ]2,

where µ ∈ R and σ > 0 are unknown. Using Newton-Raphson and Fisher-
scoring methods, find
(i) one-step MLE’s of µ when σ is known;
(ii) one-step MLE’s of σ when µ is known;
(iii) one-step MLE’s of (µ, σ);
(iv)

√
n-consistent initial estimators in (i)-(iii).

Solution. (i) Let �(µ) be the likelihood function when σ is known. From
Exercise 66,

sσ(µ) =
∂ log �(µ)

∂µ
=

n

σ
− 2

σ

n∑
i=1

e−(Xi−µ)/σ

1 + e−(Xi−µ)/σ
,

s′
σ(µ) =

∂2 log �(µ)
∂µ2 = − 2

σ2

n∑
i=1

e−(Xi−µ)/σ

[1 + e−(Xi−µ)/σ]2
,

and

−E

[
∂2 log �(µ)

∂µ2

]
=

n

3σ2 .

Hence, the one-step MLE of µ is

µ̂(1) = µ̂(0) − [s′
σ(µ̂(0))]−1sσ(µ̂(0))

by the Newton-Raphson method, where µ̂(0) is an initial estimator of µ,
and is

µ̂(1) = µ̂(0) + 3σ2n−1sσ(µ̂(0))

by the Fisher-scoring method.
(ii) Let �(σ) be the likelihood function when µ is known. From Exercise 66,

sµ(σ) =
∂ log �(σ)

∂σ
= −n

σ
−

n∑
i=1

Xi − µ

σ
+

n∑
i=1

2(Xi − µ)
σ2[1 + e−(Xi−µ)/σ]

,
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s′
µ(σ) =

∂2 log �(σ)
∂σ2

=
n

σ2 +
n∑

i=1

2(Xi − µ)
σ3 −

n∑
i=1

4(Xi − µ)
σ3[1 + e−(Xi−µ)/σ]

−
n∑

i=1

2(Xi − µ)2e−(Xi−µ)/σ

σ4[1 + e−(Xi−µ)/σ]2
,

and

−E

[
∂2 log �(σ)

∂σ2

]
=

1
σ2

(
1
3

+
π2

9

)
.

Hence, the one-step MLE of σ is

σ̂(1) = σ̂(0) − [s′
µ(σ̂(0))]−1sµ(σ̂(0))

by the Newton-Raphson method, where σ̂(0) is an initial estimator of σ,
and is

σ̂(1) = σ̂(0) +
(σ̂(0))2

π2/9 + 1/3
sµ(σ̂(0))

by the Fisher-scoring method.
(iii) Let �(µ, σ) be the likelihood function when both µ and σ are unknown.
From parts (i)-(ii) of the solution,

s(µ, σ) =
∂ log �(µ, σ)

∂(µ, σ)
=
(

sσ(µ)
sµ(σ)

)

and

s′(µ, σ) =
∂2 log �(θ)

∂(µ, σ)∂(µ, σ)τ
=
(

s′
σ(µ) s′

µ,σ

s′
µ,σ s′

µ(σ)

)
,

where

s′
µ,σ =

∂2 log �(µ, σ)
∂µ∂σ

=
n∑

i=1

e−(Xi−µ)/σ − 1
σ2[1 + e−(Xi−µ)/σ]

−
n∑

i=1

2(Xi − µ)e−(Xi−µ)/σ

σ2[1 + e−(Xi−µ)/σ]2
.

Hence, by the Newton-Raphson method, the one-step MLE of (µ, σ) is

(
µ̂(1)

σ̂(1)

)
=
(

µ̂(0)

σ̂(0)

)
−
[
s′(µ̂(0), σ̂(0))

]−1
s(µ̂(0), σ̂(0)).

From Exercise 66,

−E[s′(µ, σ)] =
n

σ2

(
1
3 0
0 1

3 + π2

9

)
.
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Hence, by the Fisher-scoring method, the one-step MLE of (µ, σ) is

(
µ̂(1)

σ̂(1)

)
=
(

µ̂(0)

σ̂(0)

)
+

[σ̂(0)]2

n

(
3sσ̂(0)(µ̂(0))

sµ̂(0)(σ̂(0))/
(

1
3 + π2

9

) ) .

(iv) Note that logistic distribution has mean µ and variance σ2π2/3. Thus,
in (i)-(iii), we may take µ̂(0) = X̄ (the sample mean) and

σ̂(0) =
√

3
π

√√√√ 1
n

n∑
i=1

(Xi − X̄)2,

which are
√

n-consistent.



Chapter 5

Estimation in
Nonparametric Models

Exercise 1 (#5.3). Let p ≥ 1 and Fp be the set of cumulative distribution
functions on R having finite pth moment. Mallows’ distance between F and
G in Fp is defined to be

�Mp
(F, G) = inf(E‖X − Y ‖p)1/p,

where the infimum is taken over all pairs of random variables X and Y
having marginal distributions F and G, respectively. Show that �Mp

is a
distance on Fp.
Solution. Let U be a random variable having the uniform distribution
on the interval (0, 1) and F−1(t) = inf{x : F (x) ≥ t} for any cumulative
distribution function F . We first show that

�Mp
(F, G) = [E|F−1(U) − G−1(U)|p]1/p.

Since F−1(U) is distributed as F and G−1(U) is distributed as G, we have

�Mp
(F, G) ≤ [E|F−1(U) − G−1(U)|p]1/p.

Let X and Y be any random variables whose marginal distributions are F
and G, respectively. From Jensen’s inequality for conditional expectations,

E|X − Y |p = E[E(|X − Y |p|X)] ≥ E|X − E(Y |X)|p.

Since X and F−1(U) have the same distribution, we conclude that

�Mp
(F, G) ≥ [E|F−1(U) − E(Y |F−1(U))|p]1/p.

209
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Then the result follows if we can show that E(Y |F−1(U)) = G−1(U).
Clearly, G−1(U) is a Borel function of U . Since Y and G−1(U) have
the same distribution,

∫
B

Y dP =
∫

B
G−1(U)dP for any B ∈ σ(F−1(U)).

Hence, E(Y |F−1(U)) = G−1(U) a.s.
It is clear that �Mp

(F, G) ≥ 0 and �Mp
(F, G) = �Mp

(G, F ). If �Mp
(F, G)

= 0, then, by the established result, E|F−1(U) − F−1(U)|p = 0. Thus,
F−1(t) = G−1(t) a.e. with respect to Lebesgue measure. Hence, F = G.
Finally, for F , G, and H in Fp,

�Mp
(F, G) =

[
E|F−1(U) − G−1(U)|p

]1/p

≤
[
E|F−1(U) − H−1(U)|p

]1/p

+
[
E|H−1(U) − G−1(U)|p

]1/p

= �Mp
(F, H) + �Mp

(H, G),

where the inequality follows from Minkowski’s inequality. This proves that
�Mp

is a distance.

Exercise 2 (#5.5). Let F1 be the collection of cumulative distribution
functions on R with finite means and �M1

be as defined in Exercise 1. Show
that
(i) �M1

(F, G) =
∫ 1
0 |F−1(t) − G−1(t)|dt;

(ii) �M1
(F, G) =

∫∞
−∞ |F (x) − G(x)|dx.

Solution. (i) Let U be a random variable having the uniform distribu-
tion on the interval (0, 1). From the solution of the previous exercise,
�Mp

(F, G) = E|F−1(U) − G−1(U)|. The result follows from

E|F−1(U) − G−1(U)| =
∫ 1

0
|F−1(t) − G−1(t)|dt.

(ii) From part (i), it suffices to show that

∫ ∞

−∞
|F (x) − G(x)|dx =

∫ 1

0
|F−1(t) − G−1(t)|dt.

Note that
∫∞

−∞ |F (x)−G(x)|dx is equal to the area on R2 bounded by two

curves F (x) and G(x) and
∫ 1
0 |F−1(t) − G−1(t)|dt is equal to the area on

R2 bounded by two curves F−1(t) and G−1(t). Hence, they are the same
and the result follows.

Exercise 3. Let �Mp
be the Mallows’ distance defined in Exercise 1

and {G, G1, G2, ...} ⊂ Fp. Show that limn �Mp
(Gn, G) = 0 if and only

if limn

∫
|x|pdGn(x) =

∫
|x|pdG(x) and limn Gn(x) = G(x) for any x at
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which G is continuous.
Solution. Let U be a random variable having the uniform distribution on
(0, 1). By the solution of Exercise 1,

�Mp
(Gn, G) = [E|G−1

n (U) − G−1(U)|p]1/p.

Assume that limn �Mp
(Gn, G) = 0. Then limn E|G−1

n (U) − G−1(U)|p =
0, which implies that limn E|G−1

n (U)|p = E|G−1(U)|p and G−1
n (U) →d

G−1(U). Since G−1
n (U) has distribution Gn and G−1(U) has distribution G,

we conclude that limn

∫
|x|pdGn(x) =

∫
|x|pdG(x) and limn Gn(x) = G(x)

for any x at which G is continuous.
Assume now that limn

∫
|x|pdGn(x) =

∫
|x|pdG(x) and limn Gn(x) =

G(x) for any x at which G is continuous. Using the same argument in
the solution of Exercise 54 in Chapter 1, we can show that G−1

n (U) →p

G−1(U). Since limn

∫
|x|pdGn(x) =

∫
|x|pdG(x), by Theorem 1.8(viii) in

Shao (2003), the sequence {|G−1
n (U)|p} is uniformly integrable and, hence,

limn E|G−1
n (U) − G−1(U)|p = 0, which means limn �Mp

(Gn, G) = 0.

Exercise 4 (#5.6). Find an example of cumulative distribution functions
G, G1, G2,... on R such that
(i) limn �∞(Gn, G) = 0 but �Mp

(Gn, G) does not converge to 0, where
�Mp

is the distance defined in Exercise 1 and �∞ is the sup-norm distance
defined as �∞(F, G) = supx |F (x) − G(x)| for any cumulative distribution
functions F and G;
(ii) limn �Mp

(Gn, G) = 0 but �∞(Gn, G) does not converge to 0.
Solution. Let U be a random variable having the uniform distribution on
the interval (0, 1).
(i) Let G be the cumulative distribution function of U and Gn be the
cumulative distribution function of

Un =
{

U if U ≥ n−1

n2 if U < n−1.

Then limn P (|Un − U | > ε) = limn n−1 = 0 for any ε > 0 and, hence,
Un →d U . Since the distribution of U is continuous, by Pólya’s theorem
(e.g., Proposition 1.16 in Shao, 2003), limn �∞(Gn, G) = 0. But E|Un| ≥
n2P (U < n−1) = n and E|U | = 1

2 . Hence limn E|Un| 
= E|U |. By Exercise
3, �Mp

(Gn, G) does not converge to 0.
(ii) Let Gn be the cumulative distribution function of U/n and G(x) =
I[0,∞)(x) (the degenerate distribution at 0). Then limn E|U/n|p = 0 for
any p and U/n →d 0. Thus, by Exercise 3, limn �Mp

(Gn, G) = 0. But
Gn(0) = P (U ≤ 0) = 0 for all n and G(0) = 1, i.e., Gn(0) does not
converge to G(0). Hence �∞(Gn, G) does not converge to 0.

Exercise 5 (#5.8). Let X be a random variable having cumulative dis-
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tribution function F . Show that
(i) E|X|2 < ∞ implies

∫
{F (t)[1 − F (t)]}p/2dt < ∞ for p > 1;

(ii) E|X|2+δ < ∞ with some δ > 0 implies
∫

{F (t)[1 − F (t)]}1/2dt < ∞.
Solution. (i) If E|X|2 < ∞, then, by Exercise 23 in Chapter 1,

E|X|2 =
∫ ∞

0
P (|X|2 > t)dt = 2

∫ ∞

0
sP (|X| > s)ds,

which implies that lims→∞ s2[1 − F (s)] = 0 and lims→−∞ s2F (s) = 0.
Then, lims→∞ sp[1 − F (s)]p/2 = 0 and lims→−∞ sp[F (s)]p/2 = 0. Since
p > 1, we conclude that

∫ 0
−∞[F (s)]p/2ds < ∞ and

∫∞
0 [1 − F (s)]p/2ds < ∞,

which implies that∫ ∞

−∞
{F (t)[1 − F (t)]}p/2dt ≤

∫ 0

−∞
[F (t)]p/2dt +

∫ ∞

0
[1 − F (t)]p/2dt < ∞.

(ii) Similarly, when E|X|2+δ < ∞,

E|X|2+δ =
∫ ∞

0
P (|X|2+δ > t)dt = (2 + δ)

∫ ∞

0
P (|X| > s)s1+δds,

which implies lims→∞ s2+δ[1−F (s)] = 0 and lims→−∞ s2+δF (s) = 0. Then,
lims→∞ s1+δ/2[1 − F (s)]1/2 = 0 and lims→−∞ s1+δ/2[F (s)]1/2 = 0. Since
δ > 0, this implies that∫ ∞

−∞
{F (t)[1 − F (t)]}1/2dt ≤

∫ 0

−∞
[F (t)]1/2dt +

∫ ∞

0
[1 − F (t)]1/2dt < ∞.

Exercise 6 (#5.10). Show that pi = c/n, i = 1, ..., n, λ = −(c/n)n−1 is
a maximum of the function

H(p1, ..., pn, λ) =
n∏

i=1

pi + λ

(
n∑

i=1

pi − c

)

over pi > 0, i = 1, ..., n,
∑n

i=1 pi = c.
Note. This exercise shows that the empirical distribution function (which
puts mass n−1 to each of n observations) is a maximum likelihood estimator.
Solution. It suffices to show that

n∏
i=1

pi ≤
( c

n

)n

for any pi > 0, i = 1, ..., n,
∑n

i=1 pi = c. Let X be a random variable taking
value pi with probability n−1, i = 1, ..., n. From Jensen’s inequality,

1
n

n∑
i=1

log pi = E(log X) ≤ log E(X) = log

(
1
n

n∑
i=1

pi

)
= log
( c

n

)
,
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which establishes the result.

Exercise 7 (#5.11). Consider the problem of maximizing
∏n

i=1 pi over

pi > 0, i = 1, ..., n,

n∑
i=1

pi = 1, and
n∑

i=1

piui = 0,

where ui’s are s-vectors. Show that the solution is

p̂i =
1

n(1 + λτui)
, i = 1, ..., n,

and λ ∈ Rs satisfying
n∑

i=1

ui

1 + λτui
= 0.

Solution. Consider the Lagrange multiplier method with

H(p1, ..., pn, τ, λ) =
n∑

i=1

log pi + τ

(
n∑

i=1

pi − 1

)
− nλτ

n∑
i=1

piui.

Taking the derivatives of H and setting them to 0, we obtain that

1
pi

+ τ − nλτui = 0, i = 1, ..., n,

n∑
i=1

pi = 1, and
n∑

i=1

piui = 0.

The solution to these equations is τ = −n and

p̂i =
1

n(1 + λτui)
, i = 1, ..., n.

Substituting p̂i into
∑n

i=1 piui = 0, we conclude that λ is the solution of

n∑
i=1

ui

1 + λτui
= 0.

Exercise 8 (#5.15). Let δ1, ..., δn be n observations from a binary random
variable and

�(p1, ..., pn+1) =
n∏

i=1

pδi
i

⎛
⎝ n+1∑

j=i+1

pj

⎞
⎠

1−δi

.

(i) Show that maximizing �(p1, ..., pn+1) subject to pi ≥ 0, i = 1, ..., n + 1,∑n+1
i=1 pi = 1 is equivalent to maximizing

n∏
i=1

qδi
i (1 − qi)n−i+1−δi ,
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where qi = pi/
∑n+1

j=i pj , i = 1, ..., n.
(ii) Show that

p̂i =
δi

n − i + 1

i−1∏
j=1

(
1 − δj

n − j + 1

)
, i = 1, ..., n, p̂n+1 = 1 −

n∑
i=1

p̂i

maximizes �(p1, ..., pn+1) subject to pi ≥ 0, i = 1, ..., n + 1,
∑n+1

i=1 pi = 1.
(iii) For any x1 ≤ x2 ≤ · · · ≤ xn, show that

F̂ (t) =
n+1∑
i=1

p̂iI(0,t](xi) = 1 −
∏
xi≤t

(
1 − δi

n − i + 1

)
.

(iv) When δi = 1 for all i, show that p̂i = n−1, i = 1, ..., n, and p̂n+1 = 0.
Note. This exercise shows that the well-known Kaplan-Meier product-
limit estimator is a maximum likelihood estimator.
Solution. (i) Since

1 − qi = 1 − pi∑n+1
j=i pj

=

∑n+1
j=i+1 pj∑n+1
j=i pj

,

n∏
i=1

qδi
i (1 − qi)1−δi =

n∏
i=1

pδi
i

⎛
⎝ n+1∑

j=i+1

pj

⎞
⎠

1−δi
⎛
⎝n+1∑

j=i

pj

⎞
⎠

−1

.

From

n∏
i=1

(1 − qi)n−i =

(∑n+1
j=2 pj∑n+1
j=1 pj

)n−1(∑n+1
j=3 pj∑n+1
j=2 pj

)n−2

· · ·
∑n+1

j=n pj∑n+1
j=n−1 pj

=
n+1∑
j=2

pj

n+1∑
j=3

pj · · ·
n+1∑
j=n

pj

=
n∏

i=1

n+1∑
j=i

pj ,

we obtain that

n∏
i=1

qδi
i (1 − qi)n−i+1−δi =

n∏
i=1

pδi
i

⎛
⎝ n+1∑

j=i+1

pj

⎞
⎠

1−δi

.

The result follows since q1, ..., qn are n free variables.
(ii) From part (i),

log �(p1, ..., pn+1) =
n∑

i=1

[δi log qi + (n − i + 1 − δi) log(1 − qi)].
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Then
∂ log �

∂qi
=

δi

qi
− n − i + 1 − δi

1 − qi
= 0, i = 1, ..., n,

have the solution
q̂i =

δi

n − i + 1
, i = 1, ..., n,

which maximizes �(p1, ..., pn+1) since

∂2 log �

∂q2
i

= − δi

q2
i

− n − i + 1 − δi

(1 − qi)2
< 0 and

∂2 log �

∂qi∂qk
= 0

for any i and k 
= i. Since

i∏
j=1

(1 − qj) =
∑n+1

k=2 pk∑n+1
k=1 pk

∑n+1
k=3 pk∑n+1
k=2 pk

· · ·
∑n+1

k=i pk∑n+1
k=i−1 pk

=
n+1∑
k=i

pk,

we obtain that

qi

i∏
j=1

(1 − qj) = pi, i = 1, ..., n.

Hence, by (i), �(p1, ..., pn+1) is maximized by

p̂i = q̂i

i∏
j=1

(1 − q̂j) =
δi

n − i + 1

i∏
j=1

(
1 − δj

n − j + 1

)
, i = 1, ..., n,

and p̂n+1 = 1 −
∑n

i=1 p̂i.
(iii) Define x0 = 0 and xn+1 = ∞. Let t ∈ (xi, xi+1], i = 0, 1, ..., n. Then

∏
xi<t

(
1 − δi

n − i + 1

)
=

i∏
j=1

(1 − q̂j) =
p̂i

q̂i
=

n+1∑
j=i

p̂j = 1 −
i−1∑
j=1

p̂j .

Hence,
n+1∑
i=1

p̂iI(0,t](xi) = 1 −
∏
xi<t

(
1 − δi

n − i + 1

)
.

(iv) When δi = 1 for all i,

p̂i =
1

n − i + 1

i−1∏
j=1

n − j

n − j + 1

=
1

n − i + 1
n − 1

n

n − 2
n − 1

· · · n − i + 1
n − i + 2

=
1
n

.
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Exercise 9 (#5.16). Let (X1, ..., Xn) be a random sample of random
variables with Lebesgue density f ,

Fn(t) =
1
n

n∑
i=1

I(−∞,t](Xi), t ∈ R,

be the empirical distribution, and

fn(t) =
Fn(t + λn) − Fn(t − λn)

2λn
, t ∈ R,

where {λn} is a sequence of positive constants.
(i) Show that fn is a Lebesgue density on R.
(ii) Suppose that f is continuously differentiable at t, limn λn = 0, and
limn nλn = ∞. Show that the mean squared error of fn(t) as an estimator
of f(t) equals

f(t)
2nλn

+ o

(
1

nλn

)
+ O(λ2

n)

as n → ∞.
(iii) Under limn nλ3

n = 0 and the conditions in (ii), show that√
nλn[fn(t) − f(t)] →d N(0, f(t)/2).

(iv) Suppose that f is continuous on [a, b], −∞ < a < b < ∞, limn λn = 0,
and limn nλn = ∞. Show that∫ b

a

fn(t)dt →p

∫ b

a

f(t)dt.

Solution. (i) Clearly, fn(t) ≥ 0. Note that

fn(t) =
1

2nλn

n∑
i=1

I(Xi−λn,Xi+λn](t).

Therefore∫ ∞

−∞
fn(t)dt =

1
2nλn

n∑
i=1

∫ Xi+λn

Xi−λn

dt =
1

2nλn

n∑
i=1

2λn = 1.

(ii) Note that 2nλnfn(t) has the binomial distribution with size n and
probability F (t + λn) − F (t − λn), where F is the cumulative distribution
function of X1. Then

E[fn(t)] =
F (t + λn) − F (t − λn)

2λn
= f(t) + O(λn)
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and

Var(fn(t)) =
F (t + λn) − F (t − λn) − [F (t + λn) − F (t − λn)]2

4nλ2
n

=
f(t)
2nλn

+ O

(
1
n

)
+

[O(λn) + O(λ2
n)]2

4nλ2
n

=
f(t)
2nλn

+ o

(
1

nλn

)
,

since limn λn = 0. Therefore, the mean squared error is

Var(fn(t)) + {E[fn(t)] − f(t)}2 =
f(t)
2nλn

+ o

(
1

nλn

)
+ O(λ2

n).

(iii) Since 2nλnfn(t) has the binomial distribution, by the central limit
theorem,

fn(t) − E[fn(t)]√
Var(fn(t))

→d N(0, 1).

From part (ii) of the solution, nλnVar(fn(t)) = f(t)/2 + o(1). Hence,√
nλn{fn(t) − E[fn(t)]} →d N(0, f(t)/2).

From part (ii) of the solution,
√

nλn{E[fn(t)] − f(t)} = O
(√

nλ3
n

)
= o(1)

under the given condition. Hence,√
nλn[fn(t) − f(t)] →d N(0, f(t)/2).

(iv) Note that

E

∫ b

a

fn(t)dt =
∫ b

a

F (t + λn) − F (t − λn)
2λn

dt =
∫ b

a

f(ξt,n)dt

by the mean value theorem, where |ξt,n − t| ≤ λn and, hence, limn ξt,n = t.
From the continuity of f , f(ξt,n) is bounded and limn f(ξt,n) = f(t). By
the dominated convergence theorem,

lim
n

E

∫ b

a

fn(t)dt =
∫ b

a

f(t)dt.

Because

fn(t) =
1

2nλn

n∑
i=1

I[t−λn,t+λn)(Xi),
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for any t < s,

fn(t)fn(s) =
1

4n2λ2
n

n∑
i=1

n∑
j=1

I[t−λn,t+λn)(Xi)I[s−λn,s+λn)(Xj)

=
1

4n2λ2
n

n∑
i=1

I[s−λn,t+λn)(Xi)

+
1

4n2λ2
n

∑
i 	=j

I[t−λn,t+λn)(Xi)I[s−λn,s+λn)(Xj).

Then,

E[fn(t)fn(s)] =
E[I[s−λn,t+λn)(X1)]

4nλ2
n

+
(n − 1)[F (t + λn) − F (t − λn)][F (s + λn) − F (s − λn)]

4nλ2
n

=
max{0, F (t + λn) − F (s − λn)}

4nλ2
n

+
(n − 1)f(ξt,n)f(ηs,n)

n
,

where |ξt,n − t| ≤ λn and |ηs,n − s| ≤ λn. By the continuity of f and the
fact that t < s,

lim
n

E[fn(t)fn(s)] = f(t)f(s).

Then, by Fubini’s theorem and the dominated convergence theorem,

lim
n

E

[∫ b

a

fn(t)dt

]2
= lim

n
E

[∫ b

a

fn(t)dt

][∫ b

a

fn(s)ds

]

= lim
n

∫ b

a

∫ b

a

E[fn(t)fn(s)]dtds

=
∫ b

a

∫ b

a

f(t)f(s)dtds

=

[∫ b

a

f(t)dt

]2
.

Combining this result and the previous result, we conclude that

lim
n

Var

(∫ b

a

fn(t)dt

)
= 0

and, therefore,
∫ b

a
fn(t)dt →p

∫ b

a
f(t)dt.
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Exercise 10 (#5.17). Let (X1, ..., Xn) be a random sample of random
variables with Lebesgue density f , w be a known Lebesgue density on R,
and

f̂(t) =
1

nλn

n∑
i=1

w

(
t − Xi

λn

)
,

where {λn} is a sequence of positive constants.
(i) Show that f̂ is a Lebesgue density on R.
(ii) Show that if λn → 0, nλn → ∞, and f is bounded and continuous at t
and w0 =

∫∞
−∞[w(t)]2dt < ∞, then

√
nλn{f̂(t) − E[f̂(t)]} →d N

(
0, w0f(t)

)
.

(iii) Assume that limn nλ3
n = 0,

∫∞
−∞ |t|w(t)dt < ∞, f ′ is bounded and

continuous at t, and the conditions in (ii) hold. Show that√
nλn[f̂(t) − f(t)] →d N

(
0, w0f(t)

)
.

(iv) Suppose that λn → 0, nλn → ∞, w is bounded, and f is bounded and
continuous on [a, b], −∞ < a < b < ∞. Show that

∫ b

a
f̂(t)dt →p

∫ b

a
f(t)dt.

Solution. (i) The result follows from

∫ ∞

−∞
f̂(t)dt =

1
nλn

n∑
i=1

∫ ∞

−∞
w

(
t − x

λn

)
dt =
∫ ∞

−∞
w(y)dy = 1.

(ii) Let Yin = w
(

t−Xi

λn

)
. Then Y1n, ..., Ynn are independent and identically

distributed with

E(Y1n) =
∫ ∞

−∞
w

(
t − x

λn

)
f(x)dx = λn

∫ ∞

−∞
w(y)f(t − λny)dy = O (λn)

and

Var(Y1n) =
∫ ∞

−∞

[
w

(
t − x

λn

)]2
f(x)dx −

[∫ ∞

−∞
w

(
t − x

λn

)
f(x)dx

]2

= λn

∫ ∞

−∞
[w(y)]2f(t − λny)dy + O(λ2

n)

= λnw0f(t) + o(λn),

since f is bounded and continuous at t and w0 =
∫∞

−∞[w(t)]2dt < ∞. Then

Var
(
f̂(t)
)

=
1

n2λ2
n

n∑
i=1

Var(Yin) =
w0f(t)
nλn

+ o

(
1

nλn

)
.
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Note that f̂(t)−Ef̂(t) =
∑n

i=1[Yin −E(Yin)]/(nλn). To apply Lindeberg’s
central limit theorem to f̂(t), we note that, for any ε > 0,

E(Y 2
1nI{|Y1n−E(Y1n)|>ε

√
nλn})

λn
=
∫

|w(y)−E(Y1n)|>ε
√

nλn

[w(y)]2f(t − λny)dy,

which converges to 0 under the given conditions.
(iii) Note that

E[f̂(t)] − f(t) = λ−1
n E(Y1n) − f(t)

=
∫ ∞

−∞
w(y)[f(t − λny) − f(t)]dy

= λn

∫ ∞

−∞
yw(y)f ′(ξt,y,n)dy,

where |ξt,y,n − t| ≤ λn. Under the condition that f ′ is bounded and con-
tinuous at t and

∫∞
−∞ |y|w(y)dy < ∞,

lim
n

√
nλn{E[f̂(t)] − f(t)} = lim

n

√
nλnO(λn) = 0.

Hence the result follows from the result in part (ii).
(iv) Since f is bounded and continuous,

lim
n

E

∫ b

a

f̂(t)dt = lim
n

∫ b

a

E[f̂(t)]dt

= lim
n

∫ b

a

∫ ∞

−∞
w(y)f(t − λny)dydt

=
∫ b

a

∫ ∞

−∞
w(y)f(t)dydt

=
∫ b

a

f(t)dt.

For t 
= s,

E[f̂(t)f̂(s)] =
1

n2λ2
n

E

⎡
⎣ n∑

i=1

n∑
j=1

w

(
t − Xi

λn

)
w

(
s − Xj

λn

)⎤⎦
=

1
nλ2

n

E

[
w

(
t − X1

λn

)
w

(
s − X1

λn

)]

+
n − 1
nλ2

n

E

[
w

(
t − X1

λn

)]
E

[
w

(
s − X1

λn

)]

=
1

nλn

∫ ∞

−∞
w

(
t − s + λny

λn

)
w(y)f(s − λny)dy

+
n − 1

n

∫ ∞

−∞
w(y)f(t − λny)dy

∫ ∞

−∞
w(y)f(s − λny)dy,
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which converges to f(t)f(s) under the given conditions. Hence,

lim
n

Var

(∫ b

a

f̂(t)dt

)
= 0

and, therefore,
∫ b

a
f̂(t)dt →p

∫ b

a
f(t)dt.

Exercise 11 (#5.20). Let �(θ, ξ) be a likelihood function. Show that a
maximum profile likelihood estimator θ̂ of θ is an MLE if ξ(θ), the maximum
of supξ �(θ, ξ) for a fixed θ, does not depend on θ.
Note. A maximum profile likelihood estimator θ̂ maximizes the profile
likelihood function �P (θ) = �(θ, ξ(θ)), where �(θ, ξ(θ)) = supξ �(θ, ξ) for
each fixed θ.
Solution. Suppose that ξ̂ satisfies �(θ, ξ̂) = supξ �(θ, ξ) for any θ. Then
the profile likelihood function is �P (θ) = �(θ, ξ̂). If θ̂ satisfies �P (θ̂) =
supθ �P (θ), then �(θ̂, ξ̂) = �P (θ̂) ≥ �P (θ) = �(θ, ξ̂) ≥ �(θ, ξ) for any θ and ξ.
Hence, (θ̂, ξ̂) is an MLE of (θ, ξ).

Exercise 12 (#5.21). Let (X1, ..., Xn) be a random sample from N(µ,σ2).
Derive the profile likelihood function for µ or σ2. Discuss in each case
whether the maximum profile likelihood estimator is the same as the MLE.
Solution. The likelihood function is

�(µ, σ2) = (2π)−n/2(σ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2
}

.

For fixed σ2, �(µ, σ2) ≤ �(X̄, σ2), since
∑n

i=1(Xi − µ)2 ≥
∑n

i=1(Xi − X̄)2,
where X̄ is the sample mean. Hence the maximum does not depend on σ2

and the profile likelihood function is

�(X̄, σ2) = (2π)−n/2(σ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(Xi − X̄)2
}

.

By the result in the previous exercise, the profile MLE of σ2 is the same as
the MLE of σ2. This can also be shown by directly verifying that �(X̄, σ2)
is maximized at σ̂2 = n−1∑n

i=1(Xi − X̄)2.
For fixed µ, �(µ, σ2) is maximized at σ2(µ) = n−1∑n

i=1(Xi −µ)2. Then
the profile likelihood function is

�(µ, σ2(µ)) = (2π)−n/2e−n/2
[

n∑n
i=1(Xi − µ)2

]n/2

.

Since
∑n

i=1(Xi − µ)2 ≥
∑n

i=1(Xi − X̄)2, �(µ, σ2(µ)) is maximized at X̄,
which is the same as the MLE of µ (although σ2(µ) depends on µ).
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Exercise 13 (#5.23). Let (X1, ..., Xn) be a random sample from a distri-
bution F and let π(x) = P (δi = 1|Xi = x), where δi = 1 if Xi is observed
and δi = 0 if Xi is missing. Assume that 0 < π =

∫
π(x)dF (x) < 1.

(i) Let F1(x) = P (Xi ≤ x|δi = 1). Show that F and F1 are the same if and
only if π(x) ≡ π.
(ii) Let F̂ be the empirical distribution putting mass r−1 to each observed
Xi, where r is the number of observed Xi’s. Show that F̂ (x) is unbiased
and consistent for F1(x), x ∈ R.
(iii) When π(x) ≡ π, show that F̂ (x) in part (ii) is unbiased and consistent
for F (x), x ∈ R. When π(x) is not constant, show that F̂ (x) is biased and
inconsistent for F (x) for some x ∈ R.
Solution. (i) If π(x) ≡ π, then Xi and δi are independent. Hence,
F1(x) = P (Xi ≤ x|δi = 1) = P (Xi ≤ x) = F (x) for any x. If F1(x) = F (x)
for any x, then P (Xi ≤ x, δi = 1) = P (Xi ≤ x)P (δi = 1) for any x and,
hence, Xi and δi are independent. Thus, π(x) ≡ π.
(ii) Note that

F̂ (x) =
∑n

i=1 δiI(−∞,x](Xi)∑n
i=1 δi

.

Since E[δiI(−∞,x](Xi)|δi] = δiF1(x), we obtain that

E[F̂ (x)] = E{E[F̂ (x)|δ1, ..., δn]}

= E

{∑n
i=1 E[δiI(−∞,x](Xi)|δi]∑n

i=1 δi

}

= E

{∑n
i=1 δiF1(x)∑n

i=1 δi

}
= F1(x),

i.e., F̂ (x) is unbiased. From the law of large numbers,

1
n

n∑
i=1

δiI(−∞,x](Xi) →p E[δ1I(−∞,x](X1)] = E[δ1F1(x)] = πF1(x)

and
1
n

n∑
i=1

δi →p E(δ1) = π.

Hence, F̂ (x) →p F1(x).
(iii) When π(x) ≡ π, F (x) = F1(x) (part (i)). Hence, F̂ (x) is unbiased and
consistent for F (x) (part (ii)). When π(x) is not constant, F1(x) 
= F (x)
for some x (part (i)). Since F̂ (x) is unbiased and consistent for F1(x) (part
(ii)), it is biased and inconsistent for F (x) for x at which F (x) 
= F1(x).

Exercise 14 (#5.25). Let F be a collection of distributions on Rd. A
functional T defined on F is Gâteaux differentiable at G ∈ F if and only if
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there is a linear functional LG on D = {c(G1−G2) : c ∈ R, Gj ∈ F , j = 1, 2}
(i.e., LG(c1∆1+c2∆2) = c1LG(∆1)+c2LG(∆2) for any ∆j ∈ D and cj ∈ R)
such that ∆ ∈ D and G + t∆ ∈ F imply

lim
t→0

[
T (G + t∆) − T (G)

t
− LG(∆)

]
= 0.

Assume that the functional LF is continuous in the sense that ‖∆j−∆‖∞ →
0 implies LF (∆j) → LF (∆), where D ∈ D, Dj ∈ D, and ‖D‖∞ =
supx |D(x)| for any D ∈ D is the sup-norm. Show that φF (x) = LF (δx −F )
is a bounded function of x, where δx is the degenerated distribution at x.
Solution. Suppose that φF is unbounded. Then, there exists a sequence
{xn} of numbers such that limn |φF (xn)| = ∞. Let tn = |φF (xn)|−1/2 and
Hn = tn(δxn − F ). Then Hn ∈ D and by the linearity of LF ,

|LF (Hn)| = tn|L(δxn − F )| = tn|φF (xn)| = |φF (xn)|1/2 → ∞
as n → ∞. On the other hand, ‖Hn‖∞ ≤ tn → 0 implies LF (Hn) → L(0)
if LF is continuous. This contradiction shows that φF is bounded.

Exercise 15 (#5.26). Suppose that a functional T is Gâteaux differ-
entiable at F with a bounded and continuous influence function φF (x) =
LF (δx − F ), where δx is the degenerated distribution at x. Show that LF

is continuous in the sense described in the previous exercise.
Solution. From the linearity of LF ,∫

φF (x)dG =
∫

LF (δx − F )dG = LF

(∫
δxdG − F

)
= LF (G − F )

for any distribution G. Hence,

LF (D) =
∫

φF (x)dD, D ∈ D.

If ‖Dj −D‖∞ → 0, then, since φF is bounded and continuous,
∫

φF (x)dDj

→
∫

φF (x)dD. Hence, LF (Dj) → LF (D).

Exercise 16 (#5.29). Let F be the collection of all distributions on R
and z be a fixed real number. Define

T (G) =
∫

G(z − y)dG(y), G ∈ F .

Obtain the influence function φF for T and show that φF is continuous if
and only if F is continuous.
Solution. For G ∈ F and ∆ ∈ D = {c(G1 −G2) : c ∈ R, Gj ∈ F , j = 1, 2},

T (G + t∆) − T (G) =
∫

(G + t∆)(z − y)d(G + t∆)(y) −
∫

G(x − y)dG(y)

= 2t
∫

∆(z − y)dG(y) + t2
∫

∆(z − y)d∆(y).
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Hence,

lim
t→0

T (G + t∆) − T (G)
t

= 2
∫

∆(z − y)dG(y)

and the influence function is

φF (x) = 2
∫

(δx − F )(z − y)dF (y) = 2
[
F (z − x) −

∫
F (z − y)dF (y)

]
,

where δx is the degenerated distribution at x. Hence φF is continuous if
and only if F is continuous.

Exercise 17 (#5.34). An L-functional is defined as

T (G) =
∫

xJ(G(x))dG(x), G ∈ F0,

where F0 contains all distributions on R for which T is well defined and
J(t) is a Borel function on [0, 1].
(i) Show that the influence function is

φF (x) = −
∫ ∞

−∞
(δx − F )(y)J(F (y))dy,

where δx is the degenerated distribution at x.
(ii) Show that

∫
φF (x)dF (x) = 0 and, if J is bounded and F has a finite

second moment, then
∫

[φF (x)]2dF (x) < ∞.
Solution. (i) For F and G in F0,

T (G) − T (F ) =
∫

xJ(G(x))dG(x) −
∫

xJ(F (x))dF (x)

=
∫ 1

0
[G−1(t) − F−1(t)]J(t)dt

=
∫ 1

0

∫ G−1(t)

F −1(t)
dxJ(t)dt

=
∫ ∞

−∞

∫ F (x)

G(x)
J(t)dtdx

=
∫ ∞

−∞
[F (x) − G(x)]J(F (x))dx

−
∫ ∞

−∞
UG(x)[G(x) − F (x)]J(F (x))dx,

where

UG(x) =

⎧⎨
⎩

∫ G(x)

F (x)
J(t)dt

[G(x)−F (x)]J(F (x)) − 1 G(x) 
= F (x), J(F (x)) 
= 0

0 otherwise
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and the fourth equality follows from Fubini’s theorem and the fact that the
region in R2 between curves F (x) and G(x) is the same as the region in R2

between curves G−1(t) and F−1(t). Then, for any ∆ ∈ D = {c(G1 − G2) :
c ∈ R, Gj ∈ F , j = 1, 2},

lim
t→0

T (F + t∆) − T (F )
t

= −
∫ ∞

−∞
∆(x)J(F (x))dx,

since limt→0 UF+t∆(x) = 0 and, by the dominated convergence theorem,

lim
t→0

∫ ∞

−∞
UF+t∆∆(x)J(F (x))dx = 0.

Letting ∆ = δx − F , we obtain the influence function as claimed.
(ii) By Fubini’s theorem,

∫
φF (x)dF (x) = −

∫ ∞

−∞

[∫
(δx − F )(y)dF (x)

]
J(F (y))dy = 0,

since
∫

δx(y)dF (x) = F (y). Suppose now that |J | < C for a constant C.
Then

|φF (x)| ≤ C

∫ ∞

−∞
|δx(y) − F (y)|dy

= C

(∫ x

−∞
F (y)dy +

∫ ∞

x

[1 − F (y)]dy

)

≤ C

(
|x| +
∫ 0

−∞
F (y)dy +

∫ ∞

0
[1 − F (y)]dy

)
= C(|x| + E|X|),

where X is the random variable having distribution F . Thus,

[φF (x)]2 ≤ C2(|x| + E|X|)2

and
∫

[φF (x)]2dF (x) < ∞ when EX2 < ∞.

Exercise 18 (#5.37). Obtain explicit forms of the influence functions
for L-functionals (Exercise 17) in the following cases and discuss which of
them are bounded and continuous.
(i) J ≡ 1.
(ii) J(t) = 4t − 2.
(iii) J(t) = (β − α)−1I(α,β)(t) for some constants α < β.
Solution. (i) When J ≡ 1, T (G) =

∫
xdG(x) is the mean functional (F0

is the collection of all distributions with finite means). From the previous
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exercise, the influence function is

φF (x) = −
∫ ∞

−∞
[δx(y) − F (y)]dy

=
∫ x

−∞
F (y)dy −

∫ ∞

x

[1 − F (y)]dy

=
∫ x

0
dy +
∫ 0

−∞
F (y)dy −

∫ ∞

0
[1 − F (y)]dy

= x −
∫ ∞

−∞
ydF (y).

This influence function is continuous, but not bounded.
(ii) When J(t) = 4t − 2,

φF (x) = 2
∫ x

−∞
F (y)[2F (y) − 1]dy − 2

∫ ∞

x

[1 − F (y)][2F (y) − 1]dy.

Clearly, φF is continuous. Since

lim
x→∞

∫ x

−∞
F (y)[2F (y) − 1]dy =

∫ ∞

−∞
F (y)[2F (y) − 1]dy = ∞

and
lim

x→∞

∫ ∞

x

[1 − F (y)][2F (y) − 1]dy = 0,

we conclude that limx→∞ φF (x) = ∞. Similarly, limx→−∞ φF (x) = −∞.
Hence, φF is not bounded.
(iii) When J(t) = (β − α)−1I(α,β)(t),

φF (x) = − 1
β − α

∫ F −1(β)

F −1(α)
[δx(y) − F (y)]dy,

which is continuous. φF is also bounded, since

|φF (x)| ≤ 1
β − α

∫ F −1(β)

F −1(α)
|δx(y) − F (y)|dy ≤ F−1(β) − F−1(α)

β − α
.

Exercise 19. In part (iii) of the previous exercise, show that if F is
continuous at F−1(α) and F−1(β), then

φF (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F −1(α)(1−α)−F −1(β)(1−β)
β−α − T (F ) x < F−1(α)

x−F −1(α)α−F −1(β)(1−β)
β−α − T (F ) F−1(α) ≤ x ≤ F−1(β)

F −1(β)β−F −1(α)α
β−α − T (F ) x > F−1(β).
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Solution. When x < F−1(α),

φF (x) = − 1
β − α

∫ F −1(β)

F −1(α)
[1 − F (y)]dy

= −y[1 − F (y)]
β − α

∣∣∣∣
F −1(β)

F −1(α)
− 1

β − α

∫ F −1(β)

F −1(α)
ydF (y)

=
F−1(α)(1 − α) − F−1(β)(1 − β)

β − α
− T (F ),

since F (F−1(α)) = α and F (F−1(β)) = β. Similarly, when x > F−1(β),

φF (x) =
1

β − α

∫ F −1(β)

F −1(α)
F (y)]dy

=
yF (y)
β − α

∣∣∣∣
F −1(β)

F −1(α)
− 1

β − α

∫ F −1(β)

F −1(α)
ydF (y)

=
F−1(β)β − F−1(α)α

β − α
− T (F ).

Finally, consider the case of F−1(α) ≤ x ≤ F−1(β). Then

φF (x) =
1

β − α

∫ x

F −1(α)
F (y)dy − 1

β − α

∫ F −1(β)

x

[1 − F (y)]dy

=
yF (y)
β − α

∣∣∣∣
x

F −1(α)
− 1

β − α

∫ x

F −1(α)
ydF (y)

+
y[1 − F (y)]

β − α

∣∣∣∣
F −1(β)

x

− 1
β − α

∫ F −1(β)

x

ydF (y)

=
x − F−1(α)α − F−1(β)(1 − β)

β − α
− T (F ).

Exercise 20 (#5.67, #5.69, #5.74). Let T be an L-functional defined
in Exercise 17.
(i) Show that T (F ) = θ if F is symmetric about θ, J is symmetric about
1
2 , and

∫ 1
0 J(t)dt = 1.

(ii) Assume that

σ2
F =
∫ ∞

−∞

∫ ∞

−∞
J(F (x))J(F (y))[F (min{x, y}) − F (x)F (y)]dxdy

is finite. Show that σ2 =
∫

[φF (x)]2dF (x), where φF is the influence func-
tion of T .
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(iii) Show that if J ≡ 1, then σ2
F in (ii) is equal to the variance of F .

Solution. (i) If F is symmetric about θ, then F (x) = F0(x − θ), where
F0 is a cumulative distribution function that is symmetric about 0, i.e.,
F0(x) = 1 − F0(−x). Also, J(t) = J(1 − t). Then∫

xJ(F0(x))dF0(x) =
∫

xJ(1 − F0(−x))dF0(x)

=
∫

xJ(F0(−x))dF0(x)

= −
∫

yJ(F0(y))dF0(y),

i.e.,
∫

xJ(F0(x))dF0(x) = 0. Hence,

T (F ) =
∫

xJ(F (x))dF (x)

= θ

∫
J(F (x))dF (x) +

∫
(x − θ)J(F0(x − θ))dF0(x − θ)

= θ

∫ 1

0
J(t)dt +

∫
yJ(F0(y))dF0(y)

= θ.

(ii) From Exercise 17, φF (x) = −
∫∞

−∞[δx(y) − F (y)]J(F (y))dy. Then

[φF (t)]2 =
[∫ ∞

−∞
(δt − F )(y)J(F (y))dy

]2

=
∫ ∞

−∞
(δt − F )(y)J(F (y))dy

∫ ∞

−∞
(δt − F )(x)J(F (x))dx

=
∫ ∞

−∞

∫ ∞

−∞
(δt − F )(x)(δt − F )(y)J(F (x))J(F (y))dxdy.

Then the result follows from Fubini’s theorem and the fact that∫
(δt − F )(x)(δt − F )(y)dF (t) = F (min{x, y}) − F (x)F (y).

(iii) When J ≡ 1, by part (i) of the solution to the previous exercise,
φF (x) = x −

∫
ydF (y). Hence,

∫
[φF (x)]2dF (x) is the variance of F when

J ≡ 1. The result follows from part (ii).

Exercise 21 (#5.65, #5.72, #5.73). Let T be an L-functional given in
Exercise 18(iii) with β = 1 − α and α ∈ (0, 1

2 ), and let Fn be the empirical
distribution based on a random sample from a distribution F .
(i) Let X(1) ≤ · · · ≤ X(n) be the order statistics. Show that

T (Fn) = X̄α =
1

(1 − 2α)n

n−mα∑
j=mα+1

X(j),
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which is called the α-trimmed sample mean.
(ii) Assume that F is continuous at F−1(α) and F−1(1−α) and is symmetric
about θ. Show that

σ2
α =

2
(1 − 2α)2

{∫ F −1
0 (1−α)

0
x2dF0(x) + α[F−1

0 (1 − α)]2
}

,

where F0(x − θ) = F (x), is equal to the σ2
F in part (ii) of the previous

exercise with J(t) = (1 − 2α)−1I(α,1−α)(t).
(iii) Show that if F ′

0(0) exists and is positive, then limα→ 1
2

σ2
α = 1/[2F ′

0(0)]2.
(iv) Show that if σ2 =

∫
x2dF0(x) < ∞, then limα→0 σ2

α = σ2.
Solution. (i) Note that

T (Fn) =
∫

xJ(Fn(x))dFn(x) =
1
n

n∑
i=1

J
(

i
n

)
X(i),

since Fn(X(i)) = i/n, i = 1, ..., n. The result follows from the fact that
J( i

n ) is not 0 if and only if mα ≤ i ≤ n − mα.
(ii) Note that J is symmetric about 1

2 . If F is symmetric about θ, then
T (F ) = θ (Exercise 20) and F−1(α) + F−1(1 − α) = 2θ. From Exercise 19
with β = 1 − α, we conclude that

φF (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F −1
0 (α)
1−2α x < F−1(α)

x−θ
1−2α F−1(α) ≤ x ≤ F−1(1 − α)

F −1
0 (1−α)
1−2α x > F−1(1 − α),

where F−1
0 (α) = F−1(α) − θ and F−1

0 (1 − α) = F−1(1 − α) − θ. Because
F−1

0 (α) = −F−1
0 (1 − α), we obtain that∫

[φF (x)]2dF (x) =
[F−1

0 (α)]2

(1 − 2α)2
α +

[F−1
0 (1 − α)]2

(1 − 2α)2
α

+
∫ F −1(1−α)

F −1(α)

(x − θ)2

(1 − 2α)2
dF (x)

=
2α[F−1

0 (1 − α)]2

(1 − 2α)2
+
∫ F −1

0 (1−α)

F −1
0 (α)

x2

(1 − 2α)2
dF0(x)

= σ2
α.

By Exercise 20, we conclude that σ2
α = σ2

F .
(iii) Note that F−1

0 ( 1
2 ) = 0. Since F ′

0(0) exists and F ′
0(0) > 0,

F−1
0 (α) =

α − 1
2

F ′
0(0)

+ Rα,
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where limα→ 1
2

Rα/(α − 1
2 ) = 0. Then

[F−1
0 (α)]2 =

(α − 1
2 )2

[F ′
0(0)]2

+ Uα,

where limα→ 1
2

Uα/(α − 1
2 )2 = 0. Hence,

lim
α→ 1

2

2α[F−1
0 (1 − α)]2

(1 − 2α)2
= lim

α→ 1
2

2α[F−1
0 (α)]2

4(α − 1
2 )2

=
1

[2F ′
0(0)]2

.

Note that ∫ F −1
0 (1−α)

0
x2dF0(x) =

∫ 1−α

1
2

[F−1
0 (t)]2dt

and, by l’Hôpital’s rule,

lim
α→ 1

2

∫ 1−α
1
2

[F−1
0 (t)]2dt

(1 − 2α)2
= lim

α→ 1
2

[F−1
0 (1 − α)]2

4(1 − 2α)
= 0.

Hence, limα→ 1
2

σ2
α = 1/[2F ′

0(0)]2.
(iv) Note that limα→0 F−1

0 (1 − α) = ∞. Since
∫

x2dF0(x) < ∞, we have
limx→∞ x2[1 − F (x)] = 0. Hence, limα→0 α[F−1

0 (1 − α)]2 = 0. Then,

lim
α→0

σ2
α = lim

α→0
2

{∫ F −1
0 (1−α)

0
x2dF0(x) + α[F−1

0 (1 − α)]2
}

= 2
∫ ∞

0
x2dF0(x)

= σ2,

since F0 is symmetric about 0.

Exercise 22 (#5.75). Calculate σ2
F defined in Exercise 20(ii) with J(t) =

4t − 2 and F being the double exponential distribution with location pa-
rameter µ ∈ R and scale parameter 1.
Solution. Note that F is symmetric about µ. Using the result in part (ii)
of the solution to Exercise 18 and changing variable z = y − µ, we obtain
that

φF (x) = 2
∫ x−µ

−∞
F0(y)[2F0(y) − 1]dy − 2

∫ ∞

x−µ

[1 − F0(y)][2F0(y) − 1]dy,

where F0 is the double exponential distribution with location parameter 0
and scale parameter 1. Let X be a random variable having distribution F .
Then X − µ has distribution F0 and, therefore, the distribution of φF (X)
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does not depend on µ and we may solve the problem by assuming that
µ = 0. Note that

φ′
F (x) = F (x)[4F (x) − 2] + [1 − F (x)][4F (x) − 2] = 4F (x) − 2.

Hence,

φF (x) =
∫ x

0
[4F (y) − 2]dy + c,

where c is a constant. For the double exponential distribution with location
parameter 0 and scale parameter 1,

F (y) =

{
1
2ey y < 0
1
2 + 1

2 (1 − e−y) y ≥ 0

and, hence,∫ x

0
[4F (y) − 2]dy = 2

∫ x

0
(1 − e−y)dy = 2(x − 1 + e−x)

when x ≥ 0 and∫ x

0
[4F (y) − 2]dy = 2

∫ x

0
(ey − 1)dy = 2(ex − 1 − x)

when x < 0. Thus,

φF (x) = 2(|x| − 1 + e−|x|) + c.

From the property of influence function, E[φF (X)] = 0. Hence,

c = −2E(|X| − 1 + e−|X|) = −1,

since |X| has the exponential distribution on (0,∞) with scale parameter
1. Then,

σ2
F = E[φF (X)]2

= E(2|X| − 3 + 2e−|X|)2

= E(4|X|2 + 9 + 4e−2|X| − 12|X| + 8|X|e−|X| − 12e−|X|)

= 8 + 9 +
4
3

− 12 + 2 − 6

=
7
3
.

Exercise 23 (#5.59). Let T (G) = G−1(p) be the pth quantile functional.
Suppose that F has a positive derivative F ′ in a neighborhood of θ =
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F−1(p). Show that T is Gâteaux differentiable at F and obtain the influence
function.
Solution. Let Ht = F + t(G−F ). Differentiating the identity Ht(H−1

t (p))
= p with respect to t at t = 0, we obtain that

G(F−1(p)) − F (F−1(p)) + F ′(F−1(p))H ′
t(0) = 0.

Hence,

H ′
t(0) =

p − G(F−1(p))
F ′(F−1(p))

.

Let G = δx, the degenerated distribution at x. Then the influence function
is

φF (x) =
p − I[x,∞)(F−1(p))

F ′(F−1(p))
.

Exercise 24 (#5.51). Let Fn be the empirical distribution based on
a random sample of size n from a distribution F on R having Lebesgue
density f . Let ϕn(t) be the Lebesgue density of the pth sample quantile
F−1

n (p). Prove that

ϕn(t) = n

(
n − 1
lp − 1

)
[F (t)]lp−1[1 − F (t)]n−lpf(t),

where lp = np if np is an integer and lp = 1+ the integer part of np if np
is not an integer, by
(i) using the fact that nFn(t) has a binomial distribution;
(ii) using the fact that F−1

n (p) = cnpX(mp) + (1 − cnp)X(mp+1), where X(j)
is the jth order statistic, mp is the integer part of np, cnp = 1 if np is an
integer, and cnp = 0 if np is not an integer.
Solution. (i) Since nFn(t) has the binomial distribution with size n and
probability F (t), for any t ∈ R,

P
(
F−1

n (p) ≤ t
)

= P
(
Fn(t) ≥ p

)
=

n∑
i=lp

(
n

i

)
[F (t)]i[1 − F (t)]n−i.

Differentiating term by term leads to

ϕn(t) =
n∑

i=lp

(
n

i

)
i[F (t)]i−1[1 − F (t)]n−if(t)

−
n∑

i=lp

(
n

i

)
(n − i)[F (t)]i[1 − F (t)]n−i−1f(t)
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=
(

n

lp

)
lp[F (t)]lp−1[1 − F (t)]n−lpf(t)

+ n
n∑

i=lp+1

(
n − 1
i − 1

)
[F (t)]i−1[1 − F (t)]n−if(t)

−
n−1∑
i=lp

(
n − 1

i

)
[F (t)]i[1 − F (t)]n−i−1f(t)

= n

(
n − 1
lp − 1

)
[F (t)]lp−1[1 − F (t)]n−lpf(t).

(ii) The Lebesgue density of the jth order statistic is

n

(
n − 1
j − 1

)
[F (t)]j−1[1 − F (t)]n−jf(t).

Then, the result follows from the fact that

F−1
n (p) =

{
X(mp) if np is an integer
X(mp+1) if np is not an integer

and lp = mp if np is an integer and lp = mp + 1 if np is not an integer.

Exercise 25 (#5.52). Let Fn be the empirical distribution based on a
random sample from a distribution F on R with a finite mean. Show that
the pth sample quantile F−1

n (p) has a finite jth moment for sufficiently
large n, j = 1, 2,..., where p ∈ (0, 1).
Solution. From the previous exercise, the cumulative distribution function
of F−1

n (p) is

Gn(x) =
n∑

i=lp

(
n

i

)
[F (t)]i[1 − F (t)]n−i,

where lp = np if np is an integer and lp = 1+ the integer part of np if np
is not an integer. When n → ∞, lp → ∞ and n − lp → ∞. Hence, j ≤ lp
and j ≤ n − lp + 1 for sufficiently large n. Since

∫∞
0 [1 − F (x)]dx < ∞ (F

has a finite mean),

lim
x→∞ xj−1[1 − F (x)]n−i−1 ≤ lim

x→∞ max{1 − F (x), xj−1[1 − F (x)]j−1} = 0

for i = 1, ..., lp − 1. Thus,∫ ∞

0
xj−1[F (x)]i[1 − F (x)]n−idx ≤

∫ ∞

0
xj−1[1 − F (x)]n−idx < ∞

for i = 1, ..., lp − 1, which implies that

∫ ∞

0
xj−1[1 − Gn(x)]dx =

lp−1∑
i=1

(
n

i

)∫ ∞

0
xj−1[F (x)]i[1 − F (x)]n−idx < ∞.
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Similarly, for i = lp, lp + 1, ..., n,

∫ 0

−∞
|x|j−1[F (x)]i[1 − F (x)]n−idx ≤

∫ 0

−∞
|x|j−1[F (x)]idx < ∞

and, thus,

∫ 0

−∞
|x|j−1Gn(x)dx =

n∑
i=lp

(
n

i

)∫ 0

−∞
|x|j−1[F (x)]i[1 − F (x)]n−idx < ∞.

Therefore,∫ ∞

−∞
|x|jdGn(x) =

∫ ∞

0
xjdGn(x) +

∫ 0

−∞
|x|jdGn(x)

= j

∫ ∞

0
xj−1[1 − Gn(x)]dx + j

∫ 0

−∞
|x|j−1Gn(x)dx

< ∞.

Exercise 26 (#5.54). Let Fn be the empirical distribution based on a
random sample from a distribution F on R with Lebesgue density f that is
positive and continuous at θ = F−1(p), p ∈ (0, 1). Using Scheffé’s theorem
(e.g., Proposition 1.18 in Shao, 2003), prove that

√
n[F−1

n (p) − θ] →d N

(
0,

p(1 − p)
[f(θ)]2

)
.

Solution. From Exercise 24, the Lebesgue density of
√

n[F−1
n (p) − θ] is

√
n

(
n − 1
lp − 1

)[
F

(
θ +

y√
n

)]lp−1 [
1 − F

(
θ +

y√
n

)]n−lp

f

(
θ +

y√
n

)
,

where lp = np if np is an integer and lp = 1+ the integer part of np if np
is not an integer. Using Stirling’s formula, we obtain that

lim
n

√
n

(
n − 1
lp − 1

)
plp−1(1 − p)n−lp =

1√
2πp(1 − p)

.

From Taylor’s expansion and the fact that lp/(np) → 1,

⎡
⎣F
(
θ + y√

n

)
p

⎤
⎦

lp−1 ⎡
⎣1 − F

(
θ + y√

n

)
1 − p

⎤
⎦

n−lp
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= exp

⎧⎨
⎩(lp − 1) log

F
(
θ + y√

n

)
p

+ (n − lp) log
1 − F

(
θ + y√

n

)
1 − p

⎫⎬
⎭

= exp

⎧⎨
⎩np log

F
(
θ + y√

n

)
p

+ (n − np) log
1 − F

(
θ + y√

n

)
1 − p

+ o(1)

⎫⎬
⎭

= exp
{

np log
(

1 +
f(θ)y
p
√

n

)
+ (n − np) log

(
1 − f(θ)y

(1 − p)
√

n

)
+ o(1)

}

= exp
{√

nf(θ)y − [f(θ)]2y2

2p
+ o(1) −

√
nf(θ)y − [f(θ)]2y2

2(1 − p)
+ o(1)

}

= exp
{

− [f(θ)]2y2

2p(1 − p)

}
+ o(1)

Also, limn f
(
θ + y√

n

)
= f(θ). Hence, the density of

√
n[F−1

n (p) − θ] con-
verges to

f(θ)√
2πp(1 − p)

exp
{

− [f(θ)]2y2

2p(1 − p)

}

for any y, which is the Lebesgue density of N
(
0, p(1 − p)/[f(θ)]2

)
. Hence,

the result follows from Scheffé’s theorem.

Exercise 27 (#5.55). Let {kn} be a sequence of integers satisfying
kn/n = p + o(n−1/2) with p ∈ (0, 1), and let (X1, ..., Xn) be a random
sample from a distribution F on R with F ′(θp) > 0, where θp = F−1(p).
Let X(j) be the jth order statistic. Show that

√
n(X(kn) − θp) →d N(0, p(1 − p)/[F ′(θp)]2).

Solution. Let pn = kn/n = p+o(n−1/2) and Fn be the empirical distribu-
tion. Then X(kn) = F−1

n (pn) for any n. Let t ∈ R, σ =
√

p(1 − p)/F ′(θp),
pnt = F (θp + tσn−1/2), and cnt =

√
n(pnt − pn)/

√
pnt(1 − pnt). Define

Znt = [Bn(pnt) − npnt]/
√

npnt(1 − pnt), where Bn(q) denotes a random
variable having the binomial distribution with size n and probability q.
Then

P
(√

n(X(kn) − θp) ≤ tσ
)

= P
(
F−1

n (pn) ≤ θp + tσn−1/2)
= P
(
pn ≤ Fn(θp + tσn−1/2)

)
= P
(
Znt ≥ −cnt

)
= Φ(cnt) + o(1)

by the central limit theorem and Pólya’s theorem, where Φ is the cumulative
distribution function of N(0, 1). The result follows if we can show that
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limn cnt = t. By Taylor’s expansion,

pnt = F (θp + tσn−1/2) = p + tσn−1/2F ′(θp) + o(n−1/2).

Then, as n → ∞, pnt → p and
√

n(pnt − pn) = tσF ′(θp) + o(1), since
pn − p = o(n−1/2). Hence,

cnt =
√

n(pnt − pn)√
pnt(1 − pnt)

→ tσF ′(θp)√
p(1 − p)

= t.

Exercise 28 (#5.112). Let G, G1, G2,..., be cumulative distributions on
R. Suppose that limn supx |Gn(x) − G(x)| = 0, G is continuous, and G−1

is continuous at p ∈ (0, 1).
(i) Show that limn G−1

n (p) = G−1(p).
(ii) Show that the result in (i) holds for any p ∈ (0, 1) if G′(x) exists and is
positive for any x ∈ R.
Solution. (i) Let ε > 0. Since limn supx |Gn(x) − G(x)| = 0 and G is
continuous, limn Gn(G−1(p − ε)) = G(G−1(p − ε)) = p − ε < p. Hence, for
sufficiently large n, Gn(G−1(p − ε)) ≤ p, i.e., G−1(p − ε) ≤ G−1

n (p). Thus,

G−1(p − ε) ≤ lim inf
n

G−1
n (p).

Similarly,
G−1(p + ε) ≥ lim sup

n
G−1

n (p).

Letting ε → 0, by the continuity of G−1 at p, we conclude that limn G−1
n (p)

= G−1(p).
(ii) If G′(x) exists and is positive for any x ∈ R, then G−1 is continuous
on (0, 1). The result follows from the result in (i).

Exercise 29 (#5.47). Calculate the asymptotic relative efficiency of the
Hodges-Lehmann estimator with respect to the sample mean based on a
random sample from F when
(i) F is the cumulative distribution of N(µ, σ2);
(ii) F is the cumulative distribution of the logistic distribution with loca-
tion parameter µ and scale parameter σ;
(iii) F is the cumulative distribution of the double exponential distribution
with location parameter µ and scale parameter σ;
(iv) F (x) = F0(x − µ), where F0(x) is the cumulative distribution of the
t-distribution tν with ν ≥ 3.
Solution. In any case, as estimators of µ, the sample mean is asymp-
totically normal with asymptotic mean squared error Var(X)/n, where X
denotes a random variable with distribution F , and the Hodges-Lehmann
estimator is asymptotically normal with asymptotic mean squared error
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(12γ2)−1, where γ =
∫

[F ′(x)]2dx (e.g., Example 5.8 in Shao, 2003). Hence,
the asymptotic relative efficiency to be calculated is 12γ2Var(X).
(i) In this case, Var(X) = σ2 and

γ =
1

2πσ2

∫ ∞

−∞
e−(x−µ)2/σ2

dx =
1

2πσ

∫ ∞

−∞
e−x2

dx =
1

2
√

πσ
.

Hence, the asymptotic relative efficiency is 12γ2Var(X) = 3/π.
(ii) Note that Var(X) = σ2π2/3 and

γ =
1
σ2

∫ ∞

−∞

e−2(x−µ)/σ

[1 + e−(x−µ)/σ]4
dx =

1
σ

∫ ∞

−∞

e2x

(1 + ex)4
dx =

1
6σ

(Exercise 66 in Chapter 4). Hence, the asymptotic relative efficiency is
12γ2Var(X) = π2/9.
(iii) In this case, Var(X) = 2σ2 and

γ =
1

4σ2

∫ ∞

−∞
e−2|x−µ|/σdx =

1
4σ

∫ ∞

−∞
e−2|x|dx =

1
4σ

.

Hence, the asymptotic relative efficiency is 12γ2Var(X) = 3/2.
(iv) Note that Var(X) = ν/(ν − 2) and

γ =

[
Γ
(

ν+1
2

)]2
νπ
[
Γ
(

ν
2

)]2
∫ ∞

−∞

dx(
1 + x2

ν

)ν+1 =
√

νπ
[
Γ
(

ν+1
2

)]2 Γ
( 2ν+1

2

)
[
Γ
(

ν
2

)]2 Γ(ν + 1)
.

Hence, the asymptotic relative efficiency is

12γ2Var(X) =
12ν2π

[
Γ
(

ν+1
2

)]4 [Γ ( 2ν+1
2

)]2
(ν − 2)

[
Γ
(

ν
2

)]4 [Γ(ν + 1)]2
.

Exercise 30 (#5.61, #5.62, #5.63). Consider a random sample from a
distribution F on R. In each of the following cases, obtain the asymptotic
relative efficiency of the sample median with respect to the sample mean.
(i) F is the cumulative distribution of the uniform distribution on the in-
terval (θ − 1

2 , θ + 1
2 ), θ ∈ R.

(ii) F (x) = F0(x − θ) and F0 is the cumulative distribution function with
Lebesgue density (1 + x2)−1I(−c,c)(x)/

∫ c

−c
(1 + x2)−1dt.

(iii) F (x) = (1−ε)Φ
(

x−µ
σ

)
+εD
(

x−µ
σ

)
, where ε ∈ (0, 1) is a known constant,

Φ is the cumulative distribution function of the standard normal distribu-
tion, D is the cumulative distribution function of the double exponential
distribution with location parameter 0 and scale parameter 1, and µ ∈ R
and σ > 0 are unknown parameters.
Solution. In each case, the asymptotic relative efficiency of the sample
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median with respect to the sample mean is 4[F ′(θ)]2Var(X1).
(i) Let θ be the mean of F . In this case, Var(X1) = 1/12 and F ′(θ) = 1.
Hence, the asymptotic relative efficiency of the sample median with respect
to the sample mean is 1/3.
(ii) The Lebesgue density of F0 is

f(x) =
I(−c,c)(x)

2 arctan(c)(1 + x2)
.

Hence, F ′(θ) = [2 arctan(c)]−1. Note that

Var(X1) =
∫ c

−c

x2dx

2 arctan(c)(1 + x2)

=
∫ c

−c

dx

2 arctan(c)
−
∫ c

−c

dx

2 arctan(c)(1 + x2)

=
c

arctan(c)
− 1.

Therefore, the asymptotic relative efficiency of the sample median with
respect to the sample mean is [c − arctan(c)]/[arctan(c)]3.
(iii) Note that

Var(X1) = (1 − ε)σ2 + 2εσ2 = (1 + ε)σ2

and
F ′(µ) =

1 − ε√
2πσ

+
ε

2σ
.

Hence, the asymptotic relative efficiency of the sample median with respect
to the sample mean is 4

(
1−ε√

2π
+ ε

2

)
/(1 + ε).

Exercise 31 (#5.64). Let (X1, ..., Xn) be a random sample from a dis-
tribution on R with Lebesgue density 2−1(1−θ2)eθx−|x|, where θ ∈ (−1, 1)
is unknown.
(i) Show that the median of the distribution of X1 is given by m(θ) =
(1 − θ)−1 log(1 + θ) when θ ≥ 0 and m(θ) = −m(−θ) when θ < 0.
(ii) Show that the mean of the distribution of X1 is µ(θ) = 2θ/(1 − θ2).
(iii) Show that the inverse functions of m(θ) and µ(θ) exist. Obtain the
asymptotic relative efficiency of m−1(m̂) with respect to µ−1(X̄), where m̂
is the sample median and X̄ is the sample mean.
(iv) Is µ−1(X̄) asymptotically efficient in estimating θ?
Solution. (i) The cumulative distribution function of X1 is

Fθ(x) =

{
1−θ
2 e(1+θ)x x ≤ 0

1 − 1+θ
2 e−(1−θ)x x > 0.
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If θ > 0, Fθ(0) = 1−θ
2 < 1

2 . Hence, the median is the solution to

1
2

= 1 − 1 + θ

2
e−(1−θ)x,

i.e., (1 − θ)−1 log(1 + θ) = m(θ). If θ < 0, then the median is the solution
to

1
2

=
1 − θ

2
e(1+θ)x,

i.e., −(1 + θ)−1 log(1 − θ) = −m(−θ). If θ = 0, the median is clearly
0 = m(0).
(ii) The mean of X1 is

1 − θ2

2

∫ ∞

−∞
xeθx−|x|dx =

1 − θ2

2

[∫ 0

−∞
xe(1+θ)xdx +

∫ ∞

0
xe−(1−θ)xdx

]

=
1 − θ2

2

[
− 1

(1 + θ)2
+

1
(1 − θ)2

]

=
2θ

1 − θ2 .

(iii) Since

µ′(θ) =
2

1 − θ2 +
4θ2

(1 − θ2)2
> 0,

µ(θ) is increasing in θ and, thus, the inverse function µ−1 exists. For θ ≥ 0,
m(θ) is the product of log(1+θ) and (1−θ)−1, both of which are increasing
in θ. Hence, m(θ) is increasing in θ for θ ∈ [0, 1). Since m(θ) = −m(−θ)
for θ < 0, the median function m(θ) is increasing in θ. Hence, the inverse
function m−1 exists.

When θ ≥ 0, the density of X1 evaluated at the median m(θ) is equal
to

1 − θ2

2
eθm(θ)−|m(θ)| =

1 − θ2

2
e−(1−θ)m(θ) =

1 − θ

2
.

When θ < 0, the density of X1 evaluated at the median −m(−θ) is equal
to

1 − θ2

2
e−θm(−θ)−|−m(−θ)| =

1 − θ2

2
e−(1+θ)m(−θ) =

1 + θ

2
.

In any case, the density of X1 evaluated at the median is (1−|θ|)/2. By the
asymptotic theory for sample median (e.g., Theorem 5.10 in Shao, 2003),

√
n[m̂ − m(θ)] →d N

(
0,

1
(1 − |θ|)2

)
.

When θ ≥ 0,

m′(θ) =
1

1 − θ2 +
log(1 + θ)
(1 − θ)2

.
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Hence, for θ ∈ (−1, 1),

m′(θ) =
1

1 − θ2 +
log(1 + |θ|)
(1 − |θ|)2 =

1 − |θ| + (1 + |θ|) log(1 + |θ|)
(1 + |θ|)(1 − |θ|)2 .

By the δ-method,

√
n[m−1(m̂) − θ] →d N

(
0,

(1 − θ2)2

[1 − |θ| + (1 + |θ|) log(1 + |θ|)]2

)
.

For µ−1(X̄), it is shown in the next part of the solution that

√
n[µ−1(X̄) − θ] →d N

(
0,

(1 − θ2)2

2(1 + θ2)

)
.

Hence, the asymptotic relative efficiency of m−1(m̂) with respect to µ−1(X̄)
is

[1 − |θ| + (1 + |θ|) log(1 + |θ|)]2
2(1 + θ2)

.

(iv) The likelihood function is

�(θ) = 2−n(1 − θ2)n exp

{
nθX̄ −

n∑
i=1

|Xi|
}

.

Then,
∂ log �(θ)

∂θ
=

n

1 + θ
− n

1 − θ
+ nX̄

and
∂2 log �(θ)

∂θ2 = − n

(1 + θ)2
− n

(1 − θ)2
< 0.

Hence, the solution to the likelihood equation n
1+θ − n

1−θ + nX̄ = 0 is the
MLE of θ. Since n

1+θ − n
1−θ = nµ(θ), we conclude that µ−1(X̄) is the MLE

of θ. Since the distribution of X1 is from an exponential family, µ−1(X̄) is
asymptotically efficient and

√
n[µ−1(X̄) − θ] →d N(0, [I1(θ)]−1), where

I1(θ) =
1

(1 + θ)2
+

1
(1 − θ)2

=
2(1 + θ2)
(1 − θ2)2

.

Exercise 32 (#5.70, #5.71). Obtain the asymptotic relative efficiency
of the trimmed sample mean X̄α (Exercise 21) with respect to
(i) the sample mean, based on a random sample of size n from the double
exponential distribution with location parameter θ ∈ R and scale parameter
1;
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(ii) the sample median, based on a random sample of size n from the Cauchy
distribution with location parameter θ ∈ R and scale parameter 1.
Solution. (i) Let F0 be the double exponential distribution with location
parameter 0 and scale parameter 1. The variance of F0 is 2. Hence, the
asymptotic relative efficiency of the trimmed sample mean X̄α with respect
to the sample mean is 2/σ2

α, where σ2
α is given in Exercise 21(ii). Note that

F−1
0 (1 − α) = − log(2α). Hence,

σ2
α =

1
(1 − 2α)2

∫ − log(2α)

0
x2e−xdx +

2α[log(2α)]2

(1 − 2α)2

=
2α[log(2α) − 1] + 1

(1 − 2α)2
.

Thus, the asymptotic relative efficiency is 2(1−2α)2/{2α[log(2α)−1]+1}.
(ii) Let F0 be the Cauchy distribution with location parameter 0 and scale
parameter 1. Note that F ′

0(0) = 1/π and F−1
0 (1 − α) = tan(π − πα).

Hence, the asymptotic relative efficiency of the trimmed sample mean X̄α

with respect to the sample median is π2/(4σ2
α), where

σ2
α =

2
(1 − 2α)2

∫ tan(π−πα)

0

x2dx

π(1 + x2)
+

2α[tan(π − πα)]2

(1 − 2α)2

=
2

(1 − 2α)2

[
tan(π − πα)

π
−
∫ tan(π−πα)

0

dx

π(1 + x2)

]

+
2α[tan(π − πα)]2

(1 − 2α)2

=
2

(1 − 2α)2

[
tan(π − πα)

π
− 1 − 2α

2

]
+

2α[tan(π − πα)]2

(1 − 2α)2

=
2 tan(π − πα)
π(1 − 2α)2

− 1
1 − 2α

+
2α[tan(π − πα)]2

(1 − 2α)2
.

Exercise 33 (#5.85). Let (X1, ..., Xn) be a random sample from a dis-
tribution F on R that is symmetric about θ ∈ R. Huber’s estimator of θ
is defined as a solution of

∑n
i=1 ψ(Xi, t) = 0, where

ψ(x, t) =

⎧⎨
⎩

C t − x > C

t − x |x − t| ≤ C

−C t − x < −C

and C > 0 is a constant. Assume that F is continuous at θ − C and θ + C.
(i) Show that the function

Ψ(γ) =
∫ γ+C

γ−C

(γ − x)dF (x) + CF (γ − C) − C[1 − F (γ + C)]
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is differentiable at θ and Ψ(θ) = 0.
(ii) Show that the asymptotic relative efficiency of Huber’s estimator with
respect to the sample mean is Var(X1)/σ2

F , where

σ2
F =

∫ θ+C

θ−C
(θ − x)2dF (x) + C2F (θ − C) + C2[1 − F (θ + C)]

[F (θ + C) − F (θ − C)]2
.

Solution. (i) Since F is symmetric about θ, F (θ − C) = 1 − F (θ + C),
dF (θ − y) = dF (θ + y), and

∫ θ+C

θ−C

(θ − x)dF (x) =
∫ C

−C

ydF (θ + y) = −
∫ C

−C

ydF (θ − y),

where the first equality follows by considering x = θ + y and the second
equality follows by considering x = θ − y. Hence,

∫ θ+C

θ−C
(θ − x)dF (x) = 0

and, thus, Ψ(θ) = 0.
From integration by parts,

∫ γ+C

γ−C

(γ − x)dF (x) = −C[F (γ + C) + F (γ − C)] +
∫ γ+C

γ−C

F (x)dx.

Hence,

Ψ(γ) =
∫ γ+C

γ−C

F (x)dx − C,

which is differentiable at θ and Ψ′(θ) = F (θ + C) − F (θ − C).
(ii) The function

∫
[ψ(x, γ)]2dF (x) =

∫ γ+C

γ−C

(γ −x)2dF (x)+C2F (γ −C)+C2[1−F (γ +C)]

is continuous at θ. Hence, by the result in (i) and Theorem 5.13(i) in Shao
(2003), Huber’s estimator θ̂ satisfies

√
n(θ̂ − θ) →d N(0, σ2

F ). This proves
the result.

Exercise 34 (#5.86). For Huber’s estimator θ̂ in the previous exercise,
obtain a formula e(F ) for the asymptotic relative efficiency of θ̂ with respect
to the sample mean, when

F (x) = (1 − ε)Φ
(

x−θ
σ

)
+ εΦ
(

x−θ
τσ

)
,

where Φ is the cumulative distribution function of N(0, 1), σ > 0, τ > 0,
and 0 < ε < 1. Show that limτ→∞ e(F ) = ∞. Find the value of e(F ) when
ε = 0, σ = 1, and C = 1.5.
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Solution. The variance of F is (1 − ε)σ2 + ετ2σ2. Let σ2
F be given in the

previous exercise. Then

e(F ) =
(1 − ε)σ2 + ετ2σ2

σ2
F

,

where

σ2
F =

∫ C

−C
y2d
[
(1 − ε)Φ

(
y
σ

)
+εΦ
(

y
τσ

)]
+2C2

[
(1 − ε)Φ

(
−C

σ

)
+εΦ
(
− C

τσ

)]
2
[
(1 − ε)Φ

(
C
σ

)
+ εΦ
(

C
τσ

)]
− 1

.

Since σ2
F is a bounded function of τ , limτ→∞ e(F ) = ∞. When ε = 0,

σ = 1, and C = 1.5,

e(F ) =
1√
2π

∫ C

−C
y2e−y2/2dy + 2C2Φ(−C)

2Φ(C) − 1

=
−
√

2
π Ce−C2/2 + Φ(C) − Φ(−C) + 2C2Φ(−C)

2Φ(C) − 1

=
−0.3886 + 0.8664 + 0.3006

0.8664
= 0.8984.

Exercise 35 (#5.99). Consider the L-functional T defined in Exercise 17.
Let Fn be the empirical distribution based on a random sample of size n
from a distribution F , σ2 =

∫
[φF (x)]2dF (x), and σ2

Fn
=
∫

[φFn
(x)]2dFn(x),

where φG denotes the influence function of T at distribution G. Show that
limn σ2

Fn
= σ2

F a.s., under one of the following two conditions:
(a) J is bounded, J(t) = 0 when t ∈ [0, α]∪ [β, 1] for some constants α < β,
and the set D = {x : J is discontinuous at F (x)} has Lebesgue measure 0.
(b) J is continuous on [0, 1] and

∫
x2dF (x) < ∞.

Solution. (i) Assume condition (a). Let C = supx |J(x)|. Note that
limn supy |Fn(y) − F (y)| = 0 a.s. Hence, there are constants a < b such
that

φF (x) = −
∫ b

a

(δx − F )(y)J(F (y))dy

and

φFn(x) = −
∫ b

a

(δx − Fn)(y)J(Fn(y))dy a.s.

The condition that D has Lebesgue measure 0 ensures that

lim
n

∫ b

a

|J(F (y)) − J(Fn(y))|dy = 0 a.s.
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Hence,

|φFn
(x) − φF (x)| =

∣∣∣∣
∫ b

a

(Fn − F )(y)J(Fn(y))dy

+
∫ b

a

(δx − F )(y)[J(F (y)) − J(Fn(y))]dy

∣∣∣∣
≤ C(b − a) sup

y
|Fn(y) − F (y)|

+
∫ b

a

|J(F (y)) − J(Fn(y))|dy

→ 0 a.s.

Since supx |φFn
(x)| ≤ C(b − a), by the dominated convergence theorem,

lim
n

∫
[φFn(x)]2dF (x) =

∫
[φF (x)]2dF (x) a.s.

By the extended dominated convergence theorem (e.g., Proposition 18 in
Royden, 1968, p. 232),

lim
n

∫
[φFn

(x)]2d(Fn − F )(x) = 0 a.s.

This proves the result.
(ii) Assume condition (b). Let C = supx |J(x)|. From the previous proof,
we still have

φFn(x) − φF (x) =
∫ ∞

−∞
(Fn − F )(y)J(Fn(y))dy

+
∫ ∞

−∞
(δx − F )(y)[J(F (y)) − J(Fn(y))]dy.

The first integral in the previous expression is bounded in absolute value
by C
∫∞

−∞ |Fn − F |(y)dy, which converges to 0 a.s. by Theorem 5.2(i) in
Shao (2003). The second integral in the previous expression is bounded in
absolute value by

sup
y

|J(Fn(y)) − J(F (y))|
{∫ x

−∞
F (y)dy +

∫ ∞

x

[1 − F (y)]dy

}
,

which converges to 0 a.s. by the continuity of J and
∫

x2dF (x) < ∞. Hence,
limn φFn(x) = φF (x) a.s. for any x. The rest of the proof is the same as
that in part (i) of the solution, since [φFn(x)] ≤ C2[|x| +

∫
|x|dF (x)]2 (see

the solution of Exercise 17) and
∫

x2dF (x) < ∞.

Exercise 36 (#5.100). Let (X1, ..., Xn) be a random sample from a
distribution F on R and let Un be a U-statistic (see Exercise 25 in Chapter
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3) with kernel h(x1, ..., xm) satisfying E[h(X1, ..., Xm)]2 < ∞, where m <
n. Assume that ζ1 = Var(h1(X1)) > 0, where h1(x) = E[h(x, X2, ..., Xm)].
Derive a consistent variance estimator for Un.
Solution. From Exercise 25 in Chapter 3, it suffices to derive a consistent
estimator of ζ1. Since ζ1 = E[h1(X1)]2 − {E[h1(X1)]}2 = E[h1(X1)]2 −
{E(Un)}2 and Un is a consistent estimator of E(Un), it suffices to derive a
consistent estimator of ρ = E[h1(X1)]2. Note that

ρ =
∫ [∫

· · ·
∫

h(x, y1, ..., ym−1)dF (y1) · · · dF (ym−1)
]2

dF (x)

=
∫

· · ·
∫

h(x, y1, ..., ym−1)h(x, ym, ..., y2m+1)dF (y1) · · · dF (y2m+1)dF (x).

Hence, a consistent estimator of ρ is the U-statistic with kernel

h(x, y1, ..., ym−1)h(x, ym, ..., y2m+1).

Exercise 37 (#5.101). For Huber’s estimator defined in Exercise 33,
derive a consistent estimator of its asymptotic variance σ2

F .
Solution. Let θ̂ be Huber’s estimator of θ, Fn be the empirical distribution
based on X1, ..., Xn, and

σ2
Fn

=

∫ θ̂+C

θ̂−C
(θ̂ − x)2dFn(x) + C2Fn(θ̂ − C) + C2[1 − Fn(θ̂ + C)]

[Fn(θ̂ + C) − Fn(θ̂ − C)]2
.

Using integration by parts, we obtain that

σ2
F =

2
∫ θ+C

θ−C
(θ − x)F (x)dx + C2

[F (θ + C) − F (θ − C)]2

and

σ2
Fn

=
2
∫ θ̂+C

θ̂−C
(θ̂ − x)Fn(x)dx + C2

[Fn(θ̂ + C) − Fn(θ̂ − C)]2
.

To show that σ2
Fn

is a consistent estimator of σ2
F , it suffices to show that

lim
n

Fn(θ̂ + C) →p F (θ + C)

and

lim
n

∫ θ̂+C

θ̂−C

(θ̂ − x)Fn(x)dx →p

∫ θ+C

θ−C

(θ − x)F (x)dx.

The first required result follows from

|Fn(θ̂ + C) − F (θ + C)| ≤ |F (θ̂ + C) − F (θ + C)| + sup
x

|Fn(x) − F (x)|,
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the fact that limn supx |Fn(x) − F (x)| = 0 a.s., the consistency of θ̂, and
the assumption that F is continuous at F (θ + C). Let

g(γ) =
∫ γ+C

γ−C

(γ − x)F (x)dx.

Then g(γ) is continuous at θ and, thus, g(θ̂) →p g(θ). Note that

∫ θ̂+C

θ̂−C

(θ̂ − x)Fn(x)dx =
∫ θ̂+C

θ̂−C

(θ̂ − x)[Fn(x) − F (x)]dx + g(θ̂)

and ∣∣∣∣
∫ θ̂+C

θ̂−C

(θ̂ − x)[Fn(x) − F (x)]dx

∣∣∣∣ ≤ 2C2 sup
x

|Fn(x) − F (x)|.

Hence, the second required result follows.

Exercise 38 (#5.104). Let X1, ..., Xn be random variables. For any
estimator θ̂, its jackknife variance estimator is defined as

v
J

=
n − 1

n

n∑
i=1

⎛
⎝θ̂−i − 1

n

n∑
j=1

θ̂−j

⎞
⎠

2

,

where θ̂−i is the same as θ̂ but is based on n − 1 observations X1, ..., Xi−1,
Xi+1, ..., Xn, i = 1, ..., n. Let X̄ be the sample mean and θ̂ = X̄2. Show
that

v
J

=
4X̄2ĉ2

n − 1
− 4X̄ĉ3

(n − 1)2
+

ĉ4 − ĉ2
2

(n − 1)3
,

where ĉk = n−1∑n
i=1(Xi − X̄)k, k = 2, 3, 4.

Solution. Let X̄−i be the sample mean based on X1, ..., Xi−1, Xi+1, ..., Xn,
i = 1, ..., n. Then θ̂−i = X̄2

−i,

X̄−i =
nX̄ − Xi

n − 1
,

X̄−i − X̄ =
X̄ − Xi

n − 1
,

X̄−i + X̄ =
X̄ − Xi

n − 1
+ 2X̄,

and
1
n

n∑
i=1

X̄2
−i =

1
n

n∑
i=1

(
X̄ +

X̄ − Xi

n − 1

)2

= X̄2 +
ĉ2

(n − 1)2
.
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Therefore,

v
J

=
n − 1

n

n∑
i=1

⎛
⎝X̄2

−i − 1
n

n∑
j=1

X̄2
−j

⎞
⎠

2

=
n − 1

n

n∑
i=1

⎛
⎝X̄2

−i − X̄2 + X̄2 − 1
n

n∑
j=1

X̄2
−j

⎞
⎠

2

=
n − 1

n

n∑
i=1

(
X̄2

−i − X̄2)2 − (n − 1)

⎛
⎝X̄2 − 1

n

n∑
j=1

X̄2
−j

⎞
⎠

2

=
n − 1

n

n∑
i=1

(
X̄−i − X̄

)2 (
X̄−i + X̄

)2 − ĉ2
2

(n − 1)3

=
n − 1

n

n∑
i=1

(
X̄ − Xi

n − 1

)2(
X̄ − Xi

n − 1
+ 2X̄
)2

− ĉ2
2

(n − 1)3

=
1

n(n − 1)3

n∑
i=1

(
X̄ − Xi

)4 +
4X̄

n(n − 1)2

n∑
i=1

(X̄ − Xi)3

+
4X̄2

n(n − 1)

n∑
i=1

(X̄ − Xi)2 − ĉ2
2

(n − 1)3

=
ĉ4

(n − 1)3
− 4X̄ĉ3

(n − 1)2
+

4X̄2ĉ2

n − 1
− ĉ2

2

(n − 1)3

=
4X̄2ĉ2

n − 1
− 4X̄ĉ3

(n − 1)2
+

ĉ4 − ĉ2
2

(n − 1)3
.

Exercise 39 (#5.111). Let X1, ..., Xn be random variables and X∗
1 , ..., X∗

n

be a random sample (i.e., a simple random sample with replacement) from
X1, ..., Xn. For any estimator θ̂, its bootstrap variance estimator is v

B
=

Var∗(θ̂∗), where θ̂∗ is the same as θ̂ but is based on X∗
1 , ..., X∗

n and Var∗ is
the variance with respect to the distribution of X∗

1 , ..., X∗
n, given X1, ..., Xn.

Let X̄ be the sample mean and θ̂ = X̄2. Show that

v
B

=
4X̄2ĉ2

n
+

4X̄ĉ3

n2 +
ĉ4 − ĉ2

2

n3 ,

where ĉk = n−1∑n
i=1(Xi − X̄)k, k = 2, 3, 4.

Solution. Let E∗ be the expectation with respect to the distribution of
X∗

1 , ..., X∗
n, given X1, ..., Xn. Note that

E∗(X̄∗) = E∗(X∗
1 ) = X̄,
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Var∗(X̄∗) =
Var∗(X∗

1 )
n

=
ĉ2

n
,

and

E∗[(X∗
i − X̄)(X∗

j − X̄)(X∗
k − X̄)(X∗

l − X̄)] =

⎧⎨
⎩

ĉ4 if i = j = k = l

ĉ2
2 if i = k, j = l, i 
= j

0 otherwise

Thus,

E∗(X̄∗ − X̄)4 =
1
n4

∑
1≤i,j,k,l≤n

E∗[(X∗
i − X̄)(X∗

j − X̄)(X∗
k − X̄)(X∗

l − X̄)]

=
1
n4

∑
1≤i≤n

E∗(X∗
i − X̄)4

+
1
n4

∑
1≤i,j≤n,i 	=j

E∗[(X∗
i − X̄)2(X∗

j − X̄)2]

=
ĉ4

n3 +
(n − 1)ĉ2

2

n3

and, hence,

Var∗(X̄∗ − X̄)2 = E∗(X̄∗ − X̄)4 − [E∗(X̄∗ − X̄)2]2

=
ĉ4

n3 +
(n − 1)ĉ2

2

n3 − [Var∗(X̄∗)]2

=
ĉ4 − ĉ2

2

n3 .

Also,

E∗[(X∗
i − X̄)(X∗

j − X̄)(X∗
k − X̄)] =

{
ĉ3 if i = j = k

0 otherwise

and, thus,

E∗(X̄∗ − X̄)3 =
1
n3

∑
1≤i,j,k≤n

E∗[(X∗
i − X̄)(X∗

j − X̄)(X∗
k − X̄)]

=
ĉ3

n2 .

Let Cov∗ be the covariance with respect to the distribution of X∗
1 , ..., X∗

n,
given X1, ..., Xn. Then

Cov∗
(
(X̄∗ − X̄)2, X̄∗ − X̄

)
= E∗(X̄∗ − X̄)3 =

ĉ3

n2 .
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Combining all the results, we obtain that

Var∗(θ̂∗) = Var∗(X̄∗2)
= Var∗(X̄∗2 − X̄2)
= Var∗

(
(X̄∗ − X̄)(X̄∗ − X̄ + 2X̄)

)
= Var∗

(
(X̄∗ − X̄)2 + 2X̄(X̄∗ − X̄)

)
= Var∗

(
(X̄∗ − X̄)2

)
+ 4X̄2Var∗

(
X̄∗ − X̄)

)
+ 4X̄Cov∗

(
(X̄∗ − X̄)2, X̄∗ − X̄

)
=

4X̄2ĉ2

n
+

4X̄ĉ3

n2 +
ĉ4 − ĉ2

2

n3 .

Exercise 40 (#5.113). Let X1, ..., Xn be a random sample from a dis-
tribution on Rk with a finite Var(X1). Let X∗

1 , ..., X∗
n be a random sam-

ple from X1, ..., Xn. Show that for almost all given sequences X1, X2, ...,√
n(X̄∗ − X̄) →d Nk(0, Var(X1)), where X̄ is the sample mean based on

X1, ..., Xn and X̄∗ is the sample mean based on X∗
1 , ..., X∗

n.
Solution. Since we can take linear combinations of components of X̄∗−X̄,
it is enough to establish the result for the case k = 1, i.e., X1, ..., Xn are
random variables.

Let Yi = X∗
i − X̄, i = 1, ..., n. Given X1, ..., Xn, Y1, ..., Yn are indepen-

dent and identically distributed random variables with mean 0 and variance
ĉ2 = n−1∑n

i=1(Xi − X̄)2. Note that

X̄∗ − X̄ =
1
n

n∑
i=1

Yi

and

Var∗(X̄∗ − X̄) =
ĉ2

n
,

where Var∗ is the variance with respect to the distribution of X∗
1 , ..., X∗

n,
given X1, ..., Xn. To apply Lindeberg’s central limit theorem, we need to
check whether

1
nĉ2

n∑
i=1

E∗(Y 2
i I{|Yi|>ε

√
nĉ2})

converges to 0 as n → ∞, where ε > 0 is fixed and E∗ is the expectation with
respect to P∗, the conditional distribution of X∗

1 , ..., X∗
n given X1, ..., Xn.

Since Yi’s are identically distributed,

1
n

n∑
i=1

E∗(Y 2
i I{|Yi|>ε

√
nĉ2}) = E∗(Y 2

1 I{|Y1|>ε
√

nĉ2}).
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Note that

E∗(Y 2
1 I{|Y1|>ε

√
nĉ2}) ≤

(
max

1≤i≤n
X2

i

)
P∗
(
|Y1| > ε

√
nĉ2

)

≤
(

max
1≤i≤n

X2
i

)
E∗|Y1|2
ε2nĉ2

=
max1≤i≤n X2

i

ε2n
,

which converges to 0 a.s. (Exercise 46 in Chapter 1). Thus, by Lindeberg’s
central limit theorem, for almost all given sequences X1, X2, ...,

1√
nĉ2

n∑
i=1

Yi →d N(0, 1).

The result follows since limn ĉ2 = Var(X1) a.s.



Chapter 6

Hypothesis Tests

Exercise 1 (#6.2). Let X be a sample from a population P and consider
testing hypotheses H0 : P = P0 versus H1 : P = P1, where Pj is a known
population with probability density fj with respect to a σ-finite measure
ν, j = 0, 1. Let β(P ) be the power function of a UMP (uniformly most
powerful) test of size α ∈ (0, 1). Show that α < β(P1) unless P0 = P1.
Solution. Suppose that α = β(P1). Then the test T0 ≡ α is also a UMP
test by definition. By the uniqueness of the UMP test (e.g., Theorem 6.1(ii)
in Shao, 2003), we must have f1(x) = cf0(x) a.e. ν, which implies c = 1.
Therefore, f1(x) = f0(x) a.e. ν, i.e., P0 = P1.

Exercise 2 (#6.3). Let X be a sample from a population P and consider
testing hypotheses H0 : P = P0 versus H1 : P = P1, where Pj is a known
population with probability density fj with respect to a σ-finite measure
ν, j = 0, 1. For any α > 0, define

Tα(X) =

⎧⎨
⎩

1 f1(X) > c(α)f0(X)
γ(α) f1(X) = c(α)f0(X)
0 f1(X) < c(α)f0(X),

where 0 ≤ γ(α) ≤ 1, c(α) ≥ 0, E0[Tα(X)] = α, and Ej denotes the expec-
tation with respect to Pj . Show that
(i) if α1 < α2, then c(α1) ≥ c(α2);
(ii) if α1 < α2, then the type II error probability of Tα1 is larger than that
of Tα2 , i.e., E1[1 − Tα1(X)] > E1[1 − Tα2(X)].
Solution. (i) Assume α1 < α2. Suppose that c(α1) < c(α2). Then f1(x) ≥
c(α2)f0(x) implies that f1(x) > c(α1)f0(x) unless f1(x) = f0(x) = 0. Thus,
Tα1(x) ≥ Tα2(x) a.e. ν, which implies that E0[Tα1(X)] ≥ E0[Tα2(X)]. Then
α1 ≥ α2. This contradiction proves that c(α1) ≥ c(α2).
(ii) Assume α1 < α2. Since Tα1 is of level α2 and Tα2 is UMP, E1[Tα1(X)] ≤
E1[Tα2(X)]. The result follows if we can show that the equality can not

251
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hold. If E1[Tα1(X)] = E1[Tα2(X)], then Tα1 is also UMP. By the unique-
ness of the UMP and the fact that c(α1) ≥ c(α2) (part (i)),

Pj

(
c(α2)f0(X) ≤ f1(X) ≤ c(α1)f0(X)

)
= 0, j = 0, 1.

This implies that E0[Tα2(X)] = 0 < α2. Thus, E1[Tα1(X)] < E1[Tα2(X)],
i.e., E1[1 − Tα1(X)] > E1[1 − Tα2(X)].

Exercise 3 (#6.4). Let X be a sample from a population P and P0
and P1 be two known populations. Suppose that T∗ is a UMP test of size
α ∈ (0, 1) for testing H0 : P = P0 versus H1 : P = P1 and that β < 1,
where β is the power of T∗ when H1 is true. Show that 1 − T∗ is a UMP
test of size 1 − β for testing H0 : P = P1 versus H1 : P = P0.
Solution. Let fj be a probability density for Pj , j = 0, 1. By the unique-
ness of the UMP test,

T∗(X) =
{

1 f1(X) > cf0(X)
0 f1(X) < cf0(X).

Since α ∈ (0, 1) and β < 1, c must be a positive constant. Note that

1 − T∗(X) =
{

1 f0(X) > c−1f1(X)
0 f0(X) < c−1f1(X).

For testing H0 : P = P1 versus H1 : P = P0, clearly 1 − T∗ has size 1 − β.
The fact that it is UMP follows from the Neyman-Pearson Lemma.

Exercise 4 (#6.6). Let (X1, ..., Xn) be a random sample from a popula-
tion on R with Lebesgue density fθ. Let θ0 and θ1 be two constants. Find
a UMP test of size α for testing H0 : θ = θ0 versus H1 : θ = θ1 in the
following cases:
(i) fθ(x) = e−(x−θ)I(θ,∞)(x), θ0 < θ1;
(ii) fθ(x) = θx−2I(θ,∞)(x), θ0 
= θ1.
Solution. (i) Let X(1) be the smallest order statistic. Since

fθ1(X)
fθ0(X)

=
{

en(θ1−θ0) X(1) > θ1

0 θ0 < X(1) ≤ θ1,

the UMP test is either

T1 =
{

1 X(1) > θ1

γ θ0 < X(1) ≤ θ1

or

T2 =
{

γ X(1) > θ1

0 θ0 < X(1) ≤ θ1.
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When θ = θ0, P (X(1) > θ1) = en(θ0−θ1). If en(θ0−θ1) ≤ α, then T1 is the
UMP test since, under θ = θ0,

E(T1) = P (X(1) > θ1) + γP (θ0 < X(1) ≤ θ1)

= en(θ0−θ1) + γ(1 − en(θ0−θ1))
= α

with γ = (α − en(θ0−θ1))/(1 − en(θ0−θ1)). If en(θ0−θ1) > α, then T2 is the
UMP test since, under θ = θ0,

E(T2) = γP (X(1) > θ1) = γen(θ0−θ1) = α

with γ = α/en(θ0−θ1).
(ii) Suppose θ1 > θ0. Then

fθ1(X)
fθ0(X)

=

{
θn
1

θn
0

X(1) > θ1

0 θ0 < X(1) ≤ θ1.

The UMP test is either

T1 =
{

1 X(1) > θ1

γ θ0 < X(1) ≤ θ1

or

T2 =
{

γ X(1) > θ1

0 θ0 < X(1) ≤ θ1.

When θ = θ0, P (X(1) > θ1) = θn
0 /θn

1 . If θn
0 /θn

1 ≤ α, then T1 is the UMP
test since, under θ = θ0,

E(T1) =
θn
0

θn
1

+ γ

(
1 − θn

0

θn
1

)
= α

with γ = (α − θn
0

θn
1
)/(1 − θn

0
θn
1
). If θn

0 /θn
1 > α, then T2 is the UMP test since,

under θ = θ0,

E(T2) = γ
θn
0

θn
1

= α

with γ = αθn
1 /θn

0 .
Suppose now that θ1 < θ0. Then

fθ1(X)
fθ0(X)

=

{
θn
1

θn
0

X(1) > θ0

∞ θ1 < X(1) ≤ θ0.

The UMP test is either

T1 =
{

0 X(1) > θ0

γ θ1 < X(1) ≤ θ0
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or

T2 =
{

γ X(1) > θ0

1 θ1 < X(1) ≤ θ0.

When θ = θ0, E(T1) = 0 and E(T2) = γ. Hence, the UMP test is T2 with
γ = α.

Exercise 5 (#6.7). Let f1, ..., fm+1 be Borel functions on Rp that are in-
tegrable with respect to a σ-finite measure ν. For given constants t1, ..., tm,
let T be the class of Borel functions φ (from Rp to [0, 1]) satisfying∫

φfidν ≤ ti, i = 1, ..., m,

and T0 be the set of φ’s in T satisfying∫
φfidν = ti, i = 1, ..., m.

Show that if there are constants c1, ..., cm such that

φ∗(x) =
{

1 fm+1(x) > c1f1(x) + · · · + cmfm(x)
0 fm+1(x) < c1f1(x) + · · · + cmfm(x)

is a member of T0, then φ∗ maximizes
∫

φfm+1dν over φ ∈ T0. Show that
if ci ≥ 0 for all i, then φ∗ maximizes

∫
φfm+1dν over φ ∈ T .

Solution. Suppose that φ∗ ∈ T0. By the definition of φ∗, for any other
φ ∈ T0,

(φ∗ − φ)(fm+1 − c1f1 − · · · − cmfm) ≥ 0.

Therefore ∫
(φ∗ − φ)(fm+1 − c1f1 − · · · − cmfm)dν ≥ 0,

i.e., ∫
(φ∗ − φ)fm+1dν ≥

m∑
i=1

ci

∫
(φ∗ − φ)fidν = 0.

Hence φ∗ maximizes
∫

φfm+1dν over φ ∈ T0. If ci ≥ 0, for φ ∈ T , we still
have

(φ∗ − φ)(fm+1 − c1f1 − · · · − cmfm) ≥ 0

and, thus, ∫
(φ∗ − φ)fm+1dν ≥

n∑
i=1

ci

∫
(φ∗ − φ)fidν ≥ 0,

because ci

∫
(φ∗−φ)fidν ≥ 0 for each i. Therefore φ∗ maximizes

∫
φfm+1dν

over φ ∈ T .
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Exercise 6 (#6.9). Let f0 and f1 be Lebesgue integrable functions on R
and

φ∗(x) =
{

1 f0(x)<0 or f0(x)=0, f1(x)≥0
0 otherwise.

Show that φ∗ maximizes
∫

φ(x)f1(x)dx over all Borel functions φ on R
satisfying 0 ≤ φ(x) ≤ 1 and

∫
φ(x)f0(x)dx =

∫
φ∗(x)f0(x)dx.

Solution. From the definition of φ∗,
∫

φ∗(x)f0(x)dx =
∫

{f0(x)<0} f0(x)dx.
Since 0 ≤ φ(x) ≤ 1 and

∫
φ(x)f0(x)dx =

∫
φ∗(x)f0(x)dx,

0 ≤
∫

{f0(x)>0}
φ(x)f0(x)dx

=
∫

φ(x)f0(x)dx −
∫

{f0(x)<0}
φ(x)f0(x)dx

=
∫

φ∗(x)f0(x)dx −
∫

{f0(x)<0}
φ(x)f0(x)dx

=
∫

{f0(x)<0}
f0(x)dx −

∫
{f0(x)<0}

φ(x)f0(x)dx

=
∫

{f0(x)<0}
[1 − φ(x)]f0(x)dx

≤ 0.

That is, ∫
{f0(x)>0}

φ(x)f0(x)dx =
∫

{f0(x)<0}
[1 − φ(x)]f0(x)dx = 0.

Hence, φ(x) = 0 a.e. on the set {f0(x) > 0} and φ(x) = 1 a.e. on the set
{f0(x) < 0}. Then, the result follows from∫

[φ∗(x) − φ(x)]f1(x)dx =
∫

{f0(x)<0}
[1 − φ(x)]f1(x)dx

−
∫

{f0(x)>0}
φ(x)f1(x)dx

+
∫

{f0(x)=0,f1(x)≥0}
[1 − φ(x)]f1(x)dx

−
∫

{f0(x)=0,f1(x)<0}
φ(x)f1(x)dx

=
∫

{f0(x)=0,f1(x)≥0}
[1 − φ(x)]f1(x)dx

−
∫

{f0(x)=0,f1(x)<0}
φ(x)f1(x)dx

≥ 0.
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Exercise 7 (#6.10). Let F1 and F2 be two cumulative distribution func-
tions on R. Show that F1(x) ≤ F2(x) for all x if and only if

∫
g(x)dF2(x) ≤∫

g(x)dF1(x) for any nondecreasing function g.
Solution. If

∫
g(x)dF2(x) ≤

∫
g(x)dF1(x) for any nondecreasing function

g, then

1 − F2(y) =
∫

I(y,∞)(x)dF2(x) ≤
∫

I(y,∞)(x)dF1(x) = 1 − F1(y)

for any y, since I(y,∞)(x) is nondecreasing. Assume now that F1(x) ≤ F2(x)
for all x. Then, for any t ∈ R, {x : F1(x) ≥ t} ⊂ {x : F2(x) ≥ t} and,
hence,

F−1
1 (t) = inf{x : F1(x) ≥ t} ≥ inf{x : F2(x) ≥ t} = F−1

2 (t)

for any t. Let U be a random variable having the uniform distribution on
(0, 1). Then F−1

j (U) has distribution Fj , j = 1, 2. If g is nondecreasing,
then g(F−1

1 (U)) ≥ g(F−1
2 (U)) and, therefore,∫

g(x)dF1(x) = E[g(F−1
1 (U))] ≥ E[g(F−1

2 (U))] =
∫

g(x)dF2(x).

Exercise 8 (#6.11). Let X be an observation with a probability density
in the family P = {fθ : θ ∈ Θ}, where Θ ⊂ R is the possible values of the
parameter θ.
(i) Show that P has monotone likelihood ratio in X when Θ = R and fθ is
the Lebesgue density of the double exponential distribution with location
parameter θ and a known scale parameter c.
(ii) Show that P has monotone likelihood ratio in X when Θ = R and fθ is
the Lebesgue density of the exponential distribution on the interval (θ, ∞)
with a known scale parameter c.
(iii) Show that P has monotone likelihood ratio in X when Θ = R and fθ

is the Lebesgue density of the logistic distribution with location parameter
θ and a known scale parameter c.
(iv) Show that P has monotone likelihood ratio in X when Θ = R and fθ

is the Lebesgue density of the uniform distribution on (θ, θ + 1).
(v) Show that P has monotone likelihood ratio in X when Θ = {1, 2, ...} and
fθ(x) =

(
θ
x

)(
N−θ
r−x

)
/
(
N
r

)
when x is an integer between r − θ and min{r, θ},

where r and N are known integers.
(vi) Show that P does not have monotone likelihood ratio in X when Θ = R
and fθ is the Lebesgue density of the Cauchy distribution with location
parameter θ and a known scale parameter c.
Solution. (i) We need to show fθ2(x)/fθ1(x) is nondecreasing in x for any
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θ1 < θ2 with at least one of fθi(x) is positive. For θ1 < θ2,

fθ2(x)
fθ1(x)

= e−(|θ2−x|−|θ1−x|)/c =

⎧⎨
⎩

e−(θ2−θ1)/c x ≤ θ1

e−(θ2+θ1−2x)/c θ1 < x ≤ θ2

e(θ2−θ1)/c x > θ2,

which is a nondecreasing function of x.
(ii) For θ1 < θ2,

fθ2(x)
fθ1(x)

=
{

0 θ1 < x ≤ θ2

e(θ2−θ1)/c x > θ2,

which is a nondecreasing function of x.
(iii) For θ1 < θ2,

fθ2(x)
fθ1(x)

= e(θ1−θ2)/c

(
1 + e(x−θ1)/c

1 + e(x−θ2)/c

)2

.

Since
d

dx

(
1 + e(x−θ1)/c

1 + e(x−θ2)/c

)
=

e(x−θ1)/c − e(x−θ2)/c

c(1 + e(x−θ2)/c)2
> 0

when θ1 < θ2, the ratio fθ2(x)/fθ1(x) is increasing in x.
(iv) For θ1 < θ2 < θ1 + 1,

fθ2(x)
fθ1(x)

=

⎧⎨
⎩

0 θ1 < x ≤ θ2

1 θ2 < x < θ1 + 1
∞ θ1 + 1 ≤ x < θ2 + 1.

For θ1 + 1 ≤ θ2,

fθ2(x)
fθ1(x)

=
{

0 θ1 < x < θ1 + 1
∞ θ2 ≤ x < θ2 + 1.

In any case, the ratio fθ2(x)/fθ1(x) is nondecreasing in x.
(v) Note that

fθ(x)
fθ−1(x)

=

(
θ
x

)(
N−θ
r−x

)
/
(
N
r

)
(
θ−1

x

)(
N−θ+1

r−x

)
/
(
N
r

) =
θ(N − θ − r + x + 1)
(θ − x)(N − θ + 1)

is an increasing function of x. Hence, for θ1 < θ2,

fθ2(x)
fθ1(x)

=
fθ1+1(x)
fθ1(x)

fθ1+2(x)
fθ1+1(x)

· · · fθ2(x)
fθ2−1(x)
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is a product of increasing functions in x and, hence, it is increasing in x.
(vi) For θ1 < θ2,

fθ2(x)
fθ1(x)

=
c2 + (x − θ1)2

c2 + (x − θ2)2
,

which converges to 1 when x → ±∞, is smaller than 1 when x = θ1, and is
larger than 1 when x = θ2. Hence, the ratio fθ2(x)/fθ1(x) is not monotone
in x.

Exercise 9. Let Θ ⊂ R and P = {fθ(x) : θ ∈ Θ} be a family of functions
on X ⊂ R satisfying fθ(x) > 0 for all θ ∈ Θ and x ∈ X . Assume that

∂2

∂θ∂x log fθ(x) exists.
(i) Show that P has monotone likelihood ratio in x is equivalent to one of
the following conditions:
(a) ∂2

∂θ∂x log fθ(x) ≥ 0 for all x and θ;
(b) fθ(x) ∂2

∂θ∂xfθ(x) ≥ ∂
∂θ fθ(x) ∂

∂xfθ(x) for all x and θ.
(ii) Let fθ(x) be the Lebesgue density of the noncentral chi-square distri-
bution χ2

1(θ) with the noncentrality parameter θ ≥ 0. Show that the family
P = {fθ(x) : θ ≥ 0} has monotone likelihood ratio in x.
Solution. (i) Note that

∂2

∂θ∂x
log fθ(x) =

∂

∂θ

∂
∂xfθ(x)
fθ(x)

=
∂2

∂θ∂xfθ(x)
fθ(x)

−
∂
∂xfθ(x) ∂

∂θ fθ(x)
[fθ(x)]2

.

Since fθ(x) > 0, conditions (a) and (b) are equivalent.
Condition (a) is equivalent to

∂

∂x
log fθ(x) =

∂
∂xfθ(x)
fθ(x)

is nondecreasing in θ for any fixed x. Hence, it is equivalent to, for θ1 < θ2
and any x,

∂
∂xfθ1(x)
fθ1(x)

≤
∂
∂xfθ2(x)
fθ2(x)

,

which is equivalent to, for θ1 < θ2 and any x,

∂

∂x

fθ2(x)
fθ1(x)

=
fθ1(x) ∂

∂xfθ2(x) − fθ2(x) ∂
∂xfθ1(x)

[fθ1(x)]2
≥ 0,

i.e., P has monotone likelihood ratio in x.
(ii) Let Z be a random variable having distribution N(

√
θ, 1). By definition,

Z2 has the noncentral chi-square distribution χ2
1(θ). Hence,

fθ(x) =
1

2
√

2πx

[
e−(

√
x−θ)2/2 + e−(

√
x+θ)2/2

]
.
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For 0 ≤ θ1 < θ2,

fθ2(x)
fθ1(x)

=
e−(

√
x−θ2)2/2 + e−(

√
x+θ2)2/2

e−(
√

x−θ1)2/2 + e−(
√

x+θ1)2/2

=
e−θ2

2/2(eθ2
√

x + e−θ2
√

x)
e−θ2

1/2(eθ1
√

x + e−θ1
√

x)
.

Hence, we may apply the result in (i) to functions gθ(y) = eθy +e−θy. Note
that

∂

∂y
gθ(y) = θ(eθy − e−θy),

∂

∂θ
gθ(y) = y(eθy − e−θy),

and
∂2

∂θ∂y
gθ(y) = θy(eθy + e−θy).

Hence,

gθ(y)
∂2

∂θ∂y
gθ(y) = θy(eθy + e−θy)2

≥ θy(eθy − e−θy)2

=
∂

∂y
gθ(y)

∂

∂θ
gθ(y),

i.e., condition (b) in (i) holds. Hence P has monotone likelihood ratio in y.
Since y=

√
x is an increasing function of x, P also has monotone likelihood

ratio in x.

Exercise 10 (#6.14). Let X = (X1, ..., Xn) be a random sample from a
distribution on R with Lebesgue density fθ, θ ∈ Θ = (0,∞). Let θ0 be a
positive constant. Find a UMP test of size α for testing H0 : θ ≤ θ0 versus
H1 : θ > θ0 when
(i) fθ(x) = θ−1e−x/θI(0,∞)(x);
(ii) fθ(x) = θ−1xθ−1I(0,1)(x);
(iii) fθ(x) is the density of N(1, θ);
(iv) fθ(x) = θ−ccxc−1e−(x/θ)c

I(0,∞)(x), where c > 0 is known.
Solution. (i) The family of densities has monotone likelihood ratio in
T (X) =

∑n
i=1 Xi, which has the gamma distribution with shape parameter

n and scale parameter θ. Under H0, 2T/θ0 has the chi-square distribution
χ2

2n. Hence, the UMP test is

T∗(X) =
{

1 T (X) > θ0χ
2
2n,α/2

0 T (X) ≤ θ0χ
2
2n,α/2,
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where χ2
r,α is the (1 − α)th quantile of the chi-square distribution χ2

r.
(ii) The family of densities has monotone likelihood ratio in T (X) =∑n

i=1 log Xi, which has the gamma distribution with shape parameter n
and scale parameter θ−1. Therefore, the UMP test is the same as T∗ in
part (i) of the solution but with θ0 replaced by θ−1

0 .
(iii) The family of densities has monotone likelihood ratio in T (X) =∑n

i=1(Xi − 1)2 and T (X)/θ has the chi-square distribution χ2
n. Therefore,

the UMP test is

T∗(X) =
{

1 T (X) > θ0χ
2
n,α

0 T (X) ≤ θ0χ
2
n,α.

(iv) The family of densities has monotone likelihood ratio in T (X) =∑n
i=1 Xc

i , which has the Gamma distribution with shape parameter n and
scale parameter θc. Therefore, the UMP test is the same as T∗ in part (i)
of the solution but with θ0 replaced by θc

0.

Exercise 11 (#6.15). Suppose that the distribution of X is in a family
{fθ : θ ∈ Θ} with monotone likelihood ratio in Y (X), where Y (X) has
a continuous distribution. Consider the hypotheses H0 : θ ≤ θ0 versus
H1 : θ > θ0, where θ0 ∈ Θ is known. Show that the p-value of the UMP
test is given by Pθ0(Y ≥ y), where y is the observed value of Y and Pθ is
the probability corresponding to fθ.
Solution. The UMP test of size α is

Tα =
{

1 Y ≥ cα

0 Y < cα,

where cα satisfies Pθ0(Y ≥ cα) = α. When y is the observed value of Y , the
rejection region of the UMP test is {y ≥ cα}. By the definition of p-value,
it is equal to

α̂ = inf{α : 0 < α < 1, Tα = 1}
= inf{α : 0 < α < 1, y ≥ cα}
= inf

y≥cα

Pθ0(Y ≥ cα)

≥ Pθ0(Y ≥ y),

where the inequality follows from Pθ0(Y ≥ y) ≤ Pθ0(Y ≥ cα) for any α such
that y ≥ cα. Let Fθ be the cumulative distribution function of Pθ. Since
Fθ0 is continuous, cα = F−1

θ0
(1 − α). Let α∗ = Pθ0(Y ≥ y) = 1 − Fθ0(y).

Since Fθ0 is continuous,

cα∗ = F−1
θ0

(1 − α∗) = F−1
θ0

(Fθ0(y)) ≤ y.

This means that α∗ ∈ {α : 0 < α < 1, y ≥ cα} and, thus, the p-value
α̂ ≤ α∗. Therefore, the p-value is equal to α∗ = Pθ0(Y ≥ y).
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Exercise 12 (#6.17). Let F and G be two known cumulative distribu-
tion functions on R and X be a single observation from the cumulative
distribution function θF (x) + (1 − θ)G(x), where θ ∈ [0, 1] is unknown.
(i) Find a UMP test of size α for testing H0 : θ ≤ θ0 versus H1 : θ > θ0,
where θ0 ∈ [0, 1] is known.
(ii) Show that the test T∗(X) ≡ α is a UMP test of size α for testing
H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2, where θj ∈ [0, 1] is known,
j = 1, 2, and θ1 < θ2.
Solution. (i) Let f(x) and g(x) be the Randon-Nikodym derivatives of
F (x) and G(x) with respect to the measure ν induced by F (x) + G(x),
respectively. The probability density of X is θf(x) + (1 − θ)g(x). For
0 ≤ θ1 < θ2 ≤ 1,

θ2f(x) + (1 − θ2)g(x)
θ1f(x) + (1 − θ1)g(x)

=
θ2

f(x)
g(x) + (1 − θ2)

θ1
f(x)
g(x) + (1 − θ1)

is nondecreasing in Y (x) = f(x)/g(x). Hence, the family of densities of X
has monotone likelihood ratio in Y (X) = f(X)/g(X) and a UMP test is
given as

T =

⎧⎨
⎩

1 Y (X) > c

γ Y (X) = c

0 Y (X) < c,

where c and γ are uniquely determined by E[T (X)] = α when θ = θ0.
(ii) For any test T , its power is

βT (θ) =
∫

T (x)[θf(x) + (1 − θ)g(x)]dν

= θ

∫
T (x)[f(x) − g(x)]dν +

∫
T (x)g(x)du,

which is a linear function of θ on [0, 1]. If T has level α, then βT (θ) ≤ α for
any θ ∈ [0, 1]. Since the power of T∗ is equal to the constant α, we conclude
that T∗ is a UMP test of size α.

Exercise 13 (#6.18). Let (X1, ..., Xn) be a random sample from the
uniform distribution on (θ, θ + 1), θ ∈ R. Suppose that n ≥ 2.
(i) Show that a UMP test of size α ∈ (0, 1) for testing H0 : θ ≤ 0 versus
H1 : θ > 0 is of the form

T∗(X(1), X(n)) =
{

0 X(1) < 1 − α1/n, X(n) < 1
1 otherwise,

where X(j) is the jth order statistic.
(ii) Does the family of all densities of (X(1), X(n)) have monotone likelihood
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ratio?
Solution A. (i) The Lebesgue density of (X(1), X(n)) is

fθ(x, y) = n(n − 1)(y − x)n−2I(θ,y)(x)I(x,θ+1)(y).

A direct calculation of βT∗(θ) =
∫

T∗(x, y)fθ(x, y)dxdy, the power function
of T∗, leads to

βT∗(θ) =

⎧⎪⎪⎨
⎪⎪⎩

0 θ < −α1/n

(θ + α1/n)n −α1/n ≤ θ ≤ 0
1 + α − (1 − θ)n 0 < θ ≤ 1 − α1/n

1 θ > 1 − α1/n.

For any θ1 ∈ (0, 1 − α1/n], by the Neyman-Pearson Lemma, the UMP test
T of size α for testing H0 : θ = 0 versus H1 : θ = θ1 is

T =

⎧⎨
⎩

1 X(n) > 1
α/(1 − θ1)n θ1 < X(1) < X(n) < 1
0 otherwise.

The power of T at θ1 is computed as

βT (θ1) = 1 − (1 − θ1)n + α,

which agrees with the power of T∗ at θ1. When θ > 1−α1/n, T∗ has power
1. Therefore T∗ is a UMP test of size α for testing H0 : θ ≤ 0 versus
H1 : θ > 0.
(ii) The answer is no. Suppose that the family of densities of (X(1), X(n))
has monotone likelihood ratio. By the theory of UMP test (e.g., Theorem
6.2 in Shao, 2003), there exists a UMP test T0 of size α ∈ (0, 1

2 ) for testing
H0 : θ ≤ 0 versus H1 : θ > 0 and T0 has the property that, for θ1 ∈
(0, 1−α1/n), T0 is UMP of size α0 = 1+α−(1−θ1)n for testing H0 : θ ≤ θ1
versus H1 : θ > θ1. Using the transformation Xi − θ1 and the result in (i),
the test

Tθ1(X(1), X(n)) =

{
0 X(1) < 1 + θ1 − α

1/n
0 , X(n) < 1 + θ1

1 otherwise

is a UMP test of size α0 for testing H0 : θ ≤ θ1 versus H1 : θ > θ1. At
θ = θ2 ∈ (θ1, 1−α1/n], it follows from part (i) of the solution that the power
of T0 is 1+α−(1−θ2)n and the power of Tθ1 is 1+α0−[1−(θ2−θ1)]n. Since
both T0 and Tθ1 are UMP tests, 1+α− (1−θ2)n = 1+α0 − [1− (θ2 −θ1)]n.
Because α0 = 1 + α − (1 − θ1)n, this means that

1 = (1 − θ1)n − (1 − θ2)n + [1 − (θ2 − θ1)]n
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holds for all 0 < θ1 < θ2 ≤ 1−α1/n, which is impossible. This contradiction
proves that the family of all densities of (X(1), X(n)) does not have monotone
likelihood ratio.
Solution B. This is an alternative solution to part (i) provided by Mr.
Jialiang Li in 2002 as a student at the University of Wisconsin-Madison. Let
βT (θ) be the power function of a test T . Since βT∗(θ) = 1 when θ > 1−α1/n,
it suffices to show that βT∗(θ) ≥ βT (θ) for θ ∈ (0, 1 − α1/n) and any other
test T . Define A = {0 < X(1) ≤ X(n) < 1}, B = {θ < X(1) ≤ X(n) < 1},
and C = {1 < X(1) ≤ X(n) < θ + 1}. Then

βT∗(θ) − βT (θ) = E[(T∗ − T )IB ] + E[(T∗ − T )IC ]
= E[(T∗ − T )IB ] + E[(1 − T )IC ]
≥ E(T∗IB) − E(TIB)
= E(T∗IA) − E(TIB)
≥ E(T∗IA) − E(TIA)
= βT∗(0) − βT (0)
= α − βT (0),

where the second equality follows from T∗ = 1 when (X(1), X(n)) ∈ C, the
third equality follows from T∗ = 0 when (X(1), X(n)) ∈ A but (X(1), X(n)) 
∈
B (since 0 < X(1) ≤ θ ≤ 1 − α1/n), and the second inequality follows from
IA ≥ IB . Therefore, if T has level α, then βT∗(θ) ≥ βT (θ) for all θ > 0.

Exercise 14 (#6.19). Let X = (X1, ..., Xn) be a random sample from
the discrete uniform distribution on points 1, ..., θ, where θ = 1, 2, ....
(i) Consider H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 > 0 is known. Show
that

T∗(X) =
{

1 X(n) > θ0

α X(n) ≤ θ0

is a UMP test of size α.
(ii) Consider H0 : θ = θ0 versus H1 : θ 
= θ0. Show that

T∗(X) =
{

1 X(n) > θ0 or X(n) ≤ θ0α
1/n

0 otherwise

is a UMP test of size α.
(iii) Show that the results in (i) and (ii) still hold if the discrete uniform
distribution is replaced by the uniform distribution on the interval (0, θ),
θ > 0.
Solution A. In (i)-(ii), without loss of generality we may assume that θ0
is an integer.
(i) Let Pθ be the probability distribution of the largest order statistic X(n)
and Eθ be the expectation with respect to Pθ. The family {Pθ : θ = 1, 2, ...}
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is dominated by the counting measure and has monotone likelihood ratio
in X(n). Therefore, a UMP test of size α is

T1(X) =

⎧⎨
⎩

1 X(n) > c

γ X(n) = c

0 X(n) < c,

where c is an integer and γ ∈ [0, 1] satisfying

Eθ0(T1) = 1 −
(

c

θ0

)n

+ γ
cn − (c − 1)n

θn
0

= α.

For any θ > θ0, the power of T1 is

Eθ(T1) = Pθ(X(n) > c) + γPθ(X(n) = c)

= 1 − cn

θn
+ γ

cn − (c − 1)n

θn

= 1 − (1 − α)
θn
0

θn
.

On the other hand, for θ ≥ θ0, the power of T∗ is

Eθ(T∗) = Pθ(X(n) > θ0) + αPθ(X(n) ≤ θ0) = 1 − θn
0

θn
+ α

θn
0

θn
.

Hence, T∗ has the same power as T1. Since

sup
θ≤θ0

Eθ(T∗) = sup
θ≤θ0

αPθ(X(n) ≤ θ0) = αPθ0(X(n) ≤ θ0) = α,

T∗ is a UMP test of size α.
(ii) Consider H0 : θ = θ0 versus H1 : θ > θ0. The test T1 in (i) is UMP. For
θ > θ0,

Eθ(T∗) = Pθ(X(n) > θ0) + Pθ(X(n) ≤ θ0α
1/n) = 1 − θn

0

θn
+

αθn
0

θn
,

which is the same as the power of T1. Now, consider hypotheses H0 : θ = θ0
versus H1 : θ < θ0. The UMP test is

T2(X) =

⎧⎨
⎩

1 X(n) < d

η X(n) = d

0 X(n) > d

with

Eθ0(T2) =
(d − 1)n

θn
0

+ η
cn − (c − 1)n

θn
0

= α.
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For θ ≤ θ0,

Eθ(T∗) = Pθ(X(n) > θ0) + Pθ(X(n) ≤ θ0α
1/n)

= Pθ(X(n) ≤ θ0α
1/n)

= min
{

1,
αθn

0

θn

}
.

On the other hand, the power of T2 when θ ≥ θ0α
1/n is

Eθ(T2) = Pθ(X(n) < d) + ηPθ(X(n) = d)

=
(d − 1)n

θn
+ η

dn − (d − 1)n

θn

= α
θn
0

θn
.

Thus, we conclude that T∗ has size α and its power is the same as the power
of T1 when θ > θ0 and is no smaller than the power of T2 when θ < θ0.
Thus, T∗ is UMP.
(iii) The results for the uniform distribution on (0, θ) can be established
similarly. Instead of providing details, we consider an alternative solution
for (i)-(iii).
Solution B. (i) Let T be a test of level α. For θ > θ0,

Eθ(T∗) − Eθ(T ) = Eθ[(T∗ − T )I{X(n)>θ0}] + Eθ[(T∗ − T )I{X(n)≤θ0}]
= Eθ[(1 − T )I{X(n)>θ0}] + Eθ[(α − T )I{X(n)≤θ0}]
≥ Eθ[(α − T )I{X(n)≤θ0}]
= Eθ0 [(α − T )I{X(n)≤θ0}](θ0/θ)n

= Eθ0(α − T )(θ0/θ)n

≥ 0,

where the second equality follows from the definition of T∗ and the third
equality follows from a scale transformation. Hence, T∗ is UMP. It remains
to show that the size of T∗ is α, which has been shown in part (i) of Solution
A.
(ii) Let T be a test of level α. For θ > θ0,

Eθ(T∗) − Eθ(T ) = Eθ[(1 − T )I{X(n)>θ0}] + Eθ[(T∗ − T )I{X(n)≤θ0}]
≥ Eθ[(T∗ − T )I{X(n)≤θ0}]

= Pθ(X(n) ≤ θ0α
1/n) − Eθ(TI{X(n)≤θ0})

= α(θ0/θ)n − Eθ0(TI{X(n)≤θ0})(θ0/θ)n

≥ 0.
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Similarly, for θ < θ0,

Eθ(T∗) − Eθ(T ) ≥ Pθ(X(n) ≤ θ0α
1/n) − Eθ(T ),

which is equal to 1 − Eθ(T ) ≥ 0, if θ ≤ θ0α
1/n, and is equal to

α(θ0/θ)n − Eθ(T ) = α(θ0/θ)n − Eθ0(T )(θ0/θ)n ≥ 0

if θ0 > θ > θ0α
1/n. Hence, T∗ is UMP. It remains to show that the size of

T∗ is α, which has been shown in part (ii) of Solution A.
(iii) Note that the results for the power hold for both discrete uniform
distribution and uniform distribution on (0, θ). Hence, it remains to show
that T∗ has size α. For T∗ in (i),

sup
θ≤θ0

Eθ(T∗) = sup
θ≤θ0

αPθ(X(n) ≤ θ0) = αPθ0(X(n) ≤ θ0) = α.

For T∗ in (ii),
Eθ0(T∗) = Pθ0(X(n) ≤ θ0α

1/n) = α.

Exercise 15 (#6.20). Let (X1, ..., Xn) be a random sample from the ex-
ponential distribution on the interval (a,∞) with scale parameter θ, where
a ∈ R and θ > 0.
(i) Derive a UMP test of size α for testing H0 : a = a0 versus H1 : a 
= a0,
when θ is known.
(ii) For testing H0 : a = a0 versus H1 : a = a1 < a0, show that any UMP
test T∗ of size α has power βT∗(a1) = 1 − (1 − α)e−n(a0−a1)/θ.
(iii) For testing H0 : a = a0 versus H1 : a = a1 < a0, show that the power
of any size α test that rejects H0 when Y ≤ c1 or Y ≥ c2 is the same as
that in part (ii), where Y = (X(1) − a0)/

∑n
i=1(Xi − X(1)) and X(1) is the

smallest order statistic and 0 ≤ c1 < c2 are constants.
(iv) Derive a UMP test of size α for testing H0 : a = a0 versus H1 : a 
= a0.
(v) Derive a UMP test of size α for testing H0 : θ = θ0, a = a0 versus
H1 : θ < θ0, a < a0.
Solution. (i) Let Yi = e−Xi/θ, i = 1, ..., n. Then (Y1, ..., Yn) is a random
sample from the uniform distribution on (0, e−a/θ). Note that the hypothe-
ses H0 : a = a0 versus H1 : a 
= a0 are the same as H0 : e−a/θ = e−a0/θ

versus H1 : e−a/θ 
= e−a0/θ. Also, the largest order statistic of Y1, ..., Yn is
equal to e−X(1)/θ. Hence, it follows from the previous exercise that a UMP
test of size α is

T =
{

1 X(1) < a0 or X(1) ≥ a0 − θ
n log α

0 otherwise.

(ii) A direct calculation shows that, at a1 < a0, the power of the UMP test
in part (i) of the solution is 1 − (1 − α)e−n(a0−a1)/θ. Hence, for each fixed
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θ, the power of T∗ at a1 can not be larger than 1 − (1 − α)e−n(a0−a1)/θ.
On the other hand, in part (iii) it is shown that there are tests for testing
H0 : a = a0 versus H1 : a = a1 < a0 that have power 1−(1−α)e−n(a0−a1)/θ

at a1 < a0. Therefore, the power of T∗ at a1 can not be smaller than
1 − (1 − α)e−n(a0−a1)/θ.
(iii) Let

T =
{

1 Y ≤ c1 or Y ≥ c2

0 otherwise
be a test of size α for testing H0 : a = a0 versus H1 : a = a1 < a0.
Let Z =

∑n
i=1(Xi − X(1)). By Exercise 27 in Chapter 2, Z and X(1) are

independent. Then, the power of T at a1 is

E(T ) = 1 − P (c1 < Y < c2)
= 1 − P (a0 + c1Z < X(1) < a0 + c2Z)

= 1 − n

θ
E

(∫ a0+c2Z

a0+c1Z

e−n(x−a1)/θdx

)

= 1 − E
(
e−n(a0−a1+c1Z)/θ − e−n(a0−a1+c2Z)/θ

)
= 1 − e−n(a0−a1)/θE

(
e−nc1Z/θ − e−nc2Z/θ

)
.

Since 2Z/θ has the chi-square distribution χ2
2(n−1) (Exercise 7 in Chapter

2), b = E
(
e−nc1Z/θ − e−nc2Z/θ

)
does not depend on θ. Since T has size α,

E(T ) at a = a0, which is 1 − b, is equal to α. Thus, b = 1 − α and

E(T ) = 1 − (1 − α)e−n(a0−a1)/θ.

(iv) Consider the test T in (iii) with c1 = 0 and c2 = c > 0. From the result
in (iii), T has size α and is UMP for testing H0 : a = a0 versus H1 : a < a0.
Hence, it remains to show that T is UMP for testing H0 : a = a0 versus
H1 : a > a0. Let a1 > a0 be fixed and θ be fixed. From the Neyman-
Pearson lemma, a UMP test for H0 : a = a0 versus H1 : a = a1 has the
rejection region {

ea1/θI(a1,∞)(X(1))
ea0/θI(a0,∞)(X(1))

> c0

}

for some constant c0. Since a1 > a0, this rejection region is the same as
{Y > c} for some constant c. Since the region {Y > c} does not depend on
(a, θ), T is UMP for testing H0 : a = a0 versus H1 : a > a0.
(v) For fixed θ1 < θ0 and a1 < a0, by the Neyman-Pearson lemma, the
UMP test of size α for H0 : a = a0, θ = θ0 versus H1 : a = a1, θ = θ1 has
the rejection region

R =

{
θn
0 e−
∑n

i=1
(Xi−a1)/θ1I(a1,∞)(X(1))

θn
1 e−
∑n

i=1
(Xi−a0)/θ0I(a0,∞)(X(1))

> c0

}
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for some c0. The ratio in the previous expression is equal to ∞ when
a < X(1) ≤ a0 and

θn
0

θn
1

ena1/θ1e−na0/θ0e(θ−1
0 −θ−1

1 )
∑n

i=1
Xi

when X(1) > a0. Since θ−1
0 − θ−1

1 < 0,

R =
{
X(1) ≤ a0

}
∪
{

n∑
i=1

Xi < c

}

for some constant c satisfying P (R) = α when a = a0 and θ = θ0. Hence,
c depends on a0 and θ0. Since this test does not depend on (a1, θ1), it is
UMP for testing H0 : θ = θ0, a = a0 versus H1 : θ < θ0, a < a0.

Exercise 16 (#6.22). In Exercise 11(i) in Chapter 3, derive a UMP test
of size α ∈ (0, 1) for testing H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 > 1 is
known.
Solution. From Exercise 11(i) in Chapter 3, the probability density (with
respect to the sum of Lebesgue measure and point mass at 1) of the sufficient
and complete statistic X(n), the largest order statistic, is

fθ(x) = θ−nI{1}(x) + nθ−nxn−1I(1,θ)(x).

The family {fθ : θ > 1} has monotone likelihood ratio in X(n). Hence, a
UMP test of size α is

T =

⎧⎨
⎩

1 X(n) > c

γ X(n) = c

0 X(n) < c,

where c and γ are determined by the size of T . When θ = θ0 and 1 < c ≤ θ0,

E(T ) = P (X(n) > c) =
n

θn
0

∫ θ0

c

xn−1dx = 1 − cn

θn
0

.

If θ0 > (1 − α)−1/n, then T has size α with c = θ0(1 − α)1/n and γ = 0. If
θ0 > (1 − α)−1/n, then the size of T is

P (X(n) > 1) + γP (X(n) = 1) = 1 − 1
θn
0

+
γ

θn
0

.

Hence, T has size α with c = 1 and γ = 1 − (1 − α)θn
0 .

Exercise 17 (#6.25). Let (X1, ..., Xn) be a random sample from N(θ, 1).
Show that T = I(−c,c)(X̄) is a UMP test of size α ∈ (0, 1

2 ) for testing
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H0 : |θ| ≥ θ1 versus H1 : |θ| < θ1, where X̄ is the sample mean and θ1 > 0
is a constant. Provide a formula for determining c.
Solution. From Theorem 6.3 in Shao (2003), the UMP test is of the form
T = I(c1,c2)(X̄), where c1 and c2 satisfy

Φ
(√

n(c2 + θ1)
)

− Φ
(√

n(c1 + θ1)
)

= α,

Φ
(√

n(c2 − θ1)
)

− Φ
(√

n(c1 − θ1)
)

= α,

and Φ is the cumulative distribution function of N(0, 1). Let Yi = −Xi,
i = 1, ..., n. Then (Y1, ..., Yn) is a random sample from N(−θ, 1). Since
the hypotheses are not changed with θ replaced by −θ, the UMP test for
testing the same hypotheses but based on Yi’s is T1 = I(c1,c2)(−X̄) with
the same c1 and c2. By the uniqueness of the UMP test, T = T1 and, thus,
c1 = −c and c2 = c > 0. The constraints on ci’s reduce to

Φ
(√

n(θ1 + c)
)

− Φ
(√

n(θ1 − c)
)

= α.

Exercise 18 (#6.29). Consider Exercise 12 with H0 : θ ∈ [θ1, θ2] versus
H1 : θ 
∈ [θ1, θ2], where 0 < θ1 ≤ θ2 < 1 are constants.
(i) Show that a UMP test does not exist.
(ii) Obtain a UMPU (uniformly most power unbiased) test of size α.
Solution. (i) Let βT (θ) be the power function of a test T . For any test T
of level α such that βT (θ) is not constant, either βT (0) or βT (1) is strictly
less than α. Without loss of generality, assume that βT (0) < α. This means
that at θ = 0, which is one of parameter values under H1, the power of T
is smaller than T∗ ≡ α. Hence, any T with nonconstant power function
can not be UMP. From Exercise 12, the UMP test of size α for testing
H0 : θ ≤ θ1 versus H1 : θ > θ1 clearly has power larger than α at θ = 1.
Hence, T∗ ≡ α is not UMP. Therefore, a UMP test does not exists.
(ii) If a test T of level α has a nonconstant power function, then either βT (0)
or βT (1) is strictly less than α and, hence, T is not unbiased. Therefore,
only tests with constant power functions may be unbiased. This implies
that T∗ ≡ α is a UMPU test of size α.

Exercise 19. Let X be a random variable with probability density fθ.
Assume that {fθ : θ ∈ Θ} has monotone likelihood ratio in X, where
Θ ⊂ R. Suppose that for each θ0 ∈ Θ, a UMPU test of size α for testing
H0 : θ = θ0 has the acceptance region {c1(θ0) ≤ X ≤ c2(θ0)} and is strictly
unbiased (i.e., its power is larger than α when θ 
= θ0). Show that the
functions c1(θ) and c2(θ) are increasing in θ.
Solution. Let θ0 < θ1 be two values in Θ and T0 and T1 be the UMPU tests
with acceptance regions {c1(θ0) ≤ X ≤ c2(θ0)} and {c1(θ1) ≤ X ≤ c2(θ1)},
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respectively. Let ψ(X) = T1(X) − T0(X) and Eθ be the expectation with
respect to fθ. It follows from the strict unbiasedness of the tests that

Eθ0ψ(X) = Eθ0(T1) − α > 0 > α − Eθ1 = Eθ1ψ(X).

If [c1(θ0), c2(θ0)] ⊂ [c1(θ1), c2(θ1)], then ψ(X) ≤ 0 and Eθ0ψ(X) ≤ 0,
which is impossible. If [c1(θ1), c2(θ1)] ⊂ [c1(θ0), c2(θ0)], then ψ(X) ≥ 0
and Eθ1ψ(X) ≥ 0, which is impossible. Hence, neither of the two intervals
contain the other. If c1(θ1) ≤ c1(θ0) ≤ c2(θ1) ≤ c2(θ0), then there is
a x0 ∈ [c1(θ0), c2(θ1)] such that ψ(X) ≥ 0 if X < x0 and ψ(X) ≤ 0 if
X ≥ x0, i.e., the function ψ has a single change of sign. Since the family
has monotone likelihood ratio in X, it follows from Lemma 6.4(i) in Shao
(2003) that there is a θ∗ such that Eθψ(X) ≤ 0 for θ < θ∗ and Eθψ(X) ≥ 0
for θ > θ∗. But this contradicts to the fact that Eθ0ψ(X) > 0 > Eθ1ψ(X)
and θ0 < θ1. Therefore, we must have c1(θ1) > c1(θ0) and c2(θ1) > c2(θ0),
i.e., both c1(θ) and c2(θ) are increasing in θ.

Exercise 20 (#6.34). Let X be a random variable from the geometric
distribution with mean p−1. Find a UMPU test of size α for H0 : p = p0
versus H1 : p 
= p0, where p0 ∈ (0, 1) is known.
Solution. The probability density of X with respect to the counting mea-
sure is

f(x) = exp
{

x log(1 − p) + log
p

1 − p

}
I{1,2,...}(X),

which is in an exponential family. Applying Theorem 6.4 in Shao (2003),
we conclude that the UMPU test of size α is

T∗ =

⎧⎨
⎩

1 X < c1 or X > c2

γi X = ci i = 1, 2
0 otherwise,

where ci’s are positive integers and ci’s and γi’s are uniquely determined
by

α

p0
=

c1−1∑
k=1

(1 − p0)k−1 +
∞∑

k=c2+1

(1 − p0)k−1 +
∑

i=1,2

γi(1 − p0)ci−1

and

α

p2
0

=
c1−1∑
k=1

k(1 − p0)k−1 +
∞∑

k=c2+1

k(1 − p0)k−1 +
∑

i=1,2

γici(1 − p0)ci−1.

Exercise 21 (#6.36). Let X = (X1, ..., Xn) be a random sample from
N(µ, σ2) with unknown µ and σ2.
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(i) Show that the power of the one-sample t-test depends on a noncentral
t-distribution.
(ii) Show that the power of the one-sample t-test is an increasing function
of (µ − µ0)/σ for testing H0 : µ ≤ µ0 versus H1 : µ > µ0 and of |µ − µ0|/σ
for testing H0 : µ = µ0 versus H1 : µ 
= µ0, where µ0 is a known constant.
Note. For testing H0 : µ ≤ µ0 versus H1 : µ > µ0, the one-sample t-test of
size α rejects H0 if and only if t(X) > tn−1,α, where t(X) =

√
n(X̄ −µ0)/S,

X̄ is the sample mean, S2 is the sample variance, and tr,α is the (1 − α)th
quantile of the t-distribution tr. For testing H0 : µ = µ0 versus H1 : µ 
= µ0,
the one-sample t-test of size α rejects H0 if and only if |t(X)| > tn−1,α/2.
Solution. (i) Let Z =

√
n(X̄ − µ0)/σ, U = S/σ, and δ =

√
n(µ − µ0)/σ.

Then Z is distributed as N(δ, 1), (n − 1)U2 has the chi-square distribution
χ2

n−1, and Z and U are independent. By definition, t(X) = Z/U has the
noncentral t-distribution tn−1(δ) with the noncentrality parameter δ.
(ii) For testing H0 : µ ≤ µ0 versus H1 : µ > µ0, the power of the one-sample
t-test is

P
(
t(X) > tn−1,α

)
= P
(
Z > tn−1,αU

)
= E [Φ(δ − tn−1,αU)] ,

where Φ is the cumulative distribution function of N(0, 1). Since Φ is an
increasing function, the power is an increasing function of δ.

For testing H0 : µ = µ0 versus H1 : µ 
= µ0, the power of the one-sample
t-test is

P
(
|t(X)| > tn−1,α/2

)
= P
(
Z > tn−1,α/2U

)
+ P
(
Z < −tn−1,α/2U

)
= E
[
Φ(δ − tn−1,α/2U) + Φ(−δ − tn−1,α/2U)

]
= E
[
Φ(|δ| − tn−1,α/2U) + Φ(−|δ| − tn−1,α/2U)

]
.

To show that the power is an increasing function of |δ|, it suffices to show
that Φ(x − a) + Φ(−x − a) is increasing in x > 0 for any fixed a > 0. The
result follows from

d

dx
[Φ(x − a) + Φ(−x − a)] =

e−(x−a)2/2 − e−(x+a)2/2

2π

=
e−(x2+a2)/2(eax − e−ax)

2π
> 0.

Exercise 22. Let X = (X1, ..., Xn) be a random sample from N(µ, σ2)
with unknown µ and σ2 and t(X) =

√
nX̄/S, where X̄ is the sample

mean and S2 is the sample variance. For testing H0 : µ/σ ≤ θ0 versus
H1 : µ/σ > θ0, find a test of size α that is UMP among all tests based on
t(X), where θ0 is a known constant.
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Solution. From the previous exercise, we know that t(X) has the noncen-
tral t-distribution tn−1(δ), where δ =

√
nµ/σ is the noncentrality parame-

ter. The Lebesgue density of t(X) is (e.g., Shao, 2003, p. 26)

fδ(t) =
∫ ∞

0
gδ(t, y)dy,

where

gδ(t, y) =
y(n−2)/2e−{[t/

√
y/(n−1)−δ]2+y}/2

2n/2Γ(n−1
2 )
√

π(n − 1)
.

We now show that the family {fδ(t) : δ ∈ R} has monotone likelihood ratio
in t. For δ1 < δ2, it suffices to show that

d

dt

fδ2(t)
fδ1(t)

=
f ′

δ2
(t)fδ1(t) − fδ2(t)f

′
δ1

(t)
[fδ1(t)]2

≥ 0, t ∈ R.

Since

f ′
δ(t) =

∫ ∞

0
[δ − t/

√
y/(n − 1)]gδ(t, y)dy = δfδ(t) − tf̃δ(t),

where

f̃δ(t) =
∫ ∞

0

√
y

n − 1
gδ(t, y)dy,

we obtain that

f ′
δ2

(t)fδ1(t) − fδ2(t)f
′
δ1

(t) = fδ1(t)fδ2(t)

[
δ2 − δ1 + t

(
f̃δ1(t)
fδ1(t)

− f̃δ2(t)
fδ2(t)

)]
.

For any fixed t ∈ R, the family of densities
{

gδ(t,y)
fδ(t) : δ ∈ R

}
is an exponen-

tial family having monotone likelihood ratio in t/
√

y. Hence, by Lemma
6.3 in Shao (2003), the integral f̃δ(t) is nonincreasing in δ when t > 0 and
is nondecreasing in δ when t < 0. Hence, for t > 0 and t < 0,

t

(
f̃δ1(t)
fδ1(t)

− f̃δ2(t)
fδ2(t)

)
≥ 0

and, therefore, f ′
δ2

(t)fδ1(t) − fδ2(t)f
′
δ1

(t) ≥ 0. Consequently, for testing
H0 : µ/σ ≤ θ0 versus H1 : µ/σ > θ0, a test of size α that is UMP among
all tests based on t(X) rejects H0 when t(X) > c, where c is the (1 − α)th
quantile of the noncentral t-distribution tn−1(

√
nθ0).

Exercise 23 (#6.37). Let (X1, ..., Xn) be a random sample from the
gamma distribution with unknown shape parameter θ and unknown scale
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parameter γ. Let θ0 > 0 and γ0 > 0 be known constants.
(i) For testing H0 : θ ≤ θ0 versus H1 : θ > θ0 and H0 : θ = θ0 versus
H1 : θ 
= θ0, show that there exist UMPU tests whose rejection regions are
based on V =

∏n
i=1(Xi/X̄), where X̄ is the sample mean.

(ii) For testing H0 : γ ≤ γ0 versus H1 : γ > γ0, show that a UMPU test
rejects H0 when

∑n
i=1 Xi > C(

∏n
i=1 Xi) for some function C.

Solution. (i) Let Y = log(
∏n

i=1 Xi) and U = nX̄. The joint density
of (X1, ..., Xn) can be written as

[
Γ(θ)γθ

]−n
eθY −U/γ−Y , which belongs to

an exponential family. From Theorem 6.4 in Shao (2003), UMPU tests
are functions of Y and U . By Basu’s theorem, V1 = Y − n log(U/n) =
log
(∏n

i=1(Xi/X̄)
)

satisfies the conditions in Lemma 6.7 of Shao (2003).
Hence, the rejection regions of the UMPU tests can be determined by using
V1. Since V = eV1 , the rejection regions of the UMPU tests can also be
determined by using V .
(ii) Let U = log(

∏n
i=1 Xi) and Y = nX̄. The joint density of (X1, ..., Xn)

can be written as
[
Γ(θ)γθ

]−n
e−γ−1Y +θU−U , From Theorem 6.4 in Shao

(2003), for testing H0 : γ ≤ γ0 versus H1 : γ > γ0, the UMPU test is

T ∗ =
{

1 Y > C1(U)
0 Y ≤ C1(U),

where C1 is a function such that E(T ∗|U) = α when γ = γ0. The result
follows by letting C(x) = C1(log x).

Exercise 24 (#6.39). Let X1 and X2 be independent observations from
the binomial distributions with sizes n1 and n2 and probabilities p1 and p2,
respectively, where ni’s are known and pi’s are unknown.
(i) Let Y = X2 and U = X1 + X2. Show that

P (Y = y|U = u) = Ku(θ)
(

n1

u − y

)(
n2

y

)
eθyIA(y), u = 0, 1, ..., n1 + n2,

where A = {y : y = 0, 1, ...,min{u, n2}, u − y ≤ n1}, θ = log p2(1−p1)
p1(1−p2)

, and

Ku(θ) =

⎡
⎣∑

y∈A

(
n1

u − y

)(
n2

y

)
eθy

⎤
⎦

−1

.

(ii) Find a UMPU test of size α for testing H0 : p1 ≥ p2 versus H1 : p1 < p2.
(iii) Repeat (ii) for H0 : p1 = p2 versus H1 : p1 
= p2.
Solution. (i) When u = 0, 1, ..., n1 + n2 and y ∈ A,

P (Y = y, U = u) =
(

n1

u − y

)(
n2

y

)
pu−y
1 (1 − p1)n1−u+ypy

2(1 − p2)n2−y
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and

P (U = u) =
∑
y∈A

(
n1

u − y

)(
n2

y

)
pu−y
1 (1 − p1)n1−u+ypy

2(1 − p2)n2−y.

Then, when y ∈ A,

P (Y = y|U = u) =
P (Y = y, U = u)

P (U = u)
=
(

n1

u − y

)(
n2

y

)
eθyKu(θ).

(ii) Since θ = log p2(1−p1)
p1(1−p2)

, the testing problem is equivalent to testing
H0 : θ ≤ 0 versus H1 : θ > 0. By Theorem 6.4 in Shao (2003), the UMPU
test is

T∗(Y, U) =

⎧⎨
⎩

1 Y > C(U)
γ(U) Y = C(U)
0 Y < C(U),

where C and γ are functions of U such that E(T∗|U) = α when θ = 0
(p1 = p2), which can be determined using the conditional distribution of Y
given U . When θ = 0, this conditional distribution is, by the result in (i),

P (Y = y|U = u) =
(

n1 + n2

u

)−1(
n1

u − y

)(
n2

y

)
IA(y), u = 0, 1, ..., n1 +n2.

(iii) The testing problem is equivalent to testing H0 : θ = 0 versus H1 : θ 
=
0. Thus, the UMPU test is

T∗ =

⎧⎨
⎩

1 Y > C1(U) or Y < C2(U)
γi(U) Y = Ci(U) i = 1, 2
0 C1(U) < Y < C2(U),

where Ci’s and γi’s are functions such that E(T∗|U) = α and E(T∗Y |U) =
αE(Y |U) when θ = 0, which can be determined using the conditional
distribution of Y given U in part (ii) of the solution.

Exercise 25 (#6.40). Let X1 and X2 be independently distributed as
the negative binomial distributions with sizes n1 and n2 and probabilities
p1 and p2, respectively, where ni’s are known and pi’s are unknown.
(i) Show that there exists a UMPU test of size α for testing H0 : p1 ≤ p2
versus H1 : p1 > p2.
(ii) Let Y = X1 and U = X1 + X2. Determine the conditional distribution
of Y given U when n1 = n2 = 1.
Solution. (i) The joint probability density of X1 and X2 is(

x1−1
n1−1

)(
x2−1
n2−1

)
pn1
1 pn2

2

(1 − p1)n1(1 − p2)n2
eθY +U log(1−p2)
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where θ = log(1−p1
1−p2

), Y = X1, and U = X1 + X2. The testing problem is
equivalent to testing H0 : θ ≥ 0 versus H1 : θ < 0. By Theorem 6.4 in Shao
(2003), the UMPU test is

T∗(Y, U) =

⎧⎨
⎩

1 Y < C(U)
γ(U) Y = C(U)
0 Y > C(U),

where C(U) and γ(U) satisfy E(T∗|U) = α when θ = 0.
(ii) When n1 = n2 = 1,

P (U = u) =
u−1∑
k=1

P (X1 = k, X2 = u − k)

=
p1p2(1 − p2)u−1

1 − p1

u−1∑
k=1

(
1 − p1

1 − p2

)k

=
p1p2(1 − p2)u−1

1 − p1

u−1∑
k=1

eθk

for u = 2, 3, ..., and

P (Y = y, U = u) = (1 − p1)y−1p1(1 − p2)u−y−1p2

for y = 1, ..., u − 1, u = 2, 3, .... Hence

P (Y = y|U = u) =
(1 − p1)y−1p1(1 − p2)u−y−1p2

p1p2(1−p2)u−1

1−p1

∑u−1
k=1 eθk

=
eθy∑u−1

k=1 eθk

for y = 1, ..., u − 1, u = 2, 3, .... When θ = 0, this conditional distribution
is the discrete uniform distribution on {1, ..., u − 1}.

Exercise 26 (#6.44). Let Xj , j = 1, 2, 3, be independent from the Pois-
son distributions with means λj , j = 1, 2, 3, respectively. Show that there
exists a UMPU test of size α for testing H0: λ1λ2 ≤λ2

3 versus H1: λ1λ2 >λ2
3.

Solution. The joint probability density for (X1, X2, X3) is

e−(λ1+λ2+λ3)

X1!X2!X3!
eX1 log λ1+X2 log λ2+X3 log λ3 ,

which is the same as

e−(λ1+λ2+λ3)

X1!X2!X3!
eθY +U1 log λ2+U2 log λ3 ,

where θ = log λ1 + log λ2 − 2 log λ3, Y = X1, U1 = X2 − X1, and U2 =
X3+2X1. By Theorem 6.4 in Shao (2003), there exists a UMPU test of size
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α for testing H0 : θ ≤ 0 versus H1 : θ > 0, which is equivalent to testing
H0 : λ1λ2 ≤ λ2

3 versus H1 : λ1λ2 > λ2
3.

Exercise 27 (#6.49). Let (Xi1, ..., Xini), i = 1, 2, be two independent
random samples from N(µi, σ

2), respectively, where ni ≥ 2 and µi’s and σ
are unknown. Show that a UMPU test of size α for H0 : µ1 = µ2 versus
H1 : µ1 
= µ2 rejects H0 when |t(X)| > tn1+n2−1,α/2, where

t(X) =
(X̄2 − X̄1)

/√
n−1

1 + n−1
2√

[(n1 − 1)S2
1 + (n2 − 1)S2

2 ]/(n1 + n2 − 2)
,

X̄i and S2
i are the sample mean and variance based on Xi1, ..., Xini

, i = 1, 2,
and tn1+n2−1,α is the (1 − α)th quantile of the t-distribution tn1+n2−1.
Derive the power function of this test.
Solution. Let Y = X̄2 − X̄1, U1 = n1X̄1 + n2X̄2, U2 =

∑2
i=1
∑n

j=1 X2
ij ,

θ = (µ1 − µ2)/[(n−1
1 + n−1

2 )σ2], ϕ1 = (n1µ1 + n2µ2)/[(n1 + n2)σ2], and
ϕ2 = −(2σ2)−1. Then, the joint density of Xi1, ..., Xini

, i = 1, 2, can be
written as

(
√

2πσ)n1+n2eθY +ϕ1U1+ϕ2U2 .

The statistic V = Y/
√

U2 − U2
1 /(n1 + n2) satisfies the conditions in Lemma

6.7(ii) in Shao (2003). Hence, the UMPU test has the rejection region
V < c1 or V > c2. Under H0, V is symmetrically distributed around 0,
i.e., V and −V have the same distribution. Thus, a UMPU test rejects
H0 when −V < c1 or −V > c2, which is the same as rejecting H0 when
V < −c2 or V > −c1. By the uniqueness of the UMPU test, we conclude
that c1 = −c2, i.e., the UMPU test rejects when |V | > c. Since

U2 − U2
1

n1 + n2
= (n1 − 1)S2

1 + (n2 − 1)S2
2 +

n1n2Y
2

n1 + n2
,

we obtain that
1

V 2 =
n1n2

(n1 + n2)(n1 + n2 − 2)
1

[t(X)]2
+

n1n2

n1 + n2
.

Hence, |V | is an increasing function of |t(X)|. Also, t(X) has the t-
distribution with tn1+n2−2 under H0. Thus, the UMPU test rejects H0
when |t(X)| > tn1+n2−2,α/2. Under H1, t(X) is distributed as the noncen-
tral t-distribution tn1+n2−2(δ) with noncentrality parameter

δ =
µ2 − µ1

σ
√

n−1
1 + n−1

2

.

Thus the power function of the UMPU test is

1 − Gδ(tn1+n2−2,α/2) + Gδ(−tn1+n2−2,α/2),
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where Gδ denotes the cumulative distribution function of the noncentral
t-distribution tn1+n2−2(δ).

Exercise 28 (#6.50). Let (Xi1, ..., Xin), i = 1, 2, be two independent
random samples from N(µi, σ

2
i ), respectively, where n > 1 and µi’s and σi’s

are unknown. Show that a UMPU test of size α for testing H0 : σ2
2 = ∆0σ

2
1

versus H1 : σ2
2 
= ∆0σ

2
1 rejects H0 when

max
{

S2
2

∆0S2
1
,
∆0S

2
1

S2
2

}
>

1 − c

c
,

where ∆0 > 0 is a constant,
∫ c

0 f(n−1)/2,(n−1)/2(v)dv = α/2 and fa,b is the
Lebesgue density of the beta distribution with parameter (a, b).
Solution. From Shao (2003, p. 413), the UMPU test rejects H0 if V < c1
or V > c2, where

V =
S2

2/∆0

S2
1 + S2

2/∆0

and S2
i is the sample variance based on Xi1, ..., Xin. Under H0 (σ2

1 = σ2
2),

V has the beta distribution with parameter (n−1
2 , n−1

2 ), which is symmetric
about 1

2 , i.e., V has the same distribution as 1 − V . Thus, a UMPU test
rejects H0 when 1 − V < c1 or 1 − V > c2, which is the same as rejecting
H0 when V < 1 − c2 or V > 1 − c1. By the uniqueness of the UMPU test,
we conclude that c1 + c2 = 1. Let c1 = c. Then the UMPU test rejects H0
when V < c or V > 1−c and c satisfies

∫ c

0 f(n−1)/2,(n−1)/2(v)dv = α/2. Let
F = S2

2/(∆0S
2
1). Then V = F/(1+F ), V < c if and only if F−1 > (1−c)/c,

and V > 1 − c if and only if F > (1 − c)/c. Hence, the UMPU test rejects
when max{F, F−1} > (1 − c)/c, which is the desired result.

Exercise 29 (#6.51). Suppose that Xi = β0 + β1ti + εi, i = 1, ..., n,
where ti’s are fixed constants that are not all the same, εi’s are independent
and identically distributed as N(0, σ2), and β0, β1, and σ2 are unknown
parameters. Derive a UMPU test of size α for testing
(i) H0 : β0 ≤ θ0 versus H1 : β0 > θ0;
(ii) H0 : β0 = θ0 versus H1 : β0 
= θ0;
(iii) H0 : β1 ≤ θ0 versus H1 : β1 > θ0;
(iv) H0 : β1 = θ0 versus H1 : β1 
= θ0.
Solution: Note that (X1, ..., Xn) follows a simple linear regression model.
Let D = n

∑n
i=1 t2i − (

∑n
i=1 ti)

2,

β̂0 =
1
D

(
n∑

i=1

t2i

n∑
i=1

Xi −
n∑

i=1

ti

n∑
i=1

tiXi

)

and

β̂1 =
1
D

(
n

n∑
i=1

tiXi −
n∑

i=1

ti

n∑
i=1

Xi

)
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be the least squares estimators, and let

σ̂2 =
1

n − 2

n∑
i=1

(yi − β̂0β̂1ti)2.

From the theory of linear models, β̂0 has the normal distribution with mean
β0 and variance σ2∑n

i=1 t2i /D, β̂1 has the normal distribution with mean
β1 and variance σ2n/D, (n−2)σ̂2/σ2 has the chi-square distribution χ2

n−2,
and (β̂0, β̂1) and σ̂2 are independent. Thus, the following results follow
from the example in Shao (2003, p. 416).
(i) The UMPU test of size α for testing H0 : β0 ≤ θ0 versus H1 : β0 > θ0
rejects H0 when t0 > tn−2,α, where

t0 =
√

D(β̂0 − θ0)
σ̂
√∑n

i=1 t2i

and tr,α is the (1 − α)th quantile of the t-distribution tr.
(ii) The UMPU test of size α for testing H0 : β0 = θ0 versus H1 : β0 
= θ0
rejects H0 when |t0| > tn−2,α/2.
(iii) The UMPU test of size α for testing H0 : β1 ≤ θ0 versus H1 : β1 > θ0
rejects H0 when t1 > tn−2,α, where

t1 =
√

D(β̂1 − θ0)√
nσ̂

.

(iv) The UMPU test of size α for testing H0 : β1 = θ0 versus H1 : β1 
= θ0
rejects H0 when |t1| > tn−2,α/2.

Exercise 30 (#6.53). Let X be a sample from Nn(Zβ, σ2In), where
β ∈ Rp and σ2 > 0 are unknown and Z is an n × p known matrix of rank
r ≤ p < n. For testing H0 : σ2 ≤ σ2

0 versus H1 : σ2 > σ2
0 and H0 : σ2 = σ2

0
versus H1 : σ2 
= σ2

0 , show that UMPU tests of size α are functions of
SSR = ‖X − Zβ̂‖2, where β̂ is the least squares estimator of β, and their
rejection regions can be determined using chi-square distributions.
Solution. Since H = Z(ZτZ)−Zτ is a projection matrix of rank r, there
exists an n × n orthogonal matrix Γ such that

Γ = ( Γ1 Γ2 ) and HΓ = ( Γ1 0 ),

where Γ1 is n×r and Γ2 is n×(n−r). Let Yj = Γτ
j X, j = 1, 2. Consider the

transformation (Y1, Y2) = ΓτX. Since ΓτΓ = In, (Y1, Y2) has distribution
Nn(ΓτZβ, σ2In). Note that

E(Y2) = E(Γτ
2X) = Γτ

2Zβ = Γτ
2HZβ = 0.
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Let η = Γτ
1Zβ = E(Y1). Then the density of (Y1, Y2) is

1
(2πσ2)n/2 exp

{
‖Y1‖2 + ‖Y2‖2

2σ2 +
ητY1

σ2 − ‖η‖2

2σ2

}
.

From Theorem 6.4 in Shao (2003), the UMPU tests are based on Y =
‖Y1‖2 + ‖Y2‖2 and U = Y1. Let V = ‖Y2‖2. Then V = Y − ‖U‖2 satisfies
the conditions in Lemma 6.7 of Shao (2003). Hence, the UMPU test for
H0 : σ2 ≤ σ2

0 versus H1 : σ2 > σ2
0 rejects when V > c and the UMPU test

for H0 : σ2 = σ2
0 versus H1 : σ2 
= σ2

0 , rejects when V < c1 or V > c2. Since

‖Y1 − η‖2 + ‖Y2‖2 = ‖X − Zβ‖2,

min
η

‖Y1 − η‖2 + ‖Y2‖2 = min
β

‖X − Zβ‖2

and, therefore,
V = ‖Y2‖2 = ‖X − Zβ̂‖2 = SSR.

Finally, by Theorem 3.8 in Shao (2003), SSR/σ2 has the chi-square distri-
bution χ2

n−r.

Exercise 31 (#6.54). Let (X1, ..., Xn) be a random sample from a bi-
variate normal distribution with unknown means µ1 and µ2, variances σ2

1
and σ2

2 , and correlation coefficient ρ. Let Xij be the jth component of Xi,
j = 1, 2, X̄j and S2

j be the sample mean and variance based on X1j , ..., Xnj ,
and V =

√
n − 2R/

√
1 − R2, where

R =
1

S1S2(n − 1)

n∑
i=1

(Xi1 − X̄1)(Xi2 − X̄2)

is the sample correlation coefficient. Show that the UMPU test of size α
for H0 : ρ ≤ 0 versus H1 : ρ > 0 rejects H0 when V > tn−2,α and the
UMPU test of size α for H0 : ρ = 0 versus H1 : ρ 
= 0 rejects H0 when
|V | > tn−2,α/2, where tn−2,α is the (1 − α)th quantile of the t-distribution
tn−2.
Solution. The Lebesgue density of (X1, ..., Xn) can be written as

C(µ1, µ2, σ1, σ2, ρ) exp {θY + ϕτU} ,

where C(·) is a function of (µ1, µ2, σ1, σ2, ρ),

Y =
n∑

i=1

Xi1Xi2, θ =
ρ

σ1σ2(1 − ρ2)
,

U =

(
n∑

i=1

X2
i1,

n∑
i=1

X2
i2,

n∑
i=1

Xi1,

n∑
i=1

Xi2

)
,



280 Chapter 6. Hypothesis Tests

and

ϕ =
(

− 1
2σ2

1(1 − ρ2)
,− 1

2σ2
2(1 − ρ2)

,
µ1

σ2
1(1 − ρ2)

− θµ1,
µ2

σ2
2(1 − ρ2)

− θµ2

)
.

By Basu’s theorem, R is independent of U when ρ = 0. Also,

R =
Y − U3U4/n√

(U1 − U2
3 /n)(U2 − U2

4 /n)
,

which is linear in Y , where Uj is the jth component of U . Hence, we may
apply Theorem 6.4 and Lemma 6.7 in Shao (2003). It remains to show that
V has the t-distribution tn−2 when ρ = 0, which is a consequence of the
result in the note of Exercise 17 in Chapter 1 and the result in Exercise
22(ii) in Chapter 2.

Exercise 32 (#6.55). Let (X1, ..., Xn) be a random sample from a bi-
variate normal distribution with unknown means µ1 and µ2, variances σ2

1
and σ2

2 , and correlation coefficient ρ. Let Xij be the jth component of Xi,
j = 1, 2, X̄j and S2

j be the sample mean and variance based on X1j , ..., Xnj ,
and S12 = (n − 1)−1∑n

i=1(Xi1 − X̄1)(Xi2 − X̄2).
(i) Let ∆0 > 0 be a known constant. Show that a UMPU test for testing
H0 : σ2/σ1 = ∆0 versus H1 : σ2/σ1 
= ∆0 rejects H0 when

R = |∆2
0S

2
1 − S2

2 |
/√

(∆2
0S

2
1 + S2

2)2 − 4∆2
0S

2
12 > c.

(ii) Find the Lebesgue density of R in (i) when σ2/σ1 = ∆0.
(iii) Assume that σ1 = σ2. Show that a UMPU test for H0 : µ1 = µ2 versus
H1 : µ1 
= µ2 rejects H0 when

V = |X̄2 − X̄1|
/√

(n − 1)(S2
1 + S2

2 − 2S12) > c.

(iv) Find the Lebesgue density of V in (iii) when µ1 = µ2.
Solution. (i) Let

(
Yi1

Yi2

)
=
(

∆0 1
∆0 −1

)(
Xi1

Xi2

)
.

Then Cov(Yi1, Yi2) = ∆2
0σ

2
1 − σ2

2 . If we let ρ
Y

be the correlation between
Yi1 and Yi2, then testing H0 : σ2/σ1 = ∆0 versus H1 : σ2/σ1 
= ∆0 is
equivalent to testing H0 : ρ

Y
= 0 versus H1 : ρ

Y

= 0. By the result in the

previous exercise, the UMPU test rejects when |V
Y
| > c, where V

Y
is the

sample correlation coefficient based on the Y -sample. The result follows
from the fact that |V

Y
| = R.
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(ii) From Exercise 22(ii) in Chapter 2, the Lebesgue density of R in (i)
when σ2/σ1 = ∆0 is

2Γ(n−1
2 )

√
πΓ(n−2

2 )
(1 − r2)

n−4
2 I(0,1)(r).

(iii) Let (
Yi1

Yi2

)
=
(

1 1
1 −1

)(
Xi1

Xi2

)
.

Then (Yi1, Yi2) has the bivariate normal distribution

N2

((
µ1 + µ2

µ1 − µ2

)
,

(
2(1 + ρ)σ2 0

0 2(1 − ρ)σ2

))
.

Since Yi1 and Yi2 are independent, the UMPU test of size α for testing
H0 : µ1 = µ2 versus H1 : µ1 
= µ2 rejects H0 when |t(Y )| > tn−1,α/2, where
t(Y ) =

√
nȲ2/SY2 , Ȳ2 and S2

Y2
are the sample mean and variance based on

Y12, ..., Yn2, and tn−1,α is the (1 − α)th quantile of the t-distribution tn−1.
A direct calculation shows that

|t(Y )| =
√

n|X̄1 − X̄2|√
(S2

1 + S2
2 − 2S12)

=
√

n(n − 1)V.

(iv) Since t(Y ) has the t-distribution tn−1 under H0, the Lebesgue density
of V when µ1 = µ2 is

√
nΓ(n

2 )
√

πΓ(n−1
2 )

(1 + nv2)−n/2.

Exercise 33 (#6.57). Let (X1, ..., Xn) be a random sample from the ex-
ponential distribution on the interval (a,∞) with scale parameter θ, where
a and θ are unknown. Let V = 2

∑n
i=1(Xi −X(1)), where X(1) is the small-

est order statistic.
(i) For testing H0 : θ = 1 versus H1 : θ 
= 1, show that a UMPU test of size
α rejects H0 when V < c1 or V > c2, where ci’s are determined by∫ c2

c1

f2n−2(v)dv =
∫ c2

c1

f2n(v)dv = 1 − α

and fm(v) is the Lebesgue density of the chi-square distribution χ2
m.

(ii) For testing H0 : a = 0 versus H1 : a 
= 0, show that a UMP test of size
α rejects H0 when X(1) < 0 or 2nX(1)/V > c, where c is determined by

(n − 1)
∫ c

0
(1 + v)−ndv = 1 − α.
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Solution. Since (X(1), V ) is sufficient and complete for (a, θ), we may con-
sider tests that are functions of (X(1), V ).
(i) When θ = 1, X(1) is complete and sufficient for a, V is independent of
X(1), and V/2 has the Gamma distribution with shape parameter n − 1
and scale parameter θ. By Lemma 6.5 and Lemma 6.6 in Shao (2003), the
UMPU test is the UMPU test in the problem where V/2 is an observation
from the Gamma distribution with shape parameter n−1 and scale param-
eter θ, which has monotone likelihood ratio in V . Hence, the UMPU test
of size α rejects H0 when V < c1 or V > c2, where V has the chi-square
distribution χ2

2(n−1) when θ = 1 and, hence, ci’s are determined by

∫ c2

c1

f2n−2(v)dv = 1 − α

and ∫ c2

c1

vf2n−2(v)dv = (1 − α)
∫ ∞

0
vf2n−2(v)dv = (1 − α)(2n − 2).

Since (2n − 2)−1vf2n−2(v) = f2n(v), ci’s are determined by∫ c2

c1

f2n−2(v)dv =
∫ c2

c1

f2n(v)dv = 1 − α.

(ii) From Exercise 15, for testing H0 : a = 0 versus H1 : a 
= 0, a UMP
test of size α rejects H0 when X(1) < 0 or 2nX(1)/V > c. It remains to
determine c. When a = 0, X(1)/θ has the chi-square distribution χ2

2, V/θ
has the chi-square distribution χ2

2n−2, and they are independent. Hence,
2nX(1)/[V (n − 1)] has the F -distribution F2,2(n−1). Hence, 2nX(1)/V has
Lebesgue density f(y) = (n − 1)(1 + y)−n. Therefore,

(n − 1)
∫ c

0
(1 + y)−ndy = 1 − α.

Exercise 34 (#6.58). Let (X1, ..., Xn) be a random sample from the
uniform distribution on the interval (θ, ϑ), where −∞ < θ < ϑ < ∞.
(i) Show that the conditional distribution of the smallest order statistic
X(1) given the largest order statistic X(n) = x is the distribution of the
minimum of a random sample of size n − 1 from the uniform distribution
on the interval (θ, x).
(ii) Find a UMPU test of size α for testing H0 : θ ≤ 0 versus H1 : θ > 0.
Solution. (i) The joint Lebesgue density of (X(1), X(n)) is

f(x, y) =
n(n − 1)(x − y)n−2

(ϑ − θ)n
I(θ,x)(y)I(y,ϑ)(x)
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and the Lebesgue density of X(n) is

g(x) =
n(x − θ)n−1

(ϑ − θ)n
I(θ,ϑ)(x).

Hence, the conditional density of X(1) given X(n) = x is

f(x, y)
g(x)

=
(n − 1)(x − y)n−2

(x − θ)n−1 I(θ,x)(y),

which is the Lebesgue density of the smallest order statistic based on a
random sample of size n − 1 from the uniform distribution on the interval
(θ, x).
(ii) Note that (X(1), X(n)) is complete and sufficient for (θ, ϑ) and when
θ = 0, X(n) is complete for ϑ. Thus, by Lemmas 6.5 and 6.6 in Shao (2003),
the UMPU test is the same as the UMPU test in the problem where X(1)
is the smallest order statistic of a random sample of size n − 1 from the
uniform distribution on the interval (θ, x). Let Y = x − X(1). Then Y is
the largest order statistic of a random sample of size n−1 from the uniform
distribution on the interval (0, η), where η = x − θ. Thus, by the result in
Exercise 14(i), a UMPU test of size α is

T =
{

α Y < x

0 Y > x

conditional on X(n) = x. Since x − X(1) = Y ,

T =
{

α X(1) > 0
0 X(1) < 0.

Exercise 35 (#6.82). Let X be a random variable having probability
density fθ(x) = exp{η(θ)Y (x)−ξ(θ)}h(x) with respect to a σ-finite measure
ν, where η is an increasing and differentiable function of θ ∈ Θ ⊂ R.
(i) Show that log �(θ̂) − log �(θ0) is increasing (or decreasing) in Y when
θ̂ > θ0 (or θ̂ < θ0), where �(θ) = fθ(x), θ̂ is an MLE of θ, and θ0 ∈ Θ.
(ii) For testing H0 : θ1 ≤ θ ≤ θ2 versus H1 : θ < θ1 or θ > θ2 or for testing
H0 : θ = θ0 versus H1 : θ 
= θ0, show that there is a likelihood ratio (LR)
test whose rejection region is equivalent to Y (X) < c1 or Y (X) > c2 for
some constants c1 and c2.
Solution. (i) From the property of exponential families, θ̂ is a solution of
the likelihood equation

∂ log �(θ)
∂θ

= η′(θ)Y (X) − ξ′(θ) = 0
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and ψ(θ) = ξ′(θ)/η′(θ) has a positive derivative ψ′(θ). Since η′(θ̂)Y −
ξ′(θ̂) = 0, θ̂ is an increasing function of Y and dθ̂

dY > 0. Consequently, for
any θ0 ∈ Θ,

d

dY

[
log �(θ̂) − log �(θ0)

]
=

d

dY

[
η(θ̂)Y − ξ(θ̂) − η(θ0)Y + ξ(θ0)

]

=
dθ̂

dY
η′(θ̂)Y + η(θ̂) − dθ̂

dY
ξ′(θ̂) − η(θ0)

=
dθ̂

dY
[η′(θ̂)Y − ξ′(θ̂)] + η(θ̂) − η(θ0)

= η(θ̂) − η(θ0),

which is positive (or negative) if θ̂ > θ0 (or θ̂ < θ0).
(ii) Since �(θ) is increasing when θ ≤ θ̂ and decreasing when θ > θ̂,

λ(X) =
supθ1≤θ≤θ2

�(θ)
supθ∈Θ �(θ)

=

⎧⎪⎪⎨
⎪⎪⎩

�(θ1)
�(θ̂)

θ̂ < θ1

1 θ1 ≤ θ̂ ≤ θ2
�(θ2)
�(θ̂)

θ̂ > θ2

for θ1 ≤ θ2. Hence, λ(X) < c if and only if θ̂ < d1 or θ̂ > d2 for some
constants d1 and d2. From the result in (i), this means that λ(X) < c if
and only if Y < c1 or Y > c2 for some constants c1 and c2.

Exercise 36 (#6.83). In Exercises 55 and 56 of Chapter 4, consider
H0 : j = 1 versus H1 : j = 2.
(i) Derive the likelihood ratio λ(X).
(ii) Obtain an LR test of size α in Exercise 55 of Chapter 4.
Solution. Following the notation in Exercise 55 of Chapter 4, we obtain
that

λ(X) =

⎧⎨
⎩

1 ĵ = 1
�(θ̂1,j=1)
�(θ̂2,j=2)

ĵ = 2

=

⎧⎪⎪⎨
⎪⎪⎩

1
√

T1/n

T2/n ≤
√

2e
π(√

2e
π

T2/n√
T1/n

)n √
T1/n

T2/n >
√

2e
π ,

where T1 =
∑n

i=1 X2
i and T2 =

∑n
i=1 |Xi|. Similarly, for Exercise 56 of

Chapter 4,

λ(X) =

{
1 h(X) = 0

e−nX̄

(1−X̄)n(1−X̄) h(X) = 1,
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where X̄ is the sample mean, h(X) = 1 if all Xi’s are not larger than 1 and
h(X) = 0 otherwise.
(ii) Let c ∈ [0, 1]. Then the LR test of size α rejects H0 when√

2e

π

T2/n√
T1/n

< c1/n,

where c1/n is the αth quantile of the distribution of
√

2e
π

T2/n√
T1/n

when

X1, ..., Xn are independent and identically distributed as N(0, 1).

Exercise 37 (#6.84). In Exercise 12, derive the likelihood ratio λ(X)
when (a) H0 : θ ≤ θ0; (b) H0 : θ1 ≤ θ ≤ θ2; and (c) H0 : θ ≤ θ1 or θ ≥ θ2.
Solution. Let f and g be the probability densities of F and G, respectively,
with respect to the measure corresponding to F + G. Then, the likelihood
function is

�(θ) = θ[f(X) − g(X)] + g(X)

and

sup
0≤θ≤1

�(θ) =
{

f(X) f(X) ≥ g(X)
g(X) f(X) < g(X).

For θ0 ∈ [0, 1],

sup
0≤θ≤θ0

�(θ) =
{

θ0[f(X) − g(X)] + g(X) f(X) ≥ g(X)
g(X) f(X) < g(X).

Hence, for H0 : θ ≤ θ0,

λ(X) =

{
θ0[f(X)−g(X)]+g(X)

f(X) f(X) ≥ g(X)
1 f(X) < g(X).

For 0 ≤ θ1 ≤ θ2 ≤ 1,

sup
0≤θ1≤θ2≤1

�(θ) =
{

θ2[f(X) − g(X)] + g(X) f(X) ≥ g(X)
θ1[f(X) − g(X)] + g(X) f(X) < g(X)

and, thus, for H0 : θ1 ≤ θ ≤ θ2,

λ(X) =

⎧⎨
⎩

θ2[f(X)−g(X)]+g(X)
f(X) f(X) ≥ g(X)

θ1[f(X)−g(X)]+g(X)
g(X) f(X) < g(X).

Finally,
sup

0≤θ≤θ1,θ2≤θ≤1
�(θ) = sup

0≤θ≤1
�(θ).

Hence, for H0 : θ ≤ θ1 or θ ≥ θ2, λ(X) = 1.
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Exercise 38 (#6.85). Let (X1, ..., Xn) be a random sample from the
discrete uniform distribution on {1, ..., θ}, where θ is an integer ≥ 2. Find
a level α LR test for
(i) H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 is a known integer ≥ 2;
(ii) H0 : θ = θ0 versus H1 : θ 
= θ0.
Solution. (i) The likelihood function is

�(θ) = θ−nI{X(n),X(n)+1,...}(θ),

where X(n) is the largest order statistic. Then,

sup
θ=2,3,...

�(θ) = X−n
(n) ,

sup
θ=2,...,θ0

�(θ) =

{
X−n

(n) X(n) ≤ θ0

0 X(n) > θ0,

and

λ(X) =
{

1 X(n) ≤ θ0

0 X(n) > θ0.

Hence, a level α test rejects H0 when X(n) > θ0, which has size 0.
(ii) From part (i) of the solution, we obtain that

λ(X) =

{ (
X(n)

θ0

)n
X(n) ≤ θ0

0 X(n) > θ0.

Then, λ(X) < c is equivalent to X(n) > θ0 or X(n) < θ0c
1/n. Let c = α.

When θ = θ0, the type I error rate is

P
(
X(n) < θ0α

1/n
)

=
[
P (X1 < θ0α

1/n)
]n

=
(

the integer part of θ0α
1/n

θ0

)n

≤
(

θ0α
1/n

θ0

)n

= α.

Hence, an LR test of level α rejects H0 if X(n) > θ0 or X(n) < θ0α
1/n.

Exercise 39 (#6.87). Let X = (X1, ..., Xn) be a random sample from
the exponential distribution on the interval (a,∞) with scale parameter θ.
(i) Suppose that θ is known. Find an LR test of size α for testing H0 : a ≤ a0
versus H1 : a > a0, where a0 is a known constant.
(ii) Suppose that θ is known. Find an LR test of size α for testing H0 : a =
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a0 versus H1 : a 
= a0.
(iii) Repeat part (i) for the case where θ is also unknown.
(iv) When both θ and a are unknown, find an LR test of size α for testing
H0 : θ = θ0 versus H1 : θ 
= θ0.
(v) When a > 0 and θ > 0 are unknown, find an LR test of size α for
testing H0 : a = θ versus H1 : a 
= θ.
Solution. (i) The likelihood function is

�(a, θ) = θ−nena/θe−nX̄/θI(a,∞)(X(1)),

where X̄ is the sample mean and X(1) is the smallest order statistic. When
θ is known, the MLE of a is X(1). When a ≤ a0, the MLE of a is
min{a0, X(1)}. Hence, the likelihood ratio is

λ(X) =
{

1 X(1) < a0

e−n(X(1)−a0)/θ X(1) ≥ a0.

Then λ(X) < c is equivalent to X(1) > d for some d ≥ a0. To determine d,
note that

sup
a≤a0

P (X(1) > d) = sup
a≤a0

nena/θ

θ

∫ ∞

d

e−nx/θdx

=
nena0/θ

θ

∫ ∞

d

e−nx/θdx

= en(a0−d)/θ.

Setting this probability to α yields d = a0 − n−1θ log α.
(ii) Note that �(a0, θ) = 0 when X(1) < a0. Hence the likelihood ratio is

λ(X) =
{

0 X(1) < a0

e−n(X(1)−a0)/θ X(1) ≥ a0.

Therefore, λ(X) < c is equivalent to X(1) ≤ a0 or X(1) > d for some d ≥ a0.
From part (i) of the solution, d = a0 − n−1θ log α leads to an LR test of
size α.
(iii) The MLE of (a, θ) is (X(1), X̄ − X(1)). When a ≤ a0, the MLE of a0 is
min{a0, X(1)} and the MLE of θ is

θ̂0 =
{

X̄ − X(1) X(1) < a0

X̄ − a0 X(1) ≥ a0.

Therefore, the likelihood ratio is

λ(X) =

{
[T (X)]n X(1) ≥ a0

1 X(1) < a0,
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where T (X) = (X̄−X(1))/(X̄−a0). Hence the LR test rejects H0 if and only
if T (X) < c1/n. From the solution to Exercise 33, Y = (X̄ −X(1))/(X̄ − a)
has the beta distribution with parameter (n − 1, 1). Then,

sup
a≤a0

P
(
T (X) < c1/n

)
= sup

a≤a0

P

(
X̄ − X(1)

X̄ − a + a − a0
< c1/n

)

= P
(
Y < c1/n

)

= (n − 1)
∫ c1/n

0
xn−2dx

= c(n−1)/n.

Setting this probability to α yields c = αn/(n−1).
(iv) Under H0, the MLE is (X(1), θ0). Let Y = θ−1

0 n(X̄ − X(1)). Then the
likelihood ratio is

λ(X) = enY ne−Y .

Thus, λ(X) < c is equivalent to Y < c1 or Y > c2. Under H0, 2Y has
the chi-square distribution χ2

2n−2. Hence, an LR test of size α rejects H0
when 2Y < χ2

2(n−1),1−α/2 or 2Y > χ2
2(n−1),α/2, where χ2

r,α is the (1 − α)th
quantile of the chi-square distribution χ2

r.
(v) Under H0, the MLE is (X̄, X̄). Let Y = X(1)/(X̄ − X(1)). Then the
likelihood ratio is

λ(X) = enX̄−n(X̄ − X(1))n = en(1 + Y )−n,

where Y = X(1)/(X̄ − X(1)). Then λ(X) < c is equivalent to Y > b for
some b. Under H0, the distribution Y is the same as that of the ratio Y1/Y2,
where Y1 has the exponential distribution on the interval (n, ∞) and scale
parameter 1, Y2 has the gamma distribution with shape parameter n − 1
and scale parameter 1, and Y1 and Y2 are independent. Hence, b satisfies

α =
en

Γ(n − 1)

∫ ∞

0
yn−2
2 e−y2

∫ ∞

max{n,by2}
e−y1dy1dy2

=
en

Γ(n − 1)

∫ ∞

0
yn−2
2 e−y2e− max{n,by2}dy2.

Exercise 40. Let (X1, ..., Xn) and (Y1, ..., Yn) be independent random
samples from N(µ1, 1) and N(µ2, 1), respectively, where −∞ < µ2 ≤ µ1 <
∞.
(i) Derive the likelihood ratio λ and an LR test of size α for H0 : µ1 = µ2
versus H1 : µ1 > µ2.
(ii) Derive the distribution of −2 log λ and the power of the LR test in (ii).



Chapter 6. Hypothesis Tests 289

(iii) Verify that the LR test in (ii) is a UMPU test.
Solution. (i) The likelihood function is

�(µ1, µ2) =
1

(2π)n
exp

{
−1

2

n∑
i=1

(Xi − µ1)2 − 1
2

n∑
i=1

(Yi − µ2)2
}

.

Let X̄ be the sample mean based on Xi’s and Ȳ be the sample mean based
on Yi’s. When µ1 = µ2, �(µ1, µ2) is maximized at µ̄ = (X̄ + Ȳ )/2. The
MLE of (µ1, µ2) is equal to (X̄, Ȳ ) when X̄ ≥ Ȳ . Consider the case X̄ < Ȳ .
For any fixed µ1 ≤ Ȳ , �(µ1, µ2) increases in µ2 and, hence,

sup
µ1≤Ȳ , µ2≤µ1

�(µ1, µ2) = sup
µ1≤Ȳ

�(µ1, µ1).

Also,
sup

µ1>Ȳ , µ2≤µ1

�(µ1, µ2) = sup
µ1>Ȳ

�(µ1, Ȳ ) ≤ sup
µ1≤Ȳ

�(µ1, µ1),

since X̄ < Ȳ . Hence,

sup
µ2≤µ1

�(µ1, µ1) = sup
µ1≤Ȳ

�(µ1, µ1) = �(µ̄, µ̄),

since µ̄ < Ȳ when X̄ < Ȳ . This shows that the MLE is (µ̄, µ̄) when X̄ < Ȳ .
Therefore, the likelihood ratio λ = 1 when X̄ < Ȳ and

λ =
exp
{
− 1

2

∑n
i=1(Xi − µ̄)2 − 1

2

∑n
i=1(Yi − µ̄)2

}
exp
{
− 1

2

∑n
i=1(Xi − X̄)2 − 1

2

∑n
i=1(Yi − Ȳ )2

}
= exp

{
−n

4 (X̄ − Ȳ )2
}

when X̄ ≥ Ȳ . Hence,

−2 log λ =

{
n
2 (X̄ − Ȳ )2 X̄ ≥ Ȳ

0 X̄ < Ȳ .

Note that λ < c for some c ∈ (0, 1) is equivalent to
√

n
2 (X̄ − Ȳ ) > d for

some d > 0. Under H0,
√

n
2 (X̄ − Ȳ ) has the standard normal distribution.

Hence, setting d = Φ−1(1 − α) yields an LR test of size α, where Φ is the
cumulative distribution function of the standard normal distribution.
(ii) Note that −2 log λ ≥ 0. Let δ =

√
n
2 (µ1 − µ2). Then Z =

√
n
2 (X̄ − Ȳ )

has distribution N(δ, 1). For t > 0,

P (−2 log λ ≤ t) = P (−2 log λ ≤ t, Z > 0) + P (−2 log λ ≤ t, Z ≤ 0)
= P (Z ≤

√
t, Z > 0) + P (Z ≤

√
t, Z ≤ 0)

= P (0 < Z ≤
√

t) + P (Z ≤ 0)
= P (Z ≤

√
t)

= Φ(
√

t − δ).
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The power of the LR test in (ii) is then

1 − Φ(d − δ) = 1 − Φ(Φ−1(1 − α) − δ).

(iii) The likelihood can be written as

CX,Y exp
{
θX̄ + nµ2U − n(µ1 + µ2)/2

}
,

where θ = n(µ1 −µ2), U = X̄ + Ȳ , and CX,Y is a quantity does not depend
on any parameters. When θ = 0 (µ1 = µ2), Z is independent of U . Also,
Z =
√

n
2 (2X̄ −U). Hence, by Theorem 6.4 and Lemma 6.7 in Shao (2003),

the UMPU test for H0 : θ = 0 versus H1 : θ > 0 rejects H0 when Z > c for
some c, which is the same as the LR test in (ii).

Exercise 41 (#6.89). Let Xi1, ..., Xini , i = 1, 2, be two independent ran-
dom samples from the uniform distributions on (0, θi), i = 1, 2, respectively,
where θ1 > 0 and θ2 > 0 are unknown.
(i) Find an LR test of size α for testing H0 :θ1 =θ2 versus H1 :θ1 
=θ2.
(ii) Derive the limiting distribution of −2 log λ when n1/n2 → κ ∈ (0,∞),
where λ is the likelihood ratio in part (i).
Solution. (i) Let Yi = maxj=1,...,ni Xij , i = 1, 2, and Y = max{Y1, Y2}.
The likelihood function is

�(θ1, θ2) = θ−n1
1 θ−n2

2 I(0,θ1)(Y1)I(0,θ2)(Y2)

and the MLE of θi is Yi, i = 1, 2. When θ1 = θ2,

�(θ1, θ1) = θ−n1−n2
1 I(0,θ1)(Y )

and the MLE of θ1 is Y . Hence, the likelihood ratio is

λ =
Y n1

1 Y n2
2

Y n1+n2
.

Assume that θ1 = θ2. For any t ∈ (0, 1),

P (λ < t) = P (λ < t, Y1 ≥ Y2) + P (λ < t, Y1 < Y2)

= P
(
Y2 < t1/n2Y1, Y1 ≥ Y2

)
+ P
(
Y1 < t1/n1Y2, Y1 ≥ Y2

)
= P
(
Y2 < t1/n2Y1

)
+ P
(
Y1 < t1/n1Y2

)

= n1n2

∫ 1

0

∫ t1/n2y1

0
yn2−1
2 yn1−1

1 dy2dy1

+ n1n2

∫ 1

0

∫ t1/n1y2

0
yn1−1
1 yn2−1

2 dy1dy2
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= n1t

∫ 1

0
yn1+n2−1
1 dy1 + n2t

∫ 1

0
yn1+n2−1
2 dy2

= (n1 + n2)t
∫ 1

0
yn1+n2−1dy

= t.

Hence, the LR test of size α rejects H0 when λ < α.
(ii) Under H0, by part (i) of the solution, λ has the uniform distribution on
(0, 1), which does not depend on (n1, n2). The distribution of −2 log λ is
then the exponential distribution on the interval (0,∞) with scale param-
eter 2−1, which is also the chi-square distribution χ2

1. Consider now the
limiting distribution of −2 log λ when n1/n2 → κ ∈ (0,∞). Assume that
θ1 < θ2. Then

P (Y1 > Y2) = P (Y2 − Y1 − (θ2 − θ1) < −(θ2 − θ1)) → 0

since Y2 −Y1 →p θ2 − θ1. Thus, for the limiting distribution of −2 log λ, we
may assume that Y1 ≤ Y2 and, consequently, −2 log λ = 2n1(log Y2−log Y1).
Note that

ni(θi − Yi) →d θiZi, i = 1, 2,

where Zi has the exponential distribution on the interval (0,∞) with scale
parameter 1. By the δ-method,

ni(log θi − log Yi) →d Zi, i = 1, 2.

Because Y1 and Y2 are independent,

−2 log λ + 2 log(θ1/θ2)n1 = 2[n1(log θ1 − log Y1) − n1
n2

n2(log θ2 − log Y2)]
→d 2(Z1 − κZ2),

where Z1 and Z2 are independent. The limiting distribution of −2 log λ for
the case of θ1 > θ2 can be similarly obtained.

Exercise 42 (#6.90). Let (Xi1, ..., Xini), i = 1, 2, be two independent
random samples from N(µi, σ

2
i ), i = 1, 2, respectively, where µi’s and σ2

i ’s
are unknown. For testing H0 : σ2

2/σ2
1 = ∆0 versus H1 : σ2

2/σ2
1 
= ∆0 with a

known ∆0 > 0, derive an LR test of size α and compare it with the UMPU
test.
Solution. The MLE of (µ1, µ2, σ

2
1 , σ2

2) is (X̄1, X̄2, σ̂
2
1 , σ̂2

2), where X̄i is the
sample mean based on Xi1, ..., Xini and

σ̂2
i =

1
ni

ni∑
j=1

(Xij − X̄j)2,
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i = 1, 2. Under H0, the MLE of (µ1, µ2, σ
2
1) is (X̄1, X̄2, σ̃

2
1), where

σ̃2
1 =

∆0
∑n1

j=1(X1j − X̄1)2 +
∑n2

j=1(X2j − X̄2)2

∆0(n1 + n2)
.

Then the likelihood ratio is proportional to(
1

1 + F

)n1/2(
F

1 + F

)n2/2

,

where F = S2
2/(∆0S

2
1) and S2

j is the sample variance based on Xi1, ..., Xini
,

i = 1, 2. Under H0, F has the F-distribution Fn2−1,n1−1. Since the likeli-
hood ratio is a unimodal function in F , an LR test is equivalent to the one
that rejects the null hypothesis when F < c1 or F > c2 for some positive
constants c1 < c2 chosen so that P (F < c1) + P (F > c2) = α under H0.
Note that the UMPU test is one of these tests with an additional require-
ment being unbiased, i.e., the ci’s must satisfy P (B < c1)+P (B > c2) = α,
where B has the beta distribution with parameter (n2+1

2 , n1−1
2 ) (e.g., Shao,

2003, p. 414).

Exercise 43 (#6.91). Let (Xi1, Xi2), i = 1, ..., n, be a random sample
from the bivariate normal distribution with unknown mean and covariance
matrix. For testing H0 : ρ = 0 versus H1 : ρ 
= 0, where ρ is the correlation
coefficient, show that the test rejecting H0 when |R| > c is an LR test,
where

R =
n∑

i=1

(Xi1 − X̄1)(Xi2 − X̄2)
/[ n∑

i=1

(Xi1 − X̄1)2 +
n∑

i=1

(Xi2 − X̄2)2
]

is the sample correlation coefficient and X̄j is the sample mean based on
X1j , ..., Xnj . Discuss the form of the limiting distribution of −2 log λ, where
λ is the likelihood ratio.
Solution. From the normal distribution theory, the MLE of the means are
X̄1 and X̄2 and the MLE of the variances are n−1∑n

i=1(Xi1 − X̄1)2 and
n−1∑n

i=1(Xi2 − X̄2)2, regardless of whether H0 holds or not. The MLE
of ρ is the sample correlation coefficient R. Under H0, ρ = 0. Using these
results, the likelihood ratio is λ = (1 − R2)n/2. Hence, an LR test rejects
H0 when |R| > c for some c > 0.

The distribution of R under H0 is given in Exercise 9(ii) in Chapter 2.
Hence, the Lebesgue density of −2 log λ is

Γ(n−1
2 )

√
πΓ(n−2

2 )
(1 − e−x)−1/2e−(n−2)x/2I(0,∞)(x).

When ρ 
= 0, it follows from the result in Exercise 9(i) of Chapter 2 that√
n(R − ρ) →d N(0, (1 − ρ2)2/(1 + ρ2)). By the δ-method,

√
n

[
−2 log λ

n
− log(1 − ρ2)

]
→d N

(
0, 4ρ2

1+ρ2

)
.
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Exercise 44. Consider the problem in Exercise 63 of Chapter 4. Find an
LR test of size α for testing H0 : θ1 = θ2 versus H1 : θ1 
= θ2. Discuss the
limiting distribution of −2 log λ, where λ is the likelihood ratio.
Solution. From the solution of Exercise 44, the MLE of (θ1, θ2) is equal
to n−1(

√
T1T2 +T1,

√
T1T2 +T2), where T1 =

∑n
i=1 XiI(0,∞)(Xi) and T2 =

−
∑n

i=1 XiI(−∞,0](Xi). When θ1 = θ2, the distribution of Xi is the double
exponential distribution with mean 0 and scale parameter θ1 = θ2. Hence,
the MLE of θ1 = θ2 is (T1 + T2)/n. Since the likelihood function is

�(θ1, θ2) = (θ1 + θ2)−n exp
{

−T1

θ1
− T2

θ2

}
,

the likelihood ratio is

λ =
(
√

T1 +
√

T2)2n

2n(T1 + T2)n
.

Under H0, the distribution of λ does not depend on any unknown param-
eter. Hence, an LR test of size α rejects H0 when λ < c, where c is the
(1 − α)th quantile of λ under H0.

Note that

E(Ti) =
nθ2

i

θ1 + θ2
, Var(Ti) =

n[2θ3
i (θ1 + θ2) − θ4

i ]
(θ1 + θ2)2

, i = 1, 2,

and
Cov(T1, T2) = −E(T1)E(T2) = − n2θ2

1θ
2
2

(θ1 + θ2)2
.

Hence, by the central limit theorem,

√
n

⎡
⎣(T1/n

T2/n

)
−

⎛
⎝ θ2

1
θ1+θ2

θ2
2

θ1+θ2

⎞
⎠
⎤
⎦→d N2

⎛
⎝0,

⎛
⎝ θ3

1(θ1+2θ2)
(θ1+θ2)2

− θ2
1θ2

2
(θ1+θ2)2

− θ2
1θ2

2
(θ1+θ2)2

θ3
2(θ2+2θ1)
(θ1+θ2)2

⎞
⎠
⎞
⎠ .

Let g(x, y) = 2 log(
√

x +
√

y) − log(x + y) − log 2. Then n−1 log λ =
g(T1/n, T2/n). The derivatives

∂g(x, y)
∂x

=
1

x +
√

xy
− 1

x + y
and

∂g(x, y)
∂y

=
1

y +
√

xy
− 1

x + y

at x = E(T1) and x = E(T2) are equal to θ2(θ2−θ1)
θ1(θ2

1+θ2
2) and θ1(θ1−θ2)

θ2(θ2
1+θ2

2) , respec-
tively. Hence, by the δ-method,

√
n
[
n−1 log λ − log (θ1+θ2)2

2(θ2
1+θ2

2)

]
→d N(0, τ2),

where

τ2 =
[θ1θ

2
2(θ1 + 2θ2) + θ2θ

2
1(θ2 + 2θ1) + 2θ2

1θ
2
2](θ1 − θ2)2

(θ1 + θ2)2(θ2
1 + θ2

2)2
.
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Exercise 45 (#6.93). Let X1 and X2 be independent observations from
the binomial distributions with sizes n1 and n2 and probabilities p1 and p2,
respectively, where ni’s are known and pi’s are unknown.
(i) Find an LR test of level α for testing H0 : p1 = p2 versus H1 : p1 
= p2.
(ii) Find an LR test of level α for testing H0 : p1 ≥ p2 versus H1 : p1 < p2.
Is this test a UMPU test?
Solution. (i) The likelihood function is

�(p1, p2) = CXpX1
1 (1 − p1)n1−X1pX2

2 (1 − p2)n2−X2 ,

where CX is a quantity not depending on (p1, p2). The MLE of (p1, p2) is
(X1/n1, X2/n2). Under H0, the MLE of p1 = p2 is U/n, where U = X1+X2
and n = n1 + n2. Then, the likelihood ratio is

λ1 =

(
U
n

)U (
1 − U

n

)n−U

(
X1
n1

)X1
(
1 − X1

n1

)n1−X1
(

X2
n2

)X2
(
1 − X2

n2

)n2−X2
.

An LR test rejects H0 when λ1 < c, which is equivalent to ψ(X1, X2) >
g(U) for some function g, where

ψ(X1, X2) =
(

X1
n1

)X1
(
1 − X1

n1

)n1−X1
(

X2
n2

)X2
(
1 − X2

n2

)n2−X2

is the denominator of λ1. To determine g(U), we note that, under H0,
the conditional distribution of ψ(X1, X2) given U does not depend on any
unknown parameter (which follows from the sufficiency of U under H0).
Hence, if we choose g(U) such that P (ψ(X1, X2) > g(U)|U) ≤ α, then
P (ψ(X1, X2) > g(U)) ≤ α.
(ii) Using the same argument used in the solution of Exercise 40, we can
show that the MLE of (p1, p2) under H0 (p1 ≥p2) is equal to (X1/n1, X2/n2)
if X1/n1 ≥ X2/n2 and is equal to (U/n, U/n) if X1/n1 < X2/n2. Hence,
the likelihood ratio is

λ =
{

λ1 X1/n1 < X2/n2

1 X1/n1 ≥ X2/n2,

where λ1 is given in part (i) of the solution. Hence, an LR test rejects
H0 when λ1 < c and X1/n1 < X2/n2, which is equivalent to the test
that rejects H0 when λ−1

1 > c−1 and U/(1 + n1/n2) < X2. Note that
λ−1

1 = h(X2, U)/q(U), where

h(X2, U) =
(

U−X2
n1

)U−X2
(
1 − U−X2

n1

)n1−U+X2
(

X2
n2

)X2
(
1 − X2

n2

)n2−X2
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and
q(U) =

(
U
n

)U (
1 − U

n

)n−U
.

Since X2(n1−U+X2)
(n2−X2)(U−X2)

> 1 when U/(1 + n1/n2) < X2, the derivative

∂ log h(X2, U)
∂X2

= log
(

X2(n1 − U + X2)
(n2 − X2)(U − X2)

)
> 0,

i.e., h(X2, U) is increasing when U/(1 + n1/n2) < X2. Thus, the LR test
is equivalent to the test that rejects H0 when X2 > c(U) for some function
c(U). The difference between this test and the UMPU test derived in
Exercise 24 is that the UMPU test is of size α and possibly randomized,
whereas the LR test is of level α and nonrandomized.

Exercise 46 (#6.95). Let X1 and X2 be independently distributed as
the exponential distributions on the interval (0,∞) with unknown scale
parameters θi, i = 1, 2, respectively. Define θ = θ1/θ2. Find an LR test of
size α for testing
(i) H0 : θ = 1 versus H1 : θ 
= 1;
(ii) H0 : θ ≤ 1 versus H1 : θ > 1.
Solution. (i) Since the MLE of (θ1, θ2) is (X1, X2) and, under H0, the
MLE of θ1 = θ2 is (X1 + X2)/2, the likelihood ratio is

λ =
X1X2(

X1+X2
2

)2 =
4F

(1 + F )2
,

where F = X2/X1. Note that λ < c is equivalent to F < c1 or F > c2 for
0 < c1 < c2. Under H0, F is has the F-distribution F2,2. Hence, an LR
test of size α rejects H0 when F < c1 or F > c2 with ci’s determined by
P (F < c1) + P (F > c2) = α under H0.
(ii) Using the same argument used in Exercises 40 and 45, we obtain the
likelihood ratio

λ =

{
1 X1 < X2

4F
(1+F )2 X1 ≥ X2.

Note that λ < c if and only if 4F/(1 + F )2 < c and X1 ≥ X2, which is
equivalent to F < b for some b. Let F2,2 be a random variable having the
F-distribution F2,2. Then

sup
θ1≤θ2

P (F < b) = sup
θ1≤θ2

P

(
F2,2 <

bθ1

θ2

)
= P (F2,2 < b) .

Hence, an LR test of size α rejects H0 when F < b with b being the αth
quantile of the F-distribution F2,2.
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Exercise 47 (#6.98). Let (X1, ..., Xn) be a random sample from N(µ, σ2).
(i) Suppose that σ2 = γµ2 with unknown γ > 0 and µ ∈ R. Find an LR
test for testing H0 : γ = 1 versus H1 : γ 
= 1.
(ii) In the testing problem in (i), find the forms of Wald’s test and Rao’s
score test.
(iii) Repeat (i) and (ii) when σ2 = γµ with unknown γ > 0 and µ > 0.
Solution. (i) The likelihood function is

�(µ, γ) = (
√

2πγ|µ|)−n exp

{
− 1

2γµ2

n∑
i=1

(Xi − µ)2
}

.

The MLE of (µ, γ) is (µ̂, γ̂) = (X̄, σ̂2/X̄2), where X̄ is the sample mean
and σ̂2 = n−1∑n

i=1(Xi − X̄)2. Under H0, by Exercise 41(viii) in Chapter
4, the MLE of µ is

µ̂0 =
{

µ+ �(µ+, 1) > �(µ−, 1)
µ− �(µ+, 1) ≤ �(µ−, 1),

where

µ± =
−X̄ ±

√
5X̄2 + 4σ̂2

2
.

The likelihood ratio is

λ =
�(µ̂0, 1)
�(µ̂, γ̂)

=
en/2σ̂n

|µ̂0|n
exp
{

−nσ̂2 + n(µ̂0 − X̄)2

2µ̂2
0

}
,

which is a function of X̄2/σ̂2. Under H0, the distribution of X̄2/σ̂2 does not
depend on any unknown parameter. Hence, an LR test can be constructed
with rejection region λ < c.
(ii) Let

s(µ, γ) =
∂ log �(µ, γ)

∂(µ, γ)
=

⎛
⎜⎝ −n

µ + n(X̄−µ)
γµ2 +

∑n

i=1
(Xi−µ)2

γµ3

− n
2γ +
∑n

i=1
(Xi−µ)2

2µ2γ2

⎞
⎟⎠ .

The Fisher information about (µ, γ) is

In(µ, γ) = E{s(µ, γ)[s(µ, γ)]τ} = n

(
1

µ2γ + 2
µ2

1
µγ

1
µγ

1
2γ2

)
.

Then, Rao’s score test statistic is

Rn = [s(µ̂0, 1)]τ [In(µ̂0, 1)]−1s(µ̂0, 1),

where µ̂0 is given in part (i) of the solution.
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Let R(µ, γ) = γ − 1. Then ∂R/∂µ = 0 and ∂R/∂γ = 1. Wald’s test
statistic Wn is equal to [R(µ̂, γ̂)]2 divided by the last element of the inverse
of In(µ̂, γ̂), where µ̂ and γ̂ are given in part (i) of the solution. Hence,

Wn =
n(γ̂ − 1)2

2γ̂2 + 4γ̂3 .

(iii) Let T = n−1∑n
i=1 X2

i . The likelihood function is

�(µ, γ) = (
√

2πγµ)−n exp
{

− nT

2γµ
+

nX̄

γ
− nµ

2γ

}
.

When γ = 1, it is shown in Exercise 60 of Chapter 4 that the MLE of µ
is µ̂0 = (

√
1 + 4T − 1)/2. For the MLE of (µ, γ), it is equal to (µ̂, γ̂) =

(X̄, σ̂2/X̄) when X̄ > 0. If X̄ ≤ 0, however, the likelihood is unbounded in
γ. Hence, the likelihood ratio is

λ =

{
en/2σ̂nµ̂0)−n/2 exp

{
− nT

2µ̂0
+ nX̄ − nµ̂0

2

}
X̄ > 0

0 X̄ ≤ 0.

To construct an LR test, we note that, under H0, T is sufficient for µ.
Hence, under H0, we may find a c(T ) such that P (λ < c(T )|T ) = α for every
T . The test rejecting H0 when λ < c(T ) has size α, since P (λ < c(T )) = α
under H0.

Note that

s(µ, γ) =
∂ log �(µ, γ)

∂(µ, γ)
=

(
− n

2µ + nT
2γµ2 − n

2γ

− n
2γ + nT

2γ2µ − nX̄
γ2 + nµ

2γ2

)
,

∂2 log �(µ, γ)
∂µ2 =

n

2µ2 − nT

γµ3 ,

∂2 log �(µ, γ)
∂µ∂γ

= − nT

2γ2µ2 +
n

2γ2 ,

and
∂2 log �(µ, γ)

∂γ2 =
n

2γ2 − nT

γ3µ
+

2nX̄

γ3 − nµ

γ3 .

Hence, the Fisher information about (µ, γ) is

In(µ, γ) = n

(
1

2µ2 + 1
γµ

1
2γµ

1
2γµ

1
2γ2

)

and Rao’s score test statistic is

Rn = [s(µ̂0, 1)]τ [In(µ̂0, 1)]−1s(µ̂0, 1).
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Similar to that in part (ii), Wald’s test statistic Wn is equal to (γ̂ − 1)2

divided by the last element of the inverse of In(µ̂, γ̂), i.e.,

Wn =
n(γ̂ − 1)2

2γ̂2 + γ̂3/µ̂
.

Note that Wn is not defined when X̄ ≤ 0. But limn P (X̄ ≤ 0) = 0 since
µ > 0.

Exercise 48 (#6.100). Suppose that X = (X1, ..., Xk) has the multino-
mial distribution with a known size n and an unknown probability vector
(p1, ..., pk). Consider the problem of testing H0 : (p1, ..., pk) = (p01, ..., p0k)
versus H1 : (p1, ..., pk) 
= (p01, ..., p0k), where (p01, ..., p0k) is a known prob-
ability vector. Find the forms of Wald’s test and Rao’s score test.
Solution. The MLE of θ = (p1, ..., pk−1) is θ̂ = (X1/n, ..., Xk−1/n). The
Fisher information about θ is

In(θ) = n[D(θ)]−1 +
n

pk
Jk−1J

τ
k−1,

where D(θ) denotes the (k−1)×(k−1) diagonal matrix whose k−1 diagonal
elements are the components of the vector θ and Jk−1 is the (k − 1)-vector
of 1’s. Let θ0 = (p01, ..., p0(k−1)). Then H0 : θ = θ0 and the Wald’s test
statistic is

Wn = (θ̂ − θ0)τIn(θ̂)(θ̂ − θ0)

= n(θ̂ − θ0)τ [D(θ̂)]−1(θ̂ − θ0) +
n2

Xk
[Jτ

k−1(θ̂ − θ0)]2

=
k∑

j=1

(Xj − np0j)2

Xj
,

using the fact that Jτ
k−1(θ̂ − θ0) = p0k − Xk/n. Let �(θ) be the likelihood

function. Then

s(θ) =
∂ log �(θ)

∂θ
=
(

X1

p1
− Xk

pk
, ...,

Xk−1

pk−1
− Xk

pk

)
.

Note that
[In(θ)]−1 = n−1D(θ) − n−1θθτ

and

θτs(θ) =
k−1∑
j=1

(
Xj − Xk

pk

)
= n − Xk − Xk

pk
(1 − pk) =

npk − Xk

pk
.
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Also,

[s(θ)]τD(θ)s(θ) =
k−1∑
j=1

pj

(
Xj

pj
− Xk

pk

)2

=
k−1∑
j=1

pj

(
Xj

pj
− n

)2

+
k−1∑
j=1

pj

(
Xk

pk
− n

)2

+ 2
k−1∑
j=1

pj

(
Xj

pj
− n

)(
n − Xk

pk

)

=
k−1∑
j=1

(Xj − npj)2

pj
+ (1 − pk)

(Xk − npk)2

p2
k

+ 2[(n − Xk) − n(1 − pk)]
(

n − Xk

pk

)

=
k−1∑
j=1

(Xj − npj)2

pj
+ [θτs(θ)]2 − (Xk − npk)2

pk

+
2(Xk − npk)2

pk

=
k∑

j=1

(Xj − npj)2

pj
+ [θτs(θ)]2.

Hence, Rao’s score test statistic is

Rn = [s(θ0)]τ [In(θ0)]−1s(θ0)
= n−1[s(θ0)]τD(θ0)s(θ0) − n−1[θτ

0s(θ0)]2

=
k∑

j=1

(Xj − np0j)2

np0j
.

Exercise 49 (#6.101). Let A and B be two different events in a proba-
bility space related to a random experiment. Suppose that n independent
trials of the experiment are carried out and the frequencies of the occurrence
of the events are given in the following 2 × 2 contingency table:

A Ac

B X11 X12

Bc X21 X22

Consider testing H0 : P (A) = P (B) versus H1 : P (A) 
= P (B).
(i) Derive the likelihood ratio λ and the limiting distribution of −2 log λ
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under H0.
(ii) Find the forms of Wald’s test and Rao’s score test.
Solution. Let pij = E(Xij/n), i = 1, 2, j = 1, 2, and θ = (p11, p12, p21) be
the parameter vector (p22 = 1 − p11 − p12 − p21). The likelihood function
is proportional to

�(θ) = pX11
11 pX12

12 pX21
21 (1 − p11 − p12 − p21)n−X11−X12−X21 .

Note that H0 is equivalent to H0 : p21 = p12.
(i) The MLE of θ is θ̂ = n−1(X11, X12, X21). Under H0, The MLE of p11
is still X11/n, but the MLE of p12 = p21 is (X12 + X21)/(2n). Then

λ =
[(X12 + X21)/2]X12+X21

XX12
12 XX21

21

.

Note that there are two unknown parameters under H0. By Theorem 6.5
in Shao (2003), under H0, −2 log λ →d χ2

1.
(ii) Let R(θ) = p12 − p21. Then C(θ) = ∂R/∂θ = (0, 1,−1). The Fisher
information matrix about θ is

In(θ) = n

⎛
⎝ p−1

11 0 0
0 p−1

12 0
0 0 p−1

21

⎞
⎠+

n

p22

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠

with

[In(θ)]−1 =
1
n

⎛
⎝ p11 0 0

0 p12 0
0 0 p21

⎞
⎠− 1

n
θθτ .

Therefore, Wald’s test statistic is

Wn = [R(θ̂)]τ{[C(θ̂)]τ [In(θ̂)]−1C(θ̂)}−1R(θ̂)

=
n(X12 − X21)2

n(X12 + X21) − (X12 − X21)2
.

Note that

s(θ) =
∂ log �(θ)

∂θ
=

⎛
⎜⎜⎝

X11
p11

− X22
1−p11−p12−p21

X12
p12

− X22
1−p11−p12−p21

X21
p21

− X22
1−p11−p12−p21

⎞
⎟⎟⎠

and, hence, s(θ) evaluated at θ̃ = n−1(X11, (X12 + X21)/2, (X12 + X21)/2)
is

s(θ̃) =

⎛
⎜⎜⎝

0
n(X12−X21)

X12+X21

n(X21−X12)
X12+X21

⎞
⎟⎟⎠ .
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Therefore, Rao’s score test statistic is

Rn = [s(θ̃)]τ [In(θ̃)]−1s(θ̃) =
(X12 − X21)2

X12 + X21
.

Exercise 50 (#6.102). Consider the r × c contingency table

1 2 · · · c

1 X11 X12 · · · X1c

2 X21 X22 · · · X2c

...
...

...
...

...
r Xr1 Xr2 · · · Xrc

with unknown pij = E(Xij)/n, where n is a known positive integer.
(i) Let A1, ..., Ac be disjoint events with A1 ∪ · · · ∪ Ac = Ω (the sample
space of a random experiment), and let B1, ..., Br be disjoint events with
B1 ∪ · · · ∪ Br = Ω. Suppose that Xij is the frequency of the occurrence of
Aj ∩Bi in n independent trials of the experiment. Derive the χ2 goodness-
of-fit test for testing independence of {A1, ..., Ac} and {B1, ..., Br}, i.e.,

H0 : pij = pi·p·j for all i, j versus H1 : pij 
= pi·p·j for some i, j,

where pi· = P (Bi) and p·j = P (Aj), i = 1, ..., r, j = 1, ..., c.
(ii) Let (X1j , ..., Xrj), j = 1, ..., c, be c independent random vectors having
the multinomial distributions with sizes nj and unknown probability vectors
(p1j , ..., prj), j = 1, ..., c, respectively. Consider the problem of testing
whether c multinomial distributions are the same, i.e.,

H0 : pij = pi1 for all i, j versus H1 : pij 
= pi1 for some i, j.

Show that the χ2 goodness-of-fit test is the same as that in (i).
Solution. (i) Using the Lagrange multiplier method, we can obtain the
MLE of pij ’s by maximizing

r∑
i=1

c∑
j=1

Xij log pij − λ

⎛
⎝ r∑

i=1

c∑
j=1

pij − 1

⎞
⎠ ,

where λ is the Lagrange multiplier. Thus, the MLE of pij is Xij/n. Under
H0, the MLE’s of pi·’s and p·j ’s can be obtained by maximizing

r∑
i=1

c∑
j=1

Xij(log pi· + log p·j) − λ1

(
r∑

i=1

pi· − 1

)
− λ2

⎛
⎝ c∑

j=1

p·j − 1

⎞
⎠ ,
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where λ1 and λ2 are the Lagrange multipliers. Thus, the MLE of pi· is
X̄i· =

∑c
j=1 Xij/n and the MLE of p·j is X̄·j =

∑r
i=1 Xij/n. Hence, the

χ2 statistic is

χ2 =
r∑

i=1

c∑
j=1

(Xij − nX̄i·X̄·j)2

nX̄i·X̄·j
.

The number of free parameters is rc − 1. Under H0, the number of free
parameters is r − 1 + c − 1 = r + c − 2. The difference of the two is
rc − r − c + 1 = (r − 1)(c − 1). By Theorem 6.9 in Shao (2003), under
H0, χ2 →d χ2

(r−1)(c−1). Therefore, the χ2 goodness-of-fit test rejects H0

when χ2 > χ2
(r−1)(c−1),α, where χ2

(r−1)(c−1),α is the (1 − α)th quantile of
the chi-square distribution χ2

(r−1)(c−1).
(ii) Since (X1j , ..., Xrj) has the multinomial distribution with size nj and
probability vector (p1j , ..., prj), the MLE of pij is Xij/n. Let Yi =

∑c
j=1 Xij .

Under H0, (Y1, ..., Yr) has the multinomial distribution with size n and
probability vector (p11, ..., pr1). Hence, the MLE of pi1 under H0 is X̄i· =
Yi/n. Note that nj = nX̄·j , j = 1, ..., c. Hence, under H0, the expected
(i, j)th frequency estimated by the MLE under H0 is nX̄i·X̄·j . Thus, the χ2

statistic is the same as that in part (i) of the solution. The number of free
parameters in this case is c(r−1). Under H0, the number of free parameters
is r − 1. The difference of the two is c(r − 1) − (r − 1) = (r − 1)(c − 1).
Hence, χ2 →d χ2

(r−1)(c−1) under H0 and the χ2 goodness-of-fit test is the
same as that in (i).

Exercise 51 (#6.103). In Exercise 50(i), derive Wald’s test and Rao’s
score test statistics.
Solution. For a set {aij , i = 1, ..., r, j = 1, ..., c, (i, j) 
= (r, c)} of rc − 1
numbers, we denote vec(aij) to be the (rc − 1)-vector whose components
are aij ’s and D(aij) to be the diagonal matrix whose diagonal elements are
the components of vec(aij). Let θ = vec(pij), J be the (rc − 1)-vector of
1’s, and �(θ) be the likelihood function. Then,

s(θ) =
∂ log �(θ)

∂θ
= vec

(
Xij

pij

)
− Xrc

1 − Jτθ
J

and
∂2 log �(θ)

∂θ∂θτ
= −D

(
Xij

p2
ij

)
− Xrc

(1 − Jτθ)2
JJτ .

Since E(Xij) = npij , the Fisher information about θ is

In(θ) = nD(p−1
ij ) + np−1

rc JJτ

with
[In(θ)]−1 = n−1D(pij) − n−1θθτ .
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Let p̃ij be the MLE of pij under H0 and θ̃ = vec(p̃ij). Then Rao’s score
test statistic is

Rn = n−1[s(θ̃)]τ [D(p̃ij) − θ̃θ̃τ ]s(θ̃).

Note that

θ̃τs(θ̃) =
∑

(i,j) 	=(r,c)

(
Xij − Xrcp̃ij

1 − Jτ θ̃

)
= n − Xrc − XrcJ

τ θ̃

1 − Jτ θ̃
= n − Xrc

p̃rc
,

where p̃rc = 1 − Jτ θ̃ = X̄r·X̄·c. Also,

[s(θ̃)]τD(p̃ij)s(θ̃) =
∑

(i,j) 	=(r,c)

p̃ij

(
Xij

p̃ij
− Xrc

p̃rc

)2

=
∑

(i,j) 	=(r,c)

p̃ij

(
Xij

p̃ij
− n

)2

+ (1 − p̃rc)
(

n − Xrc

p̃rc

)2

+ 2
∑

(i,j) 	=(r,c)

p̃ij

(
Xij

p̃ij
− n

)(
n − Xrc

p̃rc

)

=
∑

(i,j) 	=(r,c)

p̃ij

(
Xij

p̃ij
− n

)2

+ (1 + p̃rc)
(

n − Xrc

p̃rc

)2

.

Hence,

Rn =
1
n

∑
(i,j) 	=(r,c)

p̃ij

(
Xij

p̃ij
− n

)2

+ p̃rc

(
n − Xrc

p̃rc

)2

=
1
n

r∑
i=1

c∑
j=1

p̃ij

(
Xij

p̃ij
− n

)2

=
r∑

i=1

c∑
j=1

(Xij − nX̄i·X̄·j)2

nX̄i·X̄·j
,

using the fact that p̃ij = X̄i·X̄·j (part (i) of the solution to Exercise 50).
Hence, Rn is the same as χ2 in part (i) of the solution to Exercise 50.

Let η(θ) be the (r − 1)(c − 1)-vector obtained by deleting components
prj and pic, j = 1, ..., c − 1, i = 1, ..., r − 1, from the vector θ and let ζ(θ)
be η(θ) with pij replaced by pi·p·j , i = 1, ..., r − 1, j = 1, ..., c − 1. Let
θ̂ = vec(Xij/n), the MLE of θ, R(θ) = η(θ) − ζ(θ), and C(θ) = ∂η

∂θ − ∂ζ
∂θ .

Then, Wald’s test statistic is

Wn = [R(θ̂)]τ{[C(θ̂)]τ [In(θ̂)]−1C(θ̂)}−1R(θ̂).
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Exercise 52 (#6.105). Let (X1, ..., Xn) be a random sample of binary
random variables with θ = P (X1 = 1).
(i) Let Π(θ) be the beta distribution with parameter (a, b). When Π is used
as the prior for θ, find the Bayes factor and the Bayes test for H0 : θ ≤ θ0
versus H1 : θ > θ0.
(ii) Let π0I[θ0,∞)(θ) + (1 − π0)Π(θ) be the prior cumulative distribution,
where Π is the same as that in (i) and π0 ∈ (0, 1) is a constant. Find the
Bayes factor and the Bayes test for H0 : θ = θ0 versus H1 : θ 
= θ0.
Solution. (i) Under prior Π, the posterior of θ is the beta distribution
with parameter (a+T, b+n−T ), where T =

∑n
i=1 Xi. Then, the posterior

probability of the set (0, θ0] (the null hypothesis H0) is

p(T ) =
Γ(a + b + n)

Γ(a + T )Γ(b + n − T )

∫ θ0

0
ua+T−1(1 − u)b+n−T−1du.

Hence, the Bayes test rejects H0 if and only if p(T ) < 1
2 and the Bayes

factor is
posterior odds ratio

prior odds ratio
=

p(T )[1 − π(0)]
[1 − p(T )]π(0)

,

where

π(0) =
Γ(a + b)
Γ(a)Γ(b)

∫ θ0

0
ua−1(1 − u)b−1du

is the prior probability of the set (0, θ0].
(ii) Let

m1(T ) =
∫

θ 	=θ0

θT (1 − θ)n−T dΠ(θ)

=
Γ(a + b)
Γ(a)Γ(b)

∫ 1

0
θa+T−1(1 − θ)b+n−T−1dθ

=
Γ(a + b)Γ(a + T )Γ(b + n − T )

Γ(a + b + n)Γ(a)Γ(b)
.

Since the likelihood function is �(θ) =
(

n
T

)
θT (1−θ)n−T , the posterior prob-

ability of the set {θ0} (the null hypothesis H0) is

p(T ) =

∫
θ=θ0

�(θ)d[π0I[θ0,∞)(θ) + (1 − π0)Π(θ)]∫
�(θ)d[π0I[θ0,∞)(θ) + (1 − π0)Π(θ)]

=
π0θ

T
0 (1 − θ0)n−T

π0θT
0 (1 − θ0)n−T + (1 − π0)m1(T )

.

Hence, the Bayes test rejects H0 if and only if p(T ) < 1
2 and and the Bayes

factor is p(T )(1−π0)
[1−p(T )]π0

.
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Exercise 53 (#6.114). Let (X1, ..., Xn) be a random sample from a
continuous distribution F on R, Fn be the empirical distribution, D+

n =
supx∈R[Fn(x)−F (x)], and D−

n = supx∈R[F (x)−Fn(x)]. Show that D−
n (F )

and D+
n (F ) have the same distribution and, for t ∈ (0, 1),

P
(
D+

n (F ) ≤ t
)

= n!
n∏

i=1

∫ un−i+2

max{0, n−i+1
n −t}

du1 · · · dun.

Proof. Let X(i) be the ith order statistic, i = 1, ..., n, X(0) = −∞, and
X(n+1) = ∞. Note that

D+
n (F ) = max

0≤i≤n
sup

X(i)≤x<X(i+1)

[
i

n
− F (x)

]

= max
0≤i≤n

[
i

n
− inf

X(i)≤x<X(i+1)

F (x)
]

= max
0≤i≤n

[
i

n
− F (X(i))

]

= max
0≤i≤n

[
i

n
− U(i)

]
,

where U(i) = F (X(i)) is the ith order statistic of a random sample of size
n from the uniform distribution on (0, 1). Similarly,

D−
n (F ) = max

0≤j≤n
sup

X(j)≤x<X(j+1)

[
F (x) − j

n

]

= max
0≤j≤n

[
sup

X(j)≤x<X(j+1)

F (x) − j

n

]

= max
0≤j≤n

[
U(j+1) − j

n

]

= max
0≤i≤n

[
i

n
+ U(n−i+1) − 1

]
.

Since (1−U(1), ..., 1−U(n)) has the same distribution as (U(n), ..., U(1)), we
conclude that D−

n (F ) and D+
n (F ) have the same distribution. For t ∈ (0, 1),

P (D+
n (F ) ≤ t) = P

(
max

0≤i≤n

[
i

n
− U(i)

]
≤ t

)

= P

(
U(i) ≥ i

n
− t, i = 1, ..., n

)

= n!
n∏

i=1

∫ un−i+2

max{0, n−i+1
n −t}

du1 · · · dun.
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Exercise 54 (#6.116). Let (X1, ..., Xn) be a random sample from a
continuous distribution F on R, Fn be the empirical distribution, and
Cn(F ) =

∫
[Fn(x) − F (x)]2dF (x). Show that the distribution of Cn(F )

does not vary with F .
Solution. Note that

Cn(F ) =
∫ 1

0
[Fn(F−1(t)) − t]2dt

=
∫ 1

0

[
1
n

n∑
i=1

I(−∞,F −1(t)](Xi) − t

]2
dt

=
∫ 1

0

[
1
n

n∑
i=1

I(−∞,t](F (Xi)) − t

]2
dt,

where the last equality follows from the fact that Xi ≤ F−1(t) if and only if
F (Xi) ≤ t. Since (F (X1), ..., F (Xn)) is a random sample from the uniform
distribution on (0, 1), the distribution of Cn(F ) does not depend on F .

Exercise 55 (#6.123). Let θ̂n be an estimator of a real-valued parameter
θ such that V

−1/2
n (θ̂n − θ) →d N(0, 1) for any θ and let V̂n be a consistent

estimator of Vn. Suppose that Vn → 0.
(i) Show that the test with rejection region V̂

−1/2
n (θ̂n − θ0) > zα is a con-

sistent asymptotic level α test for testing H0 : θ ≤ θ0 versus H1 : θ > θ0,
where zα is the (1 − α)th quantile of N(0, 1).
(ii) Apply the result in (i) to show that the one-sample one-sided t-test for
the testing problem in (i) is a consistent asymptotic level α test.
Solution. (i) Under H1 : θ > θ0, V̂

−1/2
n (θ̂n − θ) →d N(0, 1). Therefore,

the test with rejection region V̂
−1/2
n (θ̂n − θ0) > zα is an asymptotic level α

test. Also,

P
(
V̂ −1/2

n (θ̂n − θ0)>zα

)
= P
(
V̂ −1/2

n (θ̂n − θ)>zα−V̂ −1/2
n (θ − θ0)

)
→ 1

as n → ∞, since V̂
−1/2
n (θ − θ0) →p ∞. Hence, the test is consistent.

(ii) Let (X1, ..., Xn) be a random sample from a population with finite
mean θ and variance σ2. For testing H0 : θ ≤ θ0 versus H1 : θ > θ0,
the one-sample t-test rejects H0 if and only if t(X) =

√
n(X̄ − θ0)/S >

tn−1,α, where X̄ and S2 are the sample mean and variance and tn−1,α

is the (1 − α)th quantile of the t-distribution tn−1. By the central limit
theorem,

√
n(X̄ − θ) →d N(0, σ2). Hence Vn = σ2/n → 0. By the law of

large numbers, S2 →p σ2. Hence V̂n = S2/n is a consistent estimator of
Vn. Note that the t-distribution tn−1 converges to N(0, 1). Then, by the
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result in Exercise 28 of Chapter 5, limn tn−1,α = zα. From the result in (i),
the one-sample t-test is a consistent asymptotic level α test.

Exercise 56 (#6.124). Let (X1, ..., Xn) be a random sample from the
gamma distribution with shape parameter θ and scale parameter γ, where
θ > 0 and γ > 0 are unknown. Let Tn = n

∑n
i=1 X2

i /(
∑n

i=1 Xi)2. Show
how to use Tn to obtain an asymptotic level α and consistent test for testing
H0 : θ = 1 versus H1 : θ 
= 1.
Solution. From the central limit theorem,

√
n

[( 1
n

∑n
i=1 Xi

1
n

∑n
i=1 X2

i

)
−
(

E(X1)
E(X2

1 )

)]
→d N2 (0, Σ) ,

where

Σ =
(

E(X2
1 ) − [E(X1)]2 E(X3

1 ) − E(X1)E(X2
1 )

E(X3
1 ) − E(X1)E(X2

1 ) E(X4
1 ) − [E(X2

1 )]2

)
.

Since the moment generating function of the gamma distribution is g(t) =
(1 − γt)−θ,

E(X1) = g′(0) = θγ,

E(X2
1 ) = g′′(0) = θ(θ + 1)γ2,

E(X3
1 ) = g′′′(0) = θ(θ + 1)(θ + 2)γ3,

and
E(X4

1 ) = g′′′′(0) = θ(θ + 1)(θ + 2)(θ + 3)γ4.

Hence,

Σ =
(

θγ2 2θ(θ + 1)γ3

2θ(θ + 1)γ3 2θ(θ + 1)(2θ + 3)γ4

)
.

Note that

T =
1
n

∑n
i=1 X2

i( 1
n

∑n
i=1 Xi

)2 = h

(
1
n

n∑
i=1

Xi,
1
n

n∑
i=1

X2
i

)

with h(x, y) = y/x2,

H(x, y) =

(
∂h
∂x

∂h
∂y

)
=

(
− 2y

x3

1
x2

)
,

and

H(E(X1), E(X2
1 )) = H(θγ, θ(θ + 1)γ2) =

(
− 2(θ+1)

θ2γ

1
θ2γ2

)
.
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By the δ-method,
√

n[T − h(E(X1), E(X2
1 ))] →d N(0, σ2),

where

σ2 = [H(θγ, θ(θ + 1)γ2)]τΣH(θγ, θ(θ + 1)γ2)

=
4(θ + 1)2

θ3 +
2(θ + 1)(2θ + 3)

θ3 − 8(θ + 1)2

θ3

=
2(θ + 1)

θ3 .

Note that

h(E(X1), E(X2
1 )) = h(θγ, θ(θ + 1)γ2) =

θ(θ + 1)γ2

θ2γ2 = 1 +
1
θ
.

Combining all the results, we obtain that

V −1/2
n

(
T − 1 − 1

θ

)
→d N(0, 1)

with Vn = 2(θ + 1)/(θ3n). From the asymptotic normality of T ,

1
T − 1

→p θ.

Hence, a consistent estimator of Vn is

V̂n =
2
(

1
T−1 + 1

)
n

(T−1)3
=

2T (T − 1)2

n
.

From Theorem 6.12 in Shao (2003), an asymptotic level α and consistent
test for H0 : θ = 1 versus H1 : θ 
= 1 rejects H0 if and only if

V̂ −1
n (T − 2)2 > χ2

1,α,

which is the same as
n(T − 2)2

2T (T − 1)2
> χ2

1,α,

where χ2
1,α is the (1 − α)th quantile of the chi-square distribution χ2

1.
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Confidence Sets

Exercise 1 (#7.4). Let (Xi1, Xi2), i = 1, ..., n, be a random sample
from the bivariate normal distribution with unknown µj = E(X1j), σ2

j =
Var(X1j), j = 1, 2, and σ12 = Cov(X11, X12). Let θ = µ2/µ1 be the
parameter of interest (µ1 
= 0), Yi(θ) = Xi2 − θXi1, and

S2(θ) =
1

n − 1

n∑
i=1

[Yi(θ) − Ȳ (θ)]2 = S2
2 − 2θS12 + θ2S2

1 ,

where Ȳ (θ) is the average of Yi(θ)’s and S2
i and S12 are sample variances

and covariance based on Xij ’s. Discuss when Fieller’s confidence set for θ,

C(X) = {θ : n[Ȳ (θ)]2/S2(θ) ≤ t2n−1,α/2},

is a finite interval, the complement of a finite interval, or the whole real
line.
Solution. Note that nȲ 2(θ)/S2(θ) ≤ t2n−1,α/2 is equivalent to

aθ2 + bθ + c ≥ 0,

where a = t2n−1,α/2S
2
1 − nX̄2

1 , b = 2(nX̄1X̄2 − t2n−1,α/2S12), and c =
t2n−1,α/2S

2
2 − nX̄2

2 . Then the confidence set C(X) represents the whole
real line if a > 0 and b2 − 4ac < 0; the complement of a finite interval if
a > 0 and b2 − 4ac ≥ 0; a finite interval if a < 0 and b2 − 4ac ≥ 0.

Exercise 2 (#7.6). Let X = (X1, ..., Xn) be a random sample from
N(θ, θ) with an unknown θ > 0. Find a pivotal quantity and use it to
construct a confidence interval for θ.
Solution. Let X̄ be the sample mean and R(X, θ) = n(X̄ − θ)2/θ. Since
X̄ is distributed as N(θ, θ/n), R(X, θ) has the chi-square distribution χ2

1

309
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and, thus, is a pivotal quantity. Let χ2
1,α be the (1 − α)th quantile of χ2

1
and c = χ2

1,α/(2n). Then

C(X) =
{
θ : R(X, θ) ≤ χ2

1,α

}
=
{
θ : θ2 − 2(X̄ + c)θ + X̄2 ≤ 0

}
is a confidence set for θ with confidence coefficient 1 − α. If X̄ ≥ −c/2,
then

C(X) =
[
X̄ + c −

√
2cX̄ + c2, X̄ + c +

√
2cX̄ + c2

]
is an interval. If X̄ < −c/2, then C(X) is the empty set.

Exercise 3 (#7.7). Let T be a random variable having cumulative dis-
tribution function F . For any t ∈ (0, 1), show that P (F (T ) < t) ≤ t and
P (F (T−) > 1 − t) ≤ t, where F (x−) denotes the left limit of F at x.
Solution. Let F−1(t) = inf{x : F (x) ≥ t}. If F (T ) < t, then, by defini-
tion, T < F−1(t). Thus,

P (F (T ) < t) ≤ P (T < F−1(t)) = F (F−1(t)−) ≤ t,

since F (x) < t for all x < F−1(t) so that the left limit of F at F−1(t) is no
larger than t. Similarly, F (T−) > 1− t implies T > F−1(1− t) and, hence,

P (F (T−) > 1 − t) ≤ P (T > F−1(1 − t)) = 1 − F (F−1(1 − t)) ≤ t,

since F (F−1(1 − t)) ≥ 1 − t.

Exercise 4 (#7.9). Let (X1, ..., Xn) be a random sample of random
variables having Lebesgue density a

θ

(
x
θ

)a−1
I(0,θ)(x), where a ≥ 1 is known

and θ > 0 is unknown.
(i) Construct a confidence interval for θ with confidence coefficient 1 − α
using the cumulative distribution function of the largest order statistic X(n).
(ii) Show that the confidence interval in (i) can also be obtained using a
pivotal quantity.
Solution. (i) The cumulative distribution function of X(n) is

Fθ(t) =

⎧⎨
⎩

0 t ≤ 0
(t/θ)na 0 < t < θ

1 t ≥ θ,

which is decreasing in θ for any fixed t ∈ (0, θ). Also, for t > 0, limθ→0 Fθ(t)
= 1 and limθ→∞ Fθ(t) = 0. By Theorem 7.1 in Shao (2003), a 1 − α confi-
dence interval for θ has upper limit being the unique solution of Fθ(T ) = α1
and lower limit being the unique solution of Fθ(T ) = 1−α2, where α1+α2 =
α. Consequently, this confidence interval is [T/(1 − α2)(na)−1

, T/α
(na)−1

1 ].
(ii) Note that U(θ) =

(
X(n)/θ

)na has the uniform distribution on (0, 1)
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and, hence, is a pivotal quantity. The 1−α confidence interval constructed
using U(θ) is the same as that in part (i) of the solution.

Exercise 5 (#7.10). Let (X1, ..., Xn) be a random sample from the ex-
ponential distribution on (a,∞) with scale parameter 1, where a ∈ R is
unknown.
(i) Construct a confidence interval for a with confidence coefficient 1 − α
by using the cumulative distribution function of the smallest order statistic
X(1).
(ii) Show that the confidence interval in (i) can also be obtained using a
pivotal quantity.
Solution. (i) The cumulative distribution function of X(1) is

Fa(t) =
{

0 t ≤ a

1 − e−n(t−a) t > a,

which is decreasing in a for fixed t > a. By Theorem 7.1 in Shao (2003), a
1 − α confidence interval for a has upper limit being the unique solution of
Fa(T ) = α1 and lower limit being the unique solution of Fa(T ) = 1 − α2,
where α1 + α2 = α. Then, [T + n−1 log(α2), T + n−1 log(1 − α1)] is the
resulting confidence interval.
(ii) Note that W (a) = n(X(1) − a) has the exponential distribution on
(0, 1) with scale parameter 1 and, hence, it is a pivotal quantity. The 1−α
confidence interval for a constructed using W (a) is the same as that derived
in part (i) of the solution.

Exercise 6 (#7.11). Let X be a single observation from the uniform
distribution on (θ − 1

2 , θ + 1
2 ), where θ ∈ R is unknown.

(i) Show that X − θ is a pivotal quantity and that a confidence interval of
the form [X +c, X +d] with some constants − 1

2 < c < d < 1
2 has confidence

coefficient 1 − α if and only if its length is 1 − α.
(ii) Show that the cumulative distribution function Fθ(x) of X is nonin-
creasing in θ for any x and it can be used to construct a confidence interval
for θ with confidence coefficient 1 − α.
Solution. (i) The distribution of θ − X is the uniform distribution on
(− 1

2 , 1
2 ). Hence, θ − X is a pivotal quantity. For − 1

2 < c < d < 1
2 ,

P (X + c < θ < X + d) = P (c < θ − X < d) = d − c.

Hence, [X + c, X + d] is a confidence interval with confidence coefficient
1 − α if and only if d − c = 1 − α, i.e., the length of [X + c, X + d] is 1 − α.
(ii) For x ∈ R,

Fθ(x) =

⎧⎪⎨
⎪⎩

1 θ ≤ x − 1
2

x + 1
2 − θ x − 1

2 < θ < x + 1
2

0 x + 1
2 ≤ θ,
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which is nonincreasing in θ. By Theorem 7.1 in Shao (2003), a 1 − α confi-
dence interval for a has upper limit being the unique solution of Fθ(X) = α1
and lower limit being the unique solution of Fθ(X) = 1 − α2, where
α1 + α2 = α. This confidence interval is [x + α2 − 1

2 , X + 1
2 − α1].

Exercise 7 (#7.12). Let X1, ..., Xn be a random sample of random vari-
ables with Lebesgue density θaθx−(θ+1)I(a,∞)(x), where θ > 0 and a > 0.
(i) When θ is known, derive a confidence interval for a with confidence co-
efficient 1−α by using the cumulative distribution function of the smallest
order statistic X(1).
(ii) When both a and θ are unknown and n ≥ 2, derive a confidence interval
for θ with confidence coefficient 1 − α by using the cumulative distribution
function of T =

∏n
i=1(Xi/X(1)).

(iii) Show that the confidence intervals in (i) and (ii) can be obtained using
pivotal quantities.
(iv) When both a and θ are unknown, construct a confidence set for (a, θ)
with confidence coefficient 1 − α by using a pivotal quantity.
Solution. (i) The cumulative distribution function of X(1) is

Fa(x) =
{

1 − anθ/xnθ a < x

0 a > x,

which is nonincreasing in a. By Theorem 7.1 in Shao (2003), a 1 − α confi-
dence interval for a has upper limit being the unique solution of Fa(X(1)) =
α1 and lower limit being the unique solution of Fa(X(1)) = 1 − α2, where

α1 + α2 = α. This leads to the interval [α(nθ)−1

2 X(1), (1 − α1)(nθ)−1
X(1)].

(ii) Consider Yi = log Xi. Then (Y1, ..., Yn) is a random sample from
the exponential distribution on the interval (b, ∞) with scale parameter
θ−1, where b = log a. From the result in Exercise 7 of Chapter 2 and
the fact that Y(1) = log X(1) is the smallest order statistic of the Y sam-
ple, 2θ log T = 2θ

∑n
i=1(Yi − Y(1)) has the chi-square distribution χ2

2(n−1).
Hence, the cumulative distribution function of T is

P (T ≤ t) = P (2θ log T ≤ 2θ log t) = F2(n−1)(2θ log t)

for t > 1, where F2(n−1) denotes the cumulative distribution function of
the chi-square distribution χ2

2(n−1). From Theorem 7.1 in Shao (2003), a
1 − α confidence interval for θ has upper limit being the unique solution
of F2(n−1)(2θ log T ) = 1 − α2 and lower limit being the unique solution
of F2(n−1)(2θ log T ) = α1, where α1 + α2 = α. The resulting interval is
[χ2

2(n−1),1−α1
/(2 log T ), χ2

2(n−1),α2
/(2 log T )], where χ2

2(n−1),α denotes the
(1 − α)th quantile of χ2

2(n−1).
(iii) When θ is known, X(1)/a is a pivotal quantity. The confidence interval
constructed using X(1)/a is the same as that in part (i) of the solution.
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When both a and θ are unknown, it follows from part (ii) of the solution
that 2θ log T is a pivotal quantity. The confidence interval constructed
using 2θ log T is the same as that in part (ii) of the solution.
(iv) From part (i) of the solution,

P

(
Xθ

(1)

aθ
≤ t

)
= P
(
X(1) ≤ at1/θ

)
= 1 − 1

tn
.

Hence, a pivotal quantity is Xθ
(1)/a. Let 0 < c1 < c2 be constants such that

c−n
1 − c−n

2 = 1 − α. Then, a 1 − α confidence set for (a, θ) is

C(X) =
{

(a, θ) : c1a ≤ Xθ
(1) ≤ c2a

}
.

Exercise 8 (#7.13). Let X = (X1, ..., Xn) be a random sample from the
Weibull distribution with Lebesgue density a

θ xa−1e−xa/θI(0,∞)(x), where
a > 0 and θ > 0 are unknown. Show that R(X, a, θ) =

∏n
i=1(X

a
i /θ) is

pivotal. Construct a confidence set for (a, θ) with confidence coefficient
1 − α by using R(X, a, θ).
Solution. Let Yi = Xa

i /θ. Then Yi has the exponential distribution on
(0,∞) with scale parameter 1. Since Y1, ..., Yn are independent, R(X, a, θ)=∏n

i=1(X
a
i /θ) is pivotal. Since the distribution of R(X, a, θ) is known, we can

find positive constants c1 and c2 such that P (c1 ≤ R(X, a, θ) ≤ c2) = 1−α.
A confidence set for (a, θ) with confidence coefficient 1 − α is

C(X) =

{
(a, θ) : c1θ

n ≤
n∏

i=1

Xa
i ≤ c2θ

n

}
.

Exercise 9 (#7.14). Let F and G be two known cumulative distribution
functions on R and X be a single observation from the cumulative distribu-
tion function θF (x) + (1 − θ)G(x), where θ ∈ [0, 1] is unknown. Construct
a level 1 − α confidence interval for θ based on the observation X. Find a
condition under which the derived confidence interval has confidence coef-
ficient 1 − α.
Solution. Let f(x) and g(x) be the probability densities of F and G, re-
spectively, with respect to the measure induced by F +G. From the solution
of Exercise 12 in Chapter 6, the family of densities

{θf(x) + (1 − θ)g(x) : θ ∈ [0, 1]}

has monotone likelihood ratio in Y (X) = f(X)/g(X). Let FY,θ be the
cumulative distribution function for Y (X). By Lemma 6.3 in Shao (2003),
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FY,θ(X) is nonincreasing in θ for any fixed X. Thus, by Theorem 7.1 in
Shao (2003), a level 1 − α confidence interval for θ is [θ, θ], where

θ = sup{θ : FY,θ(X) ≥ α1}, θ = inf{θ : FY,θ(X−) ≤ 1 − α2},

and α1 + α2 = α. A sufficient condition for this interval to have confidence
coefficient 1 − α is that FY,θ(x) is continuous in x, which is implied by
the condition that F ′ and G′ exist and the set {x : F ′(x) = cG′(x)} has
Lebesgue measure 0 for any fixed c.

Exercise 10 (#7.16). Let (X1, ..., Xn) be a random sample of binary
random variables with P (Xi = 1) = p. Using the cumulative distribution
function of T =

∑n
i=1 Xi, show that a level 1 − α confidence interval for p

is [
1

1 + n−T+1
T F2(n−T+1),2T,α2

,
T+1
n−T F2(T+1),2(n−T ),α1

1 + T+1
n−T F2(T+1),2(n−T ),α1

]
,

where α1 + α2 = α, Fa,b,α is the (1 − α)th quantile of the F-distribution
Fa,b, and Fa,0,α is defined to be ∞.
Solution. Since T has the binomial distribution with size n and proba-
bility p and the binomial family has monotone likelihood ratio in T , the
cumulative distribution function of T , FT,p(t), is decreasing in p for fixed
t. By Theorem 7.1 in Shao (2003), a level 1 − α confidence interval for p
is [p, p], where p is the solution to FT,p(T ) = α1 and p is the solution to
FT,p(T−) = 1 − α2. Let Y be a random variable having the beta distri-
bution with parameter (t, n − t + 1). Using integral by parts, we obtain
that

P (Y ≤ p) =
∫ p

0

n!
(t − 1)!(n − t)!

yt−1(1 − y)n−tdy

=
n!

t!(n − t)!
pt(1 − p)n−t +

∫ p

0

n!
t!(n − t − 1)!

yt(1 − y)n−t−1dy

=
n∑

i=t

n!
i!(n − i)!

pi(1 − p)n−i

= 1 − FT,p(t−).

Therefore, p is the α2th quantile of the beta distribution with parameter
(T, n − T + 1) if T > 0 and is equal to 0 if T = 0. For p, it is the solution
to 1 − α1 = 1 − FT,p(T + 1−). Hence, p is the (1 − α1)th quantile of the
beta distribution with parameter (T +1, n−T ) if T < n and is equal to 1 if
T = n. Let Fa,b be a random variable having the F-distribution Fa,b. Then,

(a/b)Fa,b

1+(a/b)Fa,b
has the beta distribution with parameter (a/2, b/2). Hence

p =
T+1
n−T F2(T+1),2(n−T ),α1

1 + T+1
n−T F2(T+1),2(n−T ),α1
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when Fa,0,α is defined to be ∞. Similarly,

p =
T

n−T+1F2T,2(n−T+1),1−α2

1 + T
n−T+1F2T,2(n−T+1),1−α2

.

Note that F−1
a,b has the F-distribution Fb,a. Hence,

p =
1

1 + n−T+1
T F2(n−T+1),2T,α2

.

Exercise 11 (#7.17). Let X be a sample of size 1 from the negative
binomial distribution with a known size r and an unknown probability
p ∈ (0, 1). Using the cumulative distribution function of T = X − r, show
that a level 1 − α confidence interval for p is[

1
1 + T+1

r F2(T+1),2r,α2

,
r
T F2r,2T,α1

1 + r
T F2r,2T,α1

]
,

where α1 + α2 and Fa,b,α is the same as that in the previous exercise.
Solution. Since the negative binomial family has monotone likelihood ratio
in −T , the cumulative distribution function of T , FT,p(t), is increasing in p
for fixed t. By Theorem 7.1 in Shao (2003), a level 1−α confidence interval
for p is [p, p], where p is the solution to FT,p(T ) = α2 and p is the solution to
FT,p(T−) = 1 − α1. Let Bm,p denote a binomial random variable with size
m and probability p and βa,b denote a beta random variable with parameter
(a, b). Then,

FT,p(t) = P (Bt+r,p > r − 1) = P (Bt+r,p ≥ r) = P (βr,t+1 ≤ p).

Hence, p is the α2th quantile of βr,T+1. Since FT,p(T−) = FT,p(T − 1), p
is the (1 − α1)th quantile of βr,T if T > 0 and 1 if T = 0. Using the same
argument as that in the solution of the previous exercise, we conclude that

[p, p] =

[
1

1 + T+1
r F2(T+1),2r,α2

,
r
T F2r,2T,α1

1 + r
T F2r,2T,α1

]
.

Exercise 12 (#7.18). Let T be a statistic having the noncentral chi-
square distribution χ2

r(θ), where the noncentrality parameter θ ≥ 0 is
unknown and r is a known positive integer. Show that the cumulative
distribution function of T , Fθ(t), is nonincreasing in θ for each fixed t > 0
and use this result to construct a confidence interval for θ with confidence
coefficient 1 − α.
Solution A. From Exercise 27 of Chapter 1,

Fθ(t) = e−θ/2
∞∑

j=0

(θ/2)j

j!
G2j+r(t),
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where G2j+r(t) is the cumulative distribution function of the central chi-
square distribution χ2

2j+r, j = 1, 2, .... From the definition of the chi-square
distribution χ2

2j+r, it is the distribution of the sum of 2j+r independent and
identically distributed χ2

1 random variables. Hence, G2j+r(t) is decreasing
in j for any fixed t > 0. Let Y be a random variable having the Poisson
distribution with mean θ/2 and h(j) = G2j+r(t), t > 0, j = 0, 1, 2, ....
Then Fθ(t) = Eθ[h(Y )], where Eθ is the expectation with respect to the
distribution of Y . Since the family of distributions of Y has monotone
likelihood ratio in Y and h(Y ) is decreasing in Y , by Lemma 6.3 in Shao
(2003), Eθ[h(Y )] is nonincreasing in θ. By Theorem 7.1 in Shao (2003), a
1 − α confidence interval for θ is [θ, θ] with

θ = sup{θ : Fθ(T ) ≥ α1} and θ = inf{θ : Fθ(T ) ≤ 1 − α2},

where α1 + α2 = α.
Solution B. By definition,

Fθ(t) = P (X + Y ≤ t) =
∫ ∞

0
P (X ≤ t − y)f(y)dy,

where X has the noncentral chi-square distribution χ2
1(θ), Y has the central

chi-square distribution χ2
r−1, f(y) is the Lebesgue density of Y , and X and

Y are independent (Y = 0 if r = 1). From Exercise 9(ii) in Chapter
6, the family of densities of noncentral chi-square distributions χ2

1(θ) has
monotone likelihood ratio in X and, hence, P (X ≤ t − y) is nonincreasing
in θ for any t and y. Hence, Fθ(t) is is nonincreasing in θ for any t > 0.
The rest of the solution is the same as that in Solution A.

Exercise 13 (#7.19). Repeat the previous exercise when χ2
r(θ) is replaced

by the noncentral F-distribution Fr1,r2(θ) with unknown θ ≥ 0 and known
positive integers r1 and r2.
Solution. It suffices to show that the cumulative distribution function
of Fr1,r2(θ), Fθ(t), is nonincreasing in θ for any t > 0, since the rest of
the solution is the same as that in Solution A of the previous exercise. By
definition, Fθ(t) is the cumulative distribution function of (U1/r1)/(U2/r2),
where U1 has the noncentral chi-square distribution χ2

r1
(θ), U2 has the

central chi-square distribution χ2
r2

, and U1 and U2 are independent. Let
g(y) be the Lebesgue density of r1U2/r2. Then

Fθ(t) = P
(
U1 ≤ t(r1U2/r2)

)
=
∫ ∞

0
P (U1 ≤ ty)g(y)dy.

From the previous exercise, P (U1 ≤ ty) is nonincreasing in θ for any t and
y. Hence, Fθ(t) is nonincreasing in θ for any t.

Exercise 14 (#7.20). Let Xij , j = 1, ..., ni, i = 1, ..., m, be indepen-
dent random variables having distribution N(µi, σ

2), i = 1, ..., m. Let
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µ̄ = n−1∑m
i=1 niµi and θ = σ−2∑m

i=1 ni(µi − µ̄)2. Construct an upper
confidence bound for θ that has confidence coefficient 1 − α and is a func-
tion of T = (n − m)(m − 1)−1SST/SSR, where

SSR =
m∑

i=1

ni∑
j=1

(Xij − X̄i·)2, SST =
m∑

i=1

ni∑
j=1

(Xij − X̄)2,

X̄i· is the sample mean based on Xi1, ..., Xini
, and X̄ is the sample mean

based on all Xij ’s.
Solution. Note that

∑ni

j=1(Xij − X̄i·)2 has the chi-square distribution
χ2

ni−1, i = 1, ..., m. By the independence of Xij ’s, SSR has the chi-square
distribution χ2

n−m, where n =
∑m

i=1 ni. Let Y = (X̄1·, ..., X̄m·) and A be
the m × m diagonal matrix whose ith diagonal element is

√
ni/σ. Then

AY has distribution Nm(ζ, Im), where Im is the identity matrix of order m
and ζ = (µ1

√
n1/σ, ..., µm

√
nm/σ). Note that

SSA =
m∑

i=1

ni(X̄i· − X̄)2 = Y τA(Im − n−1KmKτ
m)AY,

where Km = (
√

n1, ...,
√

nm). Since Kτ
mKm = n, (Im − n−1KmKτ

m)2 =
(Im − n−1KmKτ

m) and, by Exercise 22(i) in Chapter 1, SSA has the non-
central chi-square distribution χ2

m−1(δ) with

δ = [E(AY )]τ (Im − n−1KmKτ
m)E(AY ) = θ.

Also, by Basu’s theorem, SSA and SSR are independent. Since SSA = SST
− SSR, we conclude that

T − n − m

m − 1
=

SSA/(m − 1)
SSR/(n − m)

has the noncentral F-distribution Fm−1,n−m(θ). From the previous exercise,
the cumulative distribution function of T , Fθ(t), is nonincreasing in θ for
any t. Hence, by Theorem 7.1 in Shao (2003), an upper confidence bound
for θ that has confidence coefficient 1 − α is

θ = sup{θ : Fθ(T ) ≥ α}.

Exercise 15 (#7.24). Let Xi, i = 1, 2, be independent random variables
distributed as the binomial distributions with sizes ni and probabilities pi,
i = 1, 2, respectively, where ni’s are known and pi’s are unknown. Show
how to invert the acceptance regions of UMPU tests to obtain a level 1−α

confidence interval for the odds ratio p2(1−p1)
p1(1−p2)

.
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Solution. Let θ = p2(1−p1)
p1(1−p2)

. From the solution to Exercise 24 in Chapter
6, a UMPU test for H0 : θ = θ0 versus H1 : θ 
= θ0 has acceptance region

A(θ0) = {(Y, U) : c1(U, θ0) ≤ Y ≤ c2(U, θ0)},

where Y = X2, U = X1 + X2, and ci(U, θ) are some functions. From
Exercise 19 in Chapter 6, for each fixed U , ci(U, θ) is nondecreasing in θ.
Hence, for every θ,

{θ ∈ A(θ)} = {θ : c1(U, θ) ≤ Y ≤ c2(U, θ)} = [c−1
2,U (Y ), c−1

1,U (Y )],

where
c−1
i,U (Y ) = inf{x : ci(U, x) ≥ Y }.

From Theorem 7.2 in Shao (2003), [c−1
2,U (Y ), c−1

1,U (Y )] is a level 1 − α confi-
dence interval for θ.

Exercise 16 (#7.25). Let X = (X1, ..., Xn) be a random sample from
N(µ, σ2).
(i) Suppose that σ2 = γµ2 with unknown γ > 0 and µ ∈ R, µ 
= 0. Obtain
a confidence set for γ with confidence coefficient 1 − α by inverting the
acceptance regions of LR tests for H0 : γ = γ0 versus H1 : γ 
= γ0.
(ii) Repeat (i) when σ2 = γµ with unknown γ > 0 and µ > 0.
Solution. (i) The likelihood function is given in part (i) of the solution
to Exercise 47 in Chapter 6. The MLE of (µ, γ) is (µ̂, γ̂) = (X̄, σ̂2/X̄2),
where X̄ is the sample mean and σ̂2 = n−1∑n

i=1(Xi − X̄)2. When γ = γ0,
using the same argument in the solution of Exercise 41(viii) in Chapter 4,
we obtain the MLE of µ as

µ̂(γ0) =
{

µ+(γ0) �(µ+(γ0), γ0) > �(µ−(γ0), γ0)
µ−(γ0) �(µ+(γ0), γ0) ≤ �(µ−(γ0), γ0),

where

µ±(γ0) =
−X̄ ±

√
(5X̄2 + 4σ̂2)/γ0

2
.

The likelihood ratio is

λ(γ0) =
en/2σ̂n

γ
n/2
0 |µ̂(γ0)|n

exp
{

−nσ̂2 + n[µ̂(γ0) − X̄]2

2[µ̂(γ0)]2

}
.

The confidence set obtained by inverting the acceptance regions of LR tests
is {γ : λ(γ) ≥ c(γ)}, where c(γ) satisfies P (λ(γ) < c(γ)) = α.
(ii) The likelihood function is given in part (ii) of the solution to Exercise
47 in Chapter 6. The MLE of (µ, γ) is (X̄, σ̂2/X̄) when X̄ > 0. If X̄ ≤ 0,
however, the likelihood is unbounded in γ. When γ = γ0, using the same
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argument as that in the solution to Exercise 60 of Chapter 4, we obtain the
MLE of µ as µ̂(γ0) = (

√
γ2
0 + 4T − γ0)/2, where T = n−1∑n

i=1 X2
i . The

likelihood ratio is

λ(γ0) =

⎧⎨
⎩
[

eσ̂2

γ0µ̂(γ0)

]−n/2
exp
{

− nT
2γ0µ̂(γ0)

+ nX̄
γ0

− nµ̂(γ0)
2γ0

}
X̄ > 0

0 X̄ ≤ 0.

The confidence set obtained by inverting the acceptance regions of LR tests
is {γ : λ(γ) ≥ c(T, γ)}, where c(T, γ) satisfies P (λ(γ) < c(T, γ)|T ) = α.

Exercise 17 (#7.26). Let X = (X1, ..., Xn) be a random sample from
N(µ, σ2) with unknown µ and σ2. Discuss how to construct a confidence
interval for θ = µ/σ with confidence coefficient 1 − α by
(i) inverting the acceptance regions of the tests given in Exercise 22 of
Chapter 6;
(ii) applying Theorem 7.1 in Shao (2003).
Solution. (i) From Exercise 22 in Chapter 6, the acceptance region of a test
of size α for H0 : θ ≤ θ0 versus H1 : θ > θ0 is {X: t(X) ≤ cα(θ0)}, where
t(X) =

√
nX̄/S, X̄ is the sample mean, S2 is the sample variance, and cα(θ)

is the (1 − α)th quantile of the noncentral t-distribution tn−1(
√

nθ). From
the solution to Exercise 22 in Chapter 6, the family of densities of tn−1(

√
nθ)

has monotone likelihood ratio in t(X). By Lemma 6.3 in Shao (2003),
cα(θ) is increasing in θ and, therefore, {θ : cα(θ) ≥ t(X)} = [θ(X),∞)
for some θ(X). By Theorem 7.2 in Shao (2003), [θ(X),∞) is a confidence
interval for θ = µ/σ with confidence coefficient 1 − α. If it is desired to
obtain a bounded confidence interval for θ, then we may consider C(X) =
{θ : cα/2(θ) ≥ t(X) ≥ dα/2(θ)}, where dα(θ) is the is the αth quantile
of tn−1(

√
nθ). By considering the problem of testing H0 : θ ≥ θ0 versus

H1 : θ < θ0, we conclude that {θ : t(X) ≥ dα/2(θ)} is a confidence interval
for θ with confidence coefficient 1 − α/2. Hence, C(X) is a confidence
interval for θ with confidence coefficient 1 − α.
(ii) The cumulative distribution function of t(X) is

Fθ(t) =
∫ ∞

0
Φ(ty − θ)f(y)dy,

where Φ is the cumulative distribution function of N(0, 1), f(y) is the
Lebesgue density of

√
W/(n − 1), and W has the chi-square distribution

χ2
n−1. Hence, for any fixed t, Fθ(t) is continuous and decreasing in θ,

limθ→∞ Fθ(t) = 0, and limθ→−∞ Fθ(t) = 1. By Theorem 7.1 in Shao
(2003), [θ, θ] is a confidence interval for θ with confidence coefficient 1 − α,
where θ is the unique solution to Fθ(t(X)) = 1 − α/2 and θ is the unique
solution to Fθ(t(X)) = α/2.

Exercise 18 (#7.27). Let (X1, ..., Xn) be a random sample from the
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uniform distribution on (θ− 1
2 , θ+ 1

2 ), where θ ∈ R. Construct a confidence
interval for θ with confidence coefficient 1 − α.
Solution. Note that Xi + 1

2 − θ has the uniform distribution on (0, 1). Let
X(j) be the jth order statistic. Then

P

(
X(1) +

1
2

− θ ≤ c

)
= 1 − (1 − c)n.

Hence

P

(
X(1) − 1

2
+ α

1/n
1 ≤ θ

)
= 1 − α1.

Similarly,

P

(
X(n) +

1
2

− α
1/n
2 ≥ θ

)
= 1 − α2.

Let α = α1 + α2. A confidence interval for θ with confidence coefficient
1 − α is then [X(1) − 1

2 + α
1/n
1 , X(n) + 1

2 − α
1/n
2 ].

Exercise 19 (#7.29). Let (X1, ..., Xn) be a random sample from N(µ, σ2)
with unknown θ = (µ, σ2). Consider the prior Lebesgue density π(θ) =
π1(µ|σ2)π2(σ2), where π1(µ|σ2) is the density of N(µ0, σ

2
0σ2),

π2(σ2) =
1

Γ(a)ba

(
1
σ2

)a+1

e−1/(bσ2)I(0,∞)(σ2),

and µ0, σ2
0 , a, and b are known.

(i) Find the posterior of µ and construct a level 1 − α HPD credible set for
µ.
(ii) Show that the credible set in (i) converges to the confidence interval
[X̄ − tn−1,α/2

S√
n
, X̄ + tn−1,α/2

S√
n
] as σ2

0 , a, and b converge to some limits,
where X̄ is the sample mean, S2 is the sample variance, and tn−1,α is the
(1 − α)th quantile of the t-distribution tn−1.
Solution. (i) This is a special case of the problem in Exercise 20(iii) of
Chapter 4. Let ω = σ−2. Then the posterior density of (µ, ω) is p(µ|ω)p(ω),
where p(µ|ω) is the density of N(µ∗, ω−1c−1

∗ ), µ∗ = (σ−2
0 µ0+nX̄)/(n+σ−2

0 ),
c∗ = n+σ−2

0 , and p(ω) is the density of the gamma distribution with shape
parameter a + n/2 and scale parameter γ = [b−1 + (n − 1)S2/2]−1. The
posterior density for µ is then

f(µ) =
∫ ∞

0
p(µ|ω)p(ω)dω

=
∫ ∞

0

√
c∗γ−(a+n/2)

√
2πΓ(a + n

2 )
ωa+(n−1)/2e−[γ−1+c∗(µ−µ∗)2/2]ωdω

=
Γ(a + n+1

2 )
√

c∗(2γ−1)a+n/2

√
πΓ(a + n

2 )[2γ−1 + c∗(µ − µ∗)2]a+(n+1)/2 .
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Since this density is symmetric about µ∗, a level 1 − α HPD credible set
for µ is [µ∗ − t∗, µ∗ + t∗], where t∗ > 0 satisfies

∫ µ∗+t∗

µ∗−t∗
f(µ)dµ = 1 − α.

(ii) Let σ2
0 → ∞, a → −1/2, and b → ∞. Then, µ∗ → X̄, c∗ → n,

2γ−1 → (n − 1)S2, and

f(µ) →
Γ(n

2 )
√

n[(n − 1)S2](n−1)/2

√
πΓ(n−1

2 )[(n − 1)S2 + n(µ − X̄)2]n/2
,

which is the density of (S/
√

n)T with T being a random variable having
t-distribution tn−1. Hence, t∗ → tn−1,α/2S/

√
n and the result follows.

Exercise 20 (#7.30). Let (X1, ..., Xn) be a random sample from a distri-
bution on R with Lebesgue density 1

σ f
(

x−µ
σ

)
, where f is a known Lebesgue

density and µ ∈ R and σ > 0 are unknown. Let X0 be a future observation
that is independent of Xi’s and has the same distribution as Xi. Find a
pivotal quantity R(X, X0) and construct a level 1−α prediction set for X0.
Solution. Let X̄ and S2 be the sample mean and sample variance. Con-
sider T = (X0 − X̄)/S. Since

T =
X0 − X̄

S
=

X0−µ
σ − 1

n

∑n
i=1

Xi−µ
σ[

1
n−1

∑n
i=1

(
Xi−µ

σ − 1
n

∑n
j=1

Xj−µ
σ

)2]1/2

and the density of (Xi − µ)/σ is f , T is a pivotal quantity. A 1 − α
prediction set for X0 is

{
X0 : |X0 − X̄| ≤ cS

}
, where c is chosen such that

P (|T | ≤ c) = 1 − α.

Exercise 21 (#7.31). Let (X1, ..., Xn) be a random sample from a
continuous cumulative distribution function F on R and X0 be a future
observation that is independent of Xi’s and is distributed as F . Sup-
pose that F is increasing in a neighborhood of F−1(α/2) and a neigh-
borhood of F−1(1 − α/2). Let Fn be the empirical distribution. Show
that the prediction interval C(X) = [F−1

n (α/2), F−1
n (1 − α/2)] for X0 sat-

isfies limn P (X0 ∈ C(X)) = 1 − α, where P is the joint distribution of
(X0, X1, ..., Xn).
Solution. Since F is increasing in a neighborhood of F−1(α/2), F−1(t) is
continuous at α/2. By the result in Exercise 28 of Chapter 5, limn F−1

n (α/2)
= F−1(α/2) a.s. Then X0 − F−1

n (α/2) →d X0 − F−1(α/2) and, thus,

lim
n

P
(
F−1

n (α/2) > X0
)

= P
(
F−1(α/2

)
> X0) = α/2,
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since F is continuous. Similarly,

lim
n

P
(
X0 ≤ F−1

n (1 − α/2)
)

= P
(
X0 ≤ F−1(1 − α/2)

)
= 1 − α/2.

Hence,

lim
n

P
(
X0 ∈ C(X)

)
= lim

n
P
(
F−1

n (α) ≤ X0 ≤ F−1
n (1 − α/2)

)
= 1 − α.

Exercise 22 (#7.33). Let X = (X1, ..., Xn) (n > 1) be a random sample
from the exponential distribution on the interval (θ, ∞) with scale param-
eter θ, where θ > 0 is unknown.
(i) Show that both X̄/θ and X(1)/θ are pivotal quantities, where X̄ is the
sample mean and X(1) is the smallest order statistic.
(ii) Obtain confidence intervals (with confidence coefficient 1 − α) for θ
based on the two pivotal quantities in (i).
(iii) Discuss which confidence interval in (ii) is better in terms of the length.
Solution. (i) Note that Xi/θ − 1 has the exponential distribution on the
interval (0,∞) with scale parameter 1. Hence, X̄/θ −1 has the gamma dis-
tribution with shape parameter n and scale parameter n−1 and X(1)/θ − 1
has the exponential distribution on (0,∞) with scale parameter n−1. There-
fore, both X̄/θ and X(1)/θ are pivotal quantities.
(ii) Let cn,α be the αth quantile of the gamma distribution with shape
parameter n and scale parameter n−1. Then

P

(
cn,α/2 ≤ X̄

θ
− 1 ≤ cn,1−α/2

)
= 1 − α,

which leads to the 1 − α confidence interval

C1(X) =
[

X̄

1 + cn,1−α/2
,

X̄

1 + cn,α/2

]
.

On the other hand,

P

(
1
n

log
1

1 − α/2
≤

X(1)

θ
− 1 ≤ 1

n
log

1
α/2

)
= 1 − α,

which leads to the 1 − α confidence interval

C2(X) =
[

X(1)

1 − n−1 log(1 − α/2)
,

X(1)

1 − n−1 log(α/2)

]
.

(iii) The length of C1(X) is

X̄(cn,α/2 − cn,1−α/2)
(1 + cn,α/2)(1 + cn,1−α/2)
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and the length of C2(X) is

X(1) log(2/α − 1)n−1

[1 − n−1 log(α/2)][1 − n−1 log(1 − α/2)]
.

From the central limit theorem, limn
√

n(cn,α/2 − cn,1−α/2) > 0, assuming
α < 1

2 . Hence, for sufficiently large n,

log(2/α − 1)n−1

[1 − n−1 log(α/2)][1 − n−1 log(1 − α/2)]
<

(cn,α/2 − cn,1−α/2)
(1 + cn,α/2)(1 + cn,1−α/2)

.

Also, X̄ > X(1). Hence, for sufficiently large n, the length of C2(X) is
shorter than the length of C1(X).

Exercise 23 (#7.34). Let θ > 0 be an unknown parameter and T > 0 be
a statistic. Suppose that T/θ is a pivotal quantity having Lebesgue density
f and that x2f(x) is unimodal at x0 in the sense that f(x) is nondecreasing
for x ≤ x0 and f(x) is nonincreasing for x ≥ x0. Consider the following
class of confidence intervals for θ:

C =

{
[b−1T, a−1T ] : a > 0, b > 0,

∫ b

a

f(x)dx = 1 − α

}
.

Show that if [b−1
∗ T, a−1

∗ T ] ∈ C, a2
∗f(a∗) = b2

∗f(b∗) > 0, and a∗ ≤ x0 ≤ b∗,
then the interval [b−1

∗ T, a−1
∗ T ] has the shortest length within C.

Solution. We need to minimize 1
a − 1

b under the constraint
∫ b

a
f(x)dx =

1 − α. Let t = 1
x , then

∫ b

a

f(x)dx =
∫ 1

a

1
b

f

(
1
t

)
1
t2

dt = 1 − α.

Since f is unimodal at x0, f( 1
t )

1
t2 is unimodal at t = 1

x0
. The result follows

by applying Theorem 7.3(i) in Shao (2003) to the function f( 1
t )

1
t2 .

Exercise 24 (#7.35). Let tn−1,α be the (1 − α)th quantile of the t-
distribution tn−1 and zα be the (1 − α)th quantile of N(0, 1), where 0 <
α < 1

2 and n = 2, 3, .... Show that
√

2Γ(n
2 )

√
nΓ(n−1

2 )
tn−1,α ≥ zα, n = 2, 3, ....

Solution. Let X = (X1, ..., Xn) be a random sample from N(µ, σ2). If σ2

is known, then a 1−2α confidence interval obtained by inverting the UMPU
tests is C1(X) = [X̄ −zασ/

√
n, X̄ +zασ/

√
n], where X̄ is the sample mean.
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If σ2 is unknown, then a 1 − 2α confidence interval obtained by inverting
the UMPU tests is C2(X) = [X̄ − tn−1,αS/

√
n, X̄ + tn−1,αS/

√
n], where

S2 is the sample variance. For any fixed σ, both C1(X) and C2(X) are
unbiased confidence intervals. By Theorem 7.5 in Shao (2003), C1(X) is
the UMAU (uniformly most accurate unbiased) confidence interval. By
Pratt’s theorem (e.g., Theorem 7.6 in Shao, 2003), the expected length of
C1(X) is no larger than the expected length of C2(X). The length of C2(X)
is 2tn−1,αS/

√
n. Since (n − 1)S2/σ2 has the chi-square distribution χ2

n−1,

E(S) =

√
2Γ(n

2 )
√

nΓ(n−1
2 )

σ, n = 2, 3, ...,

which implies that the expected length of C2(X) is

2σ√
n

√
2Γ(n

2 )
√

nΓ(n−1
2 )

tn−1,α ≥ 2σ√
n

zα,

the length of C1(X). This proves the result.

Exercise 25 (#7.36(a),(c)). Let (X1, ..., Xn) be a random sample from
N(µ, σ2), µ ∈ R and σ2 > 0.
(i) Suppose that µ is known. Let an and bn be constants satisfying a2

nfn(an)
= b2

nfn(bn) > 0 and
∫ bn

an
fn(x)dx = 1−α, where fn is the Lebesgue density

of the chi-square distribution χ2
n. Show that the interval [b−1

n T, a−1
n T ] has

the shortest length within the class of intervals of the form [b−1T, a−1T ],∫ b

a
fn(x)dx = 1 − α, where T =

∑n
i=1(Xi − µ)2.

(ii) When µ is unknown, show that [b−1
n−1(n − 1)S2, a−1

n−1(n − 1)S2] has the
shortest length within the class of 1 − α confidence intervals of the form
[b−1(n − 1)S2, a−1(n − 1)S2], where S2 is the sample variance.
(iii) Find the shortest-length interval for σ within the class of confidence
intervals of the form [b−1/2√n − 1S, a−1/2√n − 1S], where 0 < a < b < ∞,
and
∫ b

a
fn−1(x)dx = 1 − α.

Solution. (i) Note that T/σ2 has the chi-square distribution χ2
n with

Lebesgue density fn and x2fn(x) is unimodal. The result follows from
Exercise 23.
(ii) Since (n − 1)S2 has the chi-square distribution χ2

n−1, the result follows
from part (i) of the solution with n replaced by n − 1.
(iii) Let t = 1/

√
x. Then∫ b

a

f(x)dx =
∫ 1√

a

1√
b

fn−1

(
1√
t

)
1

2t
√

t
dt.

Minimizing 1√
a

− 1√
b

under the constraint
∫ b

a
fn−1(x)dx = 1−α is the same

as minimizing 1√
a
− 1√

b
under the constraint

∫ 1√
a

1√
b

fn−1

(
1√
t

)
1

2t
√

t
dt = 1−α.
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It is easy to check that fn−1( 1√
t
) 1
2t

√
t

is unimodal. By Exercise 23, there ex-
ist 1√

b∗
< 1√

a∗
such that b3

∗fn−1(b∗) = a3
∗fn−1(a∗) and the confidence inter-

val [b−1/2
∗

√
n − 1S, a

−1/2
∗

√
n − 1S] has the shortest length within the class

of confidence intervals of the form [b−1/2√n − 1S, a−1/2√n − 1S], where
0 < a < b < ∞, and

∫ b

a
fn−1(x)dx = 1 − α.

Exercise 26 (#7.38). Let f be a Lebesgue density that is nonzero in
[x−, x+] and is 0 outside [x−, x+], −∞ ≤ x− < x+ ≤ ∞.
(i) Suppose that f is decreasing. Show that, among all intervals [a, b] sat-
isfying

∫ b

a
f(x)dx = 1 − α, the shortest interval is obtained by choosing

a = x− and b∗ so that
∫ b∗

x−
f(x)dx = 1 − α.

(ii) Obtain a result similar to that in (i) when f is increasing.
(iii) Show that the interval [X(n), α

−1/nX(n)] has the shortest length among
all intervals [b−1X(n), a

−1X(n)], where X(n) is the largest order statistic
based on a random sample of size n from the uniform distribution on (0, θ).
Solution. (i) Since f is decreasing, we must have x− > −∞. Without loss
of generality, we consider a and b such that x− ≤ a < b ≤ x+. Assume
a ≤ b∗. If b ≤ b∗, then∫ a

x−
f(x)dx =

∫ b∗

x−
f(x)dx −

∫ b∗

a

f(x)dx < 1 − α −
∫ b

a

f(x)dx = 0,

which is impossible, where the inequality follows from the fact that f is
decreasing. If b > b∗ but b − a < b∗ − x−, then∫ b

a

f(x)dx =
∫ b∗

a

f(x)dx +
∫ b

b∗
f(x)dx

≤
∫ b∗

a

f(x)dx + f(b∗)(b − b∗)

<

∫ b∗

a

f(x)dx + f(a)(b − b∗)

<

∫ b∗

a

f(x)dx + f(a)(a − x−)

≤
∫ b∗

a

f(x)dx +
∫ a

x−
f(x)dx

= 1 − α,

which contradicts
∫ b

a
f(x)dx = 1−α. Hence, we must have b−a ≤ b∗ −x−.

If a > b∗ and b − a ≤ b∗ − x−, then∫ b

a

f(x)dx ≤ f(a)(b − a) < f(b∗)(b∗ − x−) ≤
∫ b∗

x−
f(x)dx = 1 − α.
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Hence, we must have b − a > b∗ − x−.
(ii) When f is increasing, we must have x+ < ∞. The shortest interval is
obtained by choosing b = x+ and a∗ so that

∫ x+

a∗
f(x)dx = 1−α. The proof

is similar to that in part (i) of the solution.
(iii) Let X(n) be the largest order statistic based on a random sample of size
n from the uniform distribution on (0, θ). The Lebesgue density of X(n)/θ
is nxn−1I(0,1)(x). We need to minimize a−1 − b−1 under the constraint

1 − α =
∫ b

a

nxn−1dx =
∫ a−1

b−1

n

yn+1 dy, 0 ≤ a < b ≤ 1.

Note that n/yn+1 is decreasing in [1,∞). By (i), the solution is b−1 = 1

and a−1 satisfying
∫ a−1

1 ny−(n+1)dy = 1 − α, which yields a = α1/n. The
corresponding confidence interval is [X(n), α

1/nX(n)].

Exercise 27 (#7.39). Let (X1, ..., Xn) be a random sample from the
exponential distribution on (a,∞) with scale parameter 1, where a ∈ R
is unknown. Find a confidence interval for a having the shortest length
within the class of confidence intervals [X(1) + c, X(1) + d] with confidence
coefficient 1 − α, where X(1) is the smallest order statistic.
Solution. The Lebesgue density of X(1) − θ is ne−nxI[0,∞)(x), which is
decreasing on [0,∞). Note that

P (X(1) + c ≤ a ≤ X(1) + d) = P (−d ≤ X(1) − a ≤ −c) =
∫ −c

−d

ne−nxdx.

Hence, −c ≥ −d ≥ 0. To minimize d− c, the length of the 1−α confidence
interval [X(1) + c, X(1) + d], it follows from Exercise 26(i) that −d = 0 and
−c satisfies ∫ −c

0
ne−nxdx = 1 − α,

which yields c = n−1 log α. The shortest length confidence interval is then
[X(1) + n−1 log α, X(1)].

Exercise 28 (#7.42). Let (X1, ..., Xn) be a random sample from a dis-
tribution with Lebesgue density θxθ−1I(0,1)(x), where θ > 0 is unknown.
(i) Construct a confidence interval for θ with confidence coefficient 1 − α,
using a sufficient statistic.
(ii) Discuss whether the confidence interval obtained in (i) has the shortest
length within a class of confidence intervals.
(iii) Discuss whether the confidence interval obtained in (i) is UMAU.
Solution. (i) The complete and sufficient statistic is T = −

∑n
i=1 log Xi.

Note that θT has the gamma distribution with shape parameter n and scale
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parameter 1. Let f(x) be the Lebesgue density of θT . Then a confidence
interval of coefficient 1 − α can be taken from the following class:

C =

{
[(bT )−1, (aT )−1] :

∫ b

a

1
x2 f

(
1
x

)
dx = 1 − α

}
.

(ii) Note that f( 1
x ) is unimodal. By Exercise 23, [(b∗T )−1, (a∗T )−1] with

f(a∗) = f(b∗) has the shortest length within C.
(iii) Consider testing hypotheses H0 : θ = θ0 versus H1 : θ 
= θ0. The
acceptance region of a UMPU test is A(θ0) = {X : c1 ≤ θ0T ≤ c2}, where
c1 and c2 are determined by∫ c2

c1

f(x)dx = 1 − α and
∫ c2

c1

xf(x)dx = n(1 − α).

Thus a UMAU confidence interval is [c1/T, c2/T ], which is a member of C
but in general different from the one in part (ii).

Exercise 29 (#7.45). Let X be a single observation from N(θ − 1, 1) if
θ < 0, N(0, 1) if θ = 0, and N(θ + 1, 1) if θ > 0.
(i) Show that the distribution of X is in a family with monotone likelihood
ratio in X.
(ii) Construct a Θ′-UMA (uniformly most accurate) lower confidence bound
for θ with confidence coefficient 1 − α, where Θ′ = (−∞, θ).
Solution. (i) Let µ(θ) be the mean of X. Then

µ(θ) =

⎧⎨
⎩

θ − 1 θ < 0
0 θ = 0
θ + 1 θ > 0,

which is an increasing function of θ. Let fθ(x) be the Lebesgue density of
X. For any θ2 > θ1,

fθ2(x)
fθ1(x)

= exp
{

[µ(θ2) − µ(θ1)]x − [µ(θ2)]2 − [µ(θ1)]2

2

}

is increasing in x. Therefore, the family {fθ : θ ∈ R} has monotone likeli-
hood ratio in X.
(ii) Consider testing H0 : θ = θ0 versus H1 : θ > θ0. The UMP test has ac-
ceptance region {X : X ≤ c(θ0)}, where Pθ(X ≥ c(θ)) = α and Pθ denotes
the distribution of X. Since Pθ is N(µ(θ), 1), c(θ) = zα + µ(θ), where zα

is the (1 − α)th quantile of N(0, 1). Inverting these acceptance regions, we
obtain a confidence set

C(X) = {θ : X < zα + µ(θ)}.
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When X − zα > 1, if θ ≤ 0, then µ(θ) > X − zα cannot occur; if θ > 0,
µ(θ) > X −zα if and only if θ > X −zα−1; hence, C(X) = (X −zα−1,∞).
Similarly, when X − zα < −1, C(X) = (X − zα + 1,∞). When −1 ≤
X − zα < 0, µ(θ) > X − zα if and only if θ ≥ 0 and, hence, C(X) = [0,∞).
When 0 ≤ X − zα ≤ 1, µ(θ) > X − zα if and only if θ > 0 and, hence,
C(X) = (0,∞). Hence, a (−∞, θ)-UMA confidence lower bound for θ is

θ =

⎧⎨
⎩

X − zα − 1 X > zα + 1
0 zα − 1 ≤ X ≤ zα + 1
X − zα + 1 X < zα − 1.

Exercise 30 (#7.46). Let X be a vector of n observations having distri-
bution Nn(Zβ, σ2In), where Z is a known n × p matrix of rank r ≤ p < n,
β is an unknown p-vector, and σ2 > 0 is unknown. Let θ = Lβ, where L is
an s × p matrix of rank s and all rows of L are in R(Z),

W (X, θ) =
[‖X − Zβ̂(θ)‖2 − ‖X − Zβ̂‖2]/s

‖X − Zβ̂‖2/(n − r)
,

where β̂ is the LSE of β and, for each fixed θ, β̂(θ) is a solution of

‖X − Zβ̂(θ)‖2 = min
β:Lβ=θ

‖X − Zβ‖2.

Show that C(X) = {θ : W (X, θ) ≤ cα} is an unbiased 1 − α confidence set
for θ, where cα is the (1 − α)th quantile of the F-distribution Fs,n−r.
Solution. From the discussion in §6.3.2 of Shao (2003), W (X, η) has the
noncentral F-distribution Fs,n−r(δ), where δ = ‖η−θ‖2/σ2 for any η = Lγ,
γ ∈ Rp. Hence, when θ is the true parameter value, W (X, θ) has the central
F-distribution Fs,n−r and, therefore,

P
(
θ ∈ C(X)

)
= P
(
W (X, θ) ≤ cα

)
= 1 − α,

i.e., C(X) has confidence coefficient 1 − α. If θ′ is not the true parameter
value,

P
(
θ′ ∈ C(X)

)
= P
(
W (X, θ′) ≤ cα

)
≤ P
(
W (X, θ) ≤ cα

)
= 1 − α,

where the inequality follows from the fact that the noncentral F-distribution
cumulative distribution function is decreasing in its noncentrality parameter
(Exercise 13). Hence, C(X) is unbiased.

Exercise 31 (#7.48). Let X = (X1, ..., Xn) be a random sample from the
exponential distribution on (a,∞) with scale parameter θ, where a ∈ R and
θ > 0 are unknown. Find a UMA confidence interval for a with confidence
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coefficient 1 − α.
Solution. From Exercises 15 and 33 of Chapter 6, for testing H0 : a = a0
versus H1 : a 
= a0, a UMP test of size α rejects H0 when X(1) ≤ a0
or 2n(X(1) − a0)/V > c, where X(1) is the smallest order statistic, V =
2
∑n

i=1(Xi − X(1)), and c satisfies (n − 1)
∫ c

0 (1 + v)−ndv = 1 − α. The
acceptance region of this test is

A(a0) =
{

X : 0 ≤
2n(X(1) − a0)

V
≤ c

}
.

Then,

C(X) = {a : a ∈ A(a)}

=
{

a : 0 ≤
2n(X(1) − a)

V
≤ c

}

=
[
X(1) − cV

2n
, X(1)

]

is a UMA confidence interval for a with confidence coefficient 1 − α.

Exercise 32. Let X = (X1, ..., Xn) be a random sample from the uniform
distribution on (θ, θ + 1), where θ ∈ R is unknown. Obtain a UMA lower
confidence bound for θ with confidence coefficient 1 − α.
Solution. When n ≥ 2, it follows from Exercise 13(i) in Chapter 6 (with
the fact that Xi − θ0 has the uniform distribution on (θ − θ0, θ − θ0 + 1))
that a UMP test of size α for testing H0 : θ = θ0 versus H1 : θ 
= θ0 has
acceptance region

A(θ0) = {X : X(1) − θ0 < 1 − α1/n and X(n) − θ0 < 1},

where X(j) is the jth order statistic. When n = 1, by Exercise 8(iv) in
Chapter 6, the family of densities of X has monotone likelihood ratio in
X and, hence, the UMP test of size α rejects H0 when X > c and c
satisfies P (X ≥ c) = α when θ = θ0, i.e., c = 1 − α + θ0. Hence, the
acceptance region is {X : X < 1 − α + θ0}, which is still equal to A(θ0)
since X(1) = X(n) = X when n = 1. Therefore, a (−∞, θ)-UMA confidence
set for θ with confidence coefficient 1 − α is

C(X) = {θ : X ∈ A(θ)}
= {θ : X(1) − (1 − α1/n) < θ and X(n) − 1 < θ}
= {θ : max{X(1) − (1 − α1/n), X(n) − 1} < θ}
= [θ,∞],

where
θ = max{X(1) − (1 − α1/n), X(n) − 1}
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is a (−∞, θ)-UMA lower confidence bound for θ with confidence coefficient
1 − α.

Exercise 33 (#7.51). Let (X1, ..., Xn) be a random sample from the
Poisson distribution with an unknown mean θ > 0. Find a randomized
UMA upper confidence bound for θ with confidence coefficient 1 − α.
Solution. Let Y =

∑n
i=1 Xi and W = Y +U , where U is a random variable

that is independent of Y and has the uniform distribution on (0, 1). Note
that Y has the Poisson distribution with mean nθ. Then, for w > 0,

P (W ≤ w) =
∞∑

j=0

P (W ≤ w, Y = j)

=
∞∑

j=0

P (Y = j)P (U ≤ w − j)

=
∞∑

j=0

e−nθ(nθ)j

j!
(w − j)I(j,j+1](w)

and

fθ(w) =
d

dw
P (W ≤ w)

=
∞∑

j=0

e−nθ(nθ)j

j!
I(j,j+1](w)

=
e−nθ(nθ)[w]

[w]!
I(0,∞)(w),

where [w] is the integer part of w. For θ1 < θ2,

fθ2(w)
fθ1(w)

= en(θ1−θ2)
(

θ2

θ1

)[w]

is increasing in [w] and, hence, increasing in w, i.e., the family {fθ: θ > 0}
has monotone likelihood ratio in W . Thus, for testing H0 : θ = θ0 versus
H1 : θ < θ0, the UMP test has acceptance region {W : W ≥ c(θ0)}, where∫ c(θ0)
0 fθ0(w)dw = α. Let c(θ) be the function defined by

∫ c(θ)
0 fθ(w)dw =

α. For θ1 < θ2, if c(θ1) > c(θ2), then

α =
∫ c(θ1)

0
fθ1(w)dw ≥

∫ c(θ1)

0
fθ2(w)dw >

∫ c(θ2)

0
fθ2(w)dw = α,

where the first inequality follows from Lemma 6.3 in Shao (2003). Thus,
we must have c(θ1) ≤ c(θ2), i.e., c(θ) is nondecreasing in θ. Let c−1(t) =
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inf{θ : c(θ) ≥ t}. Then W ≥ c(θ) if and only if c−1(W ) ≥ θ. Hence, a Θ′-
UMA upper confidence bound with confidence coefficient 1 − α is c−1(W ),
where Θ′ = (θ, ∞).

Exercise 34 (#7.52). Let X be a nonnegative integer-valued random
variable from a population P ∈ P. Suppose that P contains discrete prob-
ability densities indexed by a real-valued θ and P has monotone likelihood
ratio in X. Let U be a random variable that has the uniform distribution
on (0, 1) and is independent of X. Show that a UMA lower confidence
bound for θ with confidence coefficient 1−α is the solution of the equation

UFθ(X) + (1 − U)Fθ(X − 1) = 1 − α

(assuming that a solution exists), where Fθ(x) is the cumulative distribution
function of X.
Solution. Let W = X + U . Using the same argument in the solution of
the previous exercise, we conclude that W has Lebesgue density

fθ(w) = Fθ([w]) − Fθ([w] − 1),

where [w] is the integer part of w. Note that the probability density function
of Fθ with respect to the counting measure is Fθ(x)−Fθ(x−1), x = 0, 1, 2, ....
Since P has monotone likelihood ratio in X,

Fθ2(x) − Fθ2(x − 1)
Fθ1(x) − Fθ1(x − 1)

is nondecreasing in X for any θ1 < θ2 and, hence, the family of densities
of W has monotone likelihood ratio in W . For testing H0 : θ = θ0 versus
H0 : θ > θ0, a UMP test of size α rejects H0 when W > c(θ0), where∫∞

c(θ0)
fθ0(w)dw = α. Let c(θ) be the function defined by

∫∞
c(θ) fθ(w)dw = α

and

A(θ) = {W : W ≤ c(θ)}

=

{
W :
∫ ∞

W

fθ(w)dw ≥
∫ ∞

c(θ)
fθ(w)dw = α

}
.

Since
∫∞

W
fθ(w)dw is nondecreasing in θ (Lemma 6.3 in Shao, 2003),

C(W ) = {θ : W ∈ A(θ)}

=
{

θ :
∫ ∞

W

fθ(w)dw ≥ α

}
= [θ,∞),
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where θ is a solution to
∫∞

W
fθ(w)dw = α (assuming that a solution exists),

i.e., a solution to
∫X+U

0 fθ(w)dw = 1 − α. The result follows from

∫ X+U

0
fθ(w)dw =

X−1∑
j=0

∫ j+1

j

fθ(w)dw +
∫ X+U

X

fθ(w)dw

=
X−1∑
j=0

[Fθ(j) − Fθ(j − 1)] + U [Fθ(X) − Fθ(X − 1)]

= Fθ(X − 1) + U [Fθ(X) − Fθ(X − 1)]
= UFθ(X) + (1 − U)Fθ(X − 1).

Exercise 35 (#7.60(a)). Let X1 and X2 be independent random vari-
ables from the exponential distributions on (0,∞) with scale parameters θ1
and θ2, respectively. Show that [αY/(2−α), (2−α)Y/α] is a UMAU confi-
dence interval for θ2/θ1 with confidence coefficient 1−α, where Y = X2/X1.
Solution. First, we need to find a UMPU test of size α for testing
H0 : θ2 = λθ1 versus H1 : θ2 
= λθ1, where λ > 0 is a known constant.
The joint density of X1 and X2 is

1
θ1θ2

exp
{

−X1

θ1
− X2

θ2

}
,

which can be written as

1
θ1θ2

exp
{

−X1

(
1
θ1

− λ

θ2

)
− (λX1 + X2)

1
θ2

}
.

Hence, by Theorem 6.4 in Shao (2003), a UMPU test of size α rejects H0
when X1 < c1(U) or X1 > c2(U), where U = λX1 + X2. Note that X1/X2
is independent of U under H0. Hence, by Lemma 6.7 of Shao (2003), the
UMPU test is equivalent to the test that rejects H0 when X1/X2 < d1 or
X1/X2 > d2, which is equivalent to the test that rejects H0 when W < b1 or
W > b2, where W = Y/λ

1+Y/λ and b1 and b2 satisfy P (b1 < W < b2) = 1 − α

(for size α) and E[WI(b1,b2)(W )] = (1 − α)E(W ) (for unbiasedness) under
H0. When θ2 = λθ1, W has the same distribution as Z1/Z2

1+Z1/Z2
, where Z1

and Z2 are independent and identically distributed random variables having
the exponential distribution on (0,∞) with scale parameter 1. Hence, the
distribution of W under H0 is uniform on (0, 1). Then the requirements on
b1 and b2 become b2 − b1 = 1−α and b2

2 − b2
1 = 1−α, which yield b1 = α/2

and b2 = 1−α/2 (assuming that 0 < α < 1
2 ). Hence, the acceptance region

of the UMPU test is

A(λ) =
{

W :
α

2
≤ W ≤ 1 − α

2

}
=
{

Y :
α

2 − α
≤ Y

λ
≤ 2 − α

α

}
.
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Inverting A(λ) leads to

{λ : λ ∈ A(λ)} =
[

αY

2 − α
,

(2 − α)Y
α

]
,

which is a UMAU confidence interval for λ = θ2/θ1 with confidence coeffi-
cient 1 − α.

Exercise 36 (#7.63). Let (Xi1, ..., Xini), i = 1, 2, be two independent
random samples from N(µi, σ

2
i ), i = 1, 2, respectively, where all parameters

are unknown. Let θ = µ1 − µ2, X̄i and S2
i be the sample mean and sample

variance of the ith sample, i = 1, 2.
(i) Show that

R(X, θ) =
X̄1 − X̄2 − θ√
n−1

1 S2
1 + n−1

2 S2
2

is asymptotically pivotal, assuming that n1/n2 → c ∈ (0,∞). Construct a
1 − α asymptotically correct confidence interval for θ using R(X, θ).
(ii) Show that

t(X, θ) =
(X̄1 − X̄2 − θ)

/√
n−1

1 + n−1
2√

[(n1 − 1)S2
1 + (n2 − 1)S2

2 ]/(n1 + n2 − 2)

is asymptotically pivotal if either n1/n2 → 1 or σ1 = σ2 holds.
Solution. (i) Note that

R(X, θ) =
X̄1 − X̄2 − θ√
n−1

1 σ2
1 + n−1

2 σ2
2

√
σ2

1 + (n1/n2)σ2
2√

S2
1 + (n1/n2)S2

2

→d N(0, 1),

because X̄1 − X̄2 is distributed as N(θ, n−1
1 σ2

1 + n−1
2 σ2

2) and√
σ2

1 + (n1/n2)σ2
2√

S2
1 + (n1/n2)S2

2

→p

√
σ2

1 + cσ2
2√

σ2
1 + cσ2

2

= 1

by the fact that S2
i →p σ2

i , i = 1, 2. Therefore, R(X, θ) is asymptotically
pivotal. A 1 − α asymptotically correct confidence interval for θ is[

X̄1 − X̄2 − zα/2

√
n−1

1 S2
1 + n−1

2 S2
2 , X̄1 − X̄2 + zα/2

√
n−1

1 S2
1 + n−1

2 S2
2

]
,

where zα is the (1 − α)th quantile of N(0, 1).
(ii) If σ2

1 = σ2
2 , then t(X, θ) has the t-distribution tn1+n2−2. Consider now

the case where σ1 
= σ2 but n1/n2 → 1. Note that

t(X, θ) =
X̄1 − X̄2 − θ√
n−1

1 σ2
1 + n−1

2 σ2
2

g(X),
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where

g(X) =
√

n1 + n2 − 2
√

σ2
1 + (n1/n2)σ2

2√
n1 + n2

√
[(n1 − 1)/n2]S2

1 + [(n2 − 1)/n1]S2
2

→p 1

when n1/n2 → 1. Then, t(X, θ) →d N(0, 1) and, therefore, is asymptoti-
cally pivotal.

Exercise 37 (#7.64). Let (X1, ..., Xn) be a random sample of binary
random variables with unknown p = P (Xi = 1).
(i) The confidence set for p obtained by inverting acceptance regions of
Rao’s score tests is

C3(X) = {p : n(p̂ − p)2 ≤ p(1 − p)χ2
1,α}.

where p̂ = n−1∑n
i=1 Xi and χ2

1,α is the (1−α)th quantile of χ2
1. Show that

C3(X) = [p−, p+] with

p± =
2np̂ + χ2

1,α ±
√

χ2
1,α[4np̂(1 − p̂) + χ2

1,α]

2(n + χ2
1,α)

.

(ii) Compare the length of C3(X) with

C2(X) = [ p̂ − z1−α/2

√
p̂(1 − p̂)/n, p̂ + z1−α/2

√
p̂(1 − p̂)/n ],

the confidence set for p obtained by inverting acceptance regions of Wald’s
tests.
Solution. (i) Let g(p) = (n+χ2

1,α)p2−(2np̂+χ2
1,α)p+np̂2. Then C3(X) =

{p : g(p) ≤ 0}. Since g(p) is a quadratic form of p with g′′(p) > 0, C3(X)
is an interval whose limits are two real solutions of g(p). The result follows
from the fact that p± are the two real solutions to g(p) = 0.
(ii) The length of the interval C3(X) is

l3(X) =

√
χ2

1,α[4np̂(1 − p̂) + χ2
1,α]

n + χ2
1,α

and the length of the interval C2(X) is

l2(X) =

√
4χ2

1,αp̂(1 − p̂)
n

.

Since

[l2(X)]2 − [l3(X)]2 =
(χ2

1,α)2[(8n + 4χ2
1,α)p̂(1 − p̂) − n]

n(n + χ2
1,α)2

,
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we conclude that l2(X) ≥ l3(X) if and only if

p̂(1 − p̂) ≥ n

4(2n + χ2
1,α)

.

Exercise 38 (#7.67). Let X = (X1, ..., Xn) be a random sample from
the Poisson distribution with unknown mean θ > 0 and X̄ be the sample
mean.
(i) Show that R(X, θ) = (X̄−θ)/

√
θ/n is asymptotically pivotal. Construct

a 1 − α asymptotically correct confidence interval for θ, using R(X, θ).
(ii) Show that R1(X, θ) = (X̄ −θ)/

√
X̄/n is asymptotically pivotal. Derive

a 1 − α asymptotically correct confidence interval for θ, using R1(X, θ).
(iii) Obtain 1 − α asymptotically correct confidence intervals for θ by in-
verting acceptance regions of LR tests, Wald’s tests, and Rao’s score tests.
Solution. (i) Since E(X1) = Var(X1) = θ, the central limit theorem im-
plies that

√
n(X̄ − θ) →d N(0, θ). Thus, R(X, θ) =

√
n(X̄ − θ)/

√
θ →d

N(0, 1) and is asymptotically pivotal. Let zα be the (1 − α)th quantile of
N(0, 1). A 1 − α asymptotically correct confidence set for θ is

C(X) = {θ : [R(X, θ)]2 ≤ z2
α/2} = {θ : nθ2 − (2nX̄ + z2

α/2)θ + nX̄2 ≤ 0}.

Since the quadratic form nθ2 − (2nX̄ + z2
α/2)θ + nX̄2 has two real roots

θ± =
2nX̄ + z2

α/2 ±
√

4nX̄z2
α/2 + z4

α/2

2n
,

we conclude that C(X) = [θ−, θ+] is an interval.
(ii) By the law of large numbers, X̄ →p θ. By the result in part (i) of the
solution and Slutsky’s theorem, R(X, θ) =

√
n(X̄ −θ)/

√
X̄ →d N(0, 1) and

is asymptotically pivotal. A 1−α asymptotically correct confidence set for
θ is

C1(X) = {θ : [R1(X, θ)]2 ≤ z2
α/2} = {θ : n(X̄ − θ)2 ≤ X̄z2

α/2},

which is the interval [X̄ − zα/2X̄/
√

n, X̄ + zα/2X̄/
√

n ].
(iii) The likelihood function is

�(θ) = e−nθθnX̄
n∏

i=1

1
Xi!

.

Then
∂ log �(θ)

∂θ
= −n +

nX̄

θ

and
∂2 log �(θ)

∂θ2 = −nX̄

θ2 .
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The MLE of θ is X̄. Since E(X̄) = θ, the Fisher information is In(θ) = n/θ.
For testing H0 : θ = θ0 versus H1 : θ 
= θ0, Wald’s test statistic is

(X̄ − θ0)2In(X̄) = (X̄ − θ0)2(n/X̄) = [R1(X, θ0)]2.

Hence, the confidence interval for θ obtained by inverting acceptance regions
of Wald’s tests is C1(X) given in part (ii) of the solution. Since θ0 is the
MLE of θ under H0, Rao’s score test statistic is

(
−n +

nX̄

θ0

)2

[In(θ0)]−1 = [R(X, θ0)]2.

Hence, the confidence interval for θ obtained by inverting acceptance regions
of Rao’s score tests is C(X) given in part (i) of the solution. The likelihood
ratio for testing H0 : θ = θ0 versus H1 : θ 
= θ0 is

λ = en(X̄−θ0)
(

θ0

X̄

)nX̄

.

Note that λ ≥ c for some c is equivalent to c1 ≤ X̄/θ0 ≤ c2 for some c1 and
c2. Hence, the confidence interval for θ obtained by inverting acceptance
regions of LR tests is [c1X̄, c2X̄], where c1 and c2 are constants such that
limn P (c1X̄ ≤ θ ≤ c2X̄) = 1 − α.

Exercise 39 (#7.70). Let X = (X1, ..., Xn) be a random sample from
N(µ, ϕ) with unknown θ = (µ, ϕ). Obtain 1 − α asymptotically correct
confidence sets for µ by inverting acceptance regions of LR tests, Wald’s
tests, and Rao’s score tests. Are these sets always intervals?
Solution. The log-likelihood function is

log �(θ) = − 1
2ϕ

n∑
i=1

(Xi − µ)2 − n

2
log ϕ − n

2
log(2π).

Note that

sn(θ) =
∂ log �(θ)

∂θ
=

(
n(X̄ − µ)

ϕ
,

1
2ϕ2

n∑
i=1

(Xi − µ)2 − n

2ϕ

)

and the Fisher information is

In(θ) = n

(
1
ϕ 0

0 1
2ϕ2

)
.

The MLE of θ is θ̂ = (X̄, ϕ̂), where X̄ is the sample mean and ϕ̂ =
n−1∑n

i=1(Xi − X̄)2.
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Consider testing H0 : µ = µ0 versus H1 : µ 
= µ0. For Wald’s test,
R(θ) = µ − µ0 with C = ∂R/∂θ = (1, 0). Hence, Wald’s test statistic is

[R(θ̂)]2{Cτ [In(θ̂)]−1C}−1 =
n(X̄ − µ0)2

ϕ̂
.

Let zα be the (1−α)th quantile of N(0, 1). The 1−α asymptotically correct
confidence set obtained by inverting the acceptance regions of Wald’s tests
is {

µ :
n(X̄ − µ)2

ϕ̂
≤ z2

α/2

}
,

which is the interval[
X̄ − zα/2

√
ϕ̂/n, X̄ + zα/2

√
ϕ̂/n
]
.

Under H0, the MLE of ϕ is n−1∑n
i=1(Xi −µ0)2 = ϕ̂+(X̄ −µ0)2. Then

the likelihood ratio is

λ =
(

ϕ̂

ϕ̂ + (X̄ − µ0)2

)n/2

.

The asymptotic LR test rejects H0 when λ < e−z2
α/2/2, i.e.,

(X̄ − µ0)2 > (ez2
α/2/n − 1)ϕ̂.

Hence, the 1−α asymptotically correct confidence set obtained by inverting
the acceptance regions of asymptotic LR tests is{

µ : (X̄ − µ0)2 ≤ (ez2
α/2/n − 1)ϕ̂

}
,

which is the interval[
X̄ −
√

(ez2
α/2/n − 1)ϕ̂, X̄ +

√
(ez2

α/2/n − 1)ϕ̂
]

.

Let θ̃ = (µ0, ϕ̂ + (X̄ − µ0)2) be the MLE of θ under H0. Then Rao’s
score test statistic is

R2
n = [s(θ̃)]τ [In(θ̃)]−1s(θ̃).

Note that

s(θ̃) =
(

n(X̄ − µ0)
ϕ̂ + (X̄ − µ0)2

, 0
)

.

Hence,

R2
n =

n(X̄ − µ0)2

ϕ̂ + (X̄ − µ0)2
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and the 1 − α asymptotically correct confidence set obtained by inverting
the acceptance regions of Rao’s score tests is{

µ : (n − z2
α/2)(X̄ − µ)2 ≤ z2

α/2ϕ̂
}

,

which is the interval[
X̄ − zα/2

√
ϕ̂/(n − z2

α/2), X̄ + zα/2

√
ϕ̂/(n − z2

α/2)
]
.

Exercise 40. Let (X1, ..., Xn) be a random sample from a distribution with
mean µ, variance σ2, and finite 4th moment. Derive a 1−α asymptotically
correct confidence interval for θ = µ/σ.
Solution. Let X̄ be the sample mean and σ̂2 = n−1∑n

i=1(Xi − X̄)2. It
follows from Example 2.8 in Shao (2003) that

√
n

[(
X̄

σ̂2

)
−
(

µ

σ2

)]
→d N2

(
0,

(
σ2 γ

γ κ

))
,

where γ = E(X1 − µ)3 and κ = E(X1 − µ)4 − σ4. Let g(x, y) = x/
√

y.
Then ∂g/∂x = 1/

√
y and ∂g/∂y = −x/(2y3/2). By the δ-method,

√
n

(
X̄

σ̂
− µ

σ

)
→d N

(
0, 1 + µ2κ/(4σ6) − µγ/σ4) .

Let

γ̂ =
1
n

n∑
i=1

(Xi − X̄)3

and

κ̂ =
1
n

n∑
i=1

(Xi − X̄)4 − σ̂4.

By the law of large numbers, γ̂ →p γ and κ̂ →p κ. Let W = 1+X̄2κ̂/(4σ̂6)−
X̄γ̂/σ̂4. By Slutsky’s theorem,

√
n√
W

(
X̄

σ̂
− θ

)
→d N(0, 1)

and, hence, a 1 − α asymptotically correct confidence interval for θ is[
X̄

σ̂
− zα/2

√
W√
n

,
X̄

σ̂
+ zα/2

√
W√
n

]
,

where zα is the (1 − α)th quantile of N(0, 1).
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Exercise 41. Consider the linear model X = Zβ + ε, where Z is an n × p
matrix of full rank, β ∈ Rp, ε = (ε1, ..., εn) with independent and identically
distributed εi’s, E(εi) = 0, and Var(εi) = σ2. Let Zi be the ith row of
Z. Assume that limn max1≤i≤n Zτ

i (ZτZ)Zi = 0. Find an asymptotically
pivotal quantity and construct a 1 − α asymptotically correct confidence
set for β.
Solution. Let β̂ be the LSE of β. Note that Var(β̂) = σ2(ZτZ)−1. By
Theorem 3.12 in Shao (2003),

σ−1(ZτZ)1/2(β̂ − β) →d Np(0, Ip).

Let σ̂2 = ‖X − Zβ̂‖2/n. Since

Xi − Zτ
i β̂ = Xi − Zτ

i β + Zτ
i (β − β̂)

= εiZ
τ
i (β − β̂),

we obtain that

σ̂2 =
1
n

n∑
i=1

(Xi − Zτ
i β̂)2

=
1
n

n∑
i=1

ε2
i +

1
n

n∑
i=1

[Zτ
i (β̂ − β)]2 − 2

n

n∑
i=1

εiZ
τ
i (β̂ − β).

By the law of large numbers, n−1∑n
i=1 ε2

i →p σ2. By the Cauchy-Schwartz
inequality,

1
n

n∑
i=1

[Zτ
i (β̂ − β)]2 ≤ 1

n

n∑
i=1

Zτ
i (ZτZ)−1Zi[(ZτZ)(β̂ − β)]2,

which is bounded by [(ZτZ)(β̂ − β)]2 max1≤i≤n Zτ
i (ZτZ)−1Zi →p 0. By

the Cauchy-Schwartz inequality again,[
1
n

n∑
i=1

εiZ
τ
i (β̂ − β)

]2
≤
(

1
n

n∑
i=1

ε2
i

){
1
n

n∑
i=1

[Zτ
i (β̂ − β)]2

}
→p 0.

Hence, σ̂2 →p σ2 and σ̂−1(ZτZ)1/2(β̂ − β) is asymptotically pivotal. A
1 − α asymptotically correct confidence set for β is then{

β : (β̂ − β)τ (ZτZ)(β̂ − β) ≤ σ̂2χ2
p,α

}
,

where χ2
p,α is the (1 − α)th quantile of the chi-square distribution χ2

p.

Exercise 42 (#7.81). Let (Xi1, ..., Xini), i = 1, 2, be two independent
random samples from N(µi, σ

2
i ), i = 1, 2, respectively, where all parameters
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are unknown.
(i) Find 1−α asymptotically correct confidence sets for (µ1, µ2) by inverting
acceptance regions of LR tests, Wald’s tests, and Rao’s score tests.
(ii) Repeat (i) for the parameter (µ1, µ2, σ

2
1 , σ2

2).
(iii) Repeat (i) under the assumption that σ2

1 = σ2
2 = σ2.

(iv) Repeat (iii) for the parameter (µ1, µ2, σ
2).

Solution. (i) The likelihood function is proportional to

1
σn1

1

1
σn2

2
exp

⎧⎨
⎩−

2∑
i=1

1
2σ2

i

ni∑
j=1

(Xij − µi)2

⎫⎬
⎭ .

Hence, the score function is(
n1(X̄1 − µ1)

σ2
1

,
n1σ

2
1(µ1)

2σ4
1

− n1

2σ2
1
,
n2(X̄2 − µ2)

σ2
2

,
n2σ

2
2(µ2)

2σ4
2

− n2

2σ2
2

)
,

where X̄i is the sample mean of the ith sample and

σ2
i (t) =

1
ni

ni∑
j=1

(Xij − t)2, i = 1, 2,

and the Fisher information is the 4 × 4 diagonal matrix whose diago-
nal elements are n1/σ2

1 , n1/(2σ4
1), n2/σ2

2 , and n2/(2σ4
2). The MLE of

(µ1, σ
2
1 , µ2, σ

2
2) is (X̄1, σ̂

2
1 , X̄2, σ̂

2
2), where σ̂2

i = σ2
i (X̄i). When µi is known,

the MLE of σ2
i is σ2

i (µi), i = 1, 2. Thus, the 1 − α asymptotically correct
confidence set for (µ1, µ2) by inverting acceptance regions of LR tests is{

(µ1, µ2) : [σ2
1(µ1)]n1/2[σ2

2(µ2)]n2/2 ≤ σ̂n1
1 σ̂n2

2 eχ2
2,α/2
}

,

where χ2
r,α is the (1−α)th quantile of the chi-square distribution χ2

r. The 1−
α asymptotically correct confidence set for (µ1, µ2) by inverting acceptance
regions of Wald’s tests is{

(µ1, µ2) :
n1(X̄1 − µ1)2

σ̂2
1

+
n2(X̄2 − µ2)2

σ̂2
2

≤ χ2
2,α

}

and the 1−α asymptotically correct confidence set for (µ1, µ2) by inverting
acceptance regions of Rao’s score tests is{

(µ1, µ2) :
n1(X̄1 − µ1)2

σ2
1(µ1)

+
n2(X̄2 − µ2)2

σ2
2(µ2)

≤ χ2
2,α

}
.

(ii) The 1 − α asymptotically correct confidence set for θ = (µ1, µ2, σ
2
1 , σ2

2)
by inverting acceptance regions of LR tests is{

θ : σn1
1 σn2

2 en1σ2
1(µ1)/(2σ2

1)+n2σ2
2(µ2)/(2σ2

2) ≤ σ̂n1
1 σ̂n2

2 e(n1+n2+χ2
4,α)/2
}

.
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The 1−α asymptotically correct confidence set for θ by inverting acceptance
regions of Wald’s tests is{

θ :
2∑

i=1

[
ni(X̄i − µi)2

σ̂2
i

+
ni(σ̂2

i − σ2
i )2

2σ̂4
i

]
≤ χ2

4,α

}
.

The 1−α asymptotically correct confidence set for θ by inverting acceptance
regions of Rao’s score tests is{

θ :
2∑

i=1

[
ni(X̄i − µi)2

σ2
i

+
2σ4

i

ni

(
niσ

2
i (µi)

2σ4
i

− ni

2σ2
i

)2
]

≤ χ2
4,α

}
.

(iii) The MLE of (µ1, µ2, σ
2) is (X̄1, X̄2, σ̂

2), where

σ̂2 =
1

n1 + n2

2∑
i=1

ni∑
j=1

(Xij − X̄i)2.

When µ1 and µ2 are known, the MLE of σ2 is

σ2(µ1, µ2) =
1

n1 + n2

2∑
i=1

ni∑
j=1

(Xij − µi)2.

The 1 − α asymptotically correct confidence set for (µ1, µ2) by inverting
acceptance regions of LR tests is{

(µ1, µ2) : σ2(µ1, µ2) ≤ e−χ2
2,α/[2(n1+n2)]σ̂2

}
.

The score function in this case is(
n1(X̄1 − µ1)

σ2 ,
n2(X̄2 − µ2)

σ2 ,
(n1 + n2)σ2(µ1, µ2)

2σ4 − n1 + n2

2σ2

)
.

The Fisher information is the 3×3 diagonal matrix whose diagonal elements
are n1/σ2, n2/σ2 and (n1 + n2)/(2σ4). Hence, the 1 − α asymptotically
correct confidence set for (µ1, µ2) by inverting acceptance regions of Wald’s
tests is {

(µ1, µ2) : n1(X̄1 − µ1)2 + n2(X̄2 − µ2)2 ≤ σ̂2χ2
2,α

}
.

The 1 − α asymptotically correct confidence set for (µ1, µ2) by inverting
acceptance regions of Rao’s score tests is{

(µ1, µ2) : n1(X̄1 − µ1)2 + n2(X̄2 − µ2)2 ≤ σ2(µ1, µ2)χ2
2,α

}
.
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(iv) The 1 − α asymptotically correct confidence set for θ = (µ1, µ2, σ
2) by

inverting acceptance regions of LR tests is{
θ : σ2eσ2(µ1,µ2)/σ2

2 ≤ σ̂2e1+χ2
3,α/(n1+n2)

}
.

The 1−α asymptotically correct confidence set for θ by inverting acceptance
regions of Wald’s tests is

{
θ :

2∑
i=1

ni(X̄i − µi)2

σ̂2 +
(n1 + n2)(σ̂2 − σ2)2

2σ̂4 ≤ χ2
3,α

}
.

The 1−α asymptotically correct confidence set for θ by inverting acceptance
regions of Rao’s score tests is
{

θ :
2∑

i=1

ni(X̄i − µi)2

σ2 +
n1 + n2

2

[
σ2(µ1, µ2)

σ2 − 1
]2

≤ χ2
3,α

}
.

Exercise 43 (#7.83). Let X be a vector of n observations having distri-
bution Nn(Zβ, σ2In), where Z is a known n×p matrix of rank r ≤ p < n, β
is an unknown p-vector, and σ2 > 0 is unknown. Find 1−α asymptotically
correct confidence sets for θ = Lβ by inverting acceptance regions of LR
tests, Wald’s tests, and Rao’s score tests, where L is an s × p matrix of
rank s and all rows of L are in R(Z).
Solution. Since the rows of L are in R(Z), L = AZ for an s × n matrix
A with rank s. Since Z is of rank r, there is an n × r matrix Z∗ of rank
r such that Zβ = Z∗Qβ, where Q is r × p. Then, Lβ = AZβ = AZ∗β∗
with β∗ = Qβ ∈ Rr. Hence, without loss of generality, in the following we
assume that r = p. The likelihood function is

�(β, σ2) =
(

1
2πσ2

)n/2

exp
{

− 1
2σ2 ‖X − Zβ‖2

}
.

Then,
∂ log �(β, σ2)

∂β
=

Zτ (X − Zβ)
σ2 ,

∂ log �(β, σ2)
∂σ2 =

‖X − Zβ‖2

2σ4 − n

2σ2 ,

and the Fisher information matrix is

In(β, σ2) =
(

Zτ Z
σ2 0
0 n

2σ4

)
.
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The MLE of β is the LSE β̂ = (ZτZ)−1ZτX and the MLE of σ2 is σ̂2 =
‖X −Zβ̂‖2/n. Hence, the 1−α asymptotic correct confidence set obtained
by inverting acceptance regions of Wald’s tests is{

θ : (Lβ̂ − θ)τ [L(ZτZ)−1Lτ ]−1(Lβ̂ − θ) ≤ σ̂2χ2
s,α

}
and the 1 − α asymptotic correct confidence set obtained by inverting ac-
ceptance regions of Rao’s score tests is{

θ : n[X − Zβ̂(θ)]τZ(ZτZ)−1Zτ [X − Zβ̂(θ)] ≤ ‖X − Zβ̂(θ)‖2χ2
s,α

}
,

where β̂(θ) is defined as

‖X − Zβ̂(θ)‖2 = min
β:Lβ=θ

‖X − Zβ‖2.

Following the discussion in Example 6.20 of Shao (2003), the likelihood
ratio for testing H0 : Lβ = θ versus H1 : Lβ 
= θ is

λ(θ) =
[
sW (X, θ)

n − r
+ 1
]−n/2

,

where W (X, θ) is given in Exercise 30. Hence, the 1−α asymptotic correct
confidence set obtained by inverting acceptance regions of LR tests is{

θ : sW (X, θ) ≤ (n − r)(eχ2
s,α/n − 1)

}
.

Exercise 44 (#7.85, #7.86). Let (X1, ..., Xn) be a random sample
from a continuous cumulative distribution function F on R that is twice
differentiable at θ = F−1(p), 0 < p < 1, with F ′(θ) > 0.
(i) Let {kn} be a sequence of integers satisfying kn/n = p+cn−1/2+o(n−1/2)
with a constant c. Show that

√
n(X(kn) − θ̂) = c/F ′(θ) + o(1) a.s.,

where X(j) is the jth order statistic and θ̂ is the sample pth quantile.
(ii) Show that

√
n(X(kn) − θ)F ′(θ) →d N(c, p(1 − p)).

(iii) Let {k1n} and {k2n} be two sequences of integers satisfying 1 ≤ k1n <
k2n ≤ n,

k1n/n = p − zα/2

√
p(1 − p)/n + o(n−1/2),

and
k2n/n = p + zα/2

√
p(1 − p)/n + o(n−1/2),

where zα is the (1 − α)th quantile of N(0, 1). Let C(X) = [X(k1n), X(k2n)].
Show that limn P (θ ∈ C(X)) = 1 − α, using the result in part (ii).
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(iv) Construct a consistent estimator of the asymptotic variance of the
sample median, using the interval C(X).
Solution. (i) By the Bahadur representation (e.g., Theorem 7.8 in Shao,
2003),

X(kn) = θ +
(kn/n) − Fn(θ)

F ′(θ)
+ o

(
1√
n

)
a.s.,

where Fn is the empirical distribution. For the pth sample quantile, the
Bahadur representation is

θ̂ = θ +
p − Fn(θ)

F ′(θ)
+ o

(
1√
n

)
a.s.

The result follows by taking the difference of the two previous equations.
(ii) Note that

√
n(X(kn) − θ)F ′(θ) =

√
n(X(kn) − θ̂)F ′(θ) +

√
n(θ̂ − θ)F ′(θ).

By (i),
lim
n

√
n(X(kn) − θ̂p)F ′(θ) = c a.s.

By Theorem 5.10 in Shao (2003),
√

n(θ̂ − θ)F ′(θ) →d N(0, p(1 − p)).

Then, by Slusky’s Theorem,
√

n(X(kn) − θ)F ′(θ) →d N(c, p(1 − p)).

(iii) By (ii),

√
n(X(k1n) − θ)F ′(θ) →d N

(
−zα/2

√
p(1 − p), p(1 − p)

)
and √

n(X(k2n) − θ)F ′(θ) →d N
(
zα/2

√
p(1 − p), p(1 − p)

)
.

Let Φ be the cumulative distribution function of N(0, 1). Then

P (X(k1n) > θ) = P (
√

n(X(k1n) − θ)F ′(θ) > 0) → 1 − Φ(zα/2) = α/2

and

P (X(k2n) < θ) = P (
√

n(X(k2n) − θ)F ′(θ) < 0) → Φ(−zα/2) = α/2.

The result follows from

P (θ ∈ C(X)) = 1 − P (X(k1n) > θ) − P (X(k2n) < θ).
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(iv) Let p = 1
2 . If F ′ exists and is positive at θ, the median of F , then the

asymptotic variance of the sample median is {4n[F ′(θ)]2}−1. The length
of the interval C(X) is X(k2n) − X(k1n). By the result in (i), this length is
equal to

zα/2√
nF ′(θ)

+ o

(
1√
n

)
a.s.,

i.e.,
[X(k2n) − X(k1n)]2

4z2
α/2

=
1

4n[F ′(θ)]2
+ o

(
1
n

)
a.s.

Therefore, [X(k2n)−X(k1n)]2/(4z2
α/2) is a consistent estimator of the asymp-

totic variance of the sample median.

Exercise 45 (#7.102). Let Ct,α(X) be a confidence interval for θt with
confidence coefficient 1 − α, t = 1, ..., k. Suppose that C1,α(X), ..., Ck,α(X)
are independent for any α. Show how to construct simultaneous confidence
intervals for θt, t = 1, ..., k, with confidence coefficient 1 − α.
Solution. Let ak = 1 − (1 − α)1/k. By the independence of Ct,ak

(X),
t = 1, ..., k,

P (θt ∈ Ct,ak
(X), t = 1, ..., k) =

k∏
t=1

P (θt ∈ Ct,ak
(X))

=
k∏

t=1

(1 − α)1/k

= 1 − α.

Hence, Ct,ak
(X), t = 1, ..., k, are simultaneous confidence intervals for θt,

t = 1, ..., k, with confidence coefficient 1 − α.

Exercise 46 (#7.105). Let x ∈ Rk and A be a k × k positive definite
matrix. Show that

xτA−1x = max
y∈Rk,y 	=0

(yτx)2

yτAy
.

Solution. If x = 0, then the equality holds. Assume that x 
= 0. By the
Cauchy-Schwarz inequality,

(yτx)2 = (yτA1/2A−1/2x)2 ≤ (yτAy)(xτA−1x).

Hence,

xτA−1x ≥ max
y∈Rk,y 	=0

(yτx)2

yτAy
.

Let y∗ = A−1x. Then

(yτ
∗x)2

yτ∗Ay∗
=

(xτA−1x)2

xτA−1AA−1x
= xτA−1x.
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Hence,

xτA−1x ≤ max
y∈Rk,y 	=0

(yτx)2

yτAy

and, thus, the equality holds.

Exercise 47 (#7.106). Let x ∈ Rk and A be a k × k positive definite
matrix.
(i) Suppose that yτA−1x = 0, where y ∈ Rk. Show that

xτA−1x = max
c∈Rk,c 	=0,cτ y=0

(cτx)2

cτAc
.

(ii) Let X be a vector of n observations having distribution Nn(Zβ, σ2In),
where Z is a known n × p matrix of rank p < n, β is an unknown p-vector,
and σ2 > 0 is unknown. Using the result in (i), construct simultaneous
confidence intervals (with confidence coefficient 1 − α) for cτβ, c ∈ Rp,
c 
= 0, cτy = 0, where y ∈ Rp satisfies ZτZy = 0.
Solution. (i) If x = 0, then the equality holds. Assume that x 
= 0. Let D
be the k × (k − 1) matrix which spans the linear subspace

Y = {c : c ∈ Rk, cτy = 0}.

For any c ∈ Y (c 
= 0), c = Dt for some t ∈ Rk−1, t 
= 0. Since yτA−1x = 0,
A−1x ∈ Y and, hence, A−1x = Dl or x = ADl for some l ∈ Rk−1, l 
= 0.
Then

max
c∈Rk,c 	=0,cτ y=0

(cτx)2

cτAc
= max

c∈Y,c 	=0

(cτx)2

cτAc

= max
t∈Rk−1,t 	=0

(tτDτADl)2

tτDτADt

= (DτADl)τ (DτAD)−1(DτADl)
= lτ (DτAD)l
= xτA−1x,

where the third equality follows from the previous exercise.
(ii) Let β̂ be the LSE of β and σ̂2 = ‖X − Zβ̂‖2/(n − p). Note that
(β̂−β)τ (ZτZ)(β̂−β)/(pσ̂2) has the F-distribution Fp,n−p. Since ZτZy = 0,
by the result in (i),

max
c∈Rp,c 	=0,cτ y=0

[cτ (β̂ − β)]2

σ̂2cτ (ZτZ)−1c
=

(β̂ − β)τ (ZτZ)(β̂ − β)
σ̂2 .

Thus, the 1 − α simultaneous confidence intervals for cτβ, c ∈ Rp, c 
= 0,
cτy = 0, are

Ic =
[
cτ β̂ − σ̂

√
pFp,n−p,αcτ (ZτZ)−1c, cτ β̂ + σ̂

√
pFp,n−p,αcτ (ZτZ)−1c

]
,
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for c ∈ Rp, c 
= 0, cτy = 0, where Fp,n−p,α is the (1 − α)th quantile of the
F-distribution Fp,n−p. This is because

P

(
cτβ ∈ Ic, c ∈ Rp, c 
= 0, cτy = 0

)

= P

(
max

c∈Rp,c 	=0,cτ y=0

[cτ (β̂ − β)]2

pσ̂2cτ (ZτZ)−1c
≤ Fp,n−p,α

)

= P

(
(β̂ − β)τ (ZτZ)(β̂ − β)

pσ̂2 ≤ Fp,n−p,α

)

= 1 − α.

Exercise 48 (#7.111). Let (X1, ..., Xn) be independently distributed as
N(β0 + β1zi, σ

2), i = 1, ..., n, where β0, β1, and σ2 are unknown and zi’s
are known constants satisfying Sz =

∑n
i=1(zi − z̄)2 > 0, z̄ = n−1∑n

i=1 zi.
Show that

Iz =
[

β̂0+β̂1z−σ̂
√

2F2,n−2,αD(z), β̂0+β̂1z+σ̂
√

2F2,n−2,αD(z)
]
, z ∈ R,

are simultaneous confidence intervals for β0 + β1z, z ∈ R, with confidence
coefficient 1−α, where (β̂0, β̂1) is the LSE of (β0, β1), D(z) = (z− z̄)2/Sz +
n−1, and σ̂2 = (n − 2)−1∑n

i=1(Xi − β̂0 − β̂1zi)2.
Solution. Let β = (β0, β1) and β̂ = (β̂0, β̂1). Scheffé’s 1 − α simultaneous
confidence intervals for tτβ, t ∈ R2 are[

tτ β̂ − σ̂
√

2F2,n−2,αtτAt, tτ β̂ + σ̂
√

2F2,n−2,αtτAt
]
, t ∈ R2

(e.g., Theorem 7.10 in Shao, 2003), where

A =
(

n nz̄

nz̄
∑n

i=1 z2
i

)−1

=
1

nSz

( ∑n
i=1 z2

i −nz̄

−nz̄ n

)
.

From the solution to Exercise 46, (tτ β̂ − tτβ)2/tτAt is maximized at t∗ =
A−1(β̂ − β). Note that t∗/c still maximizes (tτ β̂ − tτβ)2/tτAt as long as
c 
= 0, where c is the first component of t∗. Since the first component of
A−1(β̂ − β) is n(β̂0 − β0) + n(β̂1 − β1)z̄ and

P
(
n(β̂0 − β0) + n(β̂1 − β1)z̄ 
= 0

)
= 1,

the quantity (tτ β̂ − tτβ)2/tτAt is maximized at

A−1

n(β̂0 − β0) + n(β̂1 − β1)z̄

(
β̂0 − β0

β̂1 − β1

)
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whose first component is 1. Note that tτAt = D(z) when t = (1, z). There-
fore,

max
z∈R

(β̂0 + β̂1z − β0 − β1z)2

D(z)
= max

t∈R2,t 	=0

(tτ β̂ − tτβ)2

tτAt
.

Consequently,

P (β0 + β1z ∈ Iz, z ∈ R) = P

(
max
z∈R

(β̂0 + β̂1z − β0 − β1z)2

sσ̂2D(z)
≤ F2,n−2,α

)

= P

(
max

t∈R,t 	=0

(tτ β̂ − tτβ)2

2σ̂2tτAt
≤ F2,n−2,α

)

= 1 − α,

where the last equality follows from

max
t∈R,t 	=0

(tτ β̂ − tτβ)2

2σ̂2tτAt
=

(β̂ − β)τA−1(β̂ − β)
2σ̂2

by Exercise 46 and the fact that the right hand side of the previous equation
has the F-distribution F2,n−2.

Exercise 49 (#7.117). Let X0j (j = 1, ..., n0) and Xij (i = 1, ..., m,
j = 1, ..., n0) represent independent measurements on a standard and m
competing new treatments. Suppose that Xij is distributed as N(µi, σ

2)
with unknown µi and σ2 > 0, j = 1, ..., n0, i = 0, 1, ..., m. For i = 0, 1, ..., m,
let X̄i· be the sample mean based on Xij , j = 1, ..., n0. Define σ̂2 =
[(m + 1)(n0 − 1)]−1∑m

i=0
∑n0

j=1(Xij − X̄i·)2.
(i) Show that the distribution of

Rst = max
i=1,...,m

|(X̄i· − µi) − (X̄0· − µ0)|/σ̂

does not depend on any unknown parameter.
(ii) Show that Dunnett’s intervals[

m∑
i=0

ciX̄i· − qασ̂

m∑
i=1

|ci|,
m∑

i=0

ciX̄i· + qασ̂

m∑
i=1

|ci|
]

for all c0, c1, ..., cm satisfying
∑m

i=0 ci = 0 are simultaneous confidence inter-
vals for

∑m
i=0 ciµi with confidence coefficient 1−α, where qα is the (1−α)th

quantile of Rst.
Solution. (i) The distributions of σ̂/σ and (X̄i· − µi)/σ, i = 0, 1, ..., m, do
not depend on any unknown parameter. The result follows from the fact
that these random variables are independent so that their joint distribution
does not depend on any unknown parameter and Rst is a function of these
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random variables.
(ii) Let Yi = (X̄i· − µi)/σ̂. Then Rst = maxi=1,...,m |Yi − Y0|. Note that

P

(
m∑

i=0

ciµi are in Dunnett’s intervals for all ci’s with
m∑

i=0

ci = 0

)

= P

(∣∣∣∣
m∑

i=0

ci(X̄i· − µi)
∣∣∣∣ ≤ qασ̂

m∑
i=1

|ci|, all ci’s with
m∑

i=0

ci = 0

)

= P

(∣∣∣∣
m∑

i=0

ciYi

∣∣∣∣ ≤ qα

m∑
i=1

|ci|, all ci’s with
m∑

i=0

ci = 0

)
.

Hence, the result follows if we can show that

max
i=1,...,m

|Yi − Y0| ≤ qα

is equivalent to∣∣∣∣
m∑

i=0

ciYi

∣∣∣∣ ≤ qα

m∑
i=1

|ci| for all c0, c1, ..., cm satisfying
m∑

i=0

ci = 0.

Suppose that
∣∣∑m

i=0 ciYi

∣∣ ≤ qα

∑m
i=1 |ci| for all c0, c1, ..., cm satisfying∑m

i=0 ci = 0. For any fixed i, let c0 = 1, ci = −1, and cj = 0, j 
= i. Then
these ci’s satisfy

m∑
i=0

ci = 0,
m∑

i=1

|ci| = 1, and
∣∣∣∣

n∑
i=0

ciYi

∣∣∣∣ = |Yi − Y0|.

Hence, |Yi − Y0| ≤ qα for i = 1, ..., m. Thus, maxi=1,...,m |Yi − Y0| ≤ qα.
Assume now that maxi=1,...,m |Yi − Y0| ≤ qα. For all c0, c1, ..., cm satis-

fying
∑m

i=0 ci = 0, ∣∣∣∣
m∑

i=0

ciYi

∣∣∣∣ =
∣∣∣∣

m∑
i=1

ciYi + c0Y0

∣∣∣∣
=
∣∣∣∣

m∑
i=1

ciYi −
m∑

i=1

ciY0

∣∣∣∣
=
∣∣∣∣

m∑
i=1

ci(Yi − Y0)
∣∣∣∣

≤
m∑

i=1

|ci||Yi − Y0|

≤ qα

m∑
i=1

|ci|.
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Exercise 50 (#7.118). Let (X1, ..., Xn) be a random sample from the
uniform distribution on (0, θ), where θ > 0 is unknown. Construct simulta-
neous confidence intervals for Fθ(t), t > 0, with confidence coefficient 1−α,
where Fθ(t) is the cumulative distribution function of X1.
Solution. The cumulative distribution function of X1 is

Fθ(t) =

⎧⎨
⎩

0 t ≤ 0
t
θ 0 < t < θ

1 t ≥ θ,

which is nonincreasing in θ for any fixed t. Note that Fθ1(t) ≥ Fθ2(t) for
all t > 0 if and only if θ1 ≤ θ2. From Exercise 26(iii), a 1 − α confidence
interval for θ is [X(n), cnX(n)], where X(n) is the largest order statistic and
cn = α−1/n. Hence,

P

(
FcnX(n)(t) ≤ Fθ(t) ≤ FX(n)(t), t > 0

)
= P

(
X(n) ≤ θ ≤ cnX(n)

)
= 1 − α,

i.e., [
FcnX(n)(t), FX(n)(t)

]
, t > 0,

are simultaneous confidence intervals for Fθ(t), t > 0, with confidence co-
efficient 1 − α.



References

In addition to the main text, Mathematical Statistic (Shao, 2003), some
other textbooks are listed here for further readings.

Barndorff-Nielsen, O. E. (1978). Information and Exponential Families in
Statistical Theory. Wiley, New York.

Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymp-
totics. Chapman & Hall, London.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis,
second edition. Springer-Verlag, New York.

Bickel, P. J. and Doksum, K. A. (2002). Mathematical Statistics, second
edition. Holden Day, San Francisco.

Casella, G. and Berger, R. L. (1990). Statistical Inference. Wadsworth,
Belmont, CA.

Chung, K. L. (1974). A Course in Probability Theory, second edition.
Academic Press, New York.

Ferguson, T. S. (1967). Mathematical Statistics. Academic Press, New
York.

Lehmann, E. L. (1986). Testing Statistical Hypotheses, second edition.
Springer-Verlag, New York.

Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation,
second edition. Springer-Verlag, New York.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications, sec-
ond edition. Wiley, New York.

Rohatgi, V. K. (1976). An Introduction to Probability Theory and Math-
ematical Statistics. Wiley, New York.

351



352 References

Royden, H. L. (1968). Real Analysis, second edition. Macmillan, New
York.

Searle, S. R. (1971). Linear Models. Wiley, New York.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statis-
tics. Wiley, New York.

Shao, J. (2003). Mathematical Statistics, second edition. Springer-Verlag,
New York.



Index

0-1 loss, 73, 83

χ2 goodness-of-fit test, 301-302

σ-field, xv, 1

A

Absolute error loss, 80, 155, 161

Admissibility, xv, 73-75, 155-160, 169-174, 187-188

Ancillary statistic, xv, 68-70

Approximate unbiasedness, 80

Asymptotic bias, xv, 88

Asymptotic correctness of confidence sets, xvi, 333, 335-343

Asymptotic distribution, see limiting distribution

Asymptotic efficiency, 193-194, 238, 240

Asymptotic level, xv, 93-94, 306-308

Asymptotic mean squared error, xv, 88, 91, 134

Asymptotic pivotal quantity, 333-335, 339

Asymptotic relative efficiency, xv, 89-91, 132, 135-136, 140, 187-189, 196-
197, 236-238, 240-242

B

Bayes action, xvi, 145-150, 152

Bayes estimator, xvi, 153-154, 156-160, 168-170
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Bayes factor, 304

Bayes risk, xvi, 81, 154, 156

Bayes rule, xvi, 80-84

Bayes test, 304

Best linear unbiased estimator (BLUE), 127-129, 132

Bootstrap, 247-249

Borel function, xvi, 2-4

Bounded completeness, xvi, 65-67

Bounded in probability, 39-40

C

Characteristic function, xvi, 19, 21, 23-25

Cochran’s theorem, 16

Completeness, xvi, 64-70

Conditional distribution, 32

Conditional expectation, xvi, 26-34

Confidence interval, xvi, 85

Confidence region or set, xvi, 85-86

Conjugate prior, 141-142

Consistency of estimator, xvii, 86-88, 158-160, 189-191, 222, 344-345

Consistency of test, xvii, 92-93, 306-308

Contingency table, 299-301

Convergence almost surely, 35-36, 49

Convergence in distribution, 36-37, 42-45, 47-48

Convergence in moments, 35-37, 49

Convergence in probability, 36-37, 40-41, 46-47, 49

Correlation, 18
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Correlation coefficient, 56-58, 93-94, 279-280, 292

Cramér-Rao low bound, 116

Credible set, 320-321

D

Density estimation, 216-221

Dunnett’s interval, 348-349

E

Empirical Bayes, xvii, 150-151, 153

Empirical distribution, xvii, 212, 216, 222, 228, 232-234, 243, 245, 305-306,
321, 343

Estimability, xvii, 120-123, 132-133

Expectation, 17

Expected length, 85, 324

Exponential family, xvii, 51-53, 59-60

F

Fieller’s interval, 309

Fisher information, 112-115, 124

Fisher-scoring, 180-181, 206-208

G

Gâteaux differentiability, 222-223, 232

Generalized Bayes, xvii, 147-153, 157-158, 169

Goodness of fit test, see χ2 goodness-of-fit test

Good sets principle, 1

H

Highest posterior density credible set, 320-321

Hodges-Lehmann estimator, 236
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Huber’s estimator, 241-242, 245

I

Independence, xvii, 14-16, 18, 53, 68-69

Influence function, 223-227, 230-232, 243

Integration, xviii, 5-8

Inverting acceptance regions, 317-319, 327, 334-338, 340-343

J

Jackknife, 246-247

K

Kaplan-Meier estimator, 214

L

L-functional, 224-225, 227-228, 243

Least squares estimator (LSE), 119-120, 122, 125-132

Lebesgue density, 13-15, 19-20, 24

Length of a confidence interval, 322-324, 334

Liapounov’s condition, 50

Likelihood equation, xviii, 176-187

Likelihood ratio (LR) test, 283-297, 299-300, 335-337, 340-343

Limiting distribution, 54, 56-59, 136-138, 189-190, 193-198, 200, 202-205,
235, 290-293, 299

Lindeberg’s condition, 48-49, 249-250

Location-scale family, xviii, 52

M

Mallows’ distance, 209-211

Maximum likelihood estimator (MLE), 175-182, 184-191, 193-197, 202-
204, 212, 214, 221

Maximum profile likelihood estimator, 221
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Mean, see expectation

Measure, xix, 1-2

Median, 8, 37-38, 80, 238-239

Minimal sufficiency, 60-69

Minimax estimator, xix, 165-171, 174

Minimax rule, xix, 81-84

Minimum risk invariant estimator (MRIE), 160-164

Missing data, 222

Moment estimator, 134-138, 150-151, 153, 196-197

Moment generating function, xix, 20-22, 26

Monotone likelihood ratio, xx, 256-264, 268-269, 272, 282, 313-316, 327,
329-331

N

Newton-Raphson method, 180-181, 206-207

Noncentral chi-square distribution, 16, 19-20, 258, 315

Noncentral F-distribution, 22, 315-316, 328

Noncentral t-distribution, 271-272, 319

O

One-sample t-test, 271, 306-307

One-step MLE, 206-208

Optimal rule, xx, 75-78

P

p-value, 84-85

Pairwise independence, 15

Pivotal quantity, xx, 309-313, 321-322

Posterior distribution, xx, 141-143, 156-158

Posterior expected loss, 153-154
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Posterior mean, 142, 144, 146

Posterior variance, 142, 144

Power function, xx, 276

Power series distribution, 52

Prediction, 321

Probability density, 12

Product measure, 10-11

Profile likelihood, 221

Q

Quantile, 231-236

R

Radon-Nikodym derivative, 9-10

Randomized confidence set, 330

Randomized estimator, xx, 71

Rao’s score test, 296-298, 300-303, 334-338, 340-343

Risk, xx, 71-74, 81-82, 174-175

Root of the likelihood equation (RLE), 195, 197-198, 200

S

Sample median, 237-238, 241, 344-345

Sample quantile, 343

Scheffé’s intervals, 347

Shortest-length confidence interval, 323-327

Simultaneous confidence intervals, xxi, 345-350

Size, xxi, 92

Sufficiency, xxi, 59-61, 114-115

Sup-norm distance, 211
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Superefficiency, 192

T

Test, 73, 84

Testing independence, 301

Trimmed sample mean, 229, 240

Type II error probability, 251

U

U-statistic, 116-119, 140, 244-245

Unbiased confidence set, xxii, 324, 328

Unbiased estimator, xxii, 77-80, 222

Uniform integrability, 38-39

Uniformly minimum variance unbiased estimator (UMVUE), xxii, 95-112,
115-116, 123-124, 132-133, 157-158, 187-188, 196

Uniformly most accurate (UMA) confidence set, xxi, 327-331

Uniformly most accurate unbiased (UMAU) confidence set, xxi, 324, 326-
327, 332-333

Uniformly most powerful (UMP) test, xxi, 251-254, 259-269, 281-282

Uniformly most powerful unbiased (UMPU) test, xxi, 269-270, 273-283,
289-292, 294-295, 332

V

Variance estimator, 243-249, 344-345

W

Wald’s test, 296-298, 300, 302-303, 334-337, 340-343

Weak law of large numbers, 45-46
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