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To My Parents



Preface

Since the publication of my book Mathematical Statistics (Shao, 2003), 1
have been asked many times for a solution manual to the exercises in my
book. Without doubt, exercises form an important part of a textbook
on mathematical statistics, not only in training students for their research
ability in mathematical statistics but also in presenting many additional
results as complementary material to the main text. Written solutions
to these exercises are important for students who initially do not have
the skills in solving these exercises completely and are very helpful for
instructors of a mathematical statistics course (whether or not my book
Mathematical Statistics is used as the textbook) in providing answers to
students as well as finding additional examples to the main text. Moti-
vated by this and encouraged by some of my colleagues and Springer-Verlag
editor John Kimmel, I have completed this book, Mathematical Statistics:
Exercises and Solutions.

This book consists of solutions to 400 exercises, over 95% of which are
in my book Mathematical Statistics. Many of them are standard exercises
that also appear in other textbooks listed in the references. It is only
a partial solution manual to Mathematical Statistics (which contains over
900 exercises). However, the types of exercise in Mathematical Statistics not
selected in the current book are (1) exercises that are routine (each exercise
selected in this book has a certain degree of difficulty), (2) exercises similar
to one or several exercises selected in the current book, and (3) exercises for
advanced materials that are often not included in a mathematical statistics
course for first-year Ph.D. students in statistics (e.g., Edgeworth expan-
sions and second-order accuracy of confidence sets, empirical likelihoods,
statistical functionals, generalized linear models, nonparametric tests, and
theory for the bootstrap and jackknife, etc.). On the other hand, this is
a stand-alone book, since exercises and solutions are comprehensible
independently of their source for likely readers. To help readers not
using this book together with Mathematical Statistics, lists of notation,
terminology, and some probability distributions are given in the front of
the book.

vii



viii Preface

All notational conventions are the same as or very similar to those
in Mathematical Statistics and so is the mathematical level of this book.
Readers are assumed to have a good knowledge in advanced calculus. A
course in real analysis or measure theory is highly recommended. If this
book is used with a statistics textbook that does not include probability
theory, then knowledge in measure-theoretic probability theory is required.

The exercises are grouped into seven chapters with titles matching those
in Mathematical Statistics. A few errors in the exercises from Mathematical
Statistics were detected during the preparation of their solutions and the
corrected versions are given in this book. Although exercises are numbered
independently of their source, the corresponding number in Mathematical
Statistics is accompanied with each exercise number for convenience of
instructors and readers who also use Mathematical Statistics as the main
text. For example, Exercise 8 (#2.19) means that Exercise 8 in the current
book is also Exercise 19 in Chapter 2 of Mathematical Statistics.

A note to students/readers who have a need for exercises accompanied
by solutions is that they should not be completely driven by the solutions.
Students/readers are encouraged to try each exercise first without reading
its solution. If an exercise is solved with the help of a solution, they are
encouraged to provide solutions to similar exercises as well as to think about
whether there is an alternative solution to the one given in this book. A
few exercises in this book are accompanied by two solutions and/or notes
of brief discussions.

I would like to thank my teaching assistants, Dr. Hansheng Wang, Dr.
Bin Cheng, and Mr. Fang Fang, who provided valuable help in preparing
some solutions. Any errors are my own responsibility, and a correction of
them can be found on my web page http://www.stat.wisc.edu/~ shao.

Madison, Wisconsin Jun Shao
April 2005
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Notation

R: The real line.

R¥: The k-dimensional Euclidean space.

c=(c1,...,cx): A vector (element) in R¥ with jth component ¢; € R; ¢ is
considered as a k x 1 matrix (column vector) when matrix algebra is
involved.

c™: The transpose of a vector ¢ € R* considered as a 1 x k matrix (row
vector) when matrix algebra is involved.

llc|l: The Euclidean norm of a vector ¢ € R¥, ||¢||? = ¢Tc.

|c|: The absolute value of ¢ € R.

A7: The transpose of a matrix A.

Det(A) or |A|: The determinant of a matrix A.

tr(A): The trace of a matrix A.

| A]l: The norm of a matrix A defined as ||A|? = tr(AT A).

A~!: The inverse of a matrix A.

A7: The generalized inverse of a matrix A.

A'/2: The square root of a nonnegative definite matrix A defined by
A1/2A1/2 — A.

A~1/2: The inverse of A2,

R(A): The linear space generated by rows of a matrix A.

I.: The k x k identity matrix.

Ji: The k-dimensional vector of 1’s.

(): The empty set.

(a,b): The open interval from a to b.

[a,b]: The closed interval from a to b.

(a,b]: The interval from a to b including b but not a.

[a,b): The interval from a to b including a but not b.

{a, b, c}: The set consisting of the elements a, b, and c.

Ay X -+ X Ag: The Cartesian product of sets Ay, ..., Ag, A1 X -+ X A}, =
{(a1,..,ar) a1 € Ay, ...;ax € Ap}.
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xii Notation

o(C): The smallest o-field that contains C.

0(X): The smallest o-field with respect to which X is measurable.

vy X - - X vg: The product measure of v1,...,v; on o(Fy X - -+ X Fi), where
v; is a measure on F;, 1 =1, ..., k.

B: The Borel o-field on R.

B*: The Borel o-field on R*.

A¢: The complement of a set A.

AU B: The union of sets A and B.

UA;: The union of sets A1, A, ....

AN B: The intersection of sets A and B.

NA;: The intersection of sets Aq, Ao, ....

I4: The indicator function of a set A.

P(A): The probability of a set A.

[ fdv: The integral of a Borel function f with respect to a measure v.

fA fdv: The integral of f on the set A.

[ f(z)dF(z): The integral of f with respect to the probability measure
corresponding to the cumulative distribution function F'.

A < v: The measure A is dominated by the measure v, ie., v(4) = 0
always implies A\(A) = 0.

%: The Radon-Nikodym derivative of A with respect to v.

P: A collection of populations (distributions).

a.e.: Almost everywhere.

a.s.: Almost surely.

a.s. P: A statement holds except on the event A with P(A) = 0 for all
PcP.

d.: The point mass at = € R¥ or the distribution degenerated at = € RF.
{an}: A sequence of elements aq, as, ....

an — a or lim, a, = a: {a,} converges to a as n increases to oo.
limsup,, a,: The largest limit point of {a,}, limsup,, a,, = inf,, supy,, ax.
liminf,, a,,: The smallest limit point of {a,}, liminf, a,, = sup,, infy>,, a.
—p: Convergence in probability.

—4: Convergence in distribution.

¢’: The derivative of a function g on R.

g"": The second-order derivative of a function g on R.

g®): The kth-order derivative of a function g on R.

g(z+): The right limit of a function g at € R.

g(z—): The left limit of a function g at € R.

g+ (2): The positive part of a function g, g4 () = max{g(z),0}.



Notation xiii

g—(z): The negative part of a function g, g_(z) = max{—g(x),0}.

0g/0x: The partial derivative of a function g on R*.

0%g/0x0z™: The second-order partial derivative of a function g on R”.

exp{z}: The exponential function e*.

log z or log(z): The inverse of e”, log(e*) = .

I(t): The gamma function defined as I'(t) = [~ 2~ 'e *dz, ¢t > 0.

F~1(p): The pth quantile of a cumulative distribution function F' on R,
F~1(t) = inf{z : F(x) > t}.

E(X) or EX: The expectation of a random variable (vector or matrix)
X.

Var(X): The variance of a random variable X or the covariance matrix of
a random vector X.

Cov(X,Y): The covariance between random variables X and Y.
E(X|A): The conditional expectation of X given a o-field A.
E(X|Y): The conditional expectation of X given Y.

P(A|A): The conditional probability of A given a o-field A.
P(A[|Y): The conditional probability of A given Y.

X(): The ith order statistic of Xy, ..., X,.

X or X.: The sample mean of X1,..., X,,, X =n~! Z?:l X;.
X.j: The average of X;;’s over the index i, X ;
52%: The sample variance of X1,..., X,,, S2 = (n —1)71 3" (X; — X)2.
F,: The empirical distribution of X1, ..., X,,, F,,(t) =n~' Y| dx, (¢).
£(6): The likelihood function.

Hy: The null hypothesis in a testing problem.

H;: The alternative hypothesis in a testing problem.

L(P,a) or L(,a): The loss function in a decision problem.

Ry (P) or Ry (6): The risk function of a decision rule 7.

r,: The Bayes risk of a decision rule T'.

N(u,0?%): The one-dimensional normal distribution with mean ;1 and vari-

ance o2.

Ni(u, X): The k-dimensional normal distribution with mean vector u and
covariance matrix 3.

®(z): The cumulative distribution function of N(0,1).

zo: The (1 — a)th quantile of N(0,1).

x2: The chi-square distribution with degrees of freedom .
X7.o: The (1 — a)th quantile of the chi-square distribution x;.

x2(9): The noncentral chi-square distribution with degrees of freedom r
and noncentrality parameter 0.



xiv Notation

t,: The t-distribution with degrees of freedom r.
tro: The (1 — a)th quantile of the t-distribution ¢,.

t.(0): The noncentral t-distribution with degrees of freedom r and non-
centrality parameter §.

F,p: The F-distribution with degrees of freedom a and b.
F, ot The (1 — a)th quantile of the F-distribution Fy, ;.

Fo4(0): The noncentral F-distribution with degrees of freedom a and b
and noncentrality parameter 0.

I: The end of a solution.



Terminology

o-field: A collection F of subsets of a set Q is a o-field on Q if (i) the
empty set ) € F; (ii) if A € F, then the complement A¢ € F; and
(iii) if A; € F, i =1,2,..., then their union UA; € F.

o-finite measure: A measure v on a o-field F on ) is o-finite if there are
A1, As, ... in F such that UA; = Q and v(4;) < oo for all i.

Action or decision: Let X be a sample from a population P. An action or
decision is a conclusion we make about P based on the observed X.

Action space: The set of all possible actions.

Admissibility: A decision rule T is admissible under the loss function
L(P,-), where P is the unknown population, if there is no other de-
cision rule T; that is better than T in the sense that E[L(P,T})] <
E[L(P,T)] for all P and E[L(P,Ty)] < E[L(P,T)] for some P.

Ancillary statistic: A statistic is ancillary if and only if its distribution
does not depend on any unknown quantity.

Asymptotic bias: Let T, be an estimator of § for every n satisfying
an (T, —0) —4 Y with E|Y| < oo, where {a,} is a sequence of positive
numbers satisfying lim,, a,, = co or lim, a,, = a > 0. An asymptotic
bias of T,, is defined to be EY/ay,.

Asymptotic level a test: Let X be a sample of size n from P and T(X
be a test for Hy : P € Py versus Hy : P € Py. If lim, E[T(X)] < «
for any P € Py, then T'(X) has asymptotic level «.

Asymptotic mean squared error and variance: Let T, be an estimator of
6 for every n satisfying a,, (T, — ) —4 Y with 0 < EY? < oo, where
{an} is a sequence of positive numbers satisfying lim,, a,, = co. The
asymptotic mean squared error of Tj, is defined to be EY?/a2 and
the asymptotic variance of T}, is defined to be Var(Y)/a2.

Asymptotic relative efficiency: Let T, and T, be estimators of §. The
asymptotic relative efficiency of T, with respect to T, is defined to
be the asymptotic mean squared error of T}, divided by the asymptotic
mean squared error of Ty,.
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Asymptotically correct confidence set: Let X be a sample of size n from
P and C(X) be a confidence set for . If lim,, P( € C(X)) =1 — a,
then C'(X) is 1 — a asymptotically correct.

Bayes action: Let X be a sample from a population indexed by 6§ € © C
RF. A Bayes action in a decision problem with action space A and loss
function L(f,a) is the action that minimizes the posterior expected
loss E[L(0,a)] over a € A, where E is the expectation with respect
to the posterior distribution of 6 given X.

Bayes risk: Let X be a sample from a population indexed by # € © C RF.
The Bayes risk of a decision rule 7" is the expected risk of 7" with
respect to a prior distribution on ©.

Bayes rule or Bayes estimator: A Bayes rule has the smallest Bayes risk
over all decision rules. A Bayes estimator is a Bayes rule in an esti-
mation problem.

Borel o-field B*: The smallest o-field containing all open subsets of R¥.

Borel function: A function f from © to R* is Borel with respect to a
o-field F on € if and only if f~!(B) € F for any B € B*.

Characteristic function: The characteristic function of a distribution F on
RFis [eV=12dF(z), t € RF.

Complete (or bounded complete) statistic: Let X be a sample from a
population P. A statistic T'(X) is complete (or bounded complete)
for P if and only if, for any Borel (or bounded Borel) f, E[f(T)] =0
for all P implies f = 0 except for a set A with P(X € A) =0 for all
P.

Conditional expectation F(X|.A): Let X be an integrable random variable
on a probability space (2, F, P) and A be a o-field contained in F.
The conditional expectation of X given A, denoted by E(X|A), is
defined to be the a.s.-unique random variable satisfying (a) F(X|.A)
is Borel with respect to A and (b) [, E(X|A)dP = [, XdP for any
Ac A

Conditional expectation F(X|Y): The conditional expectation of X given
Y, denoted by E(X|Y), is defined as E(X|Y) = E(X|o(Y)).

Confidence coefficient and confidence set: Let X be a sample from a pop-
ulation P and # € R* be an unknown parameter that is a function
of P. A confidence set C(X) for § is a Borel set on R*¥ depend-
ing on X. The confidence coefficient of a confidence set C(X) is
infp P(0 € C(X)). A confidence set is said to be a 1 — o confidence
set for 6 if its confidence coefficient is 1 — a.

Confidence interval: A confidence interval is a confidence set that is an
interval.
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Consistent estimator: Let X be a sample of size n from P. An estimator
T(X) of 6 is consistent if and only if T(X) —, 6 for any P as n —
oo. T(X) is strongly consistent if and only if lim, T(X) = 6 a.s.
for any P. T(X) is consistent in mean squared error if and only if
lim,, E[T(X) — 6]? = 0 for any P.

Consistent test: Let X be a sample of size n from P. A test T'(X) for
testing Hy : P € Py versus Hy : P € P; is consistent if and only if
lim,, E[T(X)] =1 for any P € P;.

Decision rule (nonrandomized): Let X be a sample from a population P.
A (nonrandomized) decision rule is a measurable function from the
range of X to the action space.

Discrete probability density: A probability density with respect to the
counting measure on the set of nonnegative integers.

Distribution and cumulative distribution function: The probability mea-
sure corresponding to a random vector is called its distribution (or
law). The cumulative distribution function of a distribution or proba-
bility measure P on B* is F(x1, ..., x3) = P((—00, 2] %+ - -x (=00, 21]),
x; € R.

Empirical Bayes rule: An empirical Bayes rule is a Bayes rule with pa-
rameters in the prior estimated using data.

Empirical distribution: The empirical distribution based on a random
sample (X7, ..., X,,) is the distribution putting mass n=! at each X;,
1=1,...,n.

Estimability: A parameter 6 is estimable if and only if there exists an
unbiased estimator of 6.

Estimator: Let X be a sample from a population P and 6 € R* be a
function of P. An estimator of 6 is a measurable function of X.

Exponential family: A family of probability densities {fy : 6§ € ©} (with
respect to a common o-finite measure v), © C R, is an expo-
nential family if and only if fo(z) = exp{[n(0)]"T(z) — £(6) }h(x),
where T is a random p-vector with a fixed positive integer p, n is
a function from © to RP, h is a nonnegative Borel function, and
£(0) = log { [ exp{[n(0)]" T (x)}h(z)dv}.

Generalized Bayes rule: A generalized Bayes rule is a Bayes rule when the
prior distribution is improper.

Improper or proper prior: A prior is improper if it is a measure but not a
probability measure. A prior is proper if it is a probability measure.

Independence: Let (2, F, P) be a probability space. Events in C C F
are independent if and only if for any positive integer n and distinct
events Ala--~7An in C, P(Al QAQQ- . ﬂAn) = P(Al)P(AQ) s P(An)
Collections C; C F, @ € T (an index set that can be uncountable),



xviii Terminology

are independent if and only if events in any collection of the form
{A; € C; : i € I} are independent. Random elements X;, i € Z, are
independent if and only if o(X;), ¢ € Z, are independent.

Integration or integral: Let v be a measure on a o-field F on a set .
The integral of a nonnegative simple function (i.e., a function of
the form p(w) = Zle a;la,(w), where w € Q, k is a positive in-
teger, Aj,..., A are in F, and ay,...,a; are nonnegative numbers)
is defined as [ ¢dv = Ele a;v(A;). The integral of a nonnegative
Borel function is defined as [ fdv = sup,cg, [ ¢dv, where Sy is the
collection of all nonnegative simple functions that are bounded by
f. For a Borel function f, its integral exists if and only if at least
one of [max{f,0}dv and [max{—f,0}dv is finite, in which case
[ fdv = [max{f,0}dv — [max{—f,0}dv. f is integrable if and
only if both [max{f,0}dv and [ max{—f,0}dv are finite. When v
is a probability measure corresponding to the cumulative distribution
function F on R¥, we write [ fdv = [ f(z)dF(z). For any event A,
[ fdv is defined as [ I, fdv.

Invariant decision rule: Let X be a sample from P € P and G be a group
of one-to-one transformations of X (g; € G implies g1ogs € G and
g7t € G). P is invariant under G if and only if g(Px) = Pyx) is a
one-to-one transformation from P onto P for each g € G. A decision
problem is invariant if and only if P is invariant under G and the
loss L(P,a) is invariant in the sense that, for every g € G and every
a € A (the collection of all possible actions), there exists a unique
g(a) € A such that L(Px,a) = L (Py(x),g(a)). A decision rule T'(z)
in an invariant decision problem is invariant if and only if, for every
g € G and every z in the range of X, T(g(z)) = g(T(x)).

Invariant estimator: An invariant estimator is an invariant decision rule
in an estimation problem.

LR (Likelihood ratio) test: Let ¢(6) be the likelihood function based on
a sample X whose distribution is Py, # € © C RP for some positive
integer p. For testing Hy : 0 € ©g C © versus H; : § € Og, an LR test
is any test that rejects Hy if and only if M(X) < ¢, where ¢ € [0, 1]
and A(X) = supgee, £(0)/supyee £(0) is the likelihood ratio.

LSE: The least squares estimator.

Level « test: A test is of level « if its size is at most «.

Level 1 — « confidence set or interval: A confidence set or interval is said
to be of level 1 — «v if its confidence coefficient is at least 1 — .
Likelihood function and likelihood equation: Let X be a sample from a
population P indexed by an unknown parameter vector € R*. The
joint probability density of X treated as a function of 0 is called the
likelihood function and denoted by £(6). The likelihood equation is

0log £(0)/06 = 0.
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Location family: A family of Lebesgue densities on R, {f, : p € R}, is
a location family with location parameter p if and only if f,(z) =
f(z — p), where f is a known Lebesgue density.

Location invariant estimator. Let (X7, ..., X,,) be a random sample from a
population in a location family. An estimator T'(X7, ..., X,,) of the lo-
cation parameter is location invariant if and only if T'(X; +¢, ..., X,, +
¢)=T(X1,....,X,) + c for any X;’s and ¢ € R.

Location-scale family: A family of Lebesgue densities on R, {f, - : pt €
R,o > 0}, is a location-scale family with location parameter p and
scale parameter o if and only if f, ,(z) = %f (%), where f is a
known Lebesgue density.

Location-scale invariant estimator. Let (Xi,...,X,) be a random sam-
ple from a population in a location-scale family with location pa-
rameter p and scale parameter o. An estimator T(Xy,...,X,) of
the location parameter p is location-scale invariant if and only if
T(rXi+c¢ ...rX,+¢)=rT(Xy,..., X,) +cfor any X;’s, c € R, and
r > 0. An estimator S(X1, ..., X,,) of 0" with a fixed h # 0 is location-
scale invariant if and only if S(rX; +e¢,...,r X, +c) = r"T (X1, ..., X,,)
for any X;’s and r > 0.

Loss function: Let X be a sample from a population P € P and A be the
set of all possible actions we may take after we observe X. A loss
function L(P,a) is a nonnegative Borel function on P x A such that
if a is our action and P is the true population, our loss is L(P, a).

MRIE (minimum risk invariant estimator): The MRIE of an unknown
parameter 6 is the estimator has the minimum risk within the class
of invariant estimators.

MLE (maximum likelihood estimator): Let X be a sample from a popula-
tion P indexed by an unknown parameter vector § € © C R¥ and /()
be the likelihood function. A € © satisfying £(f) = maxgee £(0) is
called an MLE of 6 (© may be replaced by its closure in the above
definition).

Measure: A set function v defined on a o-field F on  is a measure if (i)
0 < v(A) < oo for any A € F; (ii) v(0) = 0; and (iii) v (U2, 4;) =
Yoo v(A;) for disjoint A; € F,i=1,2, ...

Measurable function: a function from a set € to a set A (with a given o-
field G) is measurable with respect to a o-field F on Q if f~1(B) € F
for any B € G.

Minimax rule: Let X be a sample from a population P and Ry (P) be
the risk of a decision rule 7. A minimax rule is the rule minimizes
supp Rr(P) over all possible T'.

Moment generating function: The moment generating function of a dis-
tribution F' on R¥ is [e!'®dF (), t € RF, if it is finite.
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Monotone likelihood ratio: The family of densities {fy : § € O} with
© C R is said to have monotone likelihood ratio in Y'(x) if, for any
01 < 03, 0; € O, fo,(x)/ fo, (x) is a nondecreasing function of Y (z) for
values x at which at least one of fp, (z) and fy,(z) is positive.

Optimal rule: An optimal rule (within a class of rules) is the rule has the
smallest risk over all possible populations.

Pivotal quantity: A known Borel function R of (X, 6) is called a pivotal
quantity if and only if the distribution of R(X, €) does not depend on
any unknown quantity.

Population: The distribution (or probability measure) of an observation
from a random experiment is called the population.

Power of a test: The power of a test T is the expected value of T" with
respect to the true population.

Prior and posterior distribution: Let X be a sample from a population
indexed by # € © c RF. A distribution defined on © that does
not depend on X is called a prior. When the population of X is
considered as the conditional distribution of X given 6 and the prior
is considered as the distribution of #, the conditional distribution of
0 given X is called the posterior distribution of 6.

Probability and probability space: A measure P defined on a o-field F
on a set  is called a probability if and only if P(Q2) = 1. The triple
(Q,F, P) is called a probability space.

Probability density: Let (Q, F, P) be a probability space and v be a o-
finite measure on F. If P <« v, then the Radon-Nikodym derivative
of P with respect to v is the probability density with respect to v
(and is called Lebesgue density if v is the Lebesgue measure on R*).

Random sample: A sample X = (X1, ..., X,,), where each X; is a random
d-vector with a fixed positive integer d, is called a random sample of
size n from a population or distribution P if X1, ..., X,, are indepen-
dent and identically distributed as P.

Randomized decision rule: Let X be a sample with range X, A be the
action space, and F4 be a o-field on A. A randomized decision rule
is a function §(z, C') on X x F4 such that, for every C € Fyu, 6(X,C)
is a Borel function and, for every X € X, §(X,C) is a probability
measure on F4. A nonrandomized decision rule T can be viewed as
a degenerate randomized decision rule 6, i.e., §(X, {a}) = I{4}(T(X))
for any a € A and X € X.

Risk: The risk of a decision rule is the expectation (with respect to the
true population) of the loss of the decision rule.

Sample: The observation from a population treated as a random element
is called a sample.
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Scale family: A family of Lebesgue densities on R, {f, : 0 > 0}, is a scale
family with scale parameter o if and only if f,(z) = 1 f(z/0), where

~ o
f is a known Lebesgue density.

Scale invariant estimator. Let (X7,...,X,) be a random sample from a
population in a scale family with scale parameter o. An estimator
S(X1,...,X,) of o" with a fixed h # 0 is scale invariant if and only if
S(rXy,..,rX,) =r"T(Xy,...,X,) for any X;’s and r > 0.

Simultaneous confidence intervals: Let 6, € R, t € 7. Confidence intervals
Cy(X),t € T, are 1 —«a simultaneous confidence intervals for ;, t € T,
1fP(9t S Ct(X),t € T) =1-a.

Statistic: Let X be a sample from a population P. A known Borel function
of X is called a statistic.

Sufficiency and minimal sufficiency: Let X be a sample from a population
P. A statistic T(X) is sufficient for P if and only if the conditional
distribution of X given T does not depend on P. A sufficient statistic
T is minimal sufficient if and only if, for any other statistic S sufficient
for P, there is a measurable function ¢ such that T = ¥(S) except
for a set A with P(X € A) =0 for all P.

Test and its size: Let X be a sample from a population P € P and P;
i =0, 1, be subsets of P satisfying PoUP; =P and Py NPy = 0. A
randomized test for hypotheses Hy : P € Py versus H; : P € Py is a
Borel function T'(X) € [0,1] such that after X is observed, we reject
Hj (conclude P € P;) with probability T(X). If T(X) € {0,1}, then
T is nonrandomized. The size of a test T' is suppep, E[T(X)], where
F is the expectation with respect to P.

UMA (uniformly most accurate) confidence set: Let 8 € © be an unknown
parameter and ©" be a subset of © that does not contain the true
value of 6. A confidence set C'(X) for 6 with confidence coefficient
1 — « is ©-UMA if and only if for any other confidence set C;(X)
with significance level 1 — a, P(6' € C(X)) < P(¢' € C1(X)) for all
SO

UMAU (uniformly most accurate unbiased) confidence set: Let 6 € © be
an unknown parameter and ©’ be a subset of © that does not contain
the true value of 6. A confidence set C(X) for 6 with confidence
coefficient 1 — a is ©'-UMAU if and only if C(X) is unbiased and for
any other unbiased confidence set C;(X) with significance level 1 —a,
P(0' € C(X)) < P(# € C1(X)) for all ¢ € ©'.

UMP (uniformly most powerful) test: A test of size o is UMP for testing
Hy : P € Py versus Hy : P € Py if and only if, at each P € Py, the
power of T is no smaller than the power of any other level « test.

UMPU (uniformly most powerful unbiased) test: An unbiased test of size
a is UMPU for testing Hy : P € Py versus Hy : P € Py if and only
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if, at each P € Py, the power of T' is no larger than the power of any
other level o unbiased test.

UMVUE (uniformly minimum variance estimator): An estimator is a
UMVUE if it has the minimum variance within the class of unbiased
estimators.

Unbiased confidence set: A level 1 — a confidence set C'(X) is said to be
unbiased if and only if P(’ € C(X)) < 1—« for any P and all ' # 6.

Unbiased estimator: Let X be a sample from a population P and 6 € R*
be a function of P. If an estimator T'(X) of § satisfies E[T'(X)] = 0
for any P, where E is the expectation with respect to P, then T(X)
is an unbiased estimator of 6.

Unbiased test: A test for hypotheses Hy : P € Py versus Hy : P € Py is
unbiased if its size is no larger than its power at any P € P;.
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1. Discrete uniform distribution on the set {a1, ..., a,;, }: The probability
density (with respect to the counting measure) of this distribution is

m~1 r=a; t=1,....m
0 otherwise,
where a; € R, ¢ = 1,...,m, and m is a positive integer. The expec-
tation of this distribution is @ = }_7" | a;/m and the variance of this
distribution is 77", (a; —@)?/m. The moment generating function of
this distribution is Y7" | e%"/m, t € R.

2. The binomial distribution with size n and probability p: The probabil-
ity density (with respect to the counting measure) of this distribution

is
(@) = (Z)p“"(lfp)”*“’ x=0,1,...,n
0 otherwise,
where n is a positive integer and p € [0,1]. The expectation and
variance of this distributions are np and np(1 — p), respectively. The

moment generating function of this distribution is (pe! + 1 — p)™,
teR.

3. The Poisson distribution with mean 6: The probability density (with
respect to the counting measure) of this distribution is

f(z) { Cet o 2=0,1,2,..

0 otherwise,

where 0 > 0 is the expectation of this distribution. The variance

of this distribution is §. The moment generating function of this
t

distribution is ¢~V t € R.

4. The geometric with mean p~—!: The probability density (with respect
to the counting measure) of this distribution is

fa) = { (1—p)*~1lp z=12,..

0 otherwise,

xxiii
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where p € [0,1]. The expectation and variance of this distribution are
p~1 and (1 —p)/p?, respectively. The moment generating function of
this distribution is pe’/[1 — (1 — p)e?], t < —log(1 — p).

Hypergeometric distribution: The probability density (with respect
to the counting measure) of this distribution is

(2)(")

0 otherwise,

x=0,1,....min{r,n}, r—z <m

where r, n, and m are positive integers, and N = n + m. The ex-
pectation and variance of this distribution are equal to rn/N and
rnm(N —r)/[N?(N — 1)], respectively.

Negative binomial with size r and probability p: The probability
density (with respect to the counting measure) of this distribution
is

0 otherwise,

flz) = { GC)pr(l=p* " w=rr4l,..

where p € [0,1] and r is a positive integer. The expectation and vari-
ance of this distribution are 7/p and r(1—p)/p?, respectively. The mo-
ment generating function of this distribution is equal to

pre™/[1— (1 —p)et]”, t < —log(l —p).

Log-distribution with probability p: The probability density (with
respect to the counting measure) of this distribution is

[ —(logp)~tz~(1—p)” r=1,2,..
J@) = { 0 otherwise,

where p € (0,1). The expectation and variance of this distribution
are —(1—p)/(plogp) and —(1—p)[1+(1—p)/logp]/(p* log p), respec-
tively. The moment generating function of this distribution is equal to
log[1 — (1 —p)et]/logp, t € R.

Uniform distribution on the interval (a,b): The Lebesgue density of

this distribution is )

flz)= ml(a,b) (z),

where a and b are real numbers with a < b. The expectation and
variance of this distribution are (a + b)/2 and (b — a)?/12, respec-

tively. The moment generating function of this distribution is equal to
(et —eat)/[(b—a)t], t € R.
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9.

10.

11.

12.

13.

Normal distribution N (p,0?): The Lebesgue density of this distribu-
tion is
f(l') = 1 ei(wiu)2/2g2’

V2o

where 1 € R and 02 > 0. The expectation and variance of N(u,o?)
are p and o2, respecztizvely. The moment generating function of this
distribution is eM* Tt /2 ¢ € R.

Exponential distribution on the interval (a, co) with scale parameter
0: The Lebesgue density of this distribution is

1 —(r—a
f(l’) = 56 ( )/ej(a,oo)(x)a
where a € R and 6 > 0. The expectation and variance of this distri-

bution are 8+a and 62, respectively. The moment generating function
of this distribution is e (1 — 0¢t)~1, ¢ < =1

Gamma distribution with shape parameter a and scale parameter ~:
The Lebesgue density of this distribution is

@)= L(a)y® 2 e N g o) (2),

where o > 0 and v > 0. The expectation and variance of this distri-
bution are vy and ay?, respectively. The moment generating function
of this distribution is (1 —~¢)~™%, t <~ L.

Beta distribution with parameter («, 3): The Lebesgue density of this
distribution is

flz)= mﬂl(l —2)7 o1y (2),

where o > 0 and 8 > 0. The expectation and variance of this distri-
bution are a/(a + 3) and af/[(a + B+ 1)(a + 3)?], respectively.

Cauchy distribution with location parameter p and scale parameter
o: The Lebesgue density of this distribution is

g

@) = 57—
mlo? + (z — p)?]
where 4 € R and o > 0. The expectation and variance of this distri-

bution do not exist. The characteristic function of this distribution
is eV~ 1ut=altl ¢ e R,
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14.

15.

16.

17.

18.
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Log-normal distribution with parameter (u,0?): The Lebesgue den-
sity of this distribution is

—(log z—p)? /202
f(m):me (ogz—p)"/2 I(0,00) (),

where 4 € R and o > 0. The 2expgctation and variance of this
distribution are e#t7 /2 and e?**7” (¢7" — 1), respectively.

2

Weibull distribution with shape parameter o and scale parameter 6:
The Lebesgue density of this distribution is

O ol _ge
fw) = Sae e g o (),

where o > 0 and 6 > 0. The expectation and variance of this distri-
bution are §'/°T(a~! 4 1) and 0%/*{T'(2a~" + 1) — [[(a~! + 1)},
respectively.

Double exponential distribution with location parameter p and scale
parameter 0: The Lebesgue density of this distribution is

1
- —lx—pl/0
f(x) 206 ?

where 1 € R and 6 > 0. The expectation and variance of this distri-
bution are 4 and 262, respectively. The moment generating function
of this distribution is e#?/(1 — 6%t?), |t| < 6~ 1.

Pareto distribution: The Lebesgue density of this distribution is
fla) = 0a"2™ "V, o (@),

where ¢ > 0 and 6 > 0. The expectation this distribution is fa/(0—1)
when 6 > 1 and does not exist when § < 1. The variance of this
distribution is #a?/[(6 — 1)?(@ — 2)] when 6 > 2 and does not exist
when 6 < 2.

Logistic distribution with location parameter p and scale parameter
o: The Lebesgue density of this distribution is

o—(a—n)/o

B o[l + e=(z=p)/a]2’

f(z)

where p € R and o > 0. The expectation and variance of this
distribution are y and 072 /3, respectively. The moment generating
function of this distribution is e*'T'(1 + ot)['(1 — ot), |t| < o~ L.
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19.

20.

21.

22.

Chi-square distribution X%i The Lebesgue density of this distribution
is

flx) =  ,

YT T (kj2)2k 2

xk/2—1€—m/21(0100) (JJ),

where k is a positive integer. The expectation and variance of this dis-
tribution are k and 2k, respectively. The moment generating function
of this distribution is (1 —2¢)7%/2, t < 1/2.

Noncentral chi-square distribution x7(d): This distribution is defined
as the distribution of X2+ - -—|—X,3, where X7, ..., X} are independent
and identically distributed as N(u;, 1), k is a positive integer, and
§=p?+ -+ ui >0. 4 is called the noncentrality parameter. The
Lebesgue density of this distribution is

fla) == (‘ny fagin(®),

Jj=0

where fi(x) is the Lebesgue density of the chi-square distribution
X%. The expectation and variance of this distribution are k + § and

2k + 40, respectively. The characteristic function of this distribution
is (1 _ 2\/_71t)—k/28\/—716t/(1—2\/—71t).

t-distribution ¢,,: The Lebesgue density of this distribution is

N (%) fo —(n+1)/2
0= (45)

where n is a positive integer. The expectation of ¢,, is 0 when n > 1
and does not exist when n = 1. The variance of ¢,, is n/(n — 2) when
n > 2 and does not exist when n < 2.

Noncentral t-distribution ¢,(d): This distribution is defined as the
distribution of X/1/Y/n, where X is distributed as N(J,1), Y is dis-
tributed as x2, X and Y are independent, n is a positive integer, and
6 € R is called the noncentrality parameter. The Lebesgue density of
this distribution is

_ (n=1)/2~[(2\/y/n=58)"+y1/24
f(x) (n+1 /2F % /71-77// € v

The expectation of ¢, (6) is 6T'(251)/n/2/T'(%) when n > 1 and does
not exist when n = 1. The variance of t,(8) is [n(1 +6%)/(n — 2)] —
[T(25%)/T'(%)]?6%n/2 when n > 2 and does not exist when n < 2.
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23. F-distribution Fj, ,,: The Lebesgue density of this distribution is
nn/2 m/2F(n+m) n/2—1

f(.f) = F(%)F( Z )(m + nx)(n—i—m)/Q (0 m)(x)

where n and m are positive integers. The expectation of F), ., is
m/(m—2) when m > 2 and does not exist when m < 2. The variance
of F,, 1 is 2m?(n+m — 2)/[n(m — 2)?(m — 4)] when m > 4 and does
not exist when m < 4.

24. Noncentral F-distribution F,, ,,(d): This distribution is defined as
the distribution of (X/n)/(Y/m), where X is distributed as x2(d),
Y is distributed as x?,, X and Y are independent, n and m are
positive integers, and § > 0 is called the noncentrality parameter.
The Lebesgue density of this distribution is

f(z) = e“s/Qinszrnl,nz ( e ) :

j:0]!(2j+n1 27 4+ nq

where fi, k,(z) is the Lebesgue density of Fj, ,. The expectation
of F, m(6) is m(n + §)/[n(m — 2)] when m > 2 and does not exist
when m < 2. The variance of F,, ,,,(8) is 2m?[(n + 6)% + (m — 2)(n +
26)]/[n?(m—2)?(m—4)] when m > 4 and does not exist when m < 4.

25. Multinomial distribution with size n and probability vector (p1,...,px):
The probability density (with respect to the counting measure on R*)
is

n!

T Z‘k]'
E— B\T1,..., T
$1!"'$k!p1 Dy ( PREED) )7

f(SCl, ...,xk) =

where B = {(z1, ..., x) : ¥;’s are nonnegative integers, ZZ 1T =N},
n is a positive integer, p; € [0,1], i = 1, ..., k, and Zlepz = 1. The
mean-vector (expectation) of this distribution is (npi, ..., npg). The
variance-covariance matrix of this distribution is the k x k matrix
whose ith diagonal element is np; and (4, j)th off-diagonal element is
—np;pPj.

26. Multivariate normal distribution Ny (u, X): The Lebesgue density of
this distribution is

1 Ty —1
= —(z—p)"Z7 (z—p)/2 c RF
@)= Gryrpem) 2 TER
where ;1 € R* and ¥ is a positive definite & x k matrix. The mean-
vector (expectation) of this distribution is u. The variance-covariance

matrix of this distribution is ¥. The moment generating function of
Ni(p, ) is ef #7512 ¢ € R
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Probability Theory

Exercise 1. Let Q be a set, F be o-field on 2, and C € F. Show that
Foe={CnNA:Aec F}isao-field on C.

Solution. This exercise, similar to many other problems, can be solved by
directly verifying the three properties in the definition of a o-field.

(i) The empty subset of C' is C N Q. Since F is a o-field, § € F. Then,
cCnie Feo.

(ii) If B € F¢, then B = C N A for some A € F. Since F is a o-field,
A¢ € F. Then the complement of B in C' is C N A° € F¢.

(iii) If B; € Fe,i=1,2,..., then B; = CUA; for some A; € F,i=1,2,....
Since F is a o-field, UA; € F. Therefore, UB; = U(C N A;) = CN(U4,;) €
Feo.

Exercise 2 (#1.12). Let v and \ be two measures on a o-field F on
such that v(A) = A(A) for any A € C, where C C F is a collection having
the property that if A and B are in C, then so is AN B. Assume that
there are A; € C, i = 1,2, ..., such that UA; =  and v(4;) < oo for all
i. Show that v(A) = M(A) for any A € o(C), where o(C) is the smallest
o-field containing C.

Note. Solving this problem requires knowing properties of measures (Shao,
2003, §1.1.1). The technique used in solving this exercise is called the “good
sets principle”. All sets in C have property A and we want to show that all
sets in o(C) also have property A. Let G be the collection of all sets having
property A (good sets). Then, all we need to show is that G is a o-field.
Solution. Define G = {4 € F: v(A) = A(A)}. Since C C G, o(C) CGifG
is a o-field. Hence, the result follows if we can show that G is a o-field.

(i) Since both v and A are measures, 0 = v()) = A(@) and, thus, the empty
set ) € G.

TThe number in parentheses is the exercise number in Mathematical Statistics (Shao,
2003). The first digit is the chapter number.
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(ii) For any B € F, by the inclusion and exclusion formula,
y(UAmB>: S vA4nB) - Y v(A4NA;NB)+ -
i=1 1<i<n 1<i<j<n

for any positive integer n, where A;’s are the sets given in the description
of this exercise. The same result also holds for A. Since A;’s are in C,
AiNA;jN---NA;eCand, if Beg,

v(AiNA;N---NA,NB)=AANA;N---NA,NB) < oo.
Consequently,
v(AiNA;N---NA,NBY) =XA;NA;N---NA,NBY) < 0.

By the inclusion and exclusion formula again, we obtain that

i=1 i=1

for any n. From the continuity property of measures (Proposition 1.1(iii)
in Shao, 2003), we conclude that v(B°) = A(B€) by letting n — oo in the
previous expression. Thus, B¢ € G whenever B € G.

(iii) Suppose that B; € G, i = 1,2, .... Note that

I/(Bl U BQ) = V(Bl) —+ I/(Bf n BQ) = )\(Bl) + A(Bf N BQ) = )\(Bl U BQ),

since B{ N By € G. Thus, B; U By € G. This shows that for any n,
U, B; € G. By the continuity property of measures,

i=1 i=1 i=1 i=1

Hence, UB; € G. I

Exercise 3 (#1.14). Show that a real-valued function f on a set 2 is
Borel with respect to a o-field F on Q if and only if f~!(a,00) € F for all
a€R.

Note. Good sets principle is used in this solution.

Solution. The only if part follows directly from the definition of a Borel
function. Suppose that f~1(a,00) € F for all a € R. Let

G={CcR:fC)eF).

Note that (i) 0 € G; (ii) if C € G, then f~1(C¢) = (f~1(0))° € F, ie.,
C° € G and (i) if C; € G, i = 1,2, .., then f~1(UC}) = Uf~1(C}) € F,
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i.e., UC; € G. This shows that G is a o-field. Thus B C G, i.e., f~1(B) € F
for any B € B and, hence, f is Borel. I

Exercise 4 (#1.14). Let f and g be real-valued functions on . Show
that if f and g are Borel with respect to a o-field F on €, then so are fg,
f/g (when g # 0), and af + bg, where a and b are real numbers.

Solution. Suppose that f and g are Borel. Consider af + bg with a > 0
and b > 0. Let Q be the set of all rational numbers on R. For any ¢ € R,

{af +bg > c} = U{f>(c—t)/a}ﬂ{g>t/b}.

teQ

Since f and g are Borel, {af+bg > ¢} € F. By Exercise 3, af +bg is Borel.
Similar results can be obtained for the case of a > 0 and b < 0, a < 0 and
b>0,ora<0andb<0.

From the above result, f + g and f — g are Borel if f and g are Borel.
Note that for any ¢ > 0,

{(f+9?>c}={f+9>VU{f+g<—Vc}
Hence, (f + g)? is Borel. Similarly, (f — g)? is Borel. Then

fa=1(f+9)?°—(f—9)°/4

is Borel.

Since any constant function is Borel, this shows that af is Borel if f is
Borel and «a is a constant. Thus, af + bg is Borel even when one of a and
bis 0.

Assume g # 0. For any c,

{0<g<1/c} >0
{1/g>c}=4 {g>0} c=0
{g>0}U{l/e<g<0} c<0.

Hence 1/g is Borel if g is Borel and g # 0. Then f/g is Borel if both f and
g are Borel and g # 0. 1

Exercise 5 (#1.14). Let f;, i =1,2,..., be Borel functions on € with re-
spect to a o-field F. Show that sup,, fn, inf,, fn, limsup,, f,, and liminf, f,
are Borel with respect to F. Also, show that the set

A= {w €Q: lirrln fn(w) exists}

is in F and the function

[ lim, fr(w) weA
hw) = { filw) we A
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is Borel with respect to F.

Solution. For any ¢ € R, {sup,, fn > ¢} = Up{fn > ¢}. By Exercise 3,
sup,, f» is Borel. By Exercise 4, inf, f, = —sup,(—fn) is Borel. Then
limsup,, f, = inf, supys,, fr is Borel and liminf, f, = —limsup, (—f,)
is Borel. Consequently, A = {limsup,, f,, — liminf, f, = 0} € F. The
function h is equal to I4limsup,, fn + Lacfi, where I4 is the indicator
function of the set A. Since A € F, I4 is Borel. Thus, h is Borel. I

Exercise 6. Let f be a Borel function on R?. Define a function g from
R to R as g(x) = f(x,y0), where yp is a fixed point in R. Show that g is
Borel. Is it true that f is Borel from R? to R if f(x,y) with any fixed y or
fixed z is Borel from R to R?

Solution. For a fixed y, define

G={CcR*:{z:(z,0) € C} € B}.

Then, (i) D € G; (i) if C € G, {z : (z,9) € C°} = {z: (z,y) € C}° € B,
ie, C¢ e G; (i) if C; € G, i = 1,2,..., then {z : (x,y) € UC;} =
U{x : (z,y0) € C;} € B, i.e,, UC; € G. Thus, G is a o-field. Since any open
rectangle (a,b) x (¢,d) € G, G is a o-field containing all open rectangles
and, thus, G contains B2, the Borel o-field on R?. Let B € B. Since f is
Borel, A = f~}(B) € B2. Then A € G and, thus,

g Y (B)={x: f(z,y) € B} = {x: (z,y) € A} € B.

This proves that g is Borel.

If f(x,y) with any fixed y or fixed z is Borel from R to R, f is not
necessarily to be a Borel function from R? to R. The following is a coun-
terexample. Let A be a non-Borel subset of R and

f(x,y)Z{é r=yed

otherwise

Then for any fixed yo, f(z,90) = 0 if yo € A and f(x,y0) = I{y}(2)
(the indicator function of the set {yo}) if yo € A. Hence f(x,yo) is Borel.
Similarly, f(zo,y) is Borel for any fixed xg. We now show that f(x,y) is
not Borel. Suppose that it is Borel. Then B = {(z,y) : f(z,y) = 1} € B2
Define G = {C C R?: {x : (z,z) € C} € B}. Using the same argument in
the proof of the first part, we can show that G is a o-field containing B2.
Hence {z : (z,2) € B} € B. However, by definition {z : (z,2) € B} = A &
B. This contradiction proves that f(x,y) is not Borel. I

Exercise 7 (#1.21). Let Q = {w; : i = 1,2,...} be a countable set, F
be all subsets of 2, and v be the counting measure on  (i.e., v(A) = the
number of elements in A for any A C Q). For any Borel function f, the
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integral of f w.r.t. v (if it exists) is

/ fdv = fjf(wi)-

Note. The definition of integration and properties of integration can be
found in Shao (2003, §1.2). This type of exercise is much easier to solve if
we first consider nonnegative functions (or simple nonnegative functions)
and then general functions by using f, and f_. See also the next exercise
for another example.

Solution. First, consider nonnegative f. Then f = Y 2, a;lg,,y, where
a; = f(w;) > 0. Since f, = > 1, a;lf.,y is a nonnegative simple function
(a function is simple if it is a linear combination of finitely many indicator
functions of sets in F) and f,, < f, by definition

/fndl/g;ai S/fdu.

Letting n — oo we obtain that

/fdu > iai.

Let s = Zle biI{.,,} be a nonnegative simple function satisfying s < f.
Then 0 < b; < a; and

k [eS)
/sduz Zbi < Zai.
i=1 i=1

Hence

/fdl/sup{/sdz/ : 5 is simple, 0 < s < f} < Zai
i=1
and, thus,

/fduzgai

for nonnegative f.
For general f, let f; = max{f,0} and f_ = max{—f,0}. Then

[ v ih(wi) and [ fodv i Fo(wi).
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Then the result follows from

/fdu:/erdu—/f,dz/

if at least one of [ fidv and [ f_dv is finite. N

Exercise 8 (#1.22). Let v be a measure on a o-field F on Q and f and
g be Borel functions with respect to F. Show that

(i) if [ fdv exists and a € R, then [(af)dv exists and is equal to a [ fdv;
(ii) if both [ fdv and [ gdv exist and [ fdv + [ gdv is well defined, then
J(f + g)dv exists and is equal to [ fdv + [ gdv.

Note. For integrals in calculus, properties such as [(af)dv=a [ fdv and
J(f + g)dv [ fdv + [ gdv are obvious. However, the proof of them are
complicated for integrals defined on general measure spaces. As shown in
this exercise, the proof often has to be broken into several steps: simple
functions, nonnegative functions, and then general functions.

Solution. (i) If a = 0, then [(af)dv = [0dv =0=a [ fdv.

Suppose that ¢ > 0 and f > 0. By definition, there exists a sequence of
nonnegative simple functions s,, such that s,, < f and lim,, [ s,,dv = [ fdv.
Then as,, < af and lim, [as,dv = alim, [ s,dv = a [ fdv. This shows
J(af)dv > a [ fdv. Let b= a~' and consider the function h = b~! f. From
what we have shown, [ fdv = [(bh)dv > b [ hdv = a™' [(af)dv. Hence
J(af)dv =a [ fdv.

For a > 0 and general f, the result follows by considering af = afy —

af_. For a < 0, the result follows by considering af = |a|f- — |a|f+.
(ii) Consider the case where f > 0 and g > 0. If both f and g are simple
functions, the result is obvious. Let s,, t,, and 7, be simple functions such
that 0 < s, < f, lim,, [ s,dv = [ fdv, 0 <t, < g, lim, [¢,dv = [ gdv,
0<r, <f+g, and lim, [r,dv = [(f + g)dv. Then s, + t, is simple,
0<s,+t, < f+g,and

/fdl/+/gd1/ = lim/sndz/+lim/tndl/

= lim/(sn + t,)dv,

/fdu+/gdu§/(f+g)dy.

If any of [ fdv and [ gdv is infinite, then so is [(f + g)dv. Hence, we only
need to consider the case where both f and g are integrable. Suppose that
g is simple. Then r,, — ¢ is simple and

lim/rndy—/gdyzlim/(Tn—g)dV < /fd%

which implies
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since 1, — g < f. Hence

/(f“rg)dI/:liTILn/TndZ/S /fdu+/gd1/

and, thus, the result follows if g is simple. For a general g, by the proved
result,

n

lim | r,dv — /gdu = lim/(rn — g)dv.

Hence [(f + g)dv = lim,, [r,dv < [ fdv + [ gdv and the result follows.
Consider general f and g. Note that

f+9)+—(f+9-=f+g9=fr—f-+9+—9-,
which leads to
(f+9++[-+g-=(+9) -+ f+r+9g+

From the proved result for nonnegative functions,

/[(f +9)+ + f- +g-ldv = /(f +g)pdv + /f,du + /g,du
= /[(f +9)- + f+ +g+]dv

— [+gdvs [ fedvs [grav

If both f and g are integrable, then

JG+ardr [+ gdv= [ geav= [ favs [ordv— [gan
- / (f + g)dv = / fdv + / giv.

Suppose now that [ f_dv = oo. Then [ fidv < oo since [ fdv exists.
Since [ fdv + [ gdv is well defined, we must have [ g dv < oco. Since

(f+9)+ < f+r+9+, J(f+9)4dv < co. Thus, [(f + g)—dv = oo and
J(f+ g)dv = —co. On the other hand, we also have [ fdv + [ gdv = —cc.
Similarly, we can prove the case where [ fidv = oo and [ f_dv < co. I

Exercise 9 (#1.30). Let F be a cumulative distribution function on the
real line R and a € R. Show that

/[F(x +a) — F(z)|dx = a.
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Solution. For a > 0,

[+ 0 - Falis = [ [ 1w,

Since (3 44q](y) > 0, by Fubini’s theorem, the above integral is equal to

/ / Ity—ay(@)dzdF(y) = / adF(y) =

The proof for the case of a < 0 is similar. 1

Exercise 10 (#1.31). Let F and G be two cumulative distribution func-
tions on the real line. Show that if 7' and G have no common points of
discontinuity in the interval [a, b], then

/ G@mmm:F@mmfm@m@f/ F(2)dG(x).
(a,b] (a,b]

Solution. Let Pr and Pg be the probability measures corresponding to
F and G, respectively, and let P = Pp X Pg be the product measure
(see Shao, 2003, §1.1.1). Consider the following three Borel sets in R?:
A={(z,y): 2 <y,a<y<bd}, B={(z,y):y <z,a <z <b}, and
C={(x,y) :a <z <b,x=y}. Since F and G have no common points of
discontinuity, P(C') = 0. Then,
F(b)G(() — F(a)G(a) = P(( 00, b] x (—00,b]) — P((—00,a]x (-0, a)
P+ ) - PC)

(4) + P(B)
/dP-I—/ dP
:/ / dPFdP(;+/ / dPgdPr
(a;b] J (—00,y] (a;b] J (—o00,7]

(a,b] (a,b]

= F(y)dG(y) + G(x)dF(x)

(a,b] (a,b]

:/ F(x)dG(:c)+/ G(z)dF(z),
(a,b] (a,b]

where the fifth equality follows from Fubini’s theorem. I

Exercise 11. Let Y be a random variable and m be a median of Y/, i.e.,
P(Y <m)>1/2 and P(Y > m) > 1/2. Show that, for any real numbers
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a and b such that m <a<borm >a>b, E|Y —a| < E|Y —}|.
Solution. We can assume E|Y| < 0o, otherwise co = E|Y —a| < E|Y —b| =
00. Assume m < a <b. Then

ElY bl = ElY —a| = E[(b—Y)1y<py] + E[(Y = 0)[y>py]
—El(a=Y)iy<q)] = E[(Y — a)[{y>a)]
=2E[(b— Y)I{a<Y§b}}
+(a=b)[E(I{y>a}) — E(I{y<a})]
> (a—b)[1 —2P(Y < a)]
>0,

since P(Y <a) > P(Y <m) >1/2. f m > a > b, then —-m < —a < —b
and —m is a median of —Y. From the proved result, E|(-Y) — (=b)| >
E|(=Y) — (=a)|, ie., E|Y —a| < E|Y —b|. 8

Exercise 12. Let X and Y be independent random variables satisfying
E|X +Y|* < oo for some a > 0. Show that E|X|* < co.

Solution. Let ¢ € R such that P(Y > ¢) > 0 and P(Y < ¢) > 0. Note
that

EIX+Y|* > BE(IX + Y[ Iiyse x4es0)) + E(IX + Y| Iy <o x4e<0y)
> E(|X + | Iy se,xtes0y) + E(1X + ¢ Iy <e, x4e<0})
= P(Y > c)E(|X + c|"I{x1c>0})
+P(Y S C)E(|X + C‘GI{X+CS0}),
where the last inequality follows from the independence of X and Y. Since

E|X +Y|[* < oo, both E(|X + ¢|*[{x4c>0y) and E(|X + ¢|*[{x1c<0}) are
finite and

E|X + " = E(|X + c|"Iix4es0y) + E(|X + ¢|"[{x4e<0y) < 00.
Then,
EIX|* <2YE|X +c|*+ ") < oco. 1

Exercise 13 (#1.34). Let v be a o-finite measure on a o-field F on €,
A be another measure with A <« v, and f be a nonnegative Borel function

on ). Show that i\
/fd)\ = /f—dy7
dv

where % is the Radon-Nikodym derivative.
Note. Two measures A and v satisfying A < v if v(A4) = 0 always implies
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A(A) = 0, which ensures the existence of the Radon-Nikodym derivative 3)‘

when v is o-finite (see Shao, 2003, §1.1.2).

Solution. By the definition of the Radon-Nikodym derivative and the
linearity of integration, the result follows if f is a simple function. For
a general nonnegative f, there is a sequence {s,} of nonnegative sim-

ple functions such that s, < spy1, n = 1,2,..., and lim, s, = f. Then
0<s,® d < ang and lim,, s, Z’\ f Z’\ By the monotone convergence

theorem (e.g., Theorem 1.1 in Shao, 2003),

/fd)\fhm/Snd)\fhm/ dAdV*/fd)\dV 1

Exercise 14 (#1.34). Let F; be a o-field on €;, v; be a o-finite measure
on F;, and \; be a measure on F; with \; < v;, ¢ = 1,2. Show that
A1 X Ao € 11 X vy and

d()\l X )\2) d)\l d>\2

—_— a.e. V; X Vg
d(l/1 X VQ) dVl dl/g ’

where 11 X 1o (or A\; X A2) denotes the product measure of v and v (or
A1 and Ag).

Solution. Suppose that A € o(F; x F3) and v1 X v5(A) = 0. By Fubini’s
theorem,

0=11 x va(A) = /IAd(u1 X 1) = / </ IAdz/l) dvs.

Since I4 > 0, this implies that there is a B € F3 such that v9(B¢) = 0 and
on the set B, fIAdul = 0. Since \; < vy, on the set B

/IAd)\l :/ A&dyl =0.
dVl

Since Ag < v, A2(B°¢) = 0. Then

M X Aa(A) = /IAd()\l X Aa) :/B (/A d/\l) d\y = 0.

Hence \; X Ay < 11 X 1.
For the second assertion, it suffices to show that for any A € o(F; x Fa),
AA) = v(A), where

)\(A) = /A md(yl X 1/2)

and Ay dA
/ 7172d 1/1 X 1/2)

dl/1 dV2
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Let C = F; x F5. Then C satisfies the conditions specified in Exercise 2.
FOIA1XA2€f1Xf2,

)\(A) - /A1 X Ag Cmd(yl . V2)

= / d()\l X )\2)
A1 XA
= A (A41)A2(A2)

and, by Fubini’s theorem,

v(A) = /A — —=d(v1 X 1a)

1X Ao dl/1 dl/2
_ / d)\ld / d>\2
A dVl
= )\1(A1)>\2(A2

Hence A(A) = v(A) for any A € C and the second assertion of this exercise
follows from the result in Exercise 2. 1

Exercise 15. Let P and @) be two probability measures on a o-field F.

Assume that f = T and g = Q exists for a measure v on F. Show that

[ 1= gliv = 250{P(€) - QO - C € 7).
Solution. Let A= {f > g} and B={f <g}. Then A€ F, B € F, and

/If—gldVZ/A(f—g)dVJr/B(g—f)dV

— P(4) - Q(4) +Q(B) — P(B)
< [P(4) - Q(A)| + [P(B) - Q(B)|
< 25up{|P(C) - Q(C)| : C € F}.

For any C € F,

P(C) — Q(C) = /C (f - g)dv

_ /COA(f—g)dV—F/CmB(f—g)d’/

S/A(f—g)dv

J =g [ (=g [-gaw=1-1=0

Since
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we have
P(C) - QIC) = [ (9~ v
- [ w=pi+ [ - pav
< /B (g — f)dv.
Hence

2P(C) — Q(C)] < /A (f — g)dv + /B (g fdv = / 1f — gldv.

Similarly, 2(Q(C)~ P(C)] < [ |f—gldv. Thus, 2|P(C)-Q(C)| < [ |f —gldv
and, consequently, [ |f — g|ldv > 2sup{|P(C) — Q(C)|: C € F}. »

Exercise 16 (#1.36). Let F; be a cumulative distribution function on
the real line having a Lebesgue density f;, ¢ = 1,2. Assume that there is a
real number ¢ such that Fy(c) < Fi(c). Define

[ Fi(x) —o<zr<ec
F(x){ Fy(x) c<zx <oo.

Show that the probability measure P corresponding to F satisfies P <
m + 0., where m is the Lebesgue measure and J. is the point mass at c,
and find the probability density of F' with respect to m + 4.

Solution. For any A € B,

P(A) = / fi(x)dm + a/ dé. —|—/ fa(x)dm,
(—o0,c)NA {c}NA (c,00)NA

where a = Fy(c) — Fi(c). Note that f(foo JnA dé. = 0, f(c so)nA dé, = 0,

,C

and f{c}ﬂA dm = 0. Hence,
P(A) = / fi(x)d(m+6.) + a/ d(m+4,)
(—o0,c)NA {

c}NA

+/(c,oo)mA fa(@)d(m + 4.)

= [ @A) + 0Ty @)+ T el + 6.

This shows that P < m + §. and

dP

T AR I ooy (@) f1(2) + aliy (%) + e o0y f2(2). 0
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Exercise 17 (#1.46). Let X; and X3 be independent random variables
having the standard normal distribution. Obtain the joint Lebesgue density
of (Y1,Y3), where V7 = /X2 + X7 and Y2 = X;/X5. Are Y; and Y,
independent?

Note. For this type of problem, we may apply the following result. Let X
be a random k-vector with a Lebesgue density fx and let Y = g(X), where
g is a Borel function from (R*, B*) to (R*, B¥). Let Ay, ..., A,, be disjoint
sets in B* such that R¥ — (A; U---U A,,) has Lebesgue measure 0 and
g on Aj; is one-to-one with a nonvanishing Jacobian, i.e., the determinant
Det(0g(x)/0x) # 0on A;, j =1,...,m. Then Y has the following Lebesgue
density:

fy(z) = Z |Det (0h;(x)/0) | fx (hj(@)),

where h; is the inverse function of g on 4;, j =1,...,m.
Solution. Let A; ={(z1,z2): 1 >0,22>0}, Ao ={(21,22): 1 >0,22 <0},
As={(x1,22): 1 < 0,29 > 0}, and Ay ={(x1,22): 1 < 0,292 < 0}. Then
the Lebesgue measure of R? — (A4; U Ay U A3 U Ay) is 0. On each A;, the
function (y1,y2) = (\/2} + 23, z1/22) is one-to-one with

y1ys

Y2 Y1 o

Det (M> _| Vit Vit DT | n
a L T wyiys = 5 -
8(3/172/2) 1+y§ (1+y§)3/2 1 +y2

Since the joint Lebesgue density of (X7, X5) is
1

= o (@i+ad)/2
2776
and 22 + 22 = 32, the joint Lebesgue density of (Y7,Y5) is
4
3 Lot et (M) ‘ 2 g
5.
— 2 Ay, y2) T 1+y;

Since the joint Lebesgue density of (Y7,Y3) is a product of two functions
that are functions of one variable, Y7 and Y5 are independent. I

Exercise 18 (#1.45). Let X;, i = 1,2,3, be independent random vari-
ables having the same Lebesgue density f(x) = e "I )(x). Obtain
the joint Lebesgue density of (Y1,Ys,Ys), where V7 = X7 + X5 + X3,
Y2 == Xl/(Xl + Xg), and YE), = (Xl + X2)/(X1 + XQ + X3) Are Y;"S
independent?

Solution: Let 21 = y1y2ys3, T2 = y1ys — Y1y2ys, and 3 = y1 —y1y3. Then,

5(3?17562,563)) 2
Det [ L7273 ) )
(a@l,yz,yg) iy



14 Chapter 1. Probability Theory

Using the same argument as that in the previous exercise, we obtain the
joint Lebesgue density of (Y7,Ys,Y3) as

e Y 1(0,00) (Y1) L (0,1) (¥2) Y31 (0,1) (y3)-

Because this function is a product of three functions, e’ylyfl(om)(yl),
Io,1)(y2), and y3l(9,1y(y3), Y1, Y2, and Y3 are independent. B

Exercise 19 (#1.47). Let X and Y be independent random variables with
cumulative distribution functions F'x and Fy, respectively. Show that
(i) the cumulative distribution function of X + Y is

Fyay(t) = / Fy (t — z)dFx (z);

(ii) Fx+y is continuous if one of Fy and Fy is continuous;
(iii) X 4+Y has a Lebesgue density if one of X and Y has a Lebesgue deunsity.
Solution. (i) Note that

Fxiy(t) = / o dFx (z)dFy (y)

- /( [ iFy () dFx(2)
= /Fy(t—x)de(x),

where the second equality follows from Fubini’s theorem.

(ii) Without loss of generality, we assume that Fy is continuous. Since Fy
is bounded, by the dominated convergence theorem (e.g., Theorem 1.1 in
Shao, 2003),

AI}:IBO Fxyy(t+ At) = Al%rilo / Fy (t + At — x)dFx ()
= /Aliglo Fy (t + At — x)dFx ()

:/Fy(t—x)de((E)
= Fxiv(b).

(iii) Without loss of generality, we assume that Y has a Lebesgue density
fy. Then

Fyoy(t) = / Fy(t — 2)dFx (z)

= / (/_:w fY(S)dS> dFx ()
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= / (/_too fy(y — x)dy) dFx(x)
- ; ( [ - x)d&(x)) ay.

where the last equality follows from Fubini’s theorem. Hence, X 4+ Y has
the Lebesgue density fxyy (t) = [ fy(t — x)dFx(z). 8

Exercise 20 (#1.94). Show that a random variable X is independent of
itself if and only if X is constant a.s. Can X and f(X) be independent,
where f is a Borel function?

Solution. Suppose that X = ¢ a.s. for a constant ¢ € R. For any A € B
and B € B,

P(X € A, X € B) =14(c)Ig(c) = P(X € A)P(X € B).

Hence X and X are independent. Suppose now that X is independent of
itself. Then, for any t € R,

PX<t)=P(X <t,X <t)=[P(X <t)%

This means that P(X < t) can only be 0 or 1. Since lim; o, P(X < t)
and limy_, o, P(X < t) =0, there must be a ¢ € R such that P(X <¢) =
and P(X < ¢) = 0. This shows that X = ¢ a.s.

If X and f(X) are independent, then so are f(X) and f(X). From the
previous result, this occurs if and only if f(X) is constant a.s. i

— =

Exercise 21 (#1.38). Let (X,Y,Z) be a random 3-vector with the fol-

lowing Lebesgue density:
1—sinz sin y sin z 0<zx <92
— 9 y? Z? —_ s
flz,y,2) = { s

0 otherwise

Show that X,Y, Z are pairwise independent, but not independent.
Solution. The Lebesgue density for (X,Y) is

27 27 . . .
1 —sinxsinysin z 1
x,y,2)dz = dy = —
; f(z,y,2) /O 8o 12

0 < z,y,< 2m. The Lebesgue density for X or Y is

2m 2m 2m 1 1
dydz = [ —dy= —
/0 ; f(x,y,2)dydz /O =g

0 <z < 2m. Hence X and Y are independent. Similarly, X and Z are
independent and Y and Z are independent. Note that

P(XSW):P(YSTF):P(ZSTF)Z/ ialle.
0 2m 2
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Hence P(X <m)P(Y <m)P(Z < 7)=1/8. On the other hand,

T e sins
PIX<mY<mZ<n) :/ / / PREERYERE dudyd:
o Jo Jo 8m
1 1 [

3
:8_871'2)’(/0 Slnxdl‘)

1 1

8§ 7

Hence X, Y, and Z are not independent. &

Exercise 22 (#1.51, #1.53). Let X be a random n-vector having the
multivariate normal distribution Ny, (y, I,,).

(i) Apply Cochran’s theorem to show that if A2 = A, then X7 AX has the
noncentral chi-square distribution x2(§), where A is an n x n symmetric
matrix, r = rank of A, and § = u7 Ap.

(ii) Let A; be an n x n symmetric matrix satisfying A? = A;, i = 1,2.
Show that a necessary and sufficient condition that X7 A4;X and X" A, X
are independent is A1 As = 0.

Note. If X,..., X} are independent and X; has the normal distribution
N(ui,0?),i=1,...,k, then the distribution of (X? +---+ X?)/o? is called
the noncentral chi-square distribution x7(d), where § = (u3 +- -+ pu2)/o?.
When § = 0, x7 is called the central chi-square distribution.

Solution. (i) Since A% = A, i.e., A is a projection matrix,

(I,—A?=1,-A—A+A*=1, - A
Hence, I,, — A is a projection matrix with rank tr(I,, — A) = tr(l,,) —tr(4) =
n—r. The result then follows by applying Cochran’s theorem (e.g., Theorem
1.5 in Shao, 2003) to
X' X=X"TAX+X"(I, - A)X.
(i) Suppose that A; A3 = 0. Then

(In— A1 — A9)? =1, — Ay — Ay — Ay + AT+ As Ay — Ay + A1 As + A3
= In - Al - A27
ie., I, — Ay — Ay is a projection matrix with rank = tr(f,, — A1 — As) =
n —ry — ro, where r; = tr(4;) is the rank of A4;, i = 1,2. By Cochran’s
theorem and

X' X=X"AX+XTAHX+X"(I,— A —A)X,

X7A1X and X7T A5 X are independent.
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Assume that X7 A1 X and X" A3 X are independent. Since X7 A; X has
the noncentral chi-square distribution x2 (d;), where r; is the rank of A;
and 0; = p" A;p, X7(A1 + A2)X has the noncentral chi-square distribution
X12~1 41y (01 4 02). Consequently, A; + A is a projection matrix, i.e.,

(A1 + A2)2 =A; + Ay,

which implies
A1A2 + AgAl =0.

Since A? = A;, we obtain that
0=A1(A1As + AA1) = A1 As + A1 A Ay

and
0=A1(A1A2 + A3A1)A; = 2A1 A2 A,

which imply A; 43 =0. 1

Exercise 23 (#1.55). Let X be a random variable having a cumulative
distribution function F. Show that if FX exists, then

EX = /000[1 — F(z)]dz — /0 F(z)da.

— 00

Solution. By Fubini’s theorem,

/0 "1 = Fa)ds = /0 h /(m) AP (y)dz
= /0OO /(o,y) dzdF(y)

~ | warw)
0
Similarly,

/Ooo F(z)dx = /Uoo /(oo,a:] dF (y)dx = — /OOO ydF (y).

If EX exists, then at least one of [~ ydF(y) and fi)oo ydF (y) is finite and

EX:/_o;de(y):/Ow[l—F(x)]dm—/O Flz)da. 1

—00

Exercise 24 (#1.58(c)). Let X and Y be random variables having the
bivariate normal distribution with EX = EY =0, Var(X) = Var(Y) =1,



18 Chapter 1. Probability Theory

and Cov(X,Y) = p. Show that E(max{X,Y}) = /(1 — p)/~.
Solution. Note that

| X = Y| =max{X,Y} —min{X, Y} = max{X, Y} + max{—X, -Y}.

Since the joint distribution of (X,Y) is symmetric about 0, the distribu-
tion of max{X,Y} and max{—X,—Y} are the same. Hence, F|X — Y| =
2E(max{X,Y}). From the property of the normal distribution, X — Y is
normally distributed with mean 0 and variance Var(X —Y) = Var(X) +
Var(Y') — 2Cov(X,Y) = 2 — 2p. Then,

Emax{X,Y}) =2"'E|X —-Y|=2"/2/m\/2=2p = /(1 —p)/7. ¥

Exercise 25 (#1.60). Let X be a random variable with EX? < oo and
let Y = |X|. Suppose that X has a Lebesgue density symmetric about 0.
Show that X and Y are uncorrelated, but they are not independent.
Solution. Let f be the Lebesgue density of X. Then f(x) = f(—z). Since
X and XY = X|X]| are odd functions of X, EX = 0 and E(X|X]) = 0.
Hence,

Cov(X,Y)=E(XY)—- EXFEY = E(X|X|) - EXE|X|=0.
Let ¢ be a positive constant such that p = P(0 < X < ¢) > 0. Then
PO<X<t,Y<t)=PO0<X<t,—-t<X<t)
=P0< X <1t)
=p
and
PO<X<t)PY <t)=PO< X <t)P(—t< X <t)

=2P0< X <t)P(0< X <1t)
= 2p?,

ie, PO< X <t,Y <t)# P(0< X <t)P(Y <t). Hence X and Y are
not independent. 1

Exercise 26 (#1.61). Let (X,Y") be a random 2-vector with the following
Lebesgue density:

at 2+ <1
ren={ 5 LI%I]

Show that X and Y are uncorrelated, but they are not independent.
Solution. Since X and Y are uniformly distributed on the Borel set
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{(z,y) : 2> +y?> <1}, EX = EY = 0 and E(XY) = 0. Hence Cov(X,Y) =
0. A direct calculation shows that

P(0<X<1/\/5,0<Y<1/\/§)=%

and
P(0<X<1/\/5):P(0<Y<1/\/§)=i+%.

Hence,

PO<X <1/V/2,0<Y <1/V/2) #P(0< X <1/V2)P(0<Y < 1/V?2)

and X and Y are not independent. 1

Exercise 27 (#1.48, #1.70). Let Y be a random variable having the
noncentral chi-square distribution x2 (), where k is a positive integer. Show
that

(i) the Lebesgue density of YV is

gsntt) =2y O g,

Jj=0

where f;(t) = [['(j/2)29/2]719/271e=t/21 +,(t) is the Lebesgue density of
the central chi-square distribution x3, j = 1,2, ...;

(i) the characteristic function of Y is (1 — 2¢/—1t)~*/2eV~1t/(1=2v~1t).
(iii) E(Y) =k + § and Var(Y) = 2k 4 46.

Solution A. (i) Consider first k¥ = 1. By the definition of the noncentral
chi-square distribution (e.g., Shao, 2003, p. 26), the distribution of Y is the
same as that of X2, where X has the normal distribution with mean v/d
and variance 1. Since

P(Y <t)=P(X <Vt)— P(X < —V/1)

for t > 0, the Lebesgue density of Y is

fy (t) [fx (V) + fx (=) (0,00 (1),

1
=570
where fx is the Lebesgue density of X. Using the fact that X has a normal
distribution, we obtain that, for ¢t > 0,

1 2 2
_ —(Vi—VE?/2 | —(—Vi-V5)/2
fr(®) N (e te )

—8/2,—t/2
= < (em + eV _‘St)

2V 2wt
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| il

2vV2mt \= 7 = 7
_ 676/26715/2 i (6t)j
V2t = (2))!

On the other hand, for k=1 and ¢ > 0,

_ 75290(5/2)j 1 i—1/2 —t/2
a(t) =D A \TG+izza" P

j=0
_ 675/2€7t/2 > (§t)j
Vet =G+ 1/2)22%°

Since j122T(j + 1/2) = /7 (25)!, fv(t) = gs.1(¢) holds.

We then use induction. By definition, ¥ = X; 4+ X5, where X7 has the
noncentral chi-square distribution x7 ,(8), X2 has the central chi-square
distribution X%, and X; and X5 are independent. By the induction assump-
tion, the Lebesgue density of X is gsx—1. Note that the Lebesgue density
of X5 is f1. Using the convolution formula (e.g., Example 1.15 in Shao,
2003), the Lebesgue density of YV is

Frlt) = / g0 () fu(t — u)du
oA (6/2)7
_ . a/z;(/j!)/fQM_l(u)fl(tu)du

for t > 0. By the convolution formula again, [ fojir—1(u)f1(t —u)du is the
Lebesgue density of Z+.X,, where Z has density foj44—1 and is independent
of X». By definition, Z + X5 has the central chi-square distribution x3 ke
ie.,

/f2j+k71(u)fl (t —u)du = fajx(t).
Hence, fy = gsk-

(ii) Note that the moment generating function of the central chi-square
distribution X7 is, for ¢ < 1/2,

’ 1 © ka1 —(1—
/e“ fr(u)du = I‘(k/2)2k/2/0 uk/ 2 le=(=20u/2 gy,
1 > kj2—1 —s)2
r(k/2)2k/2(1—2t)k/2/0 e 0w
1

(1 —2t)k/2°
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where the second equality follows from the following change of variable in
the integration: s = (1 — 2t)u. By the result in (i), the moment generating
function for Y is

[ eosatorn = o2y ORE [ ote oy
j=0 7

T e

g1 — 2t)(+k/2)

Jj=0
_ e i {0/[2(1 — 20)]}?
- _ k/2 ;
(1 —2t)k/ = J!
o—0/2+6/[2(1-2t)]
T (122
0t/ (1-2t)
T (A= 2t)R2

Substituting t by v/—1¢ in the moment generating function of Y, we obtain
the characteristic function of Y as (1 — 2y/—1t)~*/2eV=10t/(1-2V=11)
(iii) Let ¢y (t) be the moment generating function of Y. By the result in

(i),
L P 26t k
¢(t>¢<t>(1_2ﬁ(1—2t)2+1—2t)
and
b P 26t k
0 (t)w(t)<1_2t+(1_2t)2+1—2t>

46 20t 2k
+¥(®) <(1 “or? T T 2t)2) :

Hence, EY = ¢/(0) = § + k, EY? = ¢"(0) = (§ + k)? + 45 + 2k, and
Var(Y) = EY? — (EY)? = 43 + 2k.

Solution B. (i) We first derive result (ii). Let X be a random variable
having the standard normal distribution and g be a real number. The
moment generating function of (X + u)? is

1 a2 o)
P (t) = E/e 12t (@41 g

2t/(1—2
_ e o= (1=20)[z—2ut/(1-201%/2 1,

=

e;J,Zt/(l—Zt)

VI=2t
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By definition, Y has the same distribution as X7 +- -+ X7 | +(Xz+/9)2,
where X;’s are independent and have the standard normal distribution.
From the obtained result, the moment generating function of Y is

on2t/(1-20)

FetXi+ X7+ (X tV5)?] = [1o(t)] 717”\/5(2%) = (1= 2t)k/2

(ii) We now use the result in (ii) to prove the result in ( ). From part (ii) of
Solution A, the moment generating function of gs s is e *t/(1=20) (1 _24)=k/2,
which is the same as the moment generating function of Y derived in part
(i) of this solution. By the uniqueness theorem (e.g., Theorem 1.6 in Shao,
2003), we conclude that gs is the Lebesgue density of Y.

(iii) Let X;’s be as defined in (i). Then,

EY = EX?+---+ EX}? | 4+ E(X) 4+ V5)?
=k—1+EX?+6+ E@2VXy)
—k+6

and

Var(Y) = Var(X?) + -+ + Var(X?_,) + Var((Xy, + V9)?)
= 2(k — 1) 4 Var(X2 + 2V6X},)

= 2(k — 1) + Var(X?) + Var(2V6Xy,) + 2Cov(X?, 2V6 X},)
— 2% + 45,

since Var(X?) = 2 and Cov(X?, X)) = EX} — EX?EX;, =0. 1

Exercise 28 (#1.57). Let U; and U, be independent random vari-
ables having the X%I(é) and X%z distributions, respectively, and let F' =
(U1/TL1)/(U2/TLQ) Show that

. na(ni+o

(i) E(F) = nfgn;zg then ng > 2;

.. ns[(ni+9 no—2)(n1+26

(ii) Var(F) = 2n5[( ;;(732j2()22(n221(4) +20)] when ng > 4.

Note. The distribution of F' is called the noncentral F-distribution and
denoted by Fy,, n,(9).

Solution. From the previous exercise, EU; = nj+6 and EUZ = Var(U;) +
(EUL)? = 2n; + 46 + (n1 +6)2. Also,

—1 1 > n -2 —z
EU, :W/O 2n2/2=20-1/2 4,
['(ng/2 — 1)272/21
[(ny/2)2m2/2
1
n2—2
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for ny > 2 and
EU{2 = 7“”2/;)2”2/2 /0 z"2/2 3¢/ 2 4y
['(ng/2 — 2)2m2/272
['(ng/2)2n2/2
B 1
~ (n2 —2)(n2 — 4)

for no > 4. Then,

Ui/m na(ni1 +90)
E(F) = *—E FE ==
( ) U2/n2 ny Ul U2 nl(n2—2)
when ny > 2 and
U2/n2
Var(F) = E—S"—L — [E(F)]?
(F) = Bl — ()
2 1)
_ n%EUfEUQ P ";J_r 2;)
_ny (2m 40+ (N =146)% (1 +0)°
N n% (n2 —2)(ng — 4) (ng — 2)2

)
2n3[(n1 + 0)* + (n2 — 2)(n1 + 20)]
ni(n2 —2)%(n2 — 4)

when ngy > 4.1

Exercise 29 (#1.74). Let ¢,, be the characteristic function of a probabil-
ity measure P,, n = 1,2, .... Let {a,} be a sequence of nonnegative numbers
with 3~ | a, = 1. Show that >~ , a,¢, is a characteristic function and
find its corresponding probability measure.

Solution A. For any event A, define

A) =" anPu(A)

Then P is a probability measure and P,, < P for any n. Denote the Radon-
Nikodym derivative of P, with respect to P as f,, n =1,2,.... By Fubini’s
theorem, for any event A,

/A;aanLdP:;aWLAfTLdP
= ianPn(A)

n=1

— P(A).
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Hence, > a,f, =1 as. P. Then,

Zanqﬁn(t) = Z an/e*/jm”dPn(a:)
n=1

Hence, fo:l an¢p 18 the characteristic function of P.

Solution B. Let X be a discrete random variable satisfying P(X = n) =
an and Y be a random variable such that given X = n, the conditional
distribution of Y is P,, n = 1,2, .... The characteristic function of Y is

E(eV™1") = B[E(eY " [X))

This shows that Y~ a, ¢, is the characteristic function of the marginal
distribution of Y.

Exercise 30 (#1.79). Find an example of two random variables X and Y’
such that X and Y are not independent but their characteristic functions
¢x and ¢y satisfy ¢ox (t)py (t) = dx v (t) for all t € R.

Solution. Let X =Y be arandom variable having the Cauchy distribution
with ¢x(t) = ¢y(t) = e l. Then X and Y are not independent (see
Exercise 20). The characteristic function of X +Y = 2X is

dxry(t) = B(eV1CY) = gx(2t) = e ! = eIl = g () py (t). W
Exercise 31 (#1.75). Let X be a random variable whose characteristic

function ¢ satisfies [ |p(t)|dt < oo. Show that (27)~' [ e~V =T p(t)dt is
the Lebesgue density of X.
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Solution. Define g(t,z) = (eV~Tte — e=V=Ttx) /(\/T¢) for a fixed real
number a. For any z, |g(t, )| < |z—al. Under the condition [ |¢(t)|dt < oo,

F(a) - Flo) = 5 [ oglt.a)ar

(e.g., Theorem 1.6 in Shao, 2003), where F' is the cumulative distribution
function of X. Since

‘89(15,:10) _ |67\/jltz| -1

or

by the dominated convergence theorem (Theorem 1.1 and Example 1.8 in

Shao, 2003),
Fl(x) = % (;ﬁ /_o; ¢(t)g(t,x)dt>
)

— 5 [ o

= i/ d(t)e V1 dt. w
27 J_ o

Exercise 32 (#1.73(g)). Let ¢ be a characteristic function and G be a
cumulative distribution function on the real line. Show that | ¢(ut)dG(u)
is a characteristic function on the real line.

Solution. Let F be the cumulative distribution function corresponding to
¢ and let X and U be independent random variables having distributions
F and G, respectively. The characteristic function of UX is

EeV~1UX _ //e‘/jt“wdF(x)dG(u)

_ / S(ut)dG(u). ¥

Exercise 33. Let X and Y be independent random variables. Show that
if X and X — Y are independent, then X must be degenerate.

Solution. We denote the characteristic function of any random variable Z
by ¢z. Since X and Y are independent, so are —X and Y. Hence,

oy—x(t) = ¢y (t)p—x(t) = ¢y (H)px(—t), tER.
If X and X —Y are independent, then X and Y — X are independent. Then

by (t) = dxi(v—x)(t) = ox(t)dy—x(t) = ox (t)dx(—t)py(t), t €R.
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Since ¢y (0) = 1 and ¢y is continuous, ¢y (t) # 0 for a neighborhood of 0.
Hence ¢x (t)¢x(—t) = |¢x(t)|> = 1 on this neighborhood of 0. Thus, X is
degenerate. 1

Exercise 34 (#1.98). Let Py be a discrete distribution on {0,1,2,...}
and given Y = y, the conditional distribution of X be the binomial distri-
bution with size y and probability p. Show that

(i) if Y has the Poisson distribution with mean @, then the marginal distri-
bution of X is the Poisson distribution with mean p#;

(ii) if Y + r has the negative binomial distribution with size r and proba-
bility 7, then the marginal distribution of X + r is the negative binomial
distribution with size r and probability =/[1 — (1 — p)(1 — 7)].

Solution. (i) The moment generating function of X is

B(e') = E[E(X]Y)] = El(pe’ +1 - p)*] =,

which is the moment generating function of the Poisson distribution with
mean po.
(ii) The moment generating function of X + r is

E(et(X+r)) — etrE[E(etX|Y)]

= ¢"E[(pe' +1—p)"]
tr

= mE[(Pet +1—p)" ]
_ etr ﬂ.r(pet + 1 _ p)r
(pe' +1—=p)" [1 = (1 —m)(pe’ +1—p)]"

1—(1—=n)(pet+1—-p)"

Then the result follows from the fact that

L-(-mpe'+1-p) _, [ ™ ¢
1—(1=p)(1—m) 1-(1-p(1-m]

Exercise 35 (#1.85). Let X and Y be integrable random variables on
the probability space (£2, F, P) and A be a sub-o-field of F. Show that

(i) if X <Y as., then E(X|A) < E(Y]A) a.s.;

(ii) if @ and b are constants, then E(aX + bY|A) = aE(X|A) + bE(X|A)
a.s.

Solution. (i) Suppose that X <Y a.s. By the definition of the conditional
expectation and the property of integration,

/AE(X|A)dP:/AXdP§/AYdP:/AE(YM)dP,
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where

A={E(X|A) > E(Y|A)} € A.

Hence P(A) =0, i.e., E(X|A) < E(Y]A) as.
(ii) Note that aE(X|A) 4+ bE(Y|A) is measurable from (£,.4) to (R, B).
For any A € A, by the linearity of integration,

‘/@XAWYMP:a/AwP+@/Yw)
A A A

_ a/ E(X\A)dPer/ E(Y]A)dP

A A
- / [aE(X|A) + bE(Y|A)|dP.
A

By the a.s.-uniqueness of the conditional expectation, E(aX + bY|A) =
aB(X|A) +bE(X]|A) a.s. 1

Exercise 36 (#1.85). Let X be an integrable random variable on the
probability space (Q, F, P) and A and Ay be o-fields satisfying 4y C A C
F. Show that E[E(X|A)|A] = E(X|Ay) = E[E(X|Ao)|A] a.s.
Solution. Note that E(X]Ap) is measurable from (€2, Ag) to (R, B) and
Ap C A. Hence E(X|Ap) is measurable from (£2,.4) to (R, B) and, thus,
E(X|Ag) = E[E(X]Ap)|A] a.s. Since E[E(X|A)|Ap] is measurable from
(Q, Ap) to (R, B) and for any A € Ay C A,

/AE[E(X\A)MO]dP:/AE(X|A)dP:/AXdP,

we conclude that E[E(X|A)|A] = E(X|Ap) a.s. I

Exercise 37 (#1.85). Let X be an integrable random variable on the

probability space (2, F, P), A be a sub-o-field of F, and Y be another

random variable satisfying o(Y) C A and E|XY| < co. Show that
E(XY]A) = YE(X|A) as.

Solution. Since o(Y) C A, Y E(X|A) is measurable from (12, A) to (R, B).
The result follows if we can show that for any A € A,

/Ymmmwz/xmp
A A
(1) If Y = alp, where a € R and B € A, then AN B € A and

/ XvdP=a [ XdP=a [ BE(X|A)dP = / Y E(X|A)dP.
A ANB ANB A
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2y = Zle a;lp,, where B; € A, then

k k
/XYdP:Zai/ XIBidP:ZaZ-/ Ip,E(X|A)dP :/ Y E(X|A)dP.
A i=1 vA i=1 /A A

(3) Suppose that X > 0 and Y > 0. There exists a sequence of increasing
simple functions Y,, such that o(Y,,) C A, Y, < Y and lim,Y, =Y.
Then lim,, XY;, = XY and lim, Y,,F(X|A) = YE(X|A). By the monotone
convergence theorem and the result in (2),

/ XYdP = lim / XY,dP = lim / Y, E(X|A)dP = / Y E(X|A)dP.
A nJA nJA A

(4) For general X and Y, consider X, X_, Y, and Y_. Since o(Y) C A,
so are o(Yy) and o(Y_). Then, by the result in (3),

/XYdP: / X+Y+dP—/ X,Y_dP
A A A

—/X_Y+dP+/X_Y_dP
A A
_ / Y, E(X,|A)dP — / Y E(X,|A)dP
A A
7/ Y+E(X_|A)dP+/ Y B(X_|A)dP
A A
_ / Y E(X,|A)dP — / YE(X_|A)dP
A A
_ / YE(X|A)dP,
A

where the last equality follows from the result in Exercise 35. I

Exercise 38 (#1.85). Let X;, X5, ... and X be integrable random vari-
ables on the probability space (©, F, P). Assume that 0 < X7 < X5 <
-+» < X and lim,, X,, = X a.s. Show that for any o-field A C F,

E(X|A) =lmE(X,|A) as.

Solution. Since each E(X,,|A) is measurable from (€2, 4) to (R, B), so is
the limit lim,, F(X,|A). We need to show that

/ lim (X, A)dP = / Xdp
A A

n

for any A € A. By Exercise 35, 0 < F(X;|A) < E(X3]A) <--- < E(X]A)
a.s. By the monotone convergence theorem (e.g., Theorem 1.1 in Shao,
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2003), for any A € A,

/ lim E(X,|A)dP = lim / E(X,|A)dP
AT n A

— lim / X, dP
n A

- / lim X,,dP
A n

:/XdP.I
A

Exercise 39 (#1.85). Let X, Xs,... be integrable random variables on
the probability space (2, F, P). Show that for any o-field A C F,

(i) E(liminf, X, |A) < liminf, F(X,|A) a.s. if X,, > 0 for any n;

(ii) lim, B(X,|A) = E(X]A) as. if lim, X,, = X a.s. and | X,,| <Y for any
n and an integrable random variable Y.

Solution. (i) For any m > n, by Exercise 35, E(inf,,>y, X;n|A) <E(X,,|A)
a.s. Hence, E(inf,;,>, X |A) <inf,,>, E(X,|A) a.s. Let Y, = inf,, >y, Xop.
Then 0 <Y; <Y, <--- <lim, Y, and Y,,’s are integrable. Hence,

E(limninf X,|A) = E(lirrln Y, |A)
= liTan E(Y,|A)
= 117131 E(inf,,>n X |A)
< liTILnWiLr;an(Xm\A)
= limninEE(Xn|A)
a.s., where the second equality follows from the result in the previous
exercise and the first and the last equalities follow from the fact that

liminf,, f,, = lim,, inf,,>, fm for any sequence of functions {f,}.
(ii) Note that Y + X,, > 0 for any n. Applying the result in (i) to Y + X,,,

liminf BE(Y + X,|A) < E(liminf(Y 4+ X,,)|4) = BE(Y + X|A) a.s.
Since Y is integrable, so is X and, consequently, E(Y + X |A) = E(Y|A) +
E(X|A) a.s. and liminf,, E(Y + X,,|A) = E(Y]A) + liminf,, E(X,|A) as.

Hence,
liminf B(X,|A) < E(X]A) as.

Applying the same argument to Y — X, we obtain that

liminf B(—X,|A) < E(—X|A) as.
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Since liminf,, E(—X,|A) = —limsup,, F(X,|A), we obtain that

limsup E(X,|A) > E(X|A) a.s.

Combining the results, we obtain that

limsup E(X,|A) = liminf F(X,|A) =1lm E(X,|A) = E(X|A) as. I

Exercise 40 (#1.86). Let X and Y be integrable random variables
on the probability space (2, F,P) and A C F be a o-field. Show that
E[YE(X|A)] = E[XE(Y|A)], assuming that both integrals exist.
Solution. (1) The problem is much easier if we assume that Y is bounded.
When Y is bounded, both Y E(X|A) and XE(Y|.A) are integrable. Using
the result in Exercise 37 and the fact that E[E(X|A)] = EX, we obtain
that

E[Y E(X|A)] = EXE[Y E(X|A)|AJ}
= E[E(X|A)E(Y]A)]
= E{E[XE(Y]A)|A]}
= E|XE(Y]A)].
(2) Assume that Y > 0. Let Z be another nonnegative integrable random
variable. We now show that if o(Z) C A, then E(YZ) = E[ZE(Y|A)].
(Note that this is a special case of the result in Exercise 37 if E(Y Z) < 00.)
Let ¥, = max{Y,n}, n = 1,2,.... Then 0 < YV; <Yy, < .- <Y
and lim, Y,, = Y. By the results in Exercises 35 and 39, 0 < E(Y1|A) <
E(Y3|A) < --- as. and lim, E(Y,,|A) = E(Y]A) a.s. Since Y, is bounded,
Y, Z is integrable. By the result in Exercise 37,

E[ZE(Y,|A)) =E(Y,Z), n=1,2,...
By the monotone convergence theorem,
EYZ)=lmE(Y,Z)=1lmE[ZE(Y,|A)] = E[ZE(Y|A)].
n n

Consequently, if X > 0, then the result follows by taking Z = E(X|A).
(3) We now consider general X and Y. Let f and f_ denote the positive
and negative parts of a function f. Note that

E{[XE(Y|A)]+} = E{X4[E(Y[A)]+} + E{X_[E(Y]A)]-}
and

B{IXB(Y|A))_} = B{X, [E(Y]A)]_} + B{X_[E(V]A) ).
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Since E[XE(Y|A)] exists, without loss of generality we assume that
B{[XE(Y|A)1} = B{X,[E(V]A)]+} + B{X_[E(Y|A)_} < .
Then, both
BIX E(Y]A)] = B{X [E(Y|A)) — B{X[E(Y]A)-}

and
E[X_E(Y]A)] = E{X_[E(Y|A)];} - B{X_[E(Y]A)])
are well defined and their difference is also well defined. Applying the result
established in (2), we obtain that
EXLE(Y|A)] = E{E(X,[A)EY[A)4+} — E{E(X[A)E(Y]A)]-}
= E[E(X|A)E(Y|A)],

where the last equality follows from the result in Exercise 8. Similarly,

E[X_E(Y|A)] = E{E(X_|A)[E(Y|A)]+} — E{E(X_|A)[E(Y]A)]-}
= E[E(X_|A)E(Y]A)].

By Exercise 8 again,
E[XE(Y|A)] = E[X+E(Y|A)] - E[X_E(Y]A)]
] —

EE(X}[A)E(Y]A)] - E[E(X_[A)E(Y]A)]
E[E(X|A)E(Y|A)]}.

Switching X and Y, we also conclude that
E[YE(X|A)] = E[E(X|A)E(Y|A)).
Hence, E[XE(Y|A)] = E[YE(X|A)]. u

Exercise 41 (#1.87). Let X, X, X5, ... be a sequence of integrable ran-
dom variables on the probability space (2, F, P) and A C F be a o-field.
Suppose that lim, F(X,Y) = E(XY) for every integrable (or bounded)
random variable Y. Show that lim,, E[E(X,|A)Y] = E[E(X|A)Y] for ev-
ery integrable (or bounded) random variable Y.

Solution. Assume that Y is integrable. Then F(Y|.A) is integrable. By the
condition, E[X, E(Y|A)] - E[XE(Y|A)]. By the result of the previous ex-
ercise, E[X,E(Y|A)] = E[E(X,]A)Y] and E[XE(Y|A)] = E[E(X|A)Y].
Hence, E[E(X,|A)Y] — E[E(X|A)Y] for every integrable Y. The same
result holds if “integrable” is changed to “bounded”. i
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Exercise 42 (#1.88). Let X be a nonnegative integrable random variable
on the probability space (2, F, P) and A C F be a o-field. Show that

E(X|A) = /OOO P(X > t|A)dt

Note. For any B € F, P(B|A) is defined to be E(Ig|.A).

Solution. From the theory of conditional distribution (e.g., Theorem 1.7
in Shao, 2003), there exists P(B,w) defined on F x Q such that (i) for any
w € Q, P(-,w) is a probability measure on (Q, F) and (ii) for any B € F,
P(B,w) = P(B|A) as. From Exercise 23,

/Xdﬁ(-,w) = /ODO P({X > t},w)dt

= / P(X > t|A)dt as.
0
Hence, the result follows if

E(X|A)(w / XdP(,w) as.

This is certainly true if X = Ip for a B € F. By the linearity of the
integration and conditional expectation, this equality also holds when X is
a nonnegative simple function. For general nonnegative X, there exists a
sequence of simple functions X7, Xo,...,suchthat 0 < X7 < Xp, <--- < X
and lim,, X,, = X a.s. From Exercise 38,

E(X|A) = lim E(X,]A)

=lim [ X,dP(-,w)

n

:/Xdp(-,w) a.s. 1

Exercise 43 (#1.97). Let X and Y be independent integrable random
variables on a probability space and f be a nonnegative convex function.
Show that E[f(X +Y)] > E[f(X + EY)].

Note. We need to apply the following Jensen’s inequality for conditional
expectations. Let f be a convex function and X be an integrable random
variable satisfying F|f(X)| < co. Then f(E(X|A)) < E(f(X)|A) as. (e.g.,
Theorem 9.1.4 in Chung, 1974).

Solution. If E[f(X +Y)] = oo, then the inequality holds. Hence, we may
assume that f(X +Y) is integrable. Using Jensen’s inequality and some
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properties of conditional expectations, we obtain that

E[f(X +Y)] = E{E[f(X +Y)[X]}
> E{f(E(X +Y|X))}
= E{f(X + E(Y[X))}
= E[f(X + EY)],

where the last equality follows from E(Y|X) = EY since X and Y are
independent. &

Exercise 44 (#1.83). Let X be an integrable random variable with a
Lebesgue density f and let Y = g(X), where g is a function with positive
derivative on (0,00) and g(x) = g(—z). Find an expression for E(X|Y)
and verify that it is indeed the conditional expectation.

Solution. Let h be the inverse function of g on (0, c0) and

f(h(y)) = f(=h(y))
F(h(y)) + f(=h(y))

We now show that E(X|Y) = (YY) a.s. It is clear that ¢(y) is a Borel
function. Also, the o-field generated by Y is generated by the sets of the
form A, = {y : g(0) <y <a}, a > ¢g(0). Hence, it suffices to show that for

any a > g(0),
/ XdP = / (Y)dP.
A, A,

Y(y) = h(y)

Note that

/ XdP:/ xf(z)dx
Aq 9(0)<g(z)<a
h(a)
:/ xf(z)dx

—h(a)

_ / " ef(e)de s /0 " o f(x)dz

—h(a)

0 h(a)
:/ :cf(f:c)dz+/ zf(x)dx
h(a) 0

h(a)
- / of (@) — f(—a))dx

-/ ;) W)L (b)) — F(—h()IA (5)dy.

On the other hand, h'(y)[f(h(y)) + f(=h(¥))]{(4(0),00)(¥) is the Lebesgue
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density of Y (see the note in Exercise 17). Hence,
/A Y(Y)dP = jo) D)W (W)Lf ((y)) + f(=h(y))ldy
= [ HOL0G) — SR Gy

by the definition of ¥ (y). i

Exercise 45 (#1.91). Let X, Y, and Z be random variables on a proba-
bility space. Suppose that E|X| < co and Y = h(Z) with a Borel h. Show
that

(i) E(XZ|Y) = E(X)E(Z|Y) a.s. if X and Z are independent and E|Z| <
00;

(ii) if E[f(X)|Z] = f(Y) for all bounded continuous functions f on R, then
X =Y as;

(iil) if E[f(X)|Z] > f(Y) for all bounded, continuous, nondecreasing func-
tions f on R, then X > Y a.s.

Solution. (i) It suffices to show

/ XZdP = E(X) / ZdP
Y-1(B) Y-1(B)

for any Borel set B. Since Y = h(Z), Y ~Y(B) = Z='(h=!(B)). Then
/ XZdP = /XZIh_l(B)(Z)dP - E(X)/th_l(B)(Z)dR
Y-1(B)

since X and Z are independent. On the other hand,

/ ZdP:/ ZdP = /Zl,rl(B)(Z)dP.
Y-1(B) h1(B)

(i) Let f(t) = e'/(1+e!). Then both f and f? are bounded and continuous.
Note that

E[f(X) = f()]* = EE{[{(X) - f(Y)]*|Z}
= B{E[f*(X)|Z] + E[f*(Y)|Z] - 2B[f(X)F(Y)| 2]}
= B{BE[f*(X)|Z] + f2(Y) = 2f(Y)E[f(X)|Z]}
= B{f*(Y) + f*(Y) - 2f(Y)f(¥)}
=0,

+
+

where the third equality follows from the result in Exercise 37 and the
fourth equality follows from the condition. Hence f(X) = f(Y) a.s. Since
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f is strictly increasing, X =Y a.s.

(iii) For any real number ¢, there exists a sequence of bounded, continuous
and nondecreasing functions { f,,} such that lim, f,(t) = I(c c)(t) for any
real number ¢. Then,

P(X >c¢,Y >c¢) = E{E(I;x>c l{y>e}2) }
= FE{liysayE(Iix>112)}
— E{Ijy - Ellin fo(X)|2)
= BTy i EU (X))
> E{liyse lim fa(Y)}

= E{I{Y>c}I{Y>c}}
=P(Y > o),

where the fourth and fifth equalities follow from Exercise 39 (since f,, is
bounded) and the inequality follows from the condition. This implies that
PX<¢Y>c)=PY >¢)—P(X >c,Y >c¢) =0. For any integer k
and positive integer n, let ar; =k +1i/n,i=1,...,n. Then

oo n—1

P(X <Y)=lim Y > P(X <api,ar; <Y < agip1) = 0.
k=—o00 1=0

Hence, X > Y as. 1

Exercise 46 (#1.115). Let X;, X5, ... be a sequence of identically dis-
tributed random variables with E|X;| < oo and let Y,, = n™! maxy <;<,, | X;|.
Show that lim,, F(Y,) = 0 and lim,, Y;, = 0 a.s.

Solution. (i) Let g,(t) = n~!P(maxi<;<n | X;| > t). Then lim,, g,(t) = 0
for any ¢t and

1 n
EZ (|1X:| > t) = P(|X1| > t).

Since E|X1| < oo, [y P(|X1| > t)dt < oo (Exercise 23). By the dominated
convergence theorem,

hmE = hm/ gn(t)dt = / hmgn(t)dt =0.

(ii) Since E|X;| < oo,

oo

ZP|X |/m > ¢) :Z (| X1| > en) < oo,



36 Chapter 1. Probability Theory

which implies that lim,, | X,,|/n = 0 a.s. (see, e.g., Theorem 1.8(v) in Shao,
2003). Let Q° = {w : lim,, | X,,(w)|/n = 0}. Then P(Q°) = 1. Let w € Q°.
For any € > 0, there exists an N, such that |X,,(w)| < ne whenever n >
N.,. Also, there exists an M, , > N, such that max;<;<n_, | X;(w)| < ne
whenever n > M. ,. Then, whenever n > M,

max; <i<n | Xi(w)]

Y, (w) = -
max<;<n,, | Xi(w)] | MaXN., <ign | X (w)]
- n n

< e+ max
< 2,
i.e., lim, Y, (w) = 0. Hence, lim,, Y,, = 0 a.s., since P(Q°) = 1. 1

Exercise 47 (#1.116). Let X, X1, Xo, ... be random variables. Find an
example for each of the following cases:

(i) X5 —p X, but {X,,} does not converge to X a.s.;

(ii) X,, =, X, but E|X,, — X|P does not converge for any p > 0;

(iil) X, =4 X, but {X,,} does not converge to X in probability;

(iv) X,, —p X, but g(X,,) does not converge to ¢g(X) in probability for
some function g;

(v) lim,, E|X,| = 0, but | X,,| cannot be bounded by any integrable function.
Solution: Consider the probability space ([0, 1], Bjo 1}, P), where Bj 1) is
the Borel o-field and P is the Lebesgue measure on [0, 1].

(i) Let X = 0. For any positive integer n, there exist integers m and k such
that n = 2™ — 2+ k and 0 < k < 2™tL. Define

Xn(w):{ 1 k/2m <w<k+1/2

0 otherwise
for any w € [0, 1]. Note that
m m 1
P(X,—X|>e) <PHw: k2" <w< (k+1)/2 }):2—m—>0

as n — oo for any € > 0. Thus X,, =, X. However, for any fixed w € [0,1]
and m, there exists k with 1 < k < 2™ such that (k —1)/2™ < w < k/2™.
Let n,y, = 2™ — 2+ k. Then X, (w) = 1. Since m is arbitrarily selected,
we can find an infinite sequence {n,,} such that X,, (w)= 1. This implies
X (w) does not converge to X (w) = 0. Since w is arbitrary, X,, does not
converge to X a.s.

(ii) Let X =0 and

0 1l/n<w<l1
e 0<w<1/n.

Xo(e) = {
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For any € € (0,1)
1
P(|X, — X| >e):P(|Xn|7£0):ﬁ_>0
as n — oo, i.e., X,, =, X. On the other hand, for any p > 0,
E|X, — X|P = E|X,[P = €™ /n — o0

(iii) Define

0<w<1/2
1/2<w<1
and

0 0<w<1/2
1 1/2<w<1.

For any ¢,

1 t>1
PX<t)=P(X,<t)={ 1/2 0<t<1
0 t<0,

Therefore, X,, —4 X. However, |X,,—X| = 1 and thus P(|X,,—X| > ¢€) =1
for any € € (0,1).

(iv) let g(t) = 1 — I;3(t), X = 0, and X,, = 1/n. Then, X,, —, X, but
9(X,) =1 and g(X) =0.

(v) Define

m—1 m

Xom) ={ 5

. m=1..,n n=12 ...
otherwise,

m/n 1
B Xm| = / Jidz = —— 50
(m—=1)/n \/ﬁ
as n — oo. Hence, the sequence {X,, ,, : m =1,....,n,n = 1,2, ...} satisfies
the requirement. If there is a function f such that | X, | < f, then f(w) =
oo for any w € [0,1]. Hence, f cannot be integrable. 1

Exercise 48. Let X,, be a random variable and m,, be a median of X,
n = 1,2,.... Show that if X,, =4 X for a random variable X, then any
limit point of m,, is a median of X.

Solution. Without loss of generality, assume that lim,, m,, = m. For e > 0
such that m + € and m — € are continuity points of the distribution of X,
m — e < m, < m+ e for sufficiently large n and

1
§§P(Xn§mn)§P(Xn§m+6)
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and

< P(X, >my) < P(X,>m—c¢).

N |

Letting n — oo, we obtain that % < P(X <m+e) and % <P(X>m—e¢).
Letting € — 0, we obtain that % < P(X <m) and % < P(X > m). Hence

m is a median of X. &

Exercise 49 (#1.126). Show that if X,, -4 X and X = c a.s. for a real
number ¢, then X,, —, X.

Solution. Note that the cumulative distribution function of X has only
one discontinuity point c. For any € > 0,

P(|X,—X|>¢) = P(|X,—c|>¢)
< PX,>c+e)+P(X,>c—¢)
- P(X>c+e)+ P(X <c—e¢)
=0

as n — oo. Thus, X,, —, X. 1

Exercise 50 (#1.117(b), #1.118). Let X;, X5, ... be random variables.
Show that {|X,|} is uniformly integrable if one of the following condition
holds:

(i) sup,, B|X,|'*% < oo for a § > 0;

(ii) P(|Xn| > ¢) < P(]X| > ¢) for all n and ¢ > 0, where X is an integrable
random variable.

Note. A sequence of random variables {X,} is uniformly integrable if
limtﬁoo sup,, E(|anl{\Xn|>t}) =0.

Solution. (i) Denote p=1+§ and ¢ =1+ §~. Then

E(1XnlI{x,156) < (BIXa[P) Y PIEI(x, 156) 1"
= (B|X, ") /P[P(|1X,| > )]/
)

< (B|Xn|P 1/p E|Xn|p)1/qu/q
— E|Xn|1+5t75’

where the first inequality follows from Holder’s inequality (e.g., Shao, 2003,
p- 29) and the second inequality follows from

P(|X,| >1t) <t PE|X,|".
Hence

. < 145 Jim =0 — 0.
Jim. sup E(|Xnl{x,>ty) < StTILpEIXnI Jim 7% =0
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(ii) By Exercise 23,

SupE(|Xn|I{|Xn|>t}) = Sup/0 P(|Xn‘I{\Xn|>t} > s)ds

sup/ P(|X,| > s,|Xn| > t)ds
n Jo

8171Lp (tP(|Xn| > 1)+ /too P(X,| > s)ds)

< tP(|X]| > 1) +/ P(|X| > s)ds
t

— 0

as t — oo when F|X| < co. I

Exercise 51. Let {X,,} and {Y,} be sequences of random variables such
that X,, diverges to oo in probability and Y,, is bounded in probability.
Show that X, + Y}, diverges to co in probability.

Solution. By the definition of bounded in probability, for any ¢ > 0,
there is C. > 0 such that sup,, P(|Y,| > C.) < ¢/2. By the definition of
divergence to oo in probability, for any M > 0 and € > 0, there is n > 0
such that P(|X,| < M + C.) < €¢/2 whenever n > n.. Then, for n > n.,

P(IXn +Yo| < M) < P(IXa| < M+ |Ya)
= P(|Xn| < M+ Yo, |[Ya] < Co)
+P(IXn| < M A+ Yo, [Ya] > Ce)
< P([Xa| < M+ Co) + P(|Yn] > Co)
<e€/2+¢€/2

=e
This means that X,, + Y, diverges to oo in probability. I

Exercise 52. Let X, X1, X5, ... be random variables. Show that if lim,, X,
= X a.s., then sup,,~,, | X;m| is bounded in probability.

Solution. Since sup,,,>,, | Xm| < sup,,>; | Xm| for any n, it suffices to show
that for any € > 0, there is a C > 0 such that P(sup,,~; | X,| > C) < e. Note
that lim, X,, = X implies that, for any € > 0 and any fixed ¢; > 0, there
exists a sufficiently large N such that P (US2 N {| X, — X| > a1}) < €¢/3
(e.g., Lemma 1.4 in Shao, 2003). For this fixed N, there exist constants
co > 0 and ¢3 > 0 such that

N

D> P(Xn| > ) <

n=1

and P(|X]|>c3) <

Wl ™
Wl
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Let C' = max{cy,c2} + ¢3. Then the result follows from

P(gﬁXﬂ>C>:P<U{Xﬂ>CQ

n=1

3

N

<>or |Xn|>o+P<U{|X|>c}>

n=N

IN

§+P(|X| >c3)+ P ( U (1%l > €, 1X| < c3}>

n=N

§+€+P<U{|XR—X|>c1}>

n=N

IN
w

IN

il
3 3—6.

Wl

Exercise 53 (#1.128). Let {X,,} and {Y;,} be two sequences of random
variables such that X,, is bounded in probability and, for any real number
tand € > 0, lim, [P(X, <t,Y, >t+¢)+ P(X, >t+¢Y, <t)] =0. Show
that X,, — Y, —, 0.

Solution. For any € > 0, there exists an M > 0 such that P(|X,| > M) <e
for any n, since X, is bounded in probability. For this fixed M, there exists
an N such that 2M/N < ¢/2. Let t; = —-M+2Mi/N,i=0,1, ..., N. Then,

P(|Xy = Yul > €) < P(IX0n| > M) + P(|Xn| < M, | X5, = Yo| > €)

N
e+ Y Pltisg < Xy <t,|X, — Y| > 0)

<
=1
N

<e+ ZP(Yn <tici—€/2,t1 < X5)
=1
N

+ Y P>t +€/2,X, < t).

=1

This, together with the given condition, implies that

limsup P(| X, — Y| > ¢) < ¢

Since € is arbitrary, we conclude that X,, —Y,, =, 0.1

Exercise 54 (#1.133). Let F,,, n =0,1,2,..., be cumulative distribution
functions such that F,, — Fy for every continuity point of Fy. Let U be a
random variable having the uniform distribution on the interval [0, 1] and let
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Gn(U) =sup{z: F,(z) <U},n=0,1,2,... Show that G,,(U) =, Go(U).
Solution. For any n and real number t, G,,(U) < ¢ if and only if F,,(t) > U
a.s. Similarly, G,,(U) >t if and only if F),(¢t) < U a.s. Hence, for any n, ¢
and € > 0,

P(Go(U) < t,Go(U) >t +¢) = P(Ey(t) > U, Fy(t +¢) < U)

max{0, F,,(t) — Fo(t +€)}

and

P(Gn(U) Zt+€Go(U) <t) = P(Fu(t +¢€) <U, Fo(t) <U)
= max{0, Fy(t) — Fr(t +¢)}.

If both ¢ and ¢+ € are continuity points of Fp, then lim, [F,,(t) — Fo(t+¢€)] =
Fo(t) — Fo(t + €) < 0 and lim,[Fo(t) — F(t +€)] = Fo(t) — Fo(t +¢€) < 0.
Hence,

Im [P (G, (U) <t,Go(U) >t+¢€)+P(Gr(U) >t+¢,Go(U)<t)]=0
when both ¢ and ¢ + € are continuity points of Fy. Since the set of disconti-

nuity points of Fy is countable, G,,(U)—Go(U) — 0 follows from the result
in the previous exercise, since Go(U) is obviously bounded in probability. i

Exercise 55. Let {X,,} be a sequence of independent and identically
distributed random variables. Show that there does not exist a sequence
of real numbers {¢,} such that lim, Y | (X; — ¢;) exists a.s., unless the
distribution of X3 is degenerate.

Solution. Suppose that lim, >\, (X; — ¢;) exists a.s. Let ¢ and g be the
characteristic functions of X7 and lim,, >, (X; —¢;), respectively. For any
n, the characteristic function of .1 | (X; — ¢;) is

H (b(t)e_\/jltci _ [qb(t)]ne_\/jlt(cl‘i‘“'-i-cn)’

i=1
which converges to g(t) for any ¢. Then

lim
n

[G(O]"e™Y Tt | = i [ (6)|" = Jg()].

Since |g(t)| is continuous and ¢g(0) = 1, |g(¢)| # 0 on a neighborhood of 0.
Hence, |¢(t)| = 1 on this neighborhood and, thus, X; is degenerate. I

Exercise 56. Let P, Py, P, ... be probability measures such that lim,, P,,(O)
= P(O) for any open set O with P(90) = 0, where 0A is the boundary of
the set A. Show that lim,, P,(A) = P(A) for any Borel A with P(0A) = 0.
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Solution. Let A be a Borel set with P(0A) = 0. Let Ap be the interior
of A and A; be the closure of A. Then Ag C A C A1 = Ag U JA. Since
0Ay C A, P(0Ap) = 0 and, by assumption, lim,, P,,(Ag) = P(A4p). Since
0A§ C 0A and A§ is an open set, lim, P,(Af) = P(AS$), which implies
hmn Pn(Al) = P(Al) Then,

P(A) < P(Ag) + P(0A) = P(Ap) = lim P,,(Ap) < liminf P, (A)
and

P(A) > P(Ao) = P(Ag) + P(04) = P(Ar) = lim P,(Ay) > lim sup P, (A).

Hence liminf,, P,(A) = limsup,, P,(A) = lim,, P,,(A) = P(A4). 1

Exercise 57. Let X, X, Xo,... be random variables such that, for any
continuous cumulative distribution function F, lim,, E[F(X,,)] = E[F(X)].
Show that X,, —4 X.

Solution. Let y be a continuity point of the cumulative distribution func-
tion of X. Define

0 z<y—m!
Fplx)=¢ moe+1-my y—-ml<z<y
1 T >y
and
0 <y
Hy(x)=<{ me—my y<z<y+m?
1 r>y+mL
Then, F,,, H,,, m = 1,2, ..., are continuous cumulative distribution func-

tions and lim,, ', (7) = I(_sc y(x) and lim,, Hy,(2) = [(_ 4 (2), since y
is a continuity point of the cumulative distribution function of X. By the
dominated convergence theorem,

lim E[Fy (X)] = lim B[Hy, (X)] = Bl y(X)] = P(X < y).
Since F,,(z) decreases as m increases,
ElFn(Xn)] 2 El(—coy)(Xn)] = P(Xyn < y).
By the assumption, lim,, F[F,,,(X,,)] = E[F,,(X)] for any m. Hence,

E[F,,(X)] > limsup P(X,, <y)

for any m. Letting m — oo, we obtain that

P(X <y) > limsup P(X, <y).
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Similarly,

and
lim inf P(X,, <y) < limlim E[H,,(X,)] = lim E[H,,(X)] = P(X <y).

Hence lim,, P(X,, <y) =P(X <y). 1

Exercise 58 (#1.137). Let {X,,} and {Y,,} be two sequences of random
variables. Suppose that X,, —4 X and that, for almost every given se-
quence {X,}, the conditional distribution of Y;, given X,, converges to the
distribution of Y at every continuity point of the distribution of Y, where
X and Y are independent random variables. Show that X, +Y,, -4 X+Y.
Solution. From the assumed conditions and the continuity theorem (e.g.,
Theorem 1.9 in Shao, 2003), for any real number ¢, lim, E(e\/j”X") =
E(eV~1X) and lim, E(eV~1""|X,) = E(eY~1") a.s. By the dominated
convergence theorem,

lim E{e\/jtx" [E(e\/jltY"LXn) - E(eﬁty)]} =0.

Then
lim B[e¥™ 1] = lim B[B(eY ™) |, )
= lim EleV~ " Xn B(eV=T X))
= lim B{e¥™ 1" [B(eV1X,,) — E(eV )]}
+ lim B(eV 1) B(eY 1)

_ E(e\/jltY>E(€\/?1tX)
_ E[e\/jlt(XJrY)].

By the continuity theorem again, X,, +Y, -4 X +Y. 1

Exercise 59 (#1.140). Let X, be a random variable distributed as
N(pn,02),n=1,2,...,and X be a random variable distributed as N (u, o2).
Show that X,, —4 X if and only if lim,, y1,, = p and lim,, 02 = 0.
Solution. The characteristic function of X is ¢x(t) = eV~ lnt—o"t/2
and the characteristic function of X, is ¢x, () = eV~ 1mnt=ont®/2  If
lim,, i, = p and lim,, 02 = 02, then lim,, ¢x, (t) = ¢x(t) for any ¢ and, by
the continuity theorem, X, —4 X.

Assume now X,, —4 X. By the continuity theorem, lim, ¢x, (t) =

¢x(t) for any t. Then lim, |¢x, (t)| = |¢px(t)| for any t. Since |¢x, (t)| =
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e=ont’/2 and |px ()| = e~ /2, lim,, 02 = 0. Note that

ln ¢/t — lim Ox,(t) _ ox() _ s=iue
e ox, @]~ Tox O]~ °

Hence lim,, p,, = . B

Exercise 60 (#1.146). Let Uy, Us,... be independent random variables
having the uniform distribution on [0,1] and Y,, = ([];_, Ui)il/n. Show
that /n(Y,, —e) =4 N(0,¢e?).

Solution. Let X; = —logU;. Then X3, X5, ... are independent and identi-
cally distributed random variables with EX; = 1 and Var(X;) = 1. By the
central limit theorem, v/n(X,, —1) =4 N(0,1), where X, = n~' 3" | X;.
Note that Y,, = eX». Applying the d-method with g(t) = e to X,, (e.g.,
Theorem 1.12 in Shao, 2003), we obtain that v/n(Y,, —e) —4 N(0, e?), since
g (0)=1.1

Exercise 61 (#1.161). Suppose that X, is a random variable having
the binomial distribution with size n and probability 6§ € (0,1), n = 1, 2,....
Define Y,, = log(X,,/n) when X,, > 1 and Y,, = 1 when X,, = 0. Show that
lim,, ¥, = log a.s. and \/n(Y, —log#) —q N (0, 152).

Solution. (i) Let Zi,Zs,... be independent and identically distributed
random variables with P(Z; = 1) = 6 and P(Z; = 0) = 1 — 6. Then the
distribution of X, is the same as that of 2?21 Z;. For any € > 0,

4
(% o] 2) < Lol
n € n
G (1—0)+ (1— 640  62(1—0)2(n—1)
- etn3 + etn3 '

Hence,

r(feerz) <

and, by Theorem 1.8(v) in Shao (2003), lim, X,,/n = 0 a.s.
Define W, = I;x, 20y Xn/n. ThenY,, = log(W, +el{x,—o}). Note that

oo

> P(Vnlx,—op > €)=Y P(X, Z (1—6)"

Hence, lim,, /nl;x, —oy = 0 a.s., which implies that lim,, I{x,—o1 = 0 a.s.
and lim, Iyx, 201 = 1 a.s. By the continuity of the log function on (0, o),
lim, Y,, =log#f a.s.

Since X,, has the same distribution as Z?:l Z;, by the central limit
theorem, /n(X,/n —0) —4 N(0,0(1 — 6)). Since we have shown that
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lim, /nl{x,—oy = 0 a.s. and lim, X,,/n = 6 a.s., lim, I x, —0yXn/v/n =0
a.s. By Slutsky’s theorem (e.g., Theorem 1.11 in Shao, 2003),

VAW, = 0) = Vit (32 -0) < Txa

—a N(0,0(1 — 0)).

Then, by the J-method with g(t) = logt and ¢’(t) = t ! (e.g., Theorem 1.12
in Shao, 2003), \/n(log W,, —log6) —4 N (0, 159). Since /n(Y, —logb) =
Vn(logW,, —log) + \/nlx,—oy, by Slutsky’s theorem again, we obtain

that \/n(Y, —log#) —4 N (0,%5%). 1

Exercise 62 (#1.149). Let Xi,...,X,, be independent and identically
distributed random variables such that for x = 3,4,..., P(X; = +x) =
(2cx?logxz) !, where ¢ = > > ;27?/logz. Show that E|X;| = oo but
n1 Z:’L:l X —p 0.

Solution. Note that

— 1 > 1
E|X1|:c*1272071/ dz = oo.
4 log x 3 xlogx

For any positive integer n, E[X11(_, ,)(X1)] = 0. For sufficiently large ,

> 1

z[l — F(z) + F(-2)] < ¢ 'z Z Elogk
k=x

o 1
S C_lx/ 27dt
r—1 t logt

as x — oo. By the weak law of large numbers (e.g., Theorem 1.13(i) in
Shao, 2003), n=' > | X; —, 0.1

Exercise 63 (#1.151). Let X3, X5, ... be independent random variables.
Assume that lim,, Y1 | P(|X;| > n)=0 and lim, n™2 Y"1 | E(X2I{ x,|<n})
= 0. Show that (Z?:l X; — bn)/n —p 0, where b,, = Z?:l E(XZI{\XJgn})
Solution. For any n, let Y,; = X;I{x,|<n}, ¢ = 1,...,n. Define T,, =
Sor X, and Z, =Y i, Y. Then

P(T, # Z,) < anp(ym £ X;) = ip(pm >n) =0
=1

=1



46 Chapter 1. Probability Theory

as n — oo. For any € > 0,

p <Zn —EZ,| > e) Var(Z,)

n

€2n?

1 n

i=1
n
=
_ EYZ2
62TL2 ‘ nt
i=1

1 — )
= 2.3 > B(XPIyx <ny)
=1

—0

IA

as n — 0o, where the first equality follows from the fact that Yj,1,..., Y,
are independent since X1, ..., X, are independent. Thus,

T, — EZ, T, — EZ,
P< Ze) < P(|| Ze,Tn—Zn) + P(T, # Zy)
n n

Z, —EZ,
< P('””|26>+P(Tn7ézn)
n

under the established results. Hence the result follows from the fact that
b, =FEZ,. 1

Exercise 64 (#1.154). Let Xj,..., X, be independent and identically
distributed random variables with Var(X;) < co. Show that

ey

j=1

Note. A simple way to solve a problem of showing Y,, —, a is to establish
lim,, EY,, = a and lim,, Var(Y,,) = 0.
Solution. Note that

n

2 - 2
E| —— X | = —= EX,;, =FEX;.
n(n—f—l);] ! n(n—i—l);] / !

Let 02 = Var(X;). Then,

n

2 ” 402 20%(2n + 1)
V — X, | = ——— =" 50
a nin+1) ;] / n2(n+ 1)2 ;J 3n(n+1)
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as n — 00. 1

Exercise 65 (#1.165). Let X, X5, ... be independent random variables.
Suppose that 37 (X;—EX;) /0, =4 N(0,1), where 02 = Var(3"7_; X).
Show that n=! 3°7 | (X; — EX;) =, 0 if and only if lim,, 0, /n = 0.
Solution. If lim,, o,,/n = 0, then by Slutsky’s theorem (e.g., Theorem 1.11
in Shao, 2003),

fZX — EX;) (X; — EX;) —40.
n o, -
j=1
Assume now o, /n does not converge to 0 but n=' 37| (X; — EX;) —
0. Without loss of generality, assume that lim, 0,/n = ¢ € (0,00]. By
Slutsky’s theorem,

1 < n 1l
— 57X, - EX;) — EX; :
- > UnnZ(Xj EX;) =, 0
Jj=1 j=1
This contradicts the fact that 37, (X; — EX;)/0n —a N(0,1). Hence,
n=ty ]:1(X — EXj;) does not converge to 0 in probability. i

Exercise 66 (#1.152, #1.166). Let T,, = > | X;, where X,,’s are

independent random variables satisfying P(X,, = £n?) = 0.5 and 6 > 0 is

a constant. Show that

(i) Tn/\/Var(T,) —a N(0,1);

(ii) when 6 < 0.5, lim,, T}, /n = 0 a.s.;

(iii) when 6 > 0.5, T, /n does not converge to 0 in probability.

Solution. (i) Note that ET,, = 0 and Var(X,,) = n?® for any n. Hence,
= Var(T,,) = Y7, 429, Since

j=1 j=1 Jj=2
and
n—1 .j41 n 20+1 1
Z/ 220dz = / 220 de = ,
=i 1 20 + 1

we conclude that

2 n
: On 1 20 1
tn e = e 2 = gy
]:

Then lim,, n? /o,, = 0 and, for any ¢ > 0, n’ < eo,, for sufficiently large n.
Since |X,,| < n?, when n is sufficiently large, Iix;1>e0,) = 0,7 =1,..n
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and, hence, 27:1 E(XJZIHXJ,‘X%}) = 0. Thus, Lindeberg’s condition holds
and, by the Lindeberg central limit theorem (e.g., Theorem 1.15 in Shao,

2003), T,,/+/Var(T,,) —4 N(0,1).
(ii) When 6 < 0.5,
(o) oo
EX2 n2?
> 2 > 2 SO

n=1 n=1

By the Kolmogorov strong law of large numbers (e.g., Theorem 1.14 in
Shao, 2003), lim,, T,,/n = 0 a.s.

(iii) From the result in (i) and the result in the previous exercise, T,,/n —, 0
if and only if lim,, o, /n = 0. In part (i), we have shown that lim,, o2 /n20+!
equals a positive constant. Hence, the result follows since lim,, o, /n # 0
when 6 > 0.5. 1

Exercise 67 (#1.162). Let X, X5, ... be independent random variables
such that X; has the uniform distribution on [—j, j], 7 = 1,2,.... Show that
Lindeberg’s condition is satisfied. '

Solution. Note that EX; = 0 and Var(X;) = fzj 2?dx = 253 /3 for all j.
Hence

02 = Var in Z 3 L)
j=1

For any € > 0, n < €0, for sufficiently large n, since lim,, n/o, = 0. Since
|X;| < j < n, when n is sufficiently large,

n
> B(X x5 c00) = 0.
j=1

Thus, Lindeberg’s condition holds. 1

Exercise 68 (#1.163). Let X;, X5, ... be independent random variables
such that for j = 1,2,..., P(X; = £j%) = 6715721 and P(X; = 0) =
1-371572(=1) where a > 1is a constant. Show that Lindeberg’s condition
is satlsﬁed if and only if a < 1.5.

Solution. Note that FX; = 0 and

n n

242 +1)(2n+1
Z\/ar j :ZGJQ{a n Z] e 1)§(;n )

j=1

Assume first a < 1.5. For any € > 0, n* < €0, for sufficiently large n,
since lim,, n*/o, = 0. Note that | X, | < n® for all n. Therefore, when n is
sufficiently large, It x;|>c0o,} =0, j = 1,...,n, and, hence,

n
Y E(X I 5e00)) = 0.
j=1
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Thus, Lindeberg’s condition holds.
Assume now a > 1.5. For e € (0,3), let k, be the integer part of

(€o,)'/®. Then

— Y E(XiI{x,|>e00)) = —5 = - =
2 j il>eon 2
St o\ 3 = 3
kn(kn +1)(2k, + 1)

=1-2=2
1802 ’
which converges, as n — oo, to 1 if a > 1.5 (since lim, k,,/n = 0) and to
1 —€%/9 if a = 1.5 (since lim, k3 /o2 = €?). Hence, Lindeberg’s condition
does not hold. 1

Exercise 69 (#1.155). Let {X,,} be a sequence of random variables and
let X,, =Y, X;/n. Show that

(i) if lim,, X,, = 0 a.s., then lim, X,, = 0 a.s.;

(i) if sup,, E|X,|" < oo and lim,, F|X,,|" = 0, then lim,, E|X,,|" = 0, where
r > 1 is a constant;

(iii) the result in part (ii) may not be true for r € (0,1);

(iv) X,, —p 0 may not imply X,, —, 0.

Solution. (i) The result in this part is actually a well known result in
mathematical analysis. It suffices to show that if {z,} is a sequence of
real numbers satisfying lim,, ,, = 0, then n=! Z?zl x; = 0. Assume that
lim,, z, = 0. Then M = sup,, |z,| < oo and, for any € > 0, there is an N
such that |x,| < e for all n > N. Then, for n > max{N, NM/e},

(iriH i w)

1=N-+1
N n
(Z ey )
=1 i=N-+1
NM  e(n—N)
J’_

n n
< e+ €e€= 2.

n

S

i=1

<

S|

S|

IN
S|

(ii) When r > 1, |z|" is a convex function. By Jensen’s inequality, E|X,|" <
n=' " E|X,|". When lim, E|X,|" =0, lim,n=> 3", E|X;|" = 0 (the
result in part (i)). Hence, lim, E|X,|" = 0.

(iii)-(iv) Consider the X;’s in the previous exercise, i.e., X1, Xa, ... are inde-
pendent, P(X; = +j%) = 671j72(@=Y and P(X; = 0) = 1 — 371 2=,
where «a is a constant satisfying 1 < a < 1.5. Let r be a constant such that
0<r<2(a—1)/a. Then 0 < r < 1. Note that

lim E|X,|" = lim 3~ 'ne 2= — ¢
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and, hence, X, —>p 0. From the result in the previous exercise, . L Xifon

—a N(O 1) with 02 = n(n+1)(2n+1)/18. Since lim,, ,,/n = oo, X,, does

not converge to 0 in probability. This shows that X,, —, 0 may not imply

X, —p 0. Furthermore, F | X,,|" does not converge to 0, because if it does,

then X,, —, 0. This shows that the result in part (ii) may not be true for
€ (0,1). u

Exercise 70 (#1.164). Let X;, Xs,... be independent random variables
satisfying P(X; = £j%) = P(X; = 0) = 1/3, where ¢ > 0, j = 1,2,
Show that Liapounov’s condition holds, i.e.,

. 1 246 _
lim — ZE\X — EX;|
n j=1

for some § > 0, where o2 Var(zj 1 X5).
Solution. Note that EX =0 and

n 9 .
:;Var(Xj) = §2j2 .

For any 6§ > 0,

ETL:E|XJ- ~ B(X,)*F = Z [(2+0)a_
j=1

From the proof of Exercise 66,

1 n
-t
YRS | > =
=1
for any ¢t > 0. Thus,

2 Z] . J(2+6)a
)1+6/2

o1 245 _ 4
lim —5 ZE|X — EX;| lim
j=1

n 2
3

:h

3 5/2 2a + 1)1+5/2 n(2+8)atl
(2) (24 0)a+ 1 nCat)(1+9)

3\ (2a+1)1H+0/2 1
— lim

2 (24 d8)a+1 n nd/2
=0.1




Chapter 2

Fundamentals of Statistics

Exercise 1 (#2.9). Consider the family of double exponential distribu-
tions: P = {2_1(3_“/_“| Do < pu< oo}. Show that P is not an expo-
nential family.

Solution. Assume that P is an exponential family. Then there exist p-
dimensional Borel functions 7(X) and n(u) (p > 1) and one-dimensional
Borel functions hA(X) and £(u) such that

27 exp{~[t — ul} = exp{[n(W)] T (t) — E(u)}h(t)

for any ¢t and p. Let X = (X1,...,X,,) be a random sample from P € P
(i.e., Xq,..., X, are independent and identically distributed with P € P),
where n > p, T,(X) = Y." | T(X;), and h,(X) = I, A(X;). Then the
joint Lebesgue density of X is

27" exp {— S i - ul} — exp {[1(W)]" Tu() = nE(1)} hna)

for any x = (21, ...,x,) and g, which implies that
n n

D lwil =D lei = pl =[] Ta() — né(n)

i=1 i=1

for any z and g, where (1) = n(1) — 1(0) and €(p) = &(u) — £(0). Define
Yu(x) = 30 o] — >oi ) |z — pf. We conclude that if 2 = (21, ...,2,)
and y = (y1, ..., Yn) such that T, (z) = T,,(y), then ¢, (x) = 1, (y) for all p,
which implies that vector of the ordered z;’s is the same as the vector of
the ordered y;’s.

On the other hand, we may choose real numbers i1, ..., 11, such that
(), © = 1,...,p, are linearly independent vectors. Since

wlh(x) = [ﬁ(/’cz)]TTn(m) - ng(/’él)a 1= 17 c Dy

o1
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for any x, T, (z) is then a function of the p functions ¥, (x), ¢ = 1,...,p.
Since n > p, it can be shown that there exist x and y in R™ such that
Y, () =P, (y), i = 1,...,p, (which implies T},(x) = T,,(y)), but the vector
of ordered x;’s is not the same as the vector of ordered y;’s. This contradicts
the previous conclusion. Hence, P is not an exponential family. I

Exercise 2 (#2.13). A discrete random variable X with
P(X =z)=~(x)0"/c(0), x=0,1,2,..,

where y(z) > 0, 8 > 0, and ¢(d) = >~ ,v(x)0", is called a random vari-
able with a power series distribution. Show that

(i) {~v(x)0%/c(0) : @ > 0} is an exponential family;

(ii) if X3, ..., X, are independent and identically distributed with a power
series distribution v(z)0% /c(6), then Y . | X; has the power series distribu-
tion v, (2)0% /[c(9)]™, where v, (x) is the coefficient of §* in the power series
expansion of [¢(6)]™.

Solution. (i) Note that

V()07 /c(0) = exp{xlog § —log(c(0)) }y(x).

Thus, {vy(x)0*/c(9) : 6 > 0} is an exponential family.

(ii) From part (i), we know that the natural parameter n = log6, and
also ¢(n) = log (c(e")). From the properties of exponential families (e.g.,
Theorem 2.1 in Shao, 2003), the moment generating function of X is
Yx(t) = eS1t) /oS = ¢(fet)/c(f). The moment generating function of
S X s [e(e!)])™ /[e(0)]™, which is the moment generating function of
the power series distribution ~, (z)0* /[c(0)]™. 1

Exercise 3 (#2.17). Let X be a random variable having the gamma
distribution with shape parameter o« and scale parameter -y, where « is
know and v is unknown. let Y = olog X. Show that

(i) if o > 0 is unknown, then the distribution of Y is in a location-scale
family;

(ii) if o > 0 is known, then the distribution of Y is in an exponential family.
Solution. (i) The Lebesgue density of X is

1
L(a)y

Applying the result in the note of Exercise 17 in Chapter 1, the Lebesgue
density for Y = olog X is

1
I(a)o

xa_le_x/WI(O’oo)(m).

e=alognN/o oy {_e(yfolog v)/v} .

It belongs to a location-scale family with location parameter n = o log-y
and scale parameter o.
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(ii) When o is known, we rewrite the density of ¥ as

y/o

Ufl(a) exp{ay/o} exp {— S Ozlogfy} _

Therefore, the distribution of Y is from an exponential family. I

Exercise 4. Let (X, ..., X;,) be a random sample from N(0,1). Show that
X7/305_ X7 and 377 | X7 are independent, i = 1, ..., 7.
Solution. Note that X%, ..., X2 are independent and have the chi-square
distribution x?. Hence their joint Lebesgue density is

ce— Wit tyn)/2
Y Yj > 07

Y1 Yn

where c is a constant. Let U = Z?=1 XJ2 and V; = X2/U,i=1,...,n. Then
X2 =UV; and Z?zl V; = 1. The Lebesgue density for (U, V1,...,V,—1) is

—u/2 n—1 _
ce Vp U n/2-1,-u/2 1—um Up—1

=cu , u>0,v; >0.

unvl...vn V] Unp—1

Hence U and (V4/U,...,V,,_1/U) are independent. Since V,, =1 — (V; +
-+ + V,_1), we conclude that U and V,,/U are independent.

An alternative solution can be obtained by using Basu’s theorem (e.g.,
Theorem 2.4 in Shao, 2003). 1

Exercise 5. Let X = (X3, ..., X,,) be a random n-vector having the mul-
tivariate normal distribution N, (uJ, D), where J is the n-vector of 1’s,

and [p| < 1. Show that X = n= !> X; and W = > "' (X; — X)?
are independent, X has the normal distribution N (u, MGQ), and

W/[(1 — p)o?] has the chi-square distribution x2_;.
Solution. Define

1 1 1 1 1
NG Vn Vn Vn Vn
_1 =1 0 0 0
A G

A= 7= Ve 0 0

3- V32
—(n-1)

1 1 1 1 .
Vn(n=1)  /n(n-1) /n(n-1) 4/n(n-1) \/n(n—1)
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Then AA™ = I (the identity matrix) and

1+(n—-1))p 0 - 0
ADA™ = o2 0 l=p 0
0 0 U

Let Y = AX. Then Y is normally distributed with E(Y) = AE(X) =
(v/nw,0,...,0) and Var(Y) = ADA", i.e., the components of Y are in-
dependent. Let Y; be the ith component of Y. Then, Y; = /nX and
YEY2=YTY = XTATAX = X"X = 3" | X?. Hence X = Yi/vn
and W =371 (X; - X)? = 3000 | XP —nX? =370 | VP VP =300, V7
Since Y;’s are independent, X and W are independent.

Since Y7 has distribution N(y/np,[1 + (n — 1)p]o?), X = Y1/y/n has

distribution N (u M 2) Since Y53, ..., Y,, are independent and iden-
tically distributed as N(O7 (1—p)o?), W/[(1—p)o?] =301, Y2/[(1—p)o?]
has the x2_; distribution.

Exercise 6. Let (Xi,...,X,) be a random sample from the uniform dis-
tribution on the interval [0, 1] and let R = X,y — X (1), where X(;) is the
tth order statistic. Derive the Lebesgue density of R and show that the
limiting distribution of 2n(1 — R) is the chi-square distribution 3.
Solution. The joint Lebesgue density of X1y and X, is

nn—Dy—2)"2 0<z<y<l

f(w,y)—{ 0

otherwise

(see, e.g., Example 2.9 in Shao, 2003). Then, the joint Lebesgue density of
R and X, is

[ nn-1)2"? 0<z<y<l
9(zy) = { 0 otherwise

and, when 0 < z < 1, the Lebesgue density of R is

1
[ sty = [ ntn - 1y 2ds =l - 1221 - )

for 0 < x < 1. Consequently, the Lebesgue density of 2n(1 — R) is

1 z \N—2
T () = 4nx(1—%) 0<x<2n
0 otherwise.
Since lim,, ( — Qi)n R , limy, by (z) = 47 mex/QI(O o) (), which is

the Lebesgue density of the x7 distribution. By Scheffé’s theorem (e.g.,
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Proposition 1.18 in Shao, 2003), the limiting distribution of 2n(1 — R) is
the x7 distribution.

Exercise 7. Let (Xi,...,X,) be a random sample from the exponential
distribution with Lebesgue density 9_16(“_1)/%(0700) (z), where a € R and
6 > 0 are parameters. Let X(;) < --- < X,) be order statistics, X(o) = 0,
and Zi = X(z) - X(ifl)v 1= 1, ey N Show that

(i) Zi, ..., Z, are independent and 2(n — i+ 1)Z; /6 has the x3 distribution;
(ii) 2[>°7_, Xy + (n — 1) X () — na)/0 has the x3, distribution, r = 1,..., n;
(iii) X (1) and Y are independent and (X () —a)/Y has the Lebesgue density

n (1 + n”—jl) T(0.00) (), where Y = (n — 1)"L S (X; — X(1))-
Solution. If we can prove the result for the case of a = 0 and § = 1, then
the result for the general case follows by considering the transformation
(X;—a)/0,i=1,...,n. Hence, we assume that a =0 and 0 = 1.

(i) The joint Lebesgue density of X, ..., Xy is

f(.]?l,...

) nle™™17 T )<y < - < Xy
Tp) = .
o 0 otherwise.

Then the joint Lebesgue density of Z;, i = 1,...,n, is

g(x1, ...

n) = ple n@1— =it zi— =z g5 (0 =1, ... n,
o 0 otherwise.

Hence 71, ..., Z, are independent and, for each i, the Lebesgue density of
2Z;is (n—i+ 1)6_("_”1)“[(0’00)(@). Then the density of 2(n — i+ 1)Z;
is 271e"/2] (4 o) (x;), which is the density of the x3 distribution.

(ii) For r =1, ..., n,

Y Xp+m-rXe =Y (n—it+1)Z.

i=1 i=1
From (i), Z1, ..., Z, are independent and 2(n — i + 1)Z; has the x3 distri-
bution. Hence 23| X(;) + (n—r)X(, has the x3, distribution for any r.
(iii) Note that

1 n n

1 .
1 Z(X(z) — X(l)) = n_1 Z(n —1+ 1)22

i=2 =2

Y =

n —

From the result in (i), ¥ and Xy are independent and 2(n — 1)Y" has
the Xg(n—l) distribution. Hence the Lebesgue density of Y is fy(y) =

((2111))7!L y”_ge_("_l)yl(oyoo)(y). Note that the Lebesgue density of X(j) is
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fxo, (@) = ne ™1y o0)(x). Hence, for ¢ > 0, the density of the ratio
Xy/Y is (e.g., Example 1.15 in Shao, 2003)

f(t) = / 2 fy (&) e (£2)d

_ / n(n —1) 21— (ntnt=1)z 5.

=nl1+ nt - /OO (7’L +nt — l)nxnflef(nJrntfl)zdx
n—1 0 (n—1)!

(%)
=nl|l+ B |
n—1

Exercise 8 (#2.19). Let (Xi,...,X,) be a random sample from the
gamma distribution with shape parameter o and scale parameter =, and let
(Y1,...,Y,) be a random sample from the gamma distribution with shape
parameter « and scale parameter 7,. Assume that X;’s and Y;’s are inde-
pendent. Derive the distribution of the statistic X /Y, where X and Y are
the sample means based on X;’s and Y;’s, respectively.

Solution. From the property of the gamma distribution, nX has the
gamma distribution with shape parameter na and scale parameter v, and
nY has the gamma distribution with shape parameter na and scale param-
eter 7,. Since X and Y are independent, the Lebesgue density of the ratio
X /Y is, for t > 0,

_ 1 e na—1 —t.’E/’Yac no —-'E/’Yu
(1) = [T'(no))? (yayy )™ /O () ‘ o "

(
I(2na)tme—1 t, 1\
[r<na>12<my>w< > i

— +
Yz Yy

Exercise 9 (#2.22). Let (Y;,Z;), i = 1,...,n, be independent and iden-
tically distributed random 2-vectors. The sample correlation coefficient is
defined to be

T s SSYSZ > (- V)(Zi - 2),

where Y=n"'3"" | Y;, Z=n""'Y"" | Z;, S§=(n—1)""3 ", (Y;=Y)? and
S2=(n—1)"'S" (Zi—Z)>.
(i) Assume that E|Y;|* < oo and E|Z;|* < co. Show that

V(T = p) =a N(0,¢?),
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where p is the correlation coefficient between Y; and Z; and ¢ is a constant.
Identify ¢ in terms of moments of (Y7, Z;).

(ii) Assume that Y; and Z; are independently distributed as N(u1,0}) and
N(uz,03), respectively. Show that T has the Lebesgue density

n—1
(271))(1 _ t2)(”_4)/21(_171)(t).
2

(iii) Under the conditions of part (ii), show that the result in (i) is the same
as that obtained by applying Scheffé’s theorem to the density of v/nT.

Solution. (i) Consider first the special case of EY; = EZ; = 0 and Var(Y})
= Var(Z1) = 1. Let W; = (Y3, Z;,Y2,Z2,Y;Z;) and W = n™ ' 31| Wi.
Since W7, ..., W,, are independent and identically distributed and Var(W;)
is finite under the assumption of E|Y;|* < oo and E|Z;|* < oo, by the
central limit theorem, /n(W —0) —4 N5(0,%), where § = (0,0, 1,1, p) and

1 p E(Y?) EWZ7) E(Y{?Z)
p 1 E(Y?Z1) E(Z3) E(W1Z3)
Y= B(Y?) E(Y{Z1) B(yi) -1 E(Y?Z)—1 E(YPZi)—p

EM)izt)  E(ZY) E(Y{Zi)-1 EBE(Zi)-1 EMWZ}) -
E(Y?Z)) EMZ) E(XY?Zi)—p EMZY)—p B(Y?Z7)-p?
Define
Is — T1T2

V(s —23) (24 — 23)

h(xl7x27x37 1:43'1:5) =

Then T = h(W) and p = h(f). By the d-method (e.g., Theorem 1.12 in
Shao, 2003), f[ (W) — h(0)] —a N(0,c?), where ¢ = £7%¢ and ¢ =
mggv w) |w o = (0,0,—p/2,—p/2,1). Hence

¢ = p’ [EM) + E(Z]) + 2E(Y{ Z})] /4
—plE(Y3Z)) + EViZH)] + E(Y2Z3).

The result for the general case can be obtained by considering the trans-

formation (Y; — EY;)//Var(Y;) and (Z; — EZ;)/+/Var(Z;). The value of

2 is then given by the previous expression with Y7 and Z; replaced by

— EY1)/y/Var(Y1) and (Z1 — EZ;y)/+/Var(Z1), respectively.
(i) We only need to consider the case of 1 = pg = 0 and 07 = 03 = 1.
Let Y = (W1,....Y,), Z = (Z1,..., Zyn), and Az be the n-vector whose ith
component is (Z; — Z)/(v/n — 1Sz). Note that

(n—1)S% — (AZY)?* =Y BzY

with By =1, —n~'JJ" — Az A7, where I, is the identity matrix of order
n and J is the n-vector of 1’s. Since ALAz =1and J"Az =0, BzAz =0,
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B%Z = By and tr(Bz) = n — 2. Consequently, when Z is considered to
be a fixed vector, Y"BzY and A7Y are independent, A7Y is distributed
as N(0,1), Y"BzY has the x2_, distribution, and v/n —24%Y/\/Y™BzY
has the t-distribution ¢,,_s. Since T'= ALY /(v/n — 1Sy ),

P(T <) = E[P(T < |2))
g

=F P( AzY <t‘
:EP(‘%Y < ! zﬂ

VYTBzY + (A7Y)? ©
VYTBZY ~ V1 -¢2
o vn— 2)}
T V12
L) (/W£§<l+ 2 >*mﬂﬂd
= x’
V(n=2)rr(%52) Jo n—2

where t,_o denotes a random variable having the t-distribution ¢,_ and
the third equality follows from the fact that ——2— < ¢ if and only if

= FE|P (tn_g

VaZ+b?
\/;‘;)3 < ﬁ for real numbers @ and b and ¢ € (0,1). Thus, T has Lebesgue
density
d I‘(L—l)
—P(T<t)=—22(1—-t)"D21_, ().
dt VAT (252) e

(iii) Under the conditions of part (ii), p = 0 and, from the result in (i),
¢ =1and \/nT —4 N(0,1). From the result in (ii), v/nT has Lebesgue
density
r(n;1) AN 1
2 ) (o I £) = et/
V(' w vavm ) = e

by Stirling’s formula. By Scheffé’s Theorem, v/nT —4 N(0,1). 1

Exercise 10 (#2.23). Let X1, ..., X,, be independent and identically dis-
tributed random variables with EX{ < oo, T = (Y, Z), and Ty = Y/VZ,
where Y =n~ !> " |X;land Z =n"' 3" X7

(i) Show that \/n(T —0) —4 N2(0,%) and /n(Ty —19) —4 N(0,c?). Identify
0, 3, ¥, and ¢? in terms of moments of X;.

(ii) Repeat (i) when X; has the normal distribution N(0,0?).

(iii) Repeat (i) when X, has Lebesgue density (20)~'e~l®l/7,

Solution. (i) Define ; = E|Xi|)/, j = 1,2,3,4, and W, = (|X;], X?),
i=1,.,n. Then T =n='>" W, Let § = EW; = (61,6>). By the
central limit theorem, \/n(T — 0) —4 N2(0, %), where

Y- Var(\X1|) COV(‘X1|,X12) _ 02—9% 03—0102
o COV(‘X1|,X12) VaI(X%) o 93 —9102 94—9%
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Let g(y, 2) = y/+/2. Then Ty = g(T), g(0) = 61//02, %Z|(y,z)=9 =1/\0s,

and 2| = 6, /(203/%). Then, by the 5-method, /n(Ty — ¥) —4

N(0,c?) with ¥ = 6, /y/03 and

) 2 2
= ]_ —_—— —— — —,

=T T e T o,
(ii) We only need to calculate §;. When X; is distributed as N(0,0?), a
direct calculation shows that 6, = v/20/\/7, 02 = 02, 03 = 2/203 /\/7, and
94 = 30’4.
(iii) Note that | X;| has the exponential distribution with Lebesgue density
07172/ ] () o) (z). Hence, ; = 071 0

Exercise 11 (#2.25). Let X be a sample from P € P, where P is a
family of distributions on the Borel o-field on R™. Show that if T(X) is
a sufficient statistic for P € P and T = 9(S), where 1 is measurable and
S(X) is another statistic, then S(X) is sufficient for P € P.
Solution. Assume first that all P in P are dominated by a o-finite measure
v. Then, by the factorization theorem (e.g., Theorem 2.2 in Shao, 2003),
dpP
W) = 0. (@ @)h(a),
where h is a Borel function of z (not depending on P) and g, (t) is a Borel
function of t. If T' = ¢(S), then
W) = 0, (0(5()hia)

and, by the factorization theorem again, S(X) is sufficient for P € P.

Consider the general case. Suppose that S(X) is not sufficient for P €
P. By definition, there exist at least two measures P, € P and P, € P
such that the conditional distributions of X given S(X) under P; and P,
are different. Let Py = {P1, P>}, which is a sub-family of P. Since T'(X) is
sufficient for P € P, it is also sufficient for P € Py. Since all P in Py are
dominated by the measure P; + Py, by the previously proved result, S(X)
is sufficient for P € Py. Hence, the conditional distributions of X given
S(X) under P; and P, are the same. This contradiction proves that S(X)
is sufficient for P € P. 1

Exercise 12. Let P = {fy : 0 € O}, where fy’s are probability densities,
fo(x) > 0 for all x € R and, for any § € ©, fo(z) is continuous in z. Let
X7 and X5 be independent and identically distributed as fy. Show that if
X1 + X, is sufficient for 6, then P is an exponential family indexed by 6.
Solution. The joint density of X7 and Xs is fyp(x1)fo(x2). By the factor-
ization theorem, there exist functions gy(t) and h(z1,z2) such that

fo(z1) fo(w2) = go(x1 + 22)h (21, 72).
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Then

log fo(x1) +log fo(z2) = g(z1 + 22,0) + hu (21, 72),
where ¢(t,0) = loggg(t) and hy(z1,22) = logh(x1,x2). Let 6y € © and
r(z,0) = log fo(x) —log fo, (x) and q(x,6) = g(x,0) — g(z,00). Then

q(z1 +w2,0) = log fo(z1) + log fo(z2) + hi (w1, z2)
— log fo, (w1) — log fo, (x2) — h1(z1, x2)
= r(x1,0) + r(x2,0).

Consequently,
r(z1 + x2,0) +1(0,0) = q(x1 + x2,0) = r(x1,0) + r(22,0)
for any x1, xo, and 0. Let s(x,6) = r(x,0) — r(0,0). Then
s(x1,0) + s(x2,0) = s(x1 + x2,0)
for any x1, x2, and 6. Hence,

s(n,0) =ns(1,0) n=0,£1,42, ...

For any rational number > (n and m are integers and m # 0),

s (35:0) = ns (5.0) = Tns (5.0) = fos (31.0) = 7 (1,6).

, —S
m m

Hence s(z,0) = xs(1,6) for any rational x. From the continuity of fy, we
conclude that s(z,0) = zs(1,0) for any x € R, i.e.,

r(z,0) = s(1,0)x 4+ r(0,0)
any x € R. Then, for any = and 0,

fo(z) = exp{r(z,0) + log fo,(z)}
= exp{s(1,0)z +r(0,0) + log fo, ()}
= exp{n(0)z — £(0) }h(z),

where n(0) = s(1,0), £(0) = —r(0,0), and h(x) = fp,(x). This shows that
P is an exponential family indexed by 6.

Exercise 13 (#2.30). Let X and Y be two random variables such that
Y has the binomial distribution with size N and probability 7 and, given
Y =y, X has the binomial distribution with size y and probability p.

(i) Suppose that p € (0,1) and = € (0,1) are unknown and N is known.
Show that (X,Y) is minimal sufficient for (p, 7).

(ii) Suppose that 7 and N are known and p € (0,1) is unknown. Show
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whether X is sufficient for p and whether Y is sufficient for p.
Solution. (i) Let A = {(x,y) : 2 =0,1,...,y, y = 0,1,..., N}. The joint
probability density of (X,Y’) with respect to the counting measure is

(JD (1 —m)N Y @)pw(l —p)V " la
oo o i} (%) (01

Hence, (X,Y) has a distribution from an exponential family of full rank
(0 <p<land0<m <1). This implies that (X,Y) is minimal sufficient

for (p, 7).
(ii) The joint probability density of (X,Y) can be written as

exp {mlog P4 ylog1 - p)} (1 — )N @) <y> Ia.

1—p T

This is from an exponential family not of full rank. Let py = %, p1 = %,
p2 = 2, and 1(p) = (log %,log(l —p)). Then, two vectors in R?, n(p1) —
n(po) = (—1log2,2log2 — log3) and n(pz) — n(po) = (log2,log2 — log3),
are linearly independent. By the properties of exponential families (e.g.,
Example 2.14 in Shao, 2003), (X,Y) is minimal sufficient for p. Thus,
neither X nor Y is sufficient for p. I

Exercise 14 (#2.34). Let X1, ..., X,, be independent and identically dis-
tributed random variables having the Lebesgue density

exp {- (=)'~ (0}

where 0 = (u,0) € ©® = R x (0,00). Show that P = {Py : § € O} is
an exponential family, where Py is the joint distribution of X1, ..., X,,, and
that the statistic 7 = (37, Xi, Doy X2, >0 X2, 500, X{) is minimal
sufficient for 6 € ©.

Solution. Let T'(z) = (X7 @i, > i 22, >0 23, > s at) for any z =
(1, ..., 2,) and let () = o~*(—4u3,6pu2, —4u,1). The joint density of
(Xl, ,Xn) is

fo(z) = exp {[n(0)] T (x) — np' /0" —ng(0)},
which belongs to an exponential family. For any two sample points x =
(1'17 eeey ifn) and y= (3/1» eeey yn)7

€T 1 - 4 . 4 - -
;zgyi = exp{—g4 [(;xl _21/1‘) —4p <2$?_Zly?>
+ 6p° <Zw?2y?> — 4 (szyﬂ}
i=1 i=1 i=1 i=1
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which is free of parameter (u, o) if and only if T'(x) = T'(y). By Theorem
2.3(iii) in Shao (2003), T'(X) is minimal sufficient for 6. 1

Exercise 15 (#2.35). Let (Xi,...,X,) be a random sample of random
variables having the Lebesgue density fs(z)=(260)""[I(0,0)(z)+1(20,30) ()]
Find a minimal sufficient statistic for € (0, 0c0).

Solution. We use the idea of Theorem 2.3(i)-(ii) in Shao (2003). Let O, =
{01, 6, ...} be the set of positive rational numbers, Py = {gg : 6 € ©,.}, and
P = {go : 0 > 0}, where go(z) = [[;_, fo(x;) for = (z1,...,2,). Then
Po C P and a.s. Py implies a.s. P (i.e., if an event A satisfying P(A) =0
for all P € Py, then P(A) = 0 for all P € P). Let {¢;} be a sequence
of positive numbers satisfying > .o, ¢; = 1 and goo(z) = Yo, cigo, (2).
Define T' = (11,15, ...) with T;(x) = go,(2)/goo(z). By Theorem 2.3(ii) in
Shao (2003), T is minimal sufficient for § € ©¢ (or P € Py). For any 6 > 0,
there is a sequence {6;, } C {6;} such that limj 6;, = 6. Then

90(z) = lim go,, (2) = lim i, (2)goc ()

holds for all z € C with P(C) = 1 for all P € P. By the factorization
theorem, T is sufficient for 8 > 0 (or P € P). By Theorem 2.3(i) in Shao
(2003), T' is minimal sufficient for § > 0. 1

Exercise 16 (#2.36). Let (Xi,..., X,) be a random sample of random
variables having the Cauchy distribution with location parameter p and
scale parameter o, where 4 € R and o > 0 are unknown parameters. Show
that the vector of order statistics is minimal sufficient for (u, o).
Solution. The joint Lebesgue density of (X, ..., X,,) is

on n 1
fﬂ:a(m) = ﬁ;l;[l m, xr = (1‘1, ,l‘n)

For any = = (x1,...,x,) and y = (y1, ..., Yn), suppose that

fuya(x) — (e
fu,a(y) B ¢( ,Z/)

holds for any p and o, where 1 does not depend on (i, o). Let 0 = 1. Then
we must have

n n

[T [+ =] = vy [T [1+ @i =]

i=1 i=1

for all u. Both sides of the above identity can be viewed as polynomials of
degree 2n in pu. Comparison of the coefficients to the highest terms gives
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Y(x,y) = 1. Thus,

n n

I1 [1+ (i —M)Z} =11 [1+ (; —ﬂﬂ

=1 i=1

for all . As a polynomial of pu, the left-hand side of the above identity
has 2n complex roots z; = +/—1, ¢ = 1,...,n, while the right-hand side of
the above identity has 2n complex roots y; + +/—1, i = 1,...,n. By the
unique factorization theorem for the entire functions in complex analysis,
we conclude that the two sets of roots must agree. This means that the
ordered values of x;’s are the same as the ordered values of y;’s. By Theorem
2.3(iii) in Shao (2003), the order statistics of X1, ..., X, is minimal sufficient
for (u,0). 1

Exercise 17 (#2.40). Let (X1, ..., X;,), n > 2, be a random sample from a
distribution having Lebesgue density fs ;, where 8 > 0, j = 1,2, fq1 is the
density of N(0,62), and fp2(2) = (20)~'e~1#1/%. Show that T = (T, T») is
minimal sufficient for (6, ), where Ty = > | XZ and Tb = > " | | X;].
Solution A. Let P be the joint distribution of Xy, ..., X,,. By the factor-
ization theorem, T is sufficient for (0,5). Let P = {P : 60 > 0,5 = 1,2},
P1={P:0>0,j=1},and Po = {P: 6 >0,j =2}. Let S be a statistic
sufficient for P € P. Then S is sufficient for P € P;, j = 1,2. Note that P;
is an exponential family with 77 as a minimal sufficient statistic. Hence,
there exists a Borel function ¢, such that 77 = ¥1(S) a.s. P;. Since all
densities in P are dominated by those in Py, we conclude that 77 = 1 (.5)
a.s. P. Similarly, Ps is an exponential family with T3 as a minimal sufficient
statistic and, thus, there exists a Borel function 15 such that T = 15(S)
a.s. P. This proves that T = (11(S), ¥=2(5)) a.s. P. Hence T is minimal
sufficient for (6, 7).

Solution B. Let P be the joint distribution of X1, ..., X,,. The Lebesgue
density of P can be written as

Iy (5) Ity (5) Iy () I2y(d)
exp {5 - S [ + |

Hence P = {P: 0> 0,j = 1,2} is an exponential family. Let

06, j) = ~ (f{;ggﬂ' 3 I{Q;(j )> .

Note that 77(171) = (_%70)7 77(2_1/2’1) = (_170)7 and 77(1?2) = (Oa_l)
Then, n(2=%/2,1) — n(1,1) = (=3,0) and 5(1,2) — n(1,1) = (3,—1) are
two linearly independent vectors in R%2. Hence T = (T}, T») is minimal

sufficient for (6, j) (e.g., Example 2.14 in Shao, 2003). &
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Exercise 18 (#2.41). Let (X1,...,X,,), n > 2, be a random sample from
a distribution with discrete probability density fp ;, where 6 € (0,1), j =
1,2, fp,1 is the Poisson distribution with mean 6, and fp > is the binomial
distribution with size 1 and probability 6.

(i) Show that T'=>"" | X; is not sufficient for (6, 7).

(ii) Find a two-dimensional minimal sufficient statistic for (6, 7).
Solution. (i) To show that 7 is not sufficient for (6,j), it suffices to
show that, for some x < t, P(X,, = «|T = t) for j = 1 is different from
P(X, =z|T =t) for j =2. When j =1,

P(X, = a|T = 1) = <t>(”_1)t >0,

T nt

whereas when j =2, P(X,, = z|T =t) =0 as long as x > 1.

(ii) Let gg; be the joint probability density of Xi,...,X,. Let Py =
{g%,hg%’lagég}. Then, a.s. Py implies a.s. P. By Theorem 2.3(ii) in
Shao (2003), the two-dimensional statistic

S: (‘%71 gé@) _ (en/427T76n/2w2T77l)

)
gira1 9in

is minimal sufficient for the family Py, where

1 X;=0o0rl,i=1,...,n
W: ) ? ) Y
{ 0 otherwise.

Since there is a one-to-one transformation between S and (7', W), we con-
clude that (T, W) is minimal sufficient for the family Py. For any = =
(1, ..., 2Zn), the joint density of X7, ..., X,, is

1

en91{1}(j)(1 _ Q)TLI{z}(j)WI(z}(j)eT[I{l)(j) log 0+1 (2} (5) log 75y] H

i=1

Hence, by the factorization theorem, (T,W) is sufficient for (6,5). By
Theorem 2.3(i) in Shao (2003), (T, W) is minimal sufficient for (6, 7). &

Exercise 19 (#2.44). Let (X1,..., X,) be a random sample from a dis-
tribution on R having the Lebesgue density 97167(9670)/6[(9700)(1‘), where
0 > 0 is an unknown parameter.

(i) Find a statistic that is minimal sufficient for 6.

(ii) Show whether the minimal sufficient statistic in (i) is complete.
Solution. (i) Let T'(z) = Y i, z; and W(xz) = minj<;<, z;, where
x = (x1,...,25). The joint density of X = (Xy,..., X,,) is

" _r(x
fo(z) = gn ¢ @ oy (W ().
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For x = (z1,...,zyn) and y = (Y1, .-+, Yn)s

fe(f) T ()~ T(w)]/ej(e o0) (W ()
foly) L(9,00) (W (¥))

is free of 6 if and only if T'(z) = T(y) and W(x) = W(y). Hence, the
two-dimensional statistic (T'(X), W (X)) is minimal sufficient for 6.

(ii) A direct calculation shows that, for any 6, E[T(X)] = 2né and E[W (X)]
= (1+n71)0. Hence E[(2n)"'T — (1 + n=1)"W(X)] = 0 for any 6 and
(2n)7T — (1 + n~H)~W(X) is not a constant. Thus, (T, W) is not com-
plete. 1

Exercise 20 (#2.48). Let T be a complete (or boundedly complete)
and sufficient statistic. Suppose that there is a minimal sufficient statistic
S. Show that T is minimal sufficient and S is complete (or boundedly
complete).

Solution. We prove the case when T is complete. The case in which T
is boundedly complete is similar. Since S is minimal sufficient and 7T is
sufficient, there exists a Borel function h such that S = h(T) a.s. Since
h cannot be a constant function and 7T is complete, we conclude that S is
complete. Consider T'— E(T'|S) =T — E[T'|h(T")], which is a Borel function
of T and hence can be denoted as g(T'). Note that E[g(T)] = 0. By the
completeness of T, g(T') = 0 a.s., that is, T'= E(T|S) a.s. This means that
T is also a function of S and, therefore, T' is minimal sufficient. 1

Exercise 21 (#2.53). Let X be a discrete random variable with proba-
bility density

0 z=0
fo(zx) =< (1—0)%20=—1 r=1,2,..
0 otherwise,

where 6 € (0,1). Show that X is boundedly complete, but not complete.
Solution. Consider any Borel function h(x) such that

E[h(X) 9+Zh )20t =

for any 6 € (0,1). Rewriting the left-hand side of the above equation in the
ascending order of the powers of #, we obtain that

oo

h(1) + 3" [A(z — 1) = 2h(z) + h(z +1)] 6" = 0

=1

for any 6 € (0,1). Comparing the coefficients of both sides, we obtain that
h(1) = 0and h(x—1)—h(z) = h(z)—h(z+1). Therefore, h(z) = (1—z)h(0)
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for x =1,2,.... This function is bounded if and only if h(0) = 0. If h(z) is
assumed to be bounded, then h(0) = 0 and, hence, h(z) = 0. This means
that X is boundedly complete. For h(x) = 1 — z, E[h(X)] = 0 for any 0
but h(X) # 0. Therefore, X is not complete. I

Exercise 22. Let X be a discrete random variable with
() (G20
(%)
where n and N are positive integers, N > n, and # = 0,1, ..., N. Show that

X is complete.

Solution. Let g(z) be a function of z € {0,1,...,n}. Assume Ey[g(X)] =0
for any 6, where Ejy is the expectation with respect to Py. When 6 = 0,
Py(X =x2)=1ifx =0and Ey[g(X)] = ¢g(0). Thus, g(0) =0. When 6 =1,
P (X >2)=0and

Py(X =x) = , =0,1,2,...,min{f,n},n—ax <N — 0,

N-1
(n—l)

)

Since E1[g(X)] = 0, we obtain that g(1) = 0. Similarly, we can show that
g(2) =---=g(n) = 0. Hence X is complete. I

Ey[g(X)] = g(0)P1(X =0) + g(1) P (X =1) = g(1)

Exercise 23. Let X be a random variable having the uniform distribution
on the interval (6,0 + 1), 6 € R. Show that X is not complete.
Solution. Consider g(X) = cos(2nX). Then g(X) # 0 but

sin(2m(6 4+ 1)) — sin(270)
2m

0+1
Elg(X)] = /(9 cos(2mx)dx = =0

for any 6. Hence X is not complete. I

Exercise 24 (#2.57). Let (Xi,...,X,) be a random sample from the
N(0,6?) distribution, where § > 0 is a parameter. Find a minimal sufficient
statistic for # and show whether it is complete.

Solution. The joint Lebesgue density of Xy, ..., X,, is

N I
@rg2)n P T2 T T g T T

10 = (~325)

Then n(3) — n(1) = (-32,1) and 77(%) —n(1) = (—3,V2) are linearly

independent vectors in R?. Hence T' = (>, X7,> i, X;) is minimal

Let
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sufficient for #. Note that

E (Z Xf) =nEX? = 2n6?
i=1
and )
E <Z XZ-> =nb? + (nh)? = (n +n?)o>
Let h(ty,t) = 5-t1 — n(n+1)t2 Then h(ty,t2) # 0 but E[h(T")] = 0 for any
0. Hence T is not complete. I

Exercise 25 (#2.56). Suppose that (X1,Y7),...,(X,,Y,) are indepen-
dent and identically distributed random 2-vectors and X; and Y; are in-
dependently distributed as N(u,0%) and N(u, 0% ), respectively, with § =
(n,0%,02) € R x (0,00) x (0,00). Let X and S% be the sample mean
and variance for X;’s and Y and S% be the sample mean and variance for
Y;’s. Show that 7' = (X,Y, 5%, S%) is minimal sufficient for 6 but T is not

boundedly complete.
_ 1 I 1 ,u
"=\ T2y 27627 202702

Solution. Let
- (ZX%Z}@%Z&E&@) .
=1 =1 =1 =1

Then the joint Lebesgue density of (X1, Y1), ..., (X, Y,) is

and

2

(271)" exp {UTS — % - nULz - nlog(oxay)} .
Since the parameter space {n : u € R,0% > 0,0% > 0} is a three-
dimensional curved hyper-surface in R*, we conclude that S is minimal
sufficient. Note that there is a one-to-one correspondence between T and
S. Hence T is also minimal sufficient.

To show that 7' is not boundedly complete, consider h(T') = I x~y}—35
Then |h(T)| < 0.5 and E[h(T)] = 0 for any n, but h(T) # 0. Hence T is
not boundedly complete. I

Exercise 26 (#2.58). Suppose that (X1,Y1), ..., (X,,Y,) are independent
and identically distributed random 2-vectors having the normal distribution
with EX; = EY; = 0, Var(X;) = Var(Y;) = 1, and Cov(X;,Y1) =6 €
(—1,1).

(i) Find a minimal sufficient statistic for 6.

(ii) Show whether the minimal sufficient statistic in (i) is complete or not.
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(iii) Prove that 73 = Y | X2 and Tp = Y., ¥;* are both ancillary but
(T1,T>) is not ancillary.
Solution. (i) The joint Lebesgue density of (X1,Y7), ..., (X, Yy,) is

1 " 1 &, 5 20

B 1 20
"=\T1Ze1-er )

The parameter space {n : —1 < § < 1} is a curve in R%  Therefore,
M (X2+Y2), 5", X,Y;) is minimal sufficient.

(ii) Note that E[Y> 1" (X2 +Y?)] —2n =0, but Y, (XZ +Y;?) —2n # 0.
Therefore, the mlmmal sufficient statistic is not complete.

(iii) Both Ty and T have the chi-square distribution x2, which does not
depend on . Hence both T} and 15 are ancillary. Note that

Let

E(T\Ty) = (ZX) iyf
j=1

(ZX Y2> +E Y X2V}

i#j
WE(X2Y2) +n(n — 1)E(X3)E(V?)
= n(1+260%) + 2n(n — 1),

which depends on 6. Therefore the distribution of (77,7%) depends on 6
and (71,7T3) is not ancillary. 1

Exercise 27 (#2.59). Let (X1, ...,X,,), n > 2, be a random sample from
the exponential distribution on (a,o0) with scale parameter 6. Show that

(i) >, (Xi — X(1y) and X(q) are independent for any (a, ), where X,y is
the jth order statistic;

(11) Zi = (X(n) - X(z))/(X(n) - X(nfl))7 1= 1, ey N — 2, are independent of
(X(ys 2o (X = X (1))

Solution: (i) Let 6 be arbitrarily fixed. Since the joint density of Xy, ..., X,

is
g~ enalo exp{ Zl‘l} aoo) )),

where only a is considered as an unknown parameter, we conclude that X )
is sufficient for a. Note that 7 e~ “)/el(a’oo)(x) is the Lebesgue density
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for X(1). For any Borel function g,

n > —n(r—a
Elg(X)] = 5/ g(z)e ™ @=) /0 gy — 0

for any a is equivalent to

/ g(z)e /P dx = 0

for any a, which implies g(z) = 0 a.e. with respect to Lebesgue measure.
Hence, for any fixed 0, X(;) is sufficient and complete for a. The Lebesgue
density of X; —a is 0*16*‘”/9[(0700)(@, which does not depend on a. There-
fore, for any fixed 0, 3" (X; —X(1)) = Y11 [(Xi—a)— (X 1) —a)] is ancil-
lary. By Basu’s theorem (e.g., Theorem 2.4 in Shao, 2003), >, (X; —X (1))
and X(;) are independent for any fixed 6. Since 6 is arbitrary, we conclude
that 1" | (X; — X(1y) and X(y are independent for any (a, 6).

(ii) From Example 5.14 in Lehmann (1983, p. 47), (Xq), Yy (Xi — X(1)))
is sufficient and complete for (a,f). Note that (X; — a)/6 has Lebesgue
density e™*1(g,o0)(z), which does not depend on (a,f). Since

Xny—a Xiy—a
g _ KXo —Xep _ g -
Xy~ Xy Xz Xeopze?

the statistic (Z1, ..., Z,—2) is ancillary. By Basu’s Theorem, (Z1, ..., Z,,_2)
is independent of (X(1y, Y1 (X; — X1))). 8

Exercise 28 (#2.61). Let (Xi,...,X,), n > 2, be a random sample
of random variables having the uniform distribution on the interval |[a, b],
where —oco < a < b < co. Show that Z; = (X)) — X1))/(Xn) — X)),
i =2,...,n—1, are independent of (X (1), X(y)) for any a and b, where X,
is the jth order statistic.

Solution. Note that (X; —a)/(b — a) has the uniform distribution on the
interval [0, 1], which does not depend on any (a,b). Since

X(,;)*(l _ X(l)fa

g X0 =X _ e~ b
¢ X(n) — X(l) % _ %,

the statistic (Za, ..., Z,—1) is ancillary. By Basu’s Theorem, the result fol-
lows if (X (1), X(y,)) is sufficient and complete for (a,b). The joint Lebesgue
density of X1, ..., X, is (b— a)_”l{a<z(l)<m<n)<b}. By the factorization the-
orem, (X(1), X(y,) is sufficient for (a,b). The joint Lebesgue density of
(X1, Xm)) s )

n(n —

(lg—a)”)(y - x)n72l{a<a:<y<b}-
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For any Borel function g(x,y), E[g(X), X(n))] = 0 for any a < b implies
that

/ g(z,y)(y — x)" *dady = 0
a<x<y<b

for any a < b. Hence g(z,y)(y — )" 2 = 0 a.e. m?, where m? is the
Lebesgue measure on R2. Since (y — x)" 2 # 0 a.e. m?, we conclude that
g(z,y) = 0 a.e. m?. Hence, (X(1), X(n)) is complete.

Exercise 29 (#2.62). Let (X1, ..., X,,), n > 2, be a random sample from
a distribution P on R with EX? < 0o, X be the sample mean, X(;) be the
Jjth order statistic, and T = (X (1) + X(,))/2. Consider the estimation of a
parameter # € R under the squared error loss.

(i) Show that X is better than T if P = N(#,0%),0 € R, o > 0.

(i) Show that T is better than X if P is the uniform distribution on the
interval (0 — 3,60+ 1), 0 € R.

(iii) Find a family P for which neither X nor T is better than the other.
Solution. (i) Since X is complete and sufficient for # and T'— X is ancillary
to 6, by Basu’s theorem, T — X and X are independent. Then

Rr(0) = E[(T — X)+ (X —0)]? = E(T — X)?> 4+ Rg(0) > Rz (0),

where the last inequality follows from the fact that 7" # X a.s. Therefore
X is better.

(i) Let W = w. Then the Lebesgue density of W is
n2n1 (w+%)n71 —1<w<0
flw)=19 n27t (3 —w)"" O<w<3
0 otherwise.

Therefore ET = EW + 6 = 0 and

1

Ry (6) = Var(T) = Var(W) = Nt tD)

On the other hand,

Ry () = Var(X) = % = ﬁ

Hence, when n > 2, Rp(6) < Rz ().

(iii) Consider the family P = P; U P2, where P; is the family in part (i)
and Py is the family in part (ii). When P € Py, X is better than 7. When
P € Py, T is better than X. Therefore, neither of them is better than the
other for P € P. 1

Exercise 30 (#2.64). Let (Xy,...,X,) be a random sample of binary
random variables with P(X; =1) =6 € (0,1). Consider estimating 6 with
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the squared error loss. Calculate the risks of the following estimators:
(i) the nonrandomized estimators X (the sample mean) and

0 if more than half of X;’s are 0
if more than half of X;’s are 1
if exactly half of X;’s are 0;

Th(X) =

N= =

(ii) the randomized estimators

X with probability
T1(X) =
1(X) { To with probability

[SIESNIEY

and B B
X with probability X
Th(X) = _
2(X) { with probability 1 — X.
Solution. (i) Note that
R, (0) = E(Ty - 0)?
= 0*P(X <0.5) + (1 —0)>P(X > 0.5) + (0.5 — )?P(X = 0.5).

When n = 2k,

[N

k—1

P(X <0.5) = Z (23.k> 67 (1 — )27,

_ 2k ropN .

P(X >0.5) = )07 (1— ),
2.0

" P(X =05) = (%f) 0k (1 — )",

When n = 2k + 1,

k
P(X <0.5) = Z (Qk;_ 1) 07 (1 — 0)2k+1-3,

j=0
2k+1
_ 2k 1 . .
P(X>05)= ) < N >0ﬂ(1 — g)2H1-d
j=k+1 J

and P(X =0.5) = 0.
(ii) A direct calculation shows that

Ry, (0) = E(Ty - 0)?

1o 1
= 5E(X —0)* + §E(TO —0)?

L e1-6) 1
T o + iRTﬂ(a)’
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where Ry, (6) is given in part (i), and
R, (0) = B(Tz - 0)?

_ 5 X(X0)2+<19>2(1X)]

2

=E(X —-0)°+0E(X —0)>+ (;—9)2(1—9)

= Y S S B - )X - (X~ 6)

i=1 j=1k=1
2
+92<1n—9>+<;—9> (1-0)
9 2
:E(X;;6)3+9(1n—9)+(;_9) (1-90)
— 3 _p3 — 2 - ’
_6(1-9) n20 (1 0)+0(1n 6)+<;_9> (1-9),

where the fourth equality follows from E(X — 6)? = Var(X) = 0(1 —6)/n
and the fifth equality follows from the fact that E(X;—0)(X; —0)(X,—6) #
Oifand only ifi=j5==Fk. 1

Exercise 31 (#2.66). Consider the estimation of an unknown parameter
6 > 0 under the squared error loss. Show that if 7" and U are two estimators
such that T < U and Rp(P) < Ry(P), then Ry, (P) < Ry, (P), where
Ry (P) is the risk of an estimator T and T denotes the positive part of T.
Solution. Note that T'= T, —T_, where T_ = max{—T, 0} is the negative
part of T, and T, T_ = 0. Then
Rp(P) = E(T —0)?

=E(Ty —T_ —0)?

=E(Ty —0)*> + E(T?) +20E(T-) — 2E(T T-)

= Ry, (P) + E(T?) +20E(T-).
Similarly,

Ry(P) = Ry, (P)+ E(U?) +20E(U-).
Since T'< U, T_ > U_. Also, 8§ > 0. Hence,

E(T?)+20E(T_) > E(U?) +20E(U_).
Since Rr(P) < Ry(P), we must have Ry, (P) < Ry, (P). 1

Exercise 32. Consider the estimation of an unknown parameter § € R
under the squared error loss. Show that if T and U are two estimators such
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that P(0 —t < T <0+t) > PO —-t<U<0O+t) for any t > 0, then
R7(P) < Ry(P).
Solution. From the condition,

P((T—0)2>s)<P(U-0)?%>s)
for any s > 0. Hence,
Rr(P) = E(T — 0)?
:AMP«T—m2>@m

g/mP«U—®2>®%

= E(U — 6)*
= RU(P) 1

Exercise 33 (#2.67). Let (Xi,...,X,) be a random sample from the
exponential distribution on (0, c0) with scale parameter 6 € (0,00). Con-
sider the hypotheses Hy : 6 < 6y versus Hy : 0 > 6y, where g > 0 is a
fixed constant. Obtain the risk function (in terms of ) of the test rule
T. = I(c,oo)(X) under the 0-1 loss, where X is the sample mean and ¢ > 0
is a constant.

Solution. Let L(6,a) be the loss function. Then L(#,1) = 0 when 6 > 6,
L(6,1) = 1 when 6 < 6y, L(6,0) = 0 when 6 < 6y, and L(6,0) = 1 when
0 > 6y. Hence,

('( )]
)P(X>c)+L((9 0) (X <e¢)
) 0<6by
) 6> 6.

Since nX has the gamma distribution with shape parameter n and scale
parameter 6,

_ 1 o0
P(X>c¢) = Q”(n—l)'/ 2" e/ 0y, n

Exercise 34 (#2.71). Consider an estimation problem with a parametric
family P = {Py : 0 € ©} and the squared error loss. If 6y € © satisfies that
Py <« Py, for any 6 € ©, show that the estimator 7" = 6, is admissible.
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Solution. Note that the risk Ry (0) = 0 when 6 = 6. Suppose that U is an
estimator of § and Ry (0) = E(U —0)? < Ry (0) for all §. Then Ry (6g) = 0,
i.e., E(U—0y)? = 0 under Py,. Therefore, U = 0y a.s. Py,. Since Py < Py,
for any 6, we conclude that U = 6y a.s. P. Hence U = T a.s. P. Thus, T
is admissible. I

Exercise 35 (#2.73). Let (Xi,...,X,) be a random sample of random
variables with EX? < co. Consider estimating u = EX; under the squared
error loss. Show that

(i) any estimator of the form aX + b is inadmissible, where X is the sample
mean, a and b are constants, and a > 1;

(i) any estimator of the form X + b is inadmissible, where b # 0 is a
constant.

Solution. (i) Note that

Rox(P) = B(aX +b— pn)?
= a®Var(X) + (ap + b — p)?
> 2Vaur( )
= a"Rx(P)
> Rx(P)
when a > 1. Hence X is better than aX + b with a > 1.
(ii) For b # 0,
Rz y(P) = E(X +b— pu)* = Var(X) + b* > Var(X) = Rg(P).
Hence X is better than X + b with b # 0.

Exercise 36 (#2.74). Consider an estimation problem with ¥ € [¢,d] C
R, where ¢ and d are known. Suppose that the action space contains [c, d]
and the loss function is L(| — al), where L(-) is an increasing function on
[0,00). Show that any decision rule T' with P(T(X) ¢ [¢,d]) > 0 for some
P € P is inadmissible.
Solution. Consider the decision rule

T = CI(—oo,c) (T) + TI[c,d] (T) + dI(d,oo)(T)
Then |Ty; — 9| < |T — 9| and, since L is an increasing function,

Ry, (P) = BIL(|Ty = 9))] < E[L(|T = 9])] = Rr(P)
for any P € P. Since
P(ITy(X) =9 <|T(X) = 9]) = P(T(X) ¢ [a,0]) > 0

holds for some P, € P,
R, (P.) < Rp(Py).
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Hence T7 is better than 1" and T is inadmissible. 1

Exercise 37 (#2.75). Let X be a sample from P € P, 6o(X) be a
nonrandomized rule in a decision problem with R* as the action space,
and T be a sufficient statistic for P € P. Show that if E[I4(do(X))|T]
is a nonrandomized rule, i.e., E[I4(60(X))|T] = Ia(h(T)) for any Borel
A C RF, where h is a Borel functlon then do(X) = h(T(X)) a.s. P.
Solution. From the assumption,

B |t Ga(0)| 7] = St (D)

for any positive integer n, constants ci,...,c,, and Borel sets Aq,..., 4,.
Using the results in Exercise 39 of Chapter 1, we conclude that for any
bounded continuous function f, E[f(do(X))|T] = f(h(T)) a.s. P. Then, by
the result in Exercise 45 of Chapter 1, 6o(X) = h(T) a.s. P. 1

Exercise 38 (#2.76). Let X be a sample from P € P, §o(X) be a decision
rule (which may be randomized) in a problem with R* as the action space,
and T be a sufficient statistic for P € P. For any Borel A C RF, define

n(T,A) = E[do(X, A)|T).
Let L(P,a) be a loss function. Show that

/Rk L(P,a)ddy(X,a) = E [/R L(P.a)d5o(X, a) T} s P

Solution. If L is a simple function (a linear combination of indicator
functions), then the result follows from the definition of 4;. For nonnegative
L, it is the limit of a sequence of nonnegative increasing simple functions.
Then the result follows from the result for simple L and the monotone
convergence theorem for conditional expectations (Exercise 38 in Chapter
1). 1

Exercise 39 (#2.80). Let X;,..., X,, be random variables with a finite
common mean u = EX; and finite variances. Consider the estimation of
under the squared error loss.

(i) Show that there is no optimal rule in & if & contains all possible esti-
mators.

(ii) Find an optimal rule in

n n
Sy = {Zchz 1C € ’R,Zci = 1}
=1 =1

if Var(X;) = 02/a; with an unknown o2 and known a;, i = 1,...,n
(iii) Find an optimal rule in &y if X7, ..., X, are identically distributed but
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are correlated with correlation coefficient p.

Solution. (i) Suppose that there exists an optimal rule T*. Let P; and
P, be two possible distributions of X = (Xi,...,X,,) such that p = p;
under P; and pq # po. Let Rp(P) be the risk of T. For T1(X) = p,
R, (P1) = 0. Since T* is better than Th, Ry« (P1) < Rp,(Py) = 0 and,
hence, T* = y; a.s. P;. Let P = (Py + P,)/2. If X has distribution P, then
= (p1 + p2)/2. Let To(X) = (1 + p2)/2. Then Rrp,(P) = 0. Since T*
is better than Ty, R7-(P) = 0 and, hence, T* = (1 + p12)/2 a.s. P, which
implies that T* = (u1 + p2)/2 a.s. Py since P, < P. This is impossible
since py # (p1 + pi2)/2.

(ii) Let T=>" , ¢;X; and T = >, a; X;/ > i a;. Then

Ry« (P) = Var(T™)

() /(8]
_ éagvmxi) / <§_; ‘“)

By the Cauchy-Schwarz inequality,
c
(5) ()= (&) -
Hence,

Ry« (P) < o? Z - = Var (Z ci Z) Var(T') = Rr(P).

i=1 i=1

Therefore T* is optimal.
(iii) For any 7= >"" | ¢; X;,

Rp(P )—Var( )

= Z 0202 + Z clc]pa

i#]

n n 2 n
— }: 2 2 2 2
= c;o” + po E ¢ | — E c;
i=1 i=1 i=1
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(I1-p Zc +p

-]
! ch> /n+p

L—p)/n+p]
= Var(X),

where the last equality follows from the Cauchy—Schwarz inequality

n 2 n
(Z ci> <n Z 622.
i=1 i=1

Hence, the sample mean X is optimal. &

\ \/

2

Exercise 40 (#2.83). Let X be a discrete random variable with
P(X=-1)=p, PX=k=00-p?%*" k=012, ..,

where p € (0,1) is unknown. Show that

(i) U(X) is an unbiased estimator of 0 if and only if U(k) = ak for all
k=-1,0,1,2,... and some a;

(ii) To(X) = I;o3(X) is unbiased for (1 — p)? and, under the squared error
loss, Ty is an optimal rule in <&, where $ is the class of all unbiased estima-
tors of (1 — p)?;

(iii) To(X) = I{—13(X) is unbiased for p and, under the squared error loss,
there is no optimal rule in &, where S is the class of all unbiased estimators
of p.

Solution. (i) If U(X) is unbiased for 0, then

E[UX)] = U(-1)p+ Y U(k)(1 -

- i U(k)p* -2 i U(k)p ™ + U(=1)p + i U(k)p*+?

k=0 k=0 k=0
=U0)+ Y Uk+2)p" =2 Uk+1)pF+?

k=-1 k=-1
+ i;i (](k)pk+2
k=-—1

= Y [Uk) —20(k+1) + Uk +2))p**>

k=—

=0
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for all p, which implies U(0) = 0 and U(k) —2U(k+ 1)+ U(k+2) =0 for
k=-1,0,1,2,..., or equivalently, U(k) = ak, where a = U(1).
(ii) Since

E[Ty(X)] = P(X =0) = (1-p)*,
Ty is unbiased. Let T be another unbiased estimator of (1 — p)2. Then
T(X)—Ty(X) is unbiased for 0 and, by the result in (i), T(X) = To(X)+aX
for some a. Then,

Rr(p)

B[Ty(X) +aX — (1 - p)*)?
E(Ty 4+ aX)* 4+ (1 — p)* —2(1 — p)?E[To(X) + aX]
E(Ty +aX)* - (1 —p)*

o0
=a’P(X =-1)+P(X =0)+a* Y FPX =k —(1-p)*
k=1
> P(X=0)-(1-p)°
= Var(Tp).
Hence Tj is a optimal rule in .
(iii) Since
E[T(X)] = P(X = —1) = p,
Tp is unbiased. Let T be another unbiased estimator of p. Then T(X) =
To(X) + aX for some a and

Rp(p) = E(To +aX)? —p°
= (1—a)’p+a® Y K (1—pp*—p
k=0
which is a quadratic function in ¢ with minimum
-1

o0

o= [140-p YR
k=1

depending on p. Therefore, there is no optimal rule in <. 1

Exercise 41. Let X be a random sample from a population and 6 be

an unknown parameter. Suppose that there are k£ + 1 estimators of 6,

Ty, ...,Tk+1, such that ET; = 9—!—2?21 ¢ ;bj(0),i=1,...,k+1, where ¢; ;’s

are constants and b;(6) are functions of . Suppose that the determinant
1 1 .. 1

C1,1 €21 - Ck41,1
C= 2o

Cl,k C2k " Cktlk
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Show that
T Ty oo T
T* — l C11 €21 Ckg41,1
C
Cl,k C2k "' Ck41k

is an unbiased estimator of 6.
Solution. From the properties of a determinant,

ETY ETy -+ ETyg
1| g e21 o+ cry1
ET* —— s 3 s
C
Ci,k  C2k " Ck4lk
k k
9"'2;‘:1 cl’jbj(e) 9"‘23':1 Ck+1,jbj(9)
_ l 1,1 Cht11
C
Cl,k Ck+1,k
1 1
_ ﬁ C1,1 0 Ck41,1
C
Cl,k *° Ck+lk
k k
Zj:l c1,5b;(0) - Zj:l C+1,505(0)
1
+= C1,1 Ck+1,1
C
C1,k Ck+1,k
= 9,

where the last equality follows from the fact that the last determinant is 0
because its first row is a linear combination of its other k rows. 1

Exercise 42 (#2.84). Let X be a random variable having the binomial
distribution with size n and probability p € (0,1). Show that there is no
unbiased estimator of p~!.

Solution. Suppose that T(X) is an unbiased estimator of p~!. Then

— - n k1 _ o yn—k _ 1
PO =3 () rwst -]

for all p. However,

k=0

(1) - pr < 3 (})r0 <o
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for any p but p~! diverges to oo as p — 0. This is impossible. Hence, there
is no unbiased estimator of p~'. i

Exercise 43 (#2.85). Let X = (Xy,...,X,,) be a random sample from
N(6,1), where 6 = 0 or 1. Consider the estimation of 6 with action space
{0,1}, i.e., the range of any estimator is {0, 1}.

(i) Show that there does not exist any unbiased estimator of 6.

(ii) Find an estimator 6 of 6 that is approximately unbiased, that is,
lim,, E(6) = 6.

Solution. (i) Since the action space is {0,1}, any randomized estimator 6
can be written as T'(X), where T is Borel, 0 < T(X) < 1, and

b 1 with probability T'(X)
~ | 0 with probability 1 — T(X).

Then E(f) = E[T(X)]. If § is unbiased, then E[T(X)] = 6 for § = 0,1.
This implies that, when § = 0, T(X) = 0 a.e. Lebesgue measure, whereas
when § = 1, T(X) = 1 a.e. Lebesgue measure. This is impossible. Hence
there does not exist any unbiased estimator of 6.

(i) Consider § = Ip-1/1 50y (IX]), where X is the sample mean. Since X is
distributed as N(6,n1),

E(@) = P(X| > n /) =10 (a1/* —0v/n) + & (—n'/" — 0v/n) ,

where @ is the cumulative distribution function of N(0,1). Hence, when

6 =0, lim, E(f) =1— ®(c0) + P(—00) = 0 and, when 0 = 1, lim,, E(é) =
1—®(—0) + P(—o0) =1. 1

Exercise 44 (#2.92(c)). Let X be a sample from Py, where § € © C R.
Consider the estimation of 6 under the absolute error loss function |a — 6.
Let II be a given distribution on © with finite mean. Find a Bayes rule.
Solution. Let Py x be the posterior distribution of 6 and Px be the
marginal of X. By Fubini’s theorem,

//|e|dpmxdpx - //|9|dP9dH:/|9|dH < .

Hence, for almost all X, [|0|dPy x < oo. From Exercise 11 in Chapter 1,
if mx is a median of Py x, then

/|9 —mx|dPyx < / |0 — aldPy x for almost all X

holds for any a. Hence, E|§ —mx| < E|0 — T(X)| for any other estimator
T(X). This shows that myx is a Bayes rule. I
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Exercise 45 (#2.93). Let X be a sample having a probability density
fj(x) with respect to a o-finite measure v, where j is unknown and j €
{1,...,J} with a known integer J > 2. Consider a decision problem in
which the action space is {1, ..., J} and the loss function is

(0 ifa=j
L(]’a){ 1 ifa# 3.

(i) Obtain the risk of a decision rule (which may be randomized).

(ii) Let IT be a prior probability measure on {1,...,J} with II({j}) = 7,
j=1,...,J. Obtain the Bayes risk of a decision rule.

(iii) Obtain a Bayes rule under the prior IT in (ii).

(iv) Assume that J = 2, m = m = 0.5, and f;(z) = ¢(x — p;), where
¢(x) is the Lebesgue density of the standard normal distribution and p;,
j =1,2, are known constants. Obtain the Bayes rule in (iii).

(v) Obtain a minimax rule when J = 2.

Solution. (i) Let § be a randomized decision rule. For any X, let §(X, j)
be the probability of taking action j under the rule §. Let E; be the
expectation taking under f;. Then

Rs(j) = Ej

J
S LG, k)X, k)] = ST BS(X, k)] = 1 - B;[5(X.j)],

k=1 k]

since 37, 8(X, k) = 1.
(ii) The Bayes risk of a decision rule ¢ is

J J
ry =3 mRs(j) =1-Y mE;[5(X,])
j=1 j=1
(iii) Let 6* be a rule satisfying 6*(X, j) = 1 if and only if 7; f;(X) = g(X),

where g(X) = max;<g<j 7T, fr(X). Then d, is a Bayes rule, since, for any
rule 6,

J
re=1-— m;6(z, j) fi(x)dv
3 [t
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(iv) From the result in (iii), the Bayes rule 6*(X,j) = 1 if and only if
$(x — 1j) > d(x — ), k # j. Since ¢z — ;) = e~ @=1)"/2/ /27, we
can obtain a nonrandomized Bayes rule that takes action 1 if and only if
(X = pa| < [X = pal-

(v) Let ¢ be a positive constant and consider a rule . such that §.(X,1) =1
if f1(X) > cfa(X), 6.(X,2) = 1if f1(X) < c¢f2(X), and 6.(X,1) = ~ if
f1(X) = cf2(X). Since §.(X, j) = 1 if and only if 7; f; (X)) =maxy, 7 fr(X),
where m = 1/(c + 1) and m2 = ¢/(c + 1), it follows from part (iii) of the
solution that d. is a Bayes rule. Let P; be the probability corresponding
to f;. The risk of §. is P1(f1(X) < efo(X)) — vPi(fi(z) = cf2(X)) when
j=1land 1 - Py(f1(X) < cfa(X)) + vPo(fi(z) = cf2(X)) when j = 2.
Let 9(c) = Pi(fi(X) < cfa(X)) + Po(fi(X) < efa(X)) — 1. Then o is
nondecreasing in ¢, ¥(0) = —1, lim. ¥(c) = 1, and ¥(c) — ¥(c—) =
Py (f1(X) = cfa2(X)) + Po(f1(X) = cf2(X)). Let ¢, = inf{c: ¢(c) > 0}. If
P(ex) = P(ca—), we set v = 0; otherwise, we set v = (¢, /[P (ci) =1 (cs—)].
Then, the risk of ., is a constant. For any rule §, sup; Rs(j) > r, > s, =
Rs,, (j) = sup; Rs,_(j). Hence, d., is a minimax rule. 1

Exercise 46 (#2.94). Let 6 be an unbiased estimator of an unknown
0eR.

(i) Under the squared error loss, show that the estimator 0+c is not minimax
unless supy Rr(f) = oo for any estimator T, where ¢ # 0 is a known
constant. .

(ii) Under the squared error loss, show that the estimator ¢ is not minimax
unless supy Rr(0) = oo for any estimator T, where ¢ € (0,1) is a known
constant.

(iii) Consider the loss function L(6,a) = (a — 6)?/6? (assuming 6 # 0).
Show that 6 is not minimax unless sup, Ry (6) = oo for any 7.

Solution. (i) Under the squared error loss, the risk of 6 + ¢ is

R, (P)=E(0+c—0)*=c*+Var(f) = ¢ + Ry(P).

Then

sup Ré+c(P) =c? +sup R;(P)
P P

and either supp Ry, (P) = oo or supp Ry, (P) > supp Ry(P). Hence,
the only case where 6 + ¢ is minimax is when supp Ry (P) = oo for any
estimator T'.

(i) Under the squared error loss, the risk of ¢f is

é+c

R ;(P) = E(ch — 0)* = (1 — ¢)%0% + *Var(d) = (1 — ¢)?6* + ®Ry(P).

Then, supp Ry, .(P) = oo and the only case where 0+ ¢ is minimax is when
supp Ry (P) = oo for any estimator T'.
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(iii) Under the given loss function, the risk of cf is
Rcé(P) = (1 — 0)2 + CQRé(P).

If supp R;(P) = oo, then the result follows. Assume § = supp R;(P) < oo.
Let c=¢&/(£ +1). Then
2
. R (P)=(1- 2+ 2 — f 4 5 _ € < €.
kR A N G A A T

Hence 0 is not minimax. §

Exercise 47 (#2.96). Let X be an observation from the binomial distri-
bution with size n and probability § € (0,1), where n is a known integer
> 2. Consider testing hypotheses Hy : 8 < 6y versus Hy : 0 > 0y, where
0o € (0,1) is a fixed value. Let & = {T; : 5 =0,1,...,n — 1} be a class of
nonrandomized decision rules, where T;(X) = 1 (rejecting Hy) if and only
if X > j+ 1. Consider the 0-1 loss function.

(i) When the uniform distribution on (0, 1) is used as the prior, show that
the Bayes rule within the class S is T}« (X ), where j* is the largest integer
in {0,1,...,n — 1} such that Bji1n—j+1(60) > 5 and B, (-) denotes the
cumulative distribution function of the beta dlbtrlbutlon with parameter
(a,b).

(ii) Derive a minimax rule over the class &

Solution. (i) Let Py be the probability law of X. Under the 0-1 loss, the
risk of T} is

Ry, (0) = Po(X > j)1(0,00)(0) + Po(X < j)I(g,,1)(0)

- > (Z) 05 (1= 0)"* 0,0, (0) + > (Z> 0 (1 = 0)"*I(g,,1)(0).-
k=0

k=j+1

Hence, the Bayes risk of T} is

Y, = ( )/ 0F(1—0)"~ kd9+2( ) —0)"*dp

k=j+1

ﬁ
|

J

= Z Bii1,n—k+1(00) + 2[1*3k+1,n—k+1(90)]~

k=j+1 k=0

Then, for j =1,...,n — 1,

—7r, = 2Bji1n—j11(60) — 1.

Jj—1

The family {Bg41,n—g+1(y) : 8 > 0} is an exponential family having mono-
tone likelihood ratio in logy —log(1 — y). By Lemma 6.3 in Shao (2003), if
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Y has distribution Bgy1,n—g+1, then P(Y <t) = P(logY —log(1 -Y) <
logt —log(1—t)) is decreasing in (3 for any fixed ¢ € (0,1). This shows that
Bjt1,n—j+1(60) is decreasing in j. Hence, if j* is the largest integer j such
that Bj+17n_j+1 (90) Z %, then

Ty —Tp, 20 j=1, vy J”
and
Ty, — T <0 j=4"41,..,n—1
Consequently,
T, = min 7, .

j §=0,1,...;mn—1 T3

This shows that T}« is the Bayes rule over the class .
(ii) Again, by Lemma 6.3 in Shao (2003), Py(X < j) is decreasing in 6 and
Py(X > j) is increasing in 6. Hence,

sup RTj (9) = P@O(X > j) = i (Z)Hé(l — eo)n—k’,

0€(0,1) kg1
Then, the minimax rule over the class &is T, _1. 1

Exercise 48 (#2.99). Let (Xy,...,X,) be a random sample from the
Cauchy distribution with location parameter 4 € R and a known scale
parameter o > 0. Consider the hypotheses Hy : u < pg versus Hy : u > pp,
where i is a fixed constant. Calculate the size of the nonrandomized test
Te(X) = I(¢,00)(X), where c is a fixed constant; find a ¢, such that T, has
size a € (0,1); and find the p-value for T, .

Solution: Note that X has the same distribution as X;. Hence, the size
of T.(X) is

sup E(T.(X)) = sup P(X > ¢)

H<po r<po

X — _
= supP( H>C N>
H<po g g

Therefore, if ¢, = p10 + o tan (7(1 — a)), then the size of T, (X) is exactly
a. Note that

1 1 Ca — Mo 1 1 X — uo
a=—- — —arctan| ——— )] > - — — arctan
2 7 o 2 7 o
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if and only if X > ¢, (i.e., T, (X) = 1). Hence, the p-value of T, (X) is
1 X —

— — arctan ( ,uo) .
T o

Exercise 49 (#2.101). Let (Xi,...,X,) be a random sample from the
exponential distribution on (a,00) with scale parameter 8, where a € R
and 6 > 0 are unknown parameters. Let « € (0, 1) be given.

(i) Using Ty (X) = -1 1 (X;— X (1)), where X (1) is the smallest order statis-
tic, construct a confidence interval for # with confidence coefficient 1 — «
and find the expected interval length.

(ii) Using T1(X) and T5(X) = X(3), construct a confidence interval for a
with confidence coefficient 1 — « and find the expected interval length.
(iii) Construct a confidence set for the two-dimensional parameter (a,6)
with confidence coefficient 1 — «.

Solution. (i) Let W = Ty(X)/6. Then W has the gamma distribution
with shape parameter n — 1 and scale parameter 1. Let ¢; < ¢y such that
P(ey < W < ¢3) =1 —a. Then ¢; and c¢o can be chosen so that they
do not depend on unknown parameters. A confidence interval for 6 with
confidence coefficient 1 — « is

(Tl(X) Tl(X))_

inf{a|T, (X) =1} =

N | =

Co ’ C1

Its expected length is

1 1 1 1
)BT = (= - =) (-1
(z-2)em=(s-2)@-v
(ii) Using the result in Exercise 7(iii), [T2(X) — a]/T1(X) has the Lebesgue

n
density n (1 + n”—fl) I(0,50)(t), which does not depend on any unknown
parameter. Choose two constants 0 < ¢; < ¢ such that

() t —n
/ n(l—l— i ) dt=1-— a.
o n—1

Then a confidence interval for a with confidence coefficient 1 — « is

(Ty — o1, Ty — o1 Th).
Its expected length is
El(ca — c1)Th] = (ea — c1)(n — 1)6.
(iii) Let 0 < a3 < ag be constants such that

Plag <W<as)=vV1—«
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and let 0 < by < by be constants such that

T5(X) —
P(b1 < % <b2> —e M ez — /T (.

Consider the region

C(X)= {(G,a): %j() <0< %ﬁQ,Tg(X) — byl < a < Tr(X) —ble}.

By the result in Exercise 7(iii), 71(X) and T5(X) are independent. Hence

Tl(X) < as, bl < w < b2)

P((a,0) € C(X)) = P <a1 <

0
P<a1<T1(9)Q<a2)P<b1<T2()?a<b2>
=+v1—-avl—«
=1l-a

Hence, C(X) is a confidence region for (a,#) with confidence coefficient
1—a.l

Exercise 50 (#2.104). Let (Xi,...,X,,) be a random sample from the
uniform distribution on the interval (§ — 1,0+ 1), where 6 € R is unknown.
Let X(;) be the jth order statistic. Show that (X (1) + X())/2 is strongly
consistent for # and also consistent in mean squared error.

Solution. (i) For any € > 0,

P(IXa)—O—3)>¢) =P (Xa>e+(0-3))
=[P(X1>e+0-1)]"
=(1-e"

and

P(Xpy—(0+3)]>€) =P (X <(0+3)—¢)
=[P(X1<0+3—-¢]"
=(1-¢"
Since Y7 (1 — €)™ < oo, we conclude that lim, X(;) = 6 — % a.s. and

lim,, X(,) = 0 + 3 a.s. Hence lim,, (X (1) + X(»))/2 =0 a.s.
(ii) A direct calculation shows that

1
n+1

1
E[X(n)—(0+%)]:n/ .I‘nd.li—lz—
0



Chapter 2. Fundamentals of Statistics 87

and
1

n+1

1
EXuy—(0-3)]= n/o z(1—z)" tde =
Hence (X (1) 4+ X(;,))/2 is unbiased for §. Note that

Var(X(n)) = Var (X(n) — (9 — %))
BlX(n) — (0= 3)° = [EX(m) — (0 = 3)I°

1
1
zn/ x”“dx—{@—k%— —(0—%)
0

2
. n n
Con+2 <n—|—1>

— 0

as n — oo. Similarly, lim, Var(X(;)) = 0. By the Cauchy-Schwarz inequal-
ity, [Cov(X (1), X(n))]* < Var(X(1))Var(X(,)). Thus, lim, Cov(X (1), X))
= 0 and, consequently, lim, E[(X(1)+ X n))/2 —0)? = lim,, 4~ [Var(Xy) +
Var(X(n)) + QCOV(X(l), X(n))] 0.1

Exercise 51 (#2.105). Let (Xi,...,X,) be a random sample from a
population with the Lebesgue density fo(x) = 271 (14 0x)I(_y,1)(x), where
0 € (—1,1) is an unknown parameter. Find an estimator of 6 that is
strongly consistent and consistent in mean squared error.

Solution. By the strong law of large numbers, the sample mean X is
strongly consistent for

1 1
EX125‘/_1x(1+9:t)dx:g/_1m2dx:§

Hence 3X is a strongly consistent estimator of 6. Since 3X is unbiased for
0 and Var(3X) = 9Var(X;)/n, where
! 02 1 0?

1
_ 2 _ 2 _ © 2 v _+r_ v
Var(X,) = EX; — (EX1)" = 2/_190 (1+ 6z)dx 9 3 9

we conclude that 3X is consistent in mean squared error. W

Exercise 52 (#2.106). Let X1, ..., X,, be a random sample. Suppose that
T, is an unbiased estimator of ¥ based on Xi, ..., X, such that for any n,
Var(T},,) < oo and Var(T),,) < Var(U,,) for any other unbiased estimator U,
of ¥ based on X1, ..., X,,. Show that T;, is consistent in mean squared error.
Solution. Let U, = n='>" | T1(X;). Then U, is unbiased for ¥ since
T1(X1) is unbiased for ¥. By the assumption, Var(7T},,) < Var(U,). Hence
lim,, Var(T},) = 0 since lim,, Var(U,) = lim,, Var(T1(X1))/n=0. 1
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Exercise 53 (#2.111). Let X, ..., X,, be a random sample from P with
unknown mean g € R and variance o2 > 0, and let g(u) = 0 if pu # 0 and
¢(0) = 1. Find a consistent estimator of g(u).

Solution. Consider the estimator T(X) = I(g ,,-1/4)(|X|), where X is the
sample mean. Note that 7' = 0 or 1. Hence, we only need to show that
lim, P(T = 1) = 1 when g() =1 (i.e,, p = 0) and lim,, P(T' = 1) =0
when g(pu) = 0 (ie., p # 0). If u = 0, by the central limit theorem,
vnX —4 N(0,0?) and, thus

lim P(T(X) = 1) = lim P(y/n|X| < n'/*) = lim ®(n!/*) =1,

where @ is the cumulative distribution function of N(0,1). If y # 0, then
by the law of large numbers, |X| —, || > 0 and, hence, n=*/4/|X| -, 0.
Then

lim P(T(X) =1) =limP(1 <n Y*/|X]) =0. n

Exercise 54 (#2.115). Let (X1, ..., X;,) be a random sample of random
variables from a population P with EX? < oo and X be the sample mean.
Consider the estimation of p = EXj.

(i) Let T, = X + &,/+/n, where &, is a random variable satisfying &, = 0
with probability 1 —n~" and &, = n3/? with probability n~!. Show that
the bias of T}, is not the same as the asymptotic bias of T}, for any P.

(ii) Let T, = X + n,/+/n, where 7, is a random variable that is indepen-
dent of X1, ..., X,, and equals 0 with probability 1 — 2n~! and +,/n with
probability n~!. Show that the asymptotic mean squared error of T},, the
asymptotic mean squared error of X, and the mean squared error of X are
the same, but the mean squared error of T, is larger than the mean squared
error of X for any P.

Note. The asymptotic bias and mean squared error are defined according
to Definitions 2.11 and 2.12 in Shao (2003).

Solution. (i) Since E(&,) = n®/?n~t =n'/2 E(T,) = B(X)+n"2E(¢,)
= p+ 1. This means that the bias of T,, is 1. Since &, —, 0 and X —, p,
T, —p p. Thus, the asymptotic bias of T}, is 0.

(ii) Since 1, —, 0 and /n(X — p) —4 N(0,0?), where 0% = Var(Xy), by
Slutsky’s theorem, /n (T}, — i) = /(X — p) + 1, —a N(0,02). Hence,
the asymptotic mean squared error of T}, is the same as that of X and is
equal to o2/n, which is the mean squared error of X. Since E(n,) = 0,
E(T,) = E(X) = p and the mean squared error of T}, is

_ o? 2 o2
Var(T,,) = Var(X) + Var(n,,/v/n) = g + b

which is the mean squared error of X. §
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Exercise 55 (#2.116(b)). Let (X,...,X,,) be a random sample of ran-
dom variables with finite # = EX; and Var(X;) = 60, where § > 0 is
unknown. Consider the estimation of V6. Let Ty, = VX and T, = )_(/S7
where X and S? are the sample mean and sample variance. Obtain the
asymptotic relative efficiency of T1,, with respect to Tb,,.

Solution. Since \/n(X —0) —4 N(0,6), by the 6-method with g(t) = v/t
and ¢'(t) = (2v1)~1, Va(VX —VB) =4 N(0, ). From Example 2.8 in
Shao (2003),

V(X —0,58% —0) —4 N»(0,%),

0 H3 )
E:
< p3 pa—6°

and p, = E(X;1 — 6)*, k = 3,4. By the é-method with g(z,y) = 2/,/y,
dg9/0x = 1/\/y and dg/dy = —x/(2y>/?), we obtain that

where

Vi(Tan — V) —a N (0,0710% — pis + (ua — 6%)/4]) .

Hence, the asymptotic relative efficiency of T1,, with respect to Ty, is 40 —
4971/13 + 971(/144 — 92). ]

Exercise 56 (#2.118). Let (Xi,...,X,,) be a random sample from the
N(0,0?) distribution with an unknown o > 0. Consider the estimation of
o. Find the asymptotic relative efficiency of T1,, = \/7/2 Y ., | X:i|/n with
respect to Ty, = (Y1, X2 /n)l/2.

Solution. Since E(y/7/2|X1|) = o and Var(y/7/2|X1|) = (53 — 1)o?, by
the central limit theorem, we obtain that

VT, — o) =4 N (0, (3 — 1) 0?).

Since EX? = 02 and Var(X1) = 20, /n(n™ ! 31| X2—0?) —4 N(0,20%).
By the d-method with g(t) = v/t and ¢'(t) = (2v/f) !, we obtain that

V(Tay, — o) =4 N (0,10%).

Hence, the asymptotic relative efficiency of Ty, with respect to Ts,, is equal
to %/(g —1)=(m—-2)"11

Exercise 57 (#2.121). Let Xi,...,X,, be a random sample of random
variables with EX; = pu, Var(X;) = 1, and EX} < oco. Let Ty, =
n~t3 " X2 —1 and To, = X2 — n~! be estimators of p?, where X is
the sample mean.

(i) Find the asymptotic relative efficiency of T3,, with respect to Tb,.

(ii) Show that the asymptotic relative efficiency of T3, with respect to Ty,
is no larger than 1 if the distribution of X; — u is symmetric about 0 and
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p# 0.
(iii) Find a distribution P for which the asymptotic relative efficiency of

Ty, with respect to Ts, is larger than 1.
Solution. (i) Since EX? = Var(X;)+ u? = 1+ 2, by applying the central
limit theorem to {X?} we obtain that

\/E(Tln* [ ZXz 1+H —d N(077)5

where v = Var(X?). Also, by the central limit theorem, /n(X — p) —4
N(0,1). When p # 0, by the 6-method and Slutsky’s theorem,

— 1
Vi(Ton = p?) = Vn(X? — p?) — —= =4 N(0,4p).
Jn
When p =0, v/nX —4 N(0,1) and, thus,
n(Tap —p?) =nX? —1=(VnX)?> =1 =4 W -1,

where W has the chi-square distribution x?. Note that E(W — 1) = 0 and
Var(W — 1) = 2. Therefore, the asymptotic relative efficiency of T3,, with
respect to 15, is equal to

4/1,2
6—{ Var(X?) 'LL#O

2 —
nVar(X7) p=0.

(ii) If the distribution of X — p1 is symmetric about 0, then E(X; —u)® = 0
and, thus,

Var(X7) = EX{ — (EX?])?
= B[(X1 — p) + u)* = (1 + p?)?
= B(X; — p)* + 4pE(X1 — p)® + 6> B(X, — p)?
+ 4P B(Xy — p) + pt — (1 + 207 + p)

=B(X; —p)* +4p® -1

> 447,
where the inequality follows from the Jensen’s inequality E(X; — u)*
[E(X1—pu)?)? = 1. Therefore, when u # 0, the asymptotic relative efficiency
e<1.
(iii) Let the common distribution of X; be the distribution of Y//p(1 — p),
where Y is a binary random variable with P(Y = 1) = p and P(Y =0) =
1 —p. Then EX; = \/p/(1 —p) = p, Var(X;) = 1, and EX{ < co. Note
that

Var(X7) = Var(Y?)/[p?(1 — p)?] = Var(Y)/[p*(1 — p)*] = [p(1 —p)] "
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Then the asymptotic relative efficiency is e = 4u?/Var(X?) = 4p?, which
is larger than 1 if p € (1/2,1). 1

Exercise 58 (#2.119). Let (Xi,...,X,) be a random sample of ran-
dom variables with unknown mean g € R, unknown variance o2 > 0, and
EX{ < co. Consider the estimation of 2 and the following three estima-
tors: Ty, = X2, Ty, = X2 — S?/n, T3, = max{0, Ty, }, where X and 52
are the sample mean and variance.

(i) Show that the asymptotic mean squared errors of Tj,, j = 1,2,3, are
the same when u # 0.

(ii) When p = 0, obtain the asymptotic relative efficiency of T5,, with re-
spect to T3, and the asymptotic relative efficiency of T3, with respect to
T5,,. Find out which estimator is asymptotically more efficient.

Solution. (i) By the central limit theorem and the d-method,

V(X2 — %) =4 N(0,4p20%).

By the law of large numbers, S? —, o2 and, hence, S?/\/n —, 0. By
Slutsky’s theorem,

Vi(Ton — p?) = VnX? — 5% /y/n =4 N(0,4uc?).

This shows that, when p # 0, the asymptotic mean squared error of Ty, is
the same as that of T, = X?. When pu # 0, X? —,, u? > 0. Hence

lim P(Ty, # T3,) = lim P(T3, < 0) = lim P(X? < S%/n) = 0,

since S?/n —, 0. Therefore, the limiting distribution of v/n(Ts, — p?) is
the same as that of \/n(T, — u?).

(i) Assume p = 0. From /nX —4 N(0,0?), we conclude that nX? —,4
a?W, where W has the chi-square distribution x2. Since p = 0, this shows
that n(Ty, — p?) —q 0?W and, hence, the asymptotic mean squared error
of Thy, is 0* EW?/n? = 30*/n?. On the other hand, by Slutsky’s theorem,
n(Toy — p?) = nX — S? =, 0*W — 02, since S? —, 02. Hence, the asymp-
totic mean squared error of Ty, is c*E(W — 1)?/n? = o*Var(W)/n? =
20 /n%. The asymptotic relative efficiency of T, with respect to T, is
3/2. Hence Ty, is asymptotically more efficient than T3,,. Note that

(T3, — p?) = nmax{0, Ty, } = max{0, nT,} —¢ max{0,c*(W — 1)},

since max{0,t} is a continuous function of ¢. Then the asymptotic mean
squared error of Ty, is 0 E(max{0, W — 1})?/n? and The asymptotic rela-
tive efficiency of T3, with respect to Ty, is E(W —1)?/E(max{0, W —1})%.
Since

E(max{0,W —1})* = E[(W — 1)’ I{w>1}] < E(W — 1),
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we conclude that T3, is asymptotically more efficient than T},, j =1,2. &

Exercise 59. Let (Xi,...,X,,) be a random sample from the exponential
distribution 9’16’3”/9.7(0700)(30), where 6 € (0,00). Consider the hypotheses
Hy : 0 < 0y versus Hy : 0 > 0y, where 6y > 0 is a fixed constant. Let
T. = I(C’Oo)()_(), where X is the sample mean.

(1) For any given level of significance o € (0,1), find a ¢, o such that the
test T, ., has size a and show that T, , is a consistent test, i.e., the power
of Tt, . converges to 1 as n — oo for any 6 > 6.

(ii) Find a sequence {b,} such that the test T} is consistent and the size
of Ty, converges to 0 as n — oo.

Solution. (i) Note that X/ has the gamma distribution with shape pa-
rameter n and scale parameter 8/n. Let Gy, ¢ denote the cumulative dis-
tribution function of this distribution and ¢, . be the constant satisfying
Gr,0,(Cn.a) =1 — . Then,

sup P(T,, . =1) = sup[l — Gp9(cna)] =1 —Gnpy(cna) = a,

0<0, 0<0o
i.e., the size of T,  is .
Since the power of T,
and, by the law of large numbers, X —, 6, the consistency of the test T
follows if we can show that lim,, ¢, = 0p. By the central limit theorem,
V(X —0) =4 N(0,6%). Hence, \/n(5 — 1) —4 N(0,1). By Pélya’s
theorem (e.g., Proposition 1.16 in Shao, 2003),

is P(T, =1) = P(X > cpa) for 0 > 6y

Len,a

lim sup ’P(\/ﬁ (% - 1) < t) - @(t)‘ —0,

where ® is the cumulative distribution function of the standard normal
distribution. When 6 = 6,

a:P(XZCn’a) :P<\/ﬁ(9XO —1) > \/ﬁ(cz(,)a _1>).

Hence

1@@(@(6;; _ 1)) —1—q,

which implies lim,, v/n( Cz(’]‘” —1) =& !(1 — a) and, thus, lim, ¢, o = o.
(ii) Let {a,} be a sequence of positive numbers such that lim, a,, = 0 and
lim, v/na, = co. Let o, = 1 — ®(y/nay,) and b, = ¢y, , Where ¢, o is
defined in the proof of part (i). From the proof of part (i), the size of Ty,
is ay,, which converges to 0 as n — oo since lim,, v/na, = co.

Using the same argument as that in the proof of part (i), we can show

that
1-ay—o(va (5 1) )| <o

lim
n
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which implies that

Jim — V™ (Cnv% _ 1) —1.
poy @71(1 _ Oln) 0o

Since 1 — ay, = ®(y/nay,), this implies that lim, ¢, o, = 6. Since b, =
Cn,a.,, the test Ty, is consistent. I

Exercise 60 (#2.130). Let (Y;, Z;), ¢ = 1,...,n, be a random sample from
a bivariate normal distribution and let p be the correlation coefficient be-
tween Y7 and Z;. Construct a confidence interval for p that has asymptotic
significance level 1 — «, based on the sample correlation coefficient

- 2),

S ,/sngZ

where Y =n"'3"" | V;, Z=n"'3""  Z;, S3 =(n—1)"'Y" , (YV;-Y)?, and
Sy =n-1)""3, (Zi—2)*.

Solution. Assume first that EY; = EZ; = 0 and Var(Y;) = Var(Z;) =
From Exercise 9, \/n(p — p) —q N(0,c?) with

= p’[EMY) + E(Z}) + 2E(Y2 Z7)] /4
—plE(Y2Z)) + EMZ)] + E(Y2Z?).

We now derive the value of ¢®>. Under the normality assumption, E(Y}') =

E(Z}) =3. Let U =Y, + Z; and V = Y] — Z;. Then U is distributed

as N(0,2(1 4 p)), V is distributed as N(0,2(1 — p)) and U and V are

independent, since Cov(U,V) = E(UV) = E(Y? — Z?) = 0. Note that
=(U+V)/2and Z; = (U —V)/2. Then,

E[U+V)2U -V)?]

16
E(U*+V*—20%V?)

16
EU* + EV* — 2EU?EV?

16
3[2(1+ p)]* +3[2(1 — p)]* = 2[2(1 + p)][2(1 — p)]
16
3[(A+p)?+ (1 =p)? —2(1-p°)
4

3(2+2p?) — 2+ 2p?

4

B(Y?Z}) =

=1+2p
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and

E[(U+V)3U -V)]
16
E[(U + V)3U] — E[(U + V)3V]
16
EU* + 3E(U?V?) — EV4 — 3E(U?V?)
16
32(1+p))* = 3[2(1 - p)]?
16
_3(L+p)° -3 —p)?
4

E(Y?Zy)

= 3p.
By symmetry, E(Y1Z3}) = 3p. Using these results, we obtain that
= p*[3+3+2(1+20%)]/4 - 2p(3p) + 1+ 2p?
=p2(2+p%) —6p> +1+2p°
=pt =202 +1
= (1-p°)%

In general, the distribution of p does not depend on the parameter vec-
tor (EYy, EZy,Var(Yy), Var(Z;)), which can be shown by con51der1ng the

transformation (Y; — EY;)/+/Var(Y;) and (Z;, — EZ;)/+/Var(Z;). Hence,
Vi(p—p) —a N(0,(1 - p)?)
always holds, which implies that p —, p. By Slutsky’s theorem,
fl(fpp) —a N(0,1).

Hence

1iTanP (za/Q < W < 2ay2 ) =1-a,

where z, is the (1—a)th quantile of the standard normal distribution. Thus,
a confidence interval for p that has asymptotic significance level 1 — « is

[ ( )Zoz/Q/\F p+(1 - )zoc/Q/\f]



Chapter 3

Unbiased Estimation

Exercise 1. Let X be a sample from P € P and 6 be a parameter. Show
that if both 77 (X) and T5(X) are UMVUE’s (uniformly minimum variance
unbiased estimators) of # with finite variances, then T1(X) = T5(X) a.s. P
for any P € P.

Solution. Since both T and 75 are unbiased, 77 — 75 is unbiased for 0.
By the necessary and sufficient condition for UMVUE (e.g., Theorem 3.2
in Shao, 2003),

ETi(Th —T5)]=0 and E[Ix(Th —T3)]=0
for any P. Then, for any P € P,
E(Ty — Ty)* = E[T\(T), — T»)] — E[Tx(Ty — T)] = 0,
which implies that T} = T5 a.s. P. 1l

Exercise 2 (#3.1). Let (X1,..., X;;) be a sample of binary random vari-
ables with P(X; = 1) =p € (0,1).

(i) Find the UMVUE of p™, where m is a positive integer and m < n.

(ii) Find the UMVUE of P(X; +-- -+ X,,, = k), where m and k are positive
integers and k < m < n.

(iii) Find the UMVUE of P(X; + - + Xp_1 > X»).

Solution. (i) Let 7= """, X;. Then T is a complete and sufficient statis-
tic for p. By Lehmann-Scheffé’s theorem (e.g., Theorem 3.1 in Shao, 2003),
the UMVUE should be h,,(T) with a Borel hy, satisfying E[h,,(T)] = p™.
We now try to find such a function h,,. Note that T has the binomial
distribution with size n and probability p. Hence

n

Elhn (1] = 3 () (01 = ",

k=0

95
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Setting E[h,,(T)] = p™, we obtain that

n

> <Z> B (K)p" (1 — pyn—m—(h=m) — 1

k=0

for all p. If m < k, p*~™ — oo as p — 0. Hence, we must have h,, (k) = 0
for k=0,1,...,m — 1. Then

k=m
for all p. On the other hand, from the property of a binomial distribution,
- n—m —m n—m—(k—m
S (kg =
k=m -m

for all p. Hence, (?)hn (k) = (7=™) for k = m,...,n. The UMVUE of p™ is

k—m

(ii) Note that

PXi+ 4+ Xn=k) = <k>pk(1_p)m_k

By the result in part (i), the UMVUE of p/** is h; 1 (T), where the function
hjtr is given in part (i) of the solution, j = 0,1,...,m — k. By Corollary
3.1 in Shao (2003), the UMVUE of P(X; +---+ X,, = k) is

(7:) jz_:_: (m]_ k) (=1 hj i (T).

(iii) Let Sp—1 = X1 + -+ + X,,—1. Then S,_; and X,, are independent
and S;,_1 has the binomial distribution with size n — 1 and probability p.



Chapter 3. Unbiased Estimation 97

Hence,
P(Sp—1>X,,) = P(X,=0)P(S,-1 >0)+ P(X,, =1)P(Sp—1 > 1)
= P(Sp,—1>0)— P(X, =1)P(S,-1=1)

— 1= (1-p)" T = - D)

- ; (") - @y > (" %)
= ilcjpj7

where ¢; =n —1, ¢, = (—1)""1(n — 1), and

¢ = (~1)*1 K”; 1) +(n— 1)(?_2)] . j=2..n—1.

The UMVUE of P(S,—1 > X,,) is Z?:l c;h;(T) with h; defined in part (i)
of the solution. I

Exercise 3 (#3.2). Let (X1, ..., X,,) be a random sample from N (yu,o?)
with an unknown g € R and a known o2 > 0.

(i) Find the UMVUE’s of p3 and u*.

(ii) Find the UMVUE’s of P(X; < ) and 4 P(X; < t) with a fixed ¢ € R.
Solution. (i) Let X be the sample mean, which is complete and sufficient
for u. Since

0=FE(X —p)?®=E(X?-3uX?+3u2X — p*) = B(X?) — 3uc?/n — 1,
we obtain that
E[X® - (30%/n)X] = E(X®) — 3uc?/n = u?

for all u. By Lehmann-Scheffé’s theorem, the UMVUE of wdis X3 —
(302/n)X. Similarly,

30" = B(X — p)*
= BIX(X — p)°]
= B[X* - 3uX?®+ 32 X? — 1 X]
= BE(X*) = 3u(3uc®/n + 1) + 3 (0® /n + p*) — p*
= E(X*) —6p20?/n —4u*
= BE(X*) — (66%/n)E(X? — 0% /n) — 4u*.

Hence, the UMVUE of p* is [X* — (602 /n)(X? — 0% /n) — 30] /4.
(i) Since E[P(X; < t|X)] = P(X; < t), the UMVUE of P(X; < t) is
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P(X; < t|X). From the properties of normal distributions, (Xi,X) is
bivariate normal with mean (u, pt) and covariance matrix

Consequently, the conditional distribution of X; given X is the normal
distribution N (X, (1 —n~1)o?). Then, the UMVUE of P(X; <) is

o ( t—X >
ovV/1—n-1)’
where @ is the cumulative distribution function of N(0,1). By the domi-
nated convergence theorem,

d d t—X d t—X

—P(X,<t)=—FE |0 —m-x || =E |0 ——— || .

dt K<) dt { (0\/1—n1>} [dt (ax/l—nlﬂ
Hence, the UMVUE of £ P(X; <) is

d@( t—X )_ 1 (I)/( t—X ) .
dt ov1l—n-1 ov1—n-1 ovV1—n-1)"

Exercise 4 (#3.4). Let (X1, ..., X;,) be a random sample from N (y,,02)
and let Y3,...,Y, be a random sample from N (p,, 02). Assume that X;’s
and Y;’s are independent.

(i) Assume that p, € R, py € R, 02 > 0, and 05 > 0. Find the UMVUE’s
of py — py and (0, /0y)", where > 0 and r < n.

(i) Assume that p, € R, puy € R, and 02 = o, > 0. Find the UMVUE’s
of 02 and (pz — py) /0.

(iii) Assume that p, = py € R, 02 > 0, 02 > 0, and 02 /07 = 7 is known.
Find the UMVUE of pu,,.

(iv) Assume that p, = p, € R, 02 > 0, and 05 > 0. Show that a UMVUE
of p, does not exist.

(v) Assume that p, € R, py € R, 02 > 0, and 05 > (0. Find the UMVUE
of P(Xl S Yl)

(vi) Repeat (v) under the assumption that o, = oy.

Solution: (i) The complete and sufficient statistic for (us,py,0%,07) is
(X,Y, S%,5%), where X and S% are the sample mean and variance based
on X;’s and Y and S% are the sample mean and variance based on Y;’s.
Therefore X — Y is the UMVUE of y, — p,. A direct calculation shows
that

E(S;() = Og/ﬁjm—l,ra
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where
_ ey
Klm,r - 2T/2F(mT+T)

Hence, the UMVUE of o7 is k,—1,5%. Similarly, the UMVUE of o, is
Kn—1,—rSy . Since Sx and Sy are independent, the UMVUE of (0,/0,)"
is Km— 1,rRn—1 —T‘S S_T _

(ii) The complete and sufﬁment statistic for (g, py,02) is (X, Y, S?), where

§ =z | X -

Smce (m+n—2)5? /02 has the chi- square distribution X2, ,,_,, the UMVUE
of 02 is $% and the UMVUE of o, ! is Kyyn— 9,-157 L. Since X —Y and S?
are 1ndependent Kmtn—2,-1(X —Y)/S is the UMVUE of (pz — pty)/ 0.
(iii) The joint distribution of X;’s and Y ’s is from an exponential family
with (mX +ynY, 33" X7 + 40 Y] ) as the complete and sufficient
statistic for (1,,02). Hence, the UMVUE of p, is (mX +~ynY)/(m +n).
(iv) Let P be the family of all possible distributions of (X7, ..., X;n,Y1, ..., Ya)
and P, be the sub-family of P with 0} = ~yo2. Suppose that T is a
UMVUE of . By the result in (iii), 7, = (mX + ynY)/(m + yn) is
a UMVUE of p; when P, is considered as the family of distributions for
(X1, .0y X, Y1,...,Y,,). Since E(T'—T,) = 0 for any P € P and T is a
UMVUE, E[T(T —T,)] =0 for any P € P. Similarly, E[T,(T —T,)] =0
for any P € P.,. Then, E(T —T,)? = 0 for any P € P, and, thus, T =T,
a.s. Py. Since a.s. P, implies a.s. 79, T =T, as. P for any v > 0. This
shows that T depends on v = 02 /02 o,, which is impossible.

(v) Since U = (X,Y,5%,5%) is complete and sufficient for (pie, p1y, 03, 07),
P(X; <Y1|U) is UMVUE for P(X; <Y7). Note that

P(Xy <tV <olU = (2,9, 2))P<Z§ m,W<”_y),

- %y Sz T sy

where Z = (X; — X)/Sx and W = (Y; — Y)/Sy. From Example 3.4 in
Shao (2003), Z has Lebesgue density fm( ) and W has Lebesgue density
fn(w), where

VAT (E51) [1_ os? yk/z)z
vk — 1)1‘(’“7) (k—1)?

Since Z and W are independent, the conditional density of (X7,Y7) given

Ui XN 1 %
"
fm( SX >&fn( SY )

fi(z) = Lo 61y vy (12])-
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Hence, the UMVUE is

0 o) S % _ Y
P(XlsmU):SXlsy/_ /_ . (USXX)fn(t - Y) .

(vi) In this case, U = (X,Y,S?) with S? defined in (ii) is complete and
sufficient for (i, py, 02). Similar to part (v) of the solution, we have

X -X)-h-Y) <r>
vm+n—28 - ’

where 7 is the observed value of R = —(X —Y)/(v/m+n —25). If we
denote the Lebesgue density of T = [(X; — X) — (Y1 — Y)]/(vVm +n — 28)
by f(t), then the UMVUE of P(X; < Y;) is ffoo f(t)dt. To determine f,
we consider the orthogonal transformation

(Z1y ooy Zpgn)” = A(X1, oo, Xy, Y1, 0, Y0) T,
where A is an orthogonal matrix of order m + n whose first three rows are
(M2, 07,),
(0T, nH20,),
and
(2—m™t - n_l)_1/2(1 —m Y —m g, = 1, n_lJn,l),

and J, denotes a row of 1’s with dimension k. Then Z; = \/EX, oy =
VY, Zg=2-m 1t —n H (X - X) - V1 = Y)], (m+n—2)5% =
Z?:g” Z2 and Z;, i = 3,...,m + n, are independent and identically dis-
tributed as N(0,02). Note that

2—m~1— ’I’L_1Z3

T = .
VA2 4+ 2,

Then, a direct calculation shows that

2 >(m+n—5)/2

f(t) =cmn <1 - Ly Jammmimamny (I,

where
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Exercise 5 (#3.5). Let (Xi,...,X,), n > 2, be a random sample from
the uniform distribution on the interval (6; — 62,6, + 03), where 6; € R
and ¢ > 0. Find the UMVUE’s of 0;, j = 1,2, and 6, /65.

Solution. Let X ;) be the jth order statistic. Then (X (1), X(5)) is complete
and sufficient for (61, 62). Hence, it suffices to find a function of (X1, X(,,))
that is unbiased for the parameter of interest. Let Y; = [X;—(01—652)]/(202),
i =1,...,n. Then Y;’s are independent and identically distributed as the
uniform distribution on the interval (0,1). Let Y(;y be the jth order statistic
of Y;’s. Then,

E(X(n)) = 292E(Yv(n)) + 601 — 6o

1
= 29277,/ yndy + 91 - 02
0

29271
= 01— 0
n+1+1 2

and
E(X(l)) = 292E(}/(1)) + 91 - 92

1
= 202n/ y(1—y)"'dy + 6, — 02
0

29271
= — 01 + 0-.
n+1+ 1+ 02

Hence, E(X(n) + X(l))/Q = 6; and E(X(n) — X(l)) = 292(71 — 1)/(n + 1)
Therefore, the UMVUE’s of #; and 6, are, respectively, (X, + X(1))/2
and (n + 1)(X ) + X(1))/[2(n — 1)]. Furthermore,

X Yo + Y .
E( m + (1)) E( m + (1)) 01 92E( L )
Xy = Xq) Yy = Yo 02 Yy = Yoy
nfl// z+y)(y — z)"3dady
+01_92 / / — )" 3dxdy

n 01 —602 n
+

n—2 0 n-—2

n_b

n—292'

Hence the UMVUE of 01/92 1S 7( (n) + X(l))/(X(n) — X(l)) 1

Exercise 6 (#3.6). Let (Xi,...,X,,) be a random sample from the ex-
ponential distribution on (a,c0) with scale parameter 6, where 6 > 0 and
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a€R.

(i) Find the UMVUE of a when 6 is known.

(ii) Find the UMVUE of § when a is known.

(iii) Find the UMVUE’s of § and a.

(iv) Assume that 6 is known. Find the UMVUE of P(X; > t) and the
UMVUE of £ P(X; >t) for a fixed t > a.

(v) Find the UMVUE of P(X; > t) for a fixed t > a.

Solution: (i) When 6 is known, the smallest order statistic X(;) is com-
plete and sufficient for a. Since EX 1y = a+60/n, X(1)—0/n is the UMVUE
of a.

(ii) When a is known, T = > | X; is complete and sufficient for . Since
ET =n(a+0), T/n —ais the UMVUE of 6.

(iii) Note that (X(1),T — nX(y)) is complete and sufficient for (a,6) and
2(T'—nX1))/0 has the chi-square distribution X%(nfl)' Then E(T —nX 1))
= (n —1)0 and the UMVUE of 6 is (T — nX())/(n — 1). Since EX(y) =
a+0/n, the UMVUE of a is X1y — (T —nX())/[n(n —1)].

(iv) Since X(q) is complete and sufficient for a, the UMVUE of

(a—t)/0
e t>a
P(Xlzt):{l t<a

is g(X(1)) satisfying

n > —n(r—a
P(X1 >t) = E[g(Xq))] = 5/ g(x)e ™ @=a)/0 gy

for any a, which is the same as
net/@
0

g(x)e—nw/ed‘r _ e—(n—l)a/@

a

for any a < t and g(a) = 1 for a > t. Differentiating both sides of the above
expression with respect to a, we obtain that

net/eg(a)e—na/e (n_ 1) —(n—l)a/e.

Hence,

[ (A=nThe D/ g <t

and the UMVUE of P(X; > t) is g(X(;)). The UMVUE of 4 P(X; > t) =
—0~tee=1)/0 is then —0~1g(X(1)).

(v) The complete and sufficient statistic for (a, ) is U = (X(1), T — nX(l))
The UMVUE is P(X; > #{U). Let Y =T — nX ;) and 4; = {X ;) = X, }.
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Then P(A;) =n~t If t < X(q), obviously P(X; > t|U) = 1. For t > X(1),
consider U = u = (z(1),y) and
U= u>

Xy - Xy _ t—
P(XlztU—u)—P< S OB A6

Y Ty
_P<X1—X(1) Zt—l‘(l)>
Y Yy

n

Xi— X t—
ZP(AJ')P( 1= Xy -z
j=1

Y Ty

Aj>
n—lP(Xl - X > t—x()
X - X ) y
that the conditional probability given A; is 0 and the conditional probabil-
independent and identically distributed as the exponential distribution on
(1 _ 1) [1 o t=Xgy "
n Yim (X = X))
when X (1) <¢. 8

(i) Find the UMVUE of # when a is known.

An
n Y y )
— X - X t—
_n 1P< 1 (1) > (1) An>

n >

1 t— n—2

_n <1—m<1)) :

n Y
where the second equality follows from the fact that U and (X; — X(1))/Y
are independent (Basu’s theorem), the fourth equality follows from the fact
ities given A;, j = 2,...,n, are all the same, the fifth equality follows from
the fact that Y = Z;:ll (X; — X(1)) on the event A,, and the last equality
follows from the fact that conditional on A,, X; — X(1),i=1,...,n—1, are
(0, 00) with scale parameter 6 and (X1 — X(1)/ Z?;ll (Xi — X(1y) has the
beta distribution with density (n — 2)(1 — )" 31 1y(x). Therefore, the
UMVUE is equal to 1 when ¢ < X(;) and
Exercise 7 (#3.7). Let (Xi, ..., X;,) be a random sample from the Pareto
distribution with Lebesgue density Haex_(9+1)l(a7m)(x), where 8 > 0 and
a> 0.
(ii) Find the UMVUE of a when 6 is known.
(iii) Find the UMVUE’s of a and #.
Solution: (i) The joint Lebesgue density of Xy, ..., X, is

f(z, .., xy) = 0"a™ exp {(0 +1) Zlog :L'z} I(a,00)(z(1)),

i=1
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where (1) = mini<;<, ;. When a is known, T' = Z?:l log X; is complete
and sufficient for 8 and T — nlog a has the gamma distribution with shape
parameter n and scale parameter 1. Hence, ET~! = 6/(n—1) and, thus,
(n—1)/T is the UMVUE of 6.

(ii) When 6 is known, Xy is complete and sufficient for a. Since X,
has the Lebesgue density nfa™z~ "V 1,  (z), EX(1) = nfa/(nf — 1).
Therefore, (1 —n6)X1)/(nd) is the UMVUE of a.

(iii) When both a and 6 are unknown, (Y, X(1)) is complete and sufficient
for (a,0), where Y = 3 (log X; —log X(1)). Also, Y has the gamma distri-
bution with shape parameter n — 1 and scale parameter 71 and X (1) and
Y are independent. Since EY ! =6/(n—2), (n—2)/Y is the UMVUE of

6. Since
Y
p{[t- g xof = [ B

nin—1

-
)t

1= 5555 X is the UMVUE of a. o

Exercise 8 (#3.11). Let X be a random variable having the negative
binomial distribution with

mx—m—(

rz—1
r—1

)pr(l_p)xr7 :v:r,r—i—l,...,

where p € (0,1) and r is a known positive integer.

(i) Find the UMVUE of p’, where ¢ is a positive integer and t < 7.

(ii) Find the UMVUE of Var(X).

(iii) Find the UMVUE of log p.

Solution. (i) Since X is complete and sufficient for p, the UMVUE of p’
is h(X) with a function h satisfying E[h(X)] = p* for any p, i.e.,

ih(x) (i B i)pr(l —p)" " =p'

for any p. Let ¢ =1 — p. Then
T

O

for any g € (0,1). From the negative binomial identity

oo

2 Go)r=at
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with any positive integer j, we obtain that
z—1 = z—1 (r—t—1
h _ x+t _ x
3 L o () [ M (R
for any q. Comparing the coefficients of ¢*, we obtain that
rx—t—1
(rftfl)
z—1\ ?
(7‘—1)
(ii) Note that Var(X) = r(1—p)/p* = rq/(1—q)*. The UMVUE of Var(X)
is h(X) with E[h(X)] = rq/(1 — q)? for any ¢ € (0,1). That is,

h(z) = x=rr+1,...

o0 r—1 q'r‘ q'r‘+1
h '=——Var(X)=r——m——=
; (@) (r - 1>q (I—q)r ar(X) g
for any ¢. Using the negative binomial identity, this means that
r=r r—1 T r=r4+2 T+1 ! - rz=r+1 ’I"—f—l !

for any ¢, which yields

(iii) Let h(X) be the UMVUE of logp = log(1—gq). Then, for any q € (0, 1),

3 L

Il I
|
(]2 M2
15
M T
— =
/\ﬁv
+ %
w:flv Mg
NE-T
o~
_|_
‘SQ
.

forz=r+1r+2 ....1
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Exercise 9 (#3.12). Let (Xi,...,,X,) be a random sample from the
Poisson distribution truncated at 0, i.e., P(X; = z) = (e — 1)716% /2!,
r=1,2,...,0 > 0. Find the UMVUE of § when n =1, 2.
Solution. Assume n = 1. Then X is complete and sufficient for # and the
UMVUE of 6 is h(X) with E[h(X)] = 0 for any 6. Since

1 0*
B = g D Ao
we must have
> h(x > 6 > 0
Z 0(c” — 1) Z P Z —1)!

z=1

for any 6. Comparing the coefficient of 8 leads to h(1) = 0 and h(x) =
forx =23, ....

Assume n = 2. Then T = X + X5 is complete and sufficient for 6. The
UMVUE of 6 is h(T) with E[h(T)] = 0 for any 0. Then

oo oo H_j s -1 1
-1)2= = h(t)6"
e E::Z: z'j ; ( ) ;ﬂ(t_z)u
On the other hand,
, 00 91 2 0o 00 9i0j+1 o0 . t—2 1
o =17 =0\ 35 | =22 S =Y
i=1 i=1 j=1 t=3 =0

Comparing the coefficient of §* leads to h(2) = 0 and

t—2

t—1
1 1
ht) = ; ilt—1— i)!/g il(t —1i)!
fort=3,4,.... 1

Exercise 10 (#3.14). Let X4,..., X,, be a random sample from the log-
distribution with

PXy=2)=—-1-p)"/(xlogp), z=1,2,..,

€ (0,1). Let k be a fixed positive integer.
(i) For n = 1,2,3, find the UMVUE of p*.
(ii) For n = 1,2, 3, find the UMVUE of P(X = k).
Solution. (i) Let # = 1—p. Then p* = Zf o (M) (=1)767. Hence, it suffices
to obtain the UMVUE for 8". Note that the distribution of X7 is from a
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power series distribution with y(z) = 2= and ¢(#) = —log(1 — ) (see
Example 3.5 in Shao, 2003). The statistic T = Y. | X; is complete and
sufficient for 6. By the result in Example 3.5 of Shao (2003), the UMVUE

of 0" is (-

Tn -Tr

—— A, 3 (1),

Yn(T) frrt, }( )
where v, (t) is the coefficient of ' in (Z;il %) Jie, yu(t) =0fort <n
and 1
n(t) =
0 2 (1 +1) - (g +1)

Y1+ +Yn=t—n,y; >0

fort =n,n+1,.... When n = 1,2,3, ~,(t) has a simpler form. In fact,
7 (1) =0 and
nt)y =t t=23,..;

72(1) = 72(2) = 0 and

[ V)

t7
1
t) = t=3,4,..;
72() l (l+1)(t—l—1)’ 3; PRRRS)

’}/3(1) = ’}/3(2) = ’}/3(3) =0 and
-3
(ii) By Example 3.5 in Shao (2003), the UMVUE of P(X; = k) is

Tn— (T — k)
Wf{k,kﬂ,.,,}(na

I
=)

t—

2 1
l1—|-1 l2+1)(t—l1—12—2)

where 7, (t) is given in the solution of part (i). i

Exercise 11 (#3.19). Let Y1, ..., Y,, be a random sample from the uniform
distribution on the interval (0, §) with an unknown 6 € (1, c0).
(i) Suppose that we only observe

Y; ify;,>1
X, = ¢ = i =1,..,n.
: { 1 ify <1, o
Derive a UMVUE of 6.
(ii) Suppose that we only observe
Yi ity; <1 .
XZ-_{ ] Y > 1, 1=1,...,n.
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Derive a UMVUE of the probability P(Y; > 1).

Solution. (i) Let m be the Lebesgue measure and ¢ be the point mass on
{1}. The joint probability density of X7, ..., X,, with respect to 6+m is (see,
e.g., Exercise 16 in Chapter 1) 07" (g 9y (X)), where X(,,) = maxj<i<n X;.
Hence X, is complete and sufficient for ¢ and the UMVUE of 6 is h(X,))
satisfying E[h(X(,y)] = 6 for all & > 1. The probability density of X,
with respect to 6 +m is 07" 1y (z) + b~ "a" " (1 9y (z). Hence

n (2
E[h(X(n))] = héi) + 07/1 h(m)x”_ldx.

Then )
0"t = h(1) + n/ h(z)z" 'dx
1

for all # > 1. Letting § — 1 we obtain that h(1) = 1. Differentiating both
sides of the previous expression with respect to # we obtain that

(n+1)0" = nh(0)0"" 0> 1.

Hence h(z) = (n+ 1)x/n when x > 1.

(ii) The joint probability density of Xi,..., X,, with respect to § + m is
6~"(1 — 0~1)"~", where r is the observed value of R = the number of
X;’s that are less than 1. Hence, R is complete and sufficient for . Note
that R has the binomial distribution with size n and probability 6~ and
P(Y; > 1) =1- 060", Hence, the UMVUE of P(Y; > 1) is 1 — R/n. 1

Exercise 12 (#3.22). Let (X4, ..., X,,) be a random sample from P € P
containing all symmetric distributions with finite means and with Lebesgue
densities on R.

(i) When n = 1, show that X; is the UMVUE of u.

(ii) When n > 1, show that there is no UMVUE of p = EX;.

Solution. (i) Consider the sub-family P; = {N(p,1) : o € R}. Then X;
is complete for P € P;. Hence, E[h(X;)] = 0 for any P € P implies that
E[h(X1)] =0 for any P € Py and, thus, h = 0 a.e. Lebesgue measure. This
shows that 0 is the unique estimator of 0 when the family P is considered.
Since FX; = p, X is the unique unbiased estimator of p and, hence, it is
the UMVUE of p.

(ii) Suppose that T is a UMVUE of u. Let P; = {N (i, 1) : u € R}. Since
the sample mean X is UMVUE when P; is considered, by using the same
argument in the solution for Exercise 4(iv), we can show that T = X a.s. P
for any P € P;. Since the Lebesgue measure is dominated by any P € P,
we conclude that T = X a.e. Lebesgue measure. Let Py be the family given
in Exercise 5. Then (X(1) + X())/2 is the UMVUE when P is considered,
where X ;) is the jth order statistic. Then X = (X(1) + X(5,))/2 a.s. P for
any P € P,, which is impossible. Hence, there is no UMVUE of p. I
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Exercise 13 (#3.24). Suppose that T is a UMVUE of an unknown
parameter . Show that T* is a UMVUE of E(T*), where k is any positive
integer for which F(T?%F) < cc.

Solution. Let U be an unbiased estimator of 0. Since T is a UMVUE of
0, E(TU) = 0 for any P, which means that TU is an unbiased estimator
of 0. Then E(T?U) = E[T(TU)] = 0 if ET* < co. By Theorem 3.2 in
Shao (2003), T? is a UMVUE of ET?. Similarly, we can show that 7% is a
UMVUE of ET3...., T* is a UMVUE of ET*. i

Exercise 14 (#3.27). Let X be a random variable having the Lebesgue
density [(1—6) +6/(2y/x)]1,1)(x), where 6 € [0,1]. Show that there is no
UMVUE of 0 based on an observation X.

Solution. Consider estimators of the form h(X) = a(X /2 4+ b)I(.1)(X)
for some real numbers a and b, and ¢ € (0,1). Note that

/01 h(z)dz = a/l Y24 + ab/1 dr = 2a(1 — v/c) + ab(1 — ¢).

C c

Ifb=-2/(14++/c), then fol h(z)dx = 0 for any a and c. Also,

1 1 1
h b
\/O 2EZ/L:E)dx - g/c xildl‘ + a2 \/C 171/2d$ - 7% logc + ab(l N \/E)

If a = [b(1 — /) — 27 logc] ™!, then fol gf}%)dx = 1 for any b and c. Let
ge = h with b = —2/(1 4+ +/¢) and a = [b(1 — \/c) — 27 Llog ] 7L, c € (0,1).
Then

Bl = (1-0) [ autao+o [ s

0

for any 0, i.e., g.(X) is unbiased for 0 for any ¢ € (0,1). The variance of
ge(X) when 0 =0 is

1
Blge(X)]* = a2/ (z7! + b7 + 2ba™/?)dw

= a’[—logc+ b*(1 — ¢) + 4b(1 — \/0)]
_ —loge+b*(1—c) +4b(1 — \/c)
T Bi-ve -2 Tlogd?
where b = —2/(1 + 1/c). Letting ¢ — 0, we obtain that b — —2 and, thus,

FElg.(X)]? — 0. This means that no minimum variance estimator within
the class of estimators g.(X). Hence, there is no UMVUE of 6. i

Exercise 15 (#3.28). Let X be a random sample with P(X = —1) =
2p(1 —p) and P(X = k) = p*(1 —p)3~* k=0,1,2,3, where p € (0, 1).
(i) Determine whether there is a UMVUE of p.
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(ii) Determine whether there is a UMVUE of p(1 — p).
Solution. (i) Suppose that f(X) is an unbiased estimator of p. Then

p=2f(—1)p(1—p)+ f(0)(1—p)*+ f(1)p(1 —p)*> + f(2)p*(1 — p) + f(3)p°

for any p. Letting p — 0, we obtain that f(0) = 0. Letting p — 1, we
obtain that f(3) = 1. Then

1=2f(-1)(1-p)+ f(1)1-p)* + f(2)p(1 - p) + p*
=2f(=1) + f(1) + [£(2) = 2f(=1) = 2f(D)]p + [F(1) = f(2) + 1]p*.

Thus, 2/(—1)+ £(1) = 1, £(2)~2f(~1)~2f(1) = 0, and £(1)— £(2)+1 = 0.
These three equations are not independent; in fact the second equation is a
consequence of the first and the last equations. Let f(2) = ¢. Then f(1) =
c—1land f(-=1)=1—c¢/2. Let g.(2) =¢, g.(1) =c—1, go(—-1) =1 —¢/2,
g:(0) = 0, and g¢.(3) = 1. Then the class of unbiased estimators of p is
{gc(X) : ¢ € R}. The variance of ¢.(X) is

Blge(X))?=p* = 2(1=¢/2)*p(1=p)+(c=1)*p(1=p)* +*p*(1—p) +p° —p*.
Denote the right hand side of the above equation by h(c). Then
h'(c) = —(2 = e)p(1 = p) + 2(c = 1)p(1 = p)* + 2cp*(1 — p).
Setting h'(c) = 0 we obtain that
0=c—242(c—1)(1-p)+2cp=c—2+2c—2(1—p).

Hence, the function h(c) reaches its minimum at ¢ = (4 — 2p)/3, which
depends on p. Therefore, there is no UMVUE of p.
(i) Suppose that f(X) is an unbiased estimator of p(1 — p). Then

p(1—p) =2f(=1)p(1 —p) + £(0)(1 — p)* + fF(1)p(1 — p)?
+f(2)p*(1—p) + f3)p°

for any p. Letting p — 0 we obtain that f(0) = 0. Letting p — 1 we obtain
that f(3) = 0. Then

1=2f(-1)+ /(M)A -p)+ f2)p
for any p, which implies that f(2) = f(1) and 2f(—1) + f(1) = 1. Let
f(=1) = ¢. Then f(1) = f(2) = 1 —2c. Let g.(=1) = ¢, gc(0) = g.(3) = 0,
and g.(1) = ¢g.(2) = 1—2¢. Then the class of unbiased estimators of p(1—p)
is {gc(X) : ¢ € R}. The variance of g.(X) is
Blge(X))? = p* = 2¢p(1 = p) + (1 — 2¢)p(1 — p)°
+(1-20)*p*(1 = p) — p?
=2¢%p(1 - p) + (1 = 20)°p(1 — p) — p?
= [2¢ + (1 - 2¢)°]p(1 — p) - p?,
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which reaches its minimum at ¢ = 1/3 for any p. Thus, the UMVUE of
p(1—p)is gi3(X). o

Exercise 16 (#3.29(a)). Let (X1,..., X,) be a random sample from the
exponential distribution with density 9_16_@_@)/9[((1700)(1'), where a < 0
and 6 is known. Obtain a UMVUE of a.

Note. The minimum order statistic, X(y), is sufficient for a but not com-
plete because a < 0.

Solution. Let U(X (1)) be an unbiased estimator of 0. Then E[U(X(y))] =
0 implies

0 [e'S)
/ U(z)e ™ ?dx + / Ulz)e ™ %dz =0
a 0

for all @ < 0. Hence, U(z) = 0 a.c. for z < 0 and [;° U(x)e */%dx = 0.
Consider
X)) = 0X 1) + ) (—c0,0(X(1))

with constants b and c. Then E[h(X(1))U(X(1))] = 0 for any a. By Theorem
3.2 in Shao (2003), h(X (1)) is a UMVUE of its expectation

ena/&

0
bo
_ _ _na/0 e _ _na/0
c(l e )—l—ab—l—n(l e ),
which equals @ when b =1 and ¢ = —60/n. Therefore, the UMVUE of « is
X)) = (X)) = 0/n)I(—oc,01(X(1)). B

n

0
EhX))] = / (bx + c)e "2/ %dx

Exercise 17 (#3.29(b)). Let (Xi,...,X,) be a random sample from

the distribution on R with Lebesgue density Ga‘gx_w“)f(a’oc) (z), where
€ (0,1] and 6 is known. Obtain a UMVUE of a.

Solution. The minimum order statistic X(;) is sufficient for a and has

Lebesgue density nﬁa”%’("oﬂ)l(am)(x). Let U(X(1)) be an unbiased es-

timator of 0. Then E[U(X ()] = 0 implies

1 e}
/ U(z)z~ Mg + / Ulz)z~ ™+ Vdz =0
a 1

for all a € (0,1]. Hence, U(z) = O a.e. for z € (0,1] and [ U(z)z~ "+ Vdy
=0. Let
h(Xw) = ela,00 (X)) + Xy loa1(X)

with some constants b and ¢. Then

E[h(X0))U(Xq))] = C/1°° U(a)z~ " Dde = 0.
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By Theorem 3.2 in Shao (2003), h(X (1)) is a UMVUE of its expectation
1

[e.¢]
Elh(Xw)] = bneane/ x_"edm—kcnﬁa”a/ 2~ (D gy

a 1
_ (. bnb no abnd
1) nf —1’

which equals @ when b =1 — % and ¢ = 1. Hence, the UMVUE of a is

1
h( X)) = I1,00)(X (1)) + (1 - no) Xaylo,(X(wy)- 1

Exercise 18 (#3.30). Let (Xi,...,X,) be a random sample from the
population in a family P as described in Exercise 18 of Chapter 2. Find a
UMVUE of 6.

Solution. Note that P = P; U Py, where P; is the family of Poisson
distributions with the mean parameter § € (0,1) and Ps is the family of
binomial distributions with size 1 and probability #. The sample mean X
is the UMVUE of # when either P; or P is considered as the family of
distributions. Hence X is the UMVUE of § when P is considered as the
family of distributions. I

Exercise 19 (#3.33). Find a function of # for which the amount of
information is independent of 6, when Py is

(1) the Poisson distribution with unknown mean 6 > 0;

(b) the binomial distribution with known size r and unknown probability
6 € (0,1);

(c) the gamma distribution with known shape parameter « and unknown
scale parameter 6 > 0.

Solution. (i) The Fisher information about 6 is I(6) = 1. Let n = n(6).
If the Fisher information about 7 is

. do\? do\* 1
I = _— I = _— —_ =
=(5) 0= (5) 7=
not depending on 6, then Z—Z = 1/v/ch. Hence, n(0) = 2v/0/+/c.

(ii) The Fisher information about 6 is 1(0) = sy Letn = n(0). If the
Fisher information about 7 is

. AN AR

im=(%) 19=(%) =

= () 0= (5) =
not depending on 6, then % = /r/+y/c0(1 —0). Choose ¢ = 4r. Then
1n(0) = arcsin(\/9).
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(iii) The Fisher information about 6 is I(0) = zz. Let n = n(0). If the
Fisher information about 7 is

I(n) = (Zf})zf(e) - (Zz)Z a—a
a

then 97 = 6" and, hence, 7(6) = log.

Exercise 20 (#3.34). Let (X1,...,X,,) be a random sample from a dis-
tribution on R with the Lebesgue density %f (%), where f(z) > 01is a
known Lebesgue density and f/(z) exists for all x € R, p € R, and o > 0.
Let 6 = (p,0). Show that the Fisher information about 6 contained in

X1y X,y i

[ (2))? F @) af @)+ ()]
| Grde J ) dz
f(@) ]t (@)+f ()] [2f'(2)+f(2)]?
J @ dv [ =5y —de

assuming that all integrals are finite.
Solution. Let g(u,0,z) =log = f (*3#). Then

0o P
aug(ﬂv 755)_ O_f(:c;,u)
and ( Y u)
_ -wf(5R) 1
a g(u,am)f Uf(x;u) o
Then

ot L) o
oAt
o
elpmoni] = & [ ] (50
% {x?((j))ﬂrf(x)dx
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" E 6‘1 (1.0, 1) m,axn}
= Uz/f/(( ) x—u?’((jo:)) +1 if(”t”)m

“)
:/f x+f( ) g

1(6) = nE [88910 1f(X1 ”)} {aaelog f(X1 ”)y I

Exercise 21 (#3.36). Let X be a sample having a probability density
fo(x) with respect to v, where 6 is a k-vector of unknown parameters. Let
T(X) be a statistic having a probability density gg(t) with respect to A.
Suppose that % fo(x) and % go(t) exist for any x and ¢ and that, on any set
{116]] < ¢}, there are functions u.(z) and v(t) such that | & fo(2)| < u.(z),
\%gg )] < ve(t) fuc )dv < 0o, and [ v.(t)dA < co. Show that

(i) Ix (9) — IT(O) is nonnegative definite, where Ix(6) is the Fisher infor-
mation about 6 contained in X and IT(O) is the Fisher information about
0 contained in T}

(ii) Ix(0) = I7(0) if T is sufficient for 6.

Solution. (i) For any event T~1(B),

0 0
[ AR @fm)du

:ae/ 1(3

= 89P( (B))

= 8 ge( )dA

:/ ag90()
_/ [89 log go(t )] go(t)d\

0
—/ 6 log go(T')dP,

where the exchange of differentiation and integration is justified by the
dominated convergence theorem under the given conditions. This shows
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that

Then

E
- 5 {B| o fox)|1] [ Sosanm)] |
9

Then the nonnegative definite matrix

[;elogfe( ) — aaeloggo(T)] [aaelogfe( ) — gelogge(T)]

is equal to Ix(0) + Ir(0) — 2I7(0) = Ix(0) — I7(0). Hence Ix(0) — Ir(0)
is nonnegative definite.
(ii) If T is sufficient, then by the factorization theorem, fp(x) = go(t)h(z).
Since a% log fo(x) = % log o (t), the result in part (i) of the solution implies
that

9 108 50(T) = 2 1og go(T)

00 g go =90 0g go a.s.
Therefore, Ix(0) = I7(6). 1

Exercise 22 (#3.37). Let (Xi,...,X,) be a random sample from the
uniform distribution on the interval (0,6) with 8 > 0.

(i) Show that d% xfo(x)dr # f:cdgfg )dx, where fy is the density of
X(n), the largest order statlstlc

(ii) Show that the Fisher information inequality does not hold for the
UMVUE of 6.

Solution. (i) Note that fg(z) = nf~"z" I g)(x). Then

d n? o " n?
/x@fe(x)dm:—m/o x dsc——n+1.

On the other hand,

0
n " d nf n
d9/ wfol@ (9”/ d$>_d€<n+1>_n+1'
(ii) The UMVUE of 6 is (n + 1)X()/n with variance 62/[n(n + 2)]. On

the other hand, the Fisher information is I(f) = nf=2. Hence [I(0)]7! =
6?/n > 0%/In(n+2)].
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Exercise 23 (#3.39). Let X be an observation with Lebesgue density
(20)~te~1#1/% with unknown 6 > 0. Find the UMVUE’s of the parameters
0, 0" (r > 1), and (1 + 0)~! and, in each case, determine whether the
variance of the UMVUE attains the Cramér-Rao lower bound.
Solution. For #, Cramér-Rao lower bound is #? and |X| is the UMVUE of
6 with Var(]X|) = 62, which attains the lower bound.

For 0", Cramér-Rao lower bound is 7202". Since E[|X|"/T'(r +1)] = 6",
| X|"/T(r 4+ 1) is the UMVUE of " with

| X" 2 I'(2r+1) 242
V. — | =67 -1 0"
ar <r(7~+1) NCEN S
when r > 1.
For (1+6)~!. Cramér-Rao lower bound is 62 /(1+6)*. Since E (e~X) =
(1+6)"", e~ 1Xl is the UMVUE of (14 6)~! with

1 1 02
-Ix1) _
Var(e ) 1520 (1+6072 (1+67 "

Exercise 24 (#3.42). Let (Xi, ..., X;,) be a random sample from N (u, 0?)
with an unknown g € R and a known ¢? > 0. Find the UMVUE of e'*
with a fixed t # 0 and show that the variance of the UMVUE is larger than
the Cramér-Rao lower bound but the ratio of the variance of the UMVUE
over the Cramér-Rao lower bound converges to 1 as n — oco.

Solution. The sample mean X is complete and sufficient for p. Since

E (etX> _ 6ut+02t2/(2n)7

the UMVUE of et is T(X) = ¢~ t/(2m)+X,
The Fisher information I(u) = n/o?. Then the Cramér-Rao lower

2
bound is (%et“) /I(p) = o?t?e*# /n. On the other hand,

o242e2th

)

Var(T) = e~ N pe2X _ g2t (e”Qtz/" — 1) et >
n

the Cramér-Rao lower bound. The rza‘gio of the variance of the UMVUE over
the Cramér-Rao lower bound is (e /™ — 1) /(0% /n), which converges to
1 as n — oo, since lim,_,o(e® —1)/z = 1. 1

Exercise 25 (#3.46, #3.47). Let X1, X, ... be independent and identi-
cally distributed random variables, m be a positive integer, and h(x1,..., T )
be a function on R™ such that E[h(X1, ..., X;n)]? < oo and h is symmetric
in its m arguments. A U-statistic with kernel h (of order m) is defined as

—1
n
Up = <m> > X Xy,

1<i1 < <im<n
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where Zl<z’1<~~<im<n denotes the summation over the (771) combinations
of m distinct elements {i1,...,im,} from {1,...,n}. For k = 1,...,m, define
hi(x1, .oy i) =E[h(x1, ooy Ty X1, oo, Xm)] and ¢ = Var(hg(Xq, ..., Xi)).
Show that

()G <G< <

(ii) (n + 1)Var(Up+1) < nVar(U,) for any n > m;

(iii) if (; =0 for j < k and ( > 0, where 1 < k < m, then

Var(Uy) = B G +o( ! ) ;

nk nk+1
(iv) m2¢; < nVar(U,) < m(,, for any n > m.
Solution. (i) Forany k =1,....m—1,let W = hyy1 (X1, ..., Xi, Xi+1) and
Y = (X1,..., Xk). Then (41 = Var(W) and ¢ = Var(E(W|Y)), since
E(W|Y) = E[hk+1(X17 "'anan+1)|X1a ) Xk)] = hk(le an‘)
The result follows from
Var(W) = E{E[(W —EW)?*|Y]} > E{[E(W|Y) - EW]*} = Var(E(W]Y)),

where the inequality follows from Jensen’s inequality for conditional expec-
tations and the equality follows from EW = E[E(W]Y)].

(ii) We use induction. The result is obvious when m = 1, since U is an
average of independent and identically distributed random variables when
m = 1. Assume that the result holds for any U-statistic with a kernel of
order m — 1. From Hoeffding’s representation (e.g., Serfling, 1980, p. 178),

where W, is a U-statistic with a kernel of order m—1, S, is a U-statistic with

variance (fn)flnm, Nm 1s a constant not depending on n, and Var(U,) =
Var(W,,) + Var(S,). By the induction assumption, (n + 1)Var(W, ;) <
nVar(W,,). Then, for any n > m,

nVar(U,) = nVar(W,,) + nVar(S,)

= nVar(W,) + n(:L) M,
mnm,
m—1)(n-2)---(n—m+1)
mln,
nn—1)--(n—m+2)

= nVar(W,,) +

> (n+ 1)Var(Wp41) +

= (n+ 1)Var(Wy41) + (n + 1) (n; 1> 7177m

= (n+ 1)Var(W,41) + (n + 1)Var(S,+1)
= (n+ 1)Var(Up41).
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(iii) From Hoeffding’s theorem (e.g., Theorem 3.4 in Shao, 2003),

0-3 Wisdls

Forany l=1,....m

(D0 (m\ (=—m)n—m—1)[n—m—(m—1-1)]
() _l!<l> nn—1)---[n—(m-1)]

=1(7) [ vo ()
-0 ()

If (; =0 for j <k and ¢ > 0, where 1 < k < m, then

Var(U,) = i WQ

W6, , 5 0

(m) I=k+1 "3
o () 5 0(3)

I=k+1
H() G +O< 1 ) ~

nk nk+1

1)

G

(iv) From the result in (ii), nVar(U,) is nonincreasing in n. Hence nVar(U,,)
< mVar(Up,) = m(,, for any n > m. Also, lim,[nVar(U,)] < nVar(U,)
for any n > m. If ¢; > 0, from the result in (iii), lim, [nVar(U,)] = m2(;.
Hence, m?¢; < nVar(U,,) for any n > m, which obviously also holds if
¢(1=0.1

Exercise 26 (#3.53). Let h(x1, 72, 23) = [(_o00)(71 + 22 +23). Find hy
and (x, k = 1, 2,3, for the U-statistic with kernel h based on independent
random variables X7, X5, ... with a common cumulative distribution func-
tion F'.

Solution. Let GG x H denote the convolution of the two cumulative distri-
bution functions G and H. Then

hl(l'l) = E[I(foo,o)(xl + Xo + Xg)] = Fx F(—.’L‘l)7

ho(x1,22) = E[l(—oo,0) (21 + 22 + X3)] = F(—21 — 22),
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h3(xy, 22, 23) = I(—oo,0) (21 + 22 + 23),
¢ = Var(F x F(—X1)),
CQ = Var(F(—X1 — Xg)),

and
G3=F*«F«F(0)1—FxFxF(0). 1

Exercise 27 (#3.54). Let Xi,...,X, be a random sample of random
variables having finite EX? and EX;?. Let u = EX; and i = EX; "
Find a U-statistic that is an unbiased estimator of ;i and derive its variance
and asymptotic distribution.

Solution. Consider h(z1,22) = (3 + £2)/2. Then the U-statistic

1 X X
Un:n(n—l) Z (X+X)
1<i<j<n J v

is unbiased for E[h(X1, X2)] = pji. Define hyi(z) = (zji + = 'p)/2. Then

E2V(X1) + p®Var(X7 ) + 2p(1 — pja)
: .

G = Var(h(X1)) =
By Theorem 3.5 in Shao (2003),
V(U — i) —a N(0,4G1).

Using the formula for the variance of U-statistics given in the solution of the
previous exercise, we obtain the variance of U, as [4(n—2){1+2¢2]/[n(n—1)],
where (2 = Var(h(X1, X2)). 1

Exercise 28 (#3.58). Suppose that
Xijzai—&—etij—i—sij, i=1,..,a,5=1,...,b

where o; and ¢ are unknown parameters, t;; are known constants, and ¢;;
are independent and identically distributed random variables with mean
0. Find explicit forms for the least squares estimators (LSE’s) of 6, «,
1=1,...,a

Solution. Write the model in the form of X = Z(3 + ¢, where

X = (X1, X1y oo, Xaty ooy Xab),

ﬂ = (aly ~'~7aa79)a
and
g = (611, ey E1by ---5Eqly -~-a€ab)-



120 Chapter 3. Unbiased Estimation

Then the design matrix 7 is
b 0 0 t
z=| o
0 0 Jy, t,
where t; = (t;1,...,tp) and Jp is the b-vector of 1’s. Solving the normal
equation (Z'auZ)p = Z7™ X, we obtain the LSE’s

a b I v
sy D i X — 0 X
= . _

Zj:l(tij —t:.)?

T 1 b v 1 b
where ¢; = ¢ > tij, Xi. = 5 > Xij, and

)

Exercise 29 (#3.59). Consider the polynomial model
X; = Bo + Biti + Pot? + B3t +ei, i=1,..,n,

where ¢;’s are independent and identically distributed random variables
with mean 0. Suppose that n = 12, t; = —1, ¢ = 1,...,4, t; = 0, i =
5,...,8 and t; = 1,4 = 9,...,12. Show whether the following parameters
are estimable (i.e., they can be unbiasedly estimated): Bo+ B2, 81, Bo — b1,
B1 + B3, and By + 1 + B2 + Bs.

Solution. Let X = (Xl, ...,Xlg), g = (617 ...,512), and ﬁ = (ﬂ0751,ﬂ27ﬂ3).
Then X = Z( + ¢ with

1 1 1 11 1111111
7 _ -1 -1 -1 -1 0 0 00 1 1 1 1
1 1 1 1 1000071111
-1 -1 -1 -1 00 0 0 1 1 1 1
and
12 0 8 0
0 8 0 8
777 =
8 0 8 0
0 8 0 8

From the theory of linear models (e.g., Theorem 3.6 in Shao, 2003), a
parameter [” 3 with a known vector [ is estimable if and only if | € R(Z7Z).
Note that By + B2 = I8 with [ = (1,0,1,0), which is the third row of
Z"Z divided by 8. Hence [y + (2 is estimable. Similarly, 81 + 83 ="
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with [ = (0,1,0,1), which is the second row of Z7Z divided by 8 and,
hence, (51 + (3 is estimable. Then Gy + B1 + B2 + (3 is estimable, since any
linear combination of estimable functions is estimable. We now show that
Bo— 01 =175 with | = (1,—1,0,0) is not estimable. If 5y — (; is estimable,
then there is ¢ = (¢1, ..., ¢4) such that | = Z7Z¢, i.e.,

12¢1 4+ 8c3 =1
8cy + 8¢y = —1
801 + 803 =0
8cy + 8¢y =0,

where the second and the last equations have no solution. Similarly, the
parameter 31 is not estimable, since 8co + 8c4 = 1 and 8¢y + 8c4 = 0 can
not hold at the same time. I

Exercise 30 (#3.60). Consider the one-way ANOVA model
Xij :/J,-I-Cki-l-é:ij, j:].,...,ni,’é.:].,...,m,

where ;1 and «; are unknown parameters and ¢;; are independent and iden-
tically distributed random variables with mean 0. Let

X = (Xlla "'7X1n1a"'7Xm17 "'7anm)a

£ = (5113 <5 €1ngs -+ Em, "'7€mnm)7

and 8 = (u, a1, ..., Q). Find the matrix Z in the linear model X = Zf+¢,
the matrix Z7 Z, and the form of [ for estimable [” 3.
Solution. Let n =n; +--- +n,, and J, be the a-vector of 1’s. Then

A A | B
P T R
Jo 0 0 e T
and
n 1 n9 Nom,
ny ny 0 e 0
777 = %) 0 %) s 0
e | | ™

Note that {7/ is estimable if and only if | € R(Z7Z), the linear space
generated by the rows of Z7Z. We now show that {73 is estimable if and
only iflo =10 +---+ 1, for [ = (lo,ll, ...,lm) € R
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If | € R(Z7Z), then there is a ¢ = (cg,c1, ..., ¢n) € R™T! such that
l=27"Zc,i.e.,
ncy +nic1 + -+ Nplm = lo
ni1co +nicp = ll

N Co + N Cm = lm

holds. Then lg =11 + --- + l,,. On the other hand, if l[o = Iy + --- + L,
then the previous m + 1 equations with cg, ¢y, ..., ¢,,, considered as variables
have infinitely many solutions. Hence | € R(Z7Z).

Exercise 31 (#3.61). Consider the two-way balanced ANOVA model
Xijk = U + oy + ﬁj +’72] +5ijk» ¢ = ]., ...,a,j = 1, ...,b71€ = ]., .y Cy

where a, b, and c are some positive integers, €;;;’s are independent and
identically distributed random variables with mean 0, and u, «;’s, §;’s,
and v;;’s are unknown parameters. Let X be the vector of Xj;;’s, € be the
vector of g;;1’s, and B = (U, @1, ..., Qay By ooy Bbs Y115 s V1by s Vals o> Vab)-
(i) Obtain the design matrix Z in the model X = Z + ¢ and show that
the rank of Z is ab.
(i) Find the form of estimable ["3, | € RItatb+ab,
(iii) Obtain an LSE of 5.
Solution. (i) Let J; be the t-vector of 1’s, I} be the identity matrix of
order ¢, A be the ab x b block diagonal matrix whose jth diagonal block is
Jay j=1,..,0b,

B=(I I - Ip),

and
A= (Jw A B 1),

which is an ab x (1+a+ b+ ab) matrix. Then Z is the (1+a+b+ab) x abe
matrix whose transpose is
ZT — (AT AT...AT)
and
ATAg A]
277 =cAN"A=c| ° 0),
( AO Iab

where Ag = (Ju A B7). Clearly, the last ab rows of Z7Z are linearly
independent. Hence the rank of Z, which is the same as the rank of Z7Z,
is no smaller than ab. On the other hand, the rank of A is no larger than
ab and, hence, the rank of Z”Z is no larger than ab. Thus, the rank of Z
is ab.
(ii) A function "3 with | € RItatb+ab i5 estimable if and only if [ is a
linear combination of the rows of Z7Z. From the discussion in part (i)
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of the solution, we know that 73 is estimable if and only if [ is a linear
combination of the rows in the matrix (A§ o).

(iii) Any solution of Z7ZB3 = Z7X is an LSE of 3. A direct calculation
shows that an LSE of 8 is ({, &1, oy Gas By ooy Bos A1y ooy A1bs ooes Fals ey Yab)s
Whereﬂ = X, di = Xl—X, Bj = X.j.—X..., ’%‘j = Xl‘j.—Xi..—X.j.-FX...,
and a dot is used to denote averaging over the indicated subscript. I

Exercise 32 (#3.63). Assume that X is a random n-vector from the
multivariate normal distribution N,,(Z3, 021,,), where Z is an n x p known
matrix of rank r < p < n, 3 is a p-vector of unknown parameters, I, is the
identity matrix of order n, and 02 > 0 is unknown. Find the UMVUE’s of
(I"B)2, 1”3/, and (I73/0)? for an estimable I7 3.

Solution. Let 3 be the LSE of 3 and 62 = | X — Z3||?/(n — r). Note
that (Z7X,6?) is complete and sufficient for (3,02), I3 has the normal
distribution N(I" 3,021 (Z™Z)~1), and (n—7)62/0? has the chi-square dis-
tribution x2_,, where A~ is a generalized inverse of A. Since E(I"3)? =
[E(7B)? + Var(I"8) = (I78)? + o7 (Z7Z)~1, the UMVUE of (I73)? is
(I"3)? — 627 (Z7Z)"1. Since kp_r._16~" is the UMVUE of o~', where
Kn—r,—1 is given in Exercise 4, and ZTB is independent of 62, mn_T7_1lTﬁ&_1
is the UMVUE of [ /0. A similar argument yields the UMVUE of (I" 3/0)?
as (Kn_r._2l™3)2672 —17(Z7Z)"1. 1

Exercise 33 (#3.65). Consider the one-way random effects model
Xij:,u—Q—Ai—Feij, j:l,...,n,i:l,...,m,

where 1 € R is an unknown parameter, A;’s are independent and iden-
tically distributed as N(0,02), e;;’s are independent and identically dis-
tributed as N(0,02), and A;’s and e;;’s are independent. Based on ob-
served X;;’s, show that the family of populations is an exponential family
with sufficient and complete statistics X.., Sx = n -, (X;. — X..)%, and
Sp = 3% 2 (X — Xi)?, where X = (nm) ™' 301, 3001 Xy; and
Xi. =n"'Y"_| Xij. Find the UMVUE’s of y, o2, and 0.

Solution. Let X; = (X;1,..., Xin), ¢ = 1,...,m. Then X3, ..., X,, are inde-
pendent and identically distributed as the multivariate normal distribution
Np(udy,X), where J,, is the n-vector of 1’s and ¥ = 02.J,,J7 + 02I,,. The
joint Lebesgue density of X;;’s is

Cmnm 1o .
(2m)~ % x|~ % exp{—2Z(Xi—an) b 1(Xi—,an)}.

i=1
Note that
1 o?
-1 _ (.2 27 \—1 _ a
E = (UGJ',LJ,,‘IL—"'O' ITL) = ;In 0_2(0_2_'_“0_3) n ’:L-
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Hence, the sum in the exponent of the joint density is equal to

Z(Xz — pdn)TETH X - )

1 m n 7120'2 m

= — XZ _ 2 _ a Xz _ 2
0,2 ; 7:21( J /J‘) 0_2(0_2 4 TLO’g ;( N)
1 m n _ n mo

= 5 Xz % 2 Xz - 2
0,2 FZIJ;( J ) + 0_2 4 7’LO’2 FZI( /1’)

S S _
= 2E 4 A, nm Z(X — p)?.

o? o0*+nog 0’ +noi =
=

Therefore, the joint density of Xj;’s is from an exponential family with
(X..,S4,SE) as the sufficient and complete statistics for (u,02,02). The
UMVUE of p is X.., since EX.. = p. Since E(Sg) = m(n — 1)o?, the
UMVUE of ¢? is Sg/[m(n — 1)]. Since X;., i = 1,...,m are independently
from N(u,02+02/n), E(Sa) = (m—1)(c? +no?2) and, thus, the UMVUE
of 02 is Sa/[n(m —1)] — Sg/[mn(n —1)].

Exercise 34 (#3.66). Consider the linear model X = Zf + ¢, where Z
is a known n X p matrix, § is a p-vector of unknown parameters, and ¢ is
a random n-vector whose components are independent and identically dis-
tributed with mean 0 and Lebesgue density o' f(z /o), where f is a known
Lebesgue density and ¢ > 0 is unknown. Find the Fisher information about
(8, 0) contained in X.

Solution. Let Z; be the ith row of Z, i = 1,...,n. Consider a fixed i and
let = (Z73,0%). The Lebesgue density of X;, the ith component of X,
is 07 f((z — ) /o). From Exercise 20, the Fisher information about (6, o)
contained in X; is

[ (@) P @) ef (@) ()
e OR J o) dz

1(0) = L
o 0’2 ’ ’ 2
(@) [zf (z)+f(z)] [af (x)+f(2)]

J i) N (O

Let a;; be the (i,7)th element of the matrix ¢2I(f). Since X;’s are inde-
pendent, gg = Z] and 89 = 1, the Fisher information about n = (8, 0)

contained in X is
Zi 0 ai; a2 ZT 0
1 0 1 a21 Qa22 0 1

- 1
20 39 —
Z I0) 57 = 3.
1 ((InziZZ G122i> .
a1 Z; a2 '

M=

0-2

Il
i M:
I,
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Exercise 35 (#3.67). Consider the linear model X = Z3 + ¢, where Z
is a known n X p matrix, § is a p-vector of unknown parameters, and ¢
is a random n-vector whose components are independent and identically
distributed with mean 0 and variance o2. Let ¢ € RP. Show that if the
equation ¢ = Z7y has a solution, then there is a unique solution yy € R(Z7)
such that Var(yJX) < Var(y™ X) for any other solution of ¢ = Z7y.
Solution. Since ¢ = Z7y has a solution, ¢ € R(Z) = R(Z7Z). Then,
there is A € RP such that ¢ = (Z72Z)\ = Z7yo with yo = Z) € R(Z). This
shows that ¢ = Z7y has a solution in R(Z7). Suppose that there is another
y1 € R(Z7) such that ¢ = Z7y;. Then yJZp =" =y[Z[ for all § € RP.
Since R(Z7) = {Zp : B € RP}, yo = y1, i.e., the solution of ¢ = Z7y in
R(Z7) is unique. For any y € R" satisfying ¢ = Z7y,

Var(y™X) = Var(y™ X — y; X—l—ng)

+ Var(yg X
+ Var(yj X
+ Var(yg X

(y" X) 0X) +2Cov((y — y0)" X, y5 X)
( X) 0
( ) 0
= Var(yTX y§ X) + Var(yl X
( ) 0
( ) 0
(

+2E[(y — yo)" X X" yo]
+20%(y — y0) Yo
2y — 45) 2N
+2(c" = )N

— — — — ~— —

+ Var(yj X
(o X

Exercise 36 (#3.69). Consider the linear model X = Zf + ¢, where Z
is a known n x p matrix, § is a p-vector of unknown parameters, and ¢
is a random n-vector whose components are independent and identically
distributed with mean 0 and variance o2. Let X; be the ith component
of X, Z; be the ith row of Z, hi; be the (¢,7)th element of Z(Z7Z)~Z",
hi = hj;, ﬁ be an LSE of 3, and X; = ZTB Show that

(i) Var(X;) = o2h;;

(i) Var(X; — X;) = 02(1 — hy);

(i) Cov(X;, X; ) =0 h”,

(iv) COV(X XZ,X — X;) = —0%hij, i # j;

(v) Cov(X;, X; — X;) = 0.

Solution. (i) Since ZZ» € R(Z), Z]  is estimable and

Var(Z] ) = 0% Z] (Z7 Z)~ Z; = o°h,.
(ii) Note that

n
X, =ZIp=2/(272)72"X = Z hij X;.
j=1
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Hence,
Xi—Xi=(1-h)X; =Y hi; X;.

J#i
Since X;’s are independent and Var(X;) = 02, we obtain that
Var(X; — X;) = (1 — hy)%o +02Zh
J#i
= (1 - hi)QUz + (hl — h?)O'Q
= (1 - hi>0'2,

where the second equality follows from the fact that Z?zl h?j = hy; = hi,
a property of the projection matrix Z(Z7Z)~Z".

(iii) Using the formula for X; in part (i) of the solution and the indepen-
dence of X;’s,

COV(Xi,Xj) = Cov (Z hika, Z hlel> = (72 Z hikhjk = 0'2hij,
k=1 =1 k=1

where the last equality follows from the fact that Z(Z7Z)~Z7 is a projec-
tion matrix.

(iv) For i # j,

COV(Xi,Xj) = Cov (Xi, Z hijk> = 0'2hij

k=1

and, thus,

Cov(X; — Xi, X; — X;) = —Cov(X;, X;) — Cov(X],X ) 4 Cov(X;, X;)
= —O’thj — O'thi + o0 hij

= —O'2h7;j.
(v) From part (iii) and part (iv) of the solution,

COV(XZ‘,XJ‘ — X]) = COV(XZ',XJ') — COV(Xi,Xj) = O'thj — O'thj =0.1

Exercise 37 (#3.70). Consider the linear model X = Z3 + ¢, where Z
is a known n X p matrix, § is a p-vector of unknown parameters, and ¢
is a random n-vector whose components are independent and identically
distributed with mean 0 and variance o2. Let Z = (Z1,Z,) and 3 =
(B1, B2), where Z; is n x p; and (3; is a p;-vector, j = 1,2. Assume that
(Z721)7 Y and [Z3 2y — Z Z1(Z7 Z1) 1 27 Zo] 71 exist.

(i) Derive the LSE of 8 in terms of Z;, Z5, and X.
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(i) Let 3 = (B, 32) be the LSE in (i). Calculate the covariance between

p1 and fa. }

(iii) Suppose that it is known that Gy = 0. Let 8 be the LSE of §; under
the reduced model X = Z; 3, +¢. Show that, for any [ € RP?, 17 3, is better
than lTﬁl in terms of their variances.

Solution. (i) Note that

AVAR AR
77z = 1 . .
( 737y Z5Zs )

From matrix algebra,
A B
AVARRES
@' =( 4 ¢ )

C =[Z5Zy — 25 Z:(Z] Z1) " 2] Z] 7,
B=—(Z7Z))"'C

where

and
A= (272 +(Z] 2,)) ' 2] 2,C 23 Z1(Z] Z1) .

The LSE of 3 is

, _ A B VD AZTX + BZ5 X
=(Z272)7'Z7X = ! = ! 2 .
b=2'2) < B™ C > < Z3X > < B"ZIX +CZ; X

(ii) Since Var(3) = 02(Z7Z)~1, Cov(f1, 32) = o2B.

(iii) Note that Var(I"31) = 021" (Z7 Z1)~!l. From part (i) of the solution,

Var(I”31) = 021" Al > o217 (2] Z1) 7M.

Exercise 38 (#3.71, #3.72). Consider the linear model X = Z5 + ¢,
where Z is a known n X p matrix, 3 is a p-vector of unknown parameters,
and ¢ is a random n-vector with E(¢) = 0 and finite Var(¢) = £. Show the
following statements are equivalent:

(a) The LSE ™3 is the best linear unbiased estimator (BLUE) of I™3.

(e) Var(e) = ZA1Z™ + UAU™ for some matrices A; and Ay, where U is a
matrix such that Z7U =0 and R(U™) + R(Z"7) = R™.

(f) Var(e)Z = ZB for some matrix B.

(g) R(Z7) is generated by r eigenvectors of Var(e), where r is the rank of
Z.

Solution. (i) From the proof in Shao (2003, p. 191), (a) is equivalent to
(¢) Z™Var(e)U = 0 and (c) implies (e). Hence, to show that (a) and (e) are
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equivalent, it suffices to show that (e) implies (¢). Since Z(Z72)"Z"Z = Z,
(e) implies that

Z"™Var(e)U = Z7ZZ(Z"Z)~ Z™Var(e)U = Z7 ZVar(e) Z(Z7Z)~Z"U =0

(ii) We now show that (f) and (c) are equivalent. If (f) holds, then Var(e)Z
= Z B for some matrix B and

ZVar(e)U = BT Z7U = 0.
If (c) holds, then (e) holds. Then
Var(e)Z = Var(e)Z(272)~ 27 Z = Z(Z7 Z)~ Z7Var(e)Z

and (f) holds with B = (Z7Z)~ Z" Var(e)Z.

(iii) Assume that (g) holds. Then R(Z7) = R(&1,...,&,), the linear space
generated by r linearly independent eigenvectors &1, ...,&,. of Var(e). Let
&ty -, En be the other n — r linearly independent eigenvectors of Var(e)
that are orthogonal to &1, ...,&.. Then R(U™) = R(&41,-..,&n). For j <r,
Var(e)¢; = a;&; for some constant a;. For k > r+1, {7 Var(e)§ = alf &y =
0. Hence, Z™Var(e)U = 0, i.e., (c) holds.

Now, assume (c) holds. Let &1, ...,&, be n orthogonal eigenvectors of
Var(e) and M be the matrix with &; as the ith column. Decompose M as
M = My + My, where columns of My are in R(Z") and columns of My
are in R(U™). Then

Var(e)Mz + Var(e)My = MzD + My D,

where D is a diagonal matrix. Multiplying the transposes of both sides of
the above equation by My from the right, we obtain that, by (c),

M Var(e)My = DM, My

which is the same as
Var(a)MU = MUD,

and, hence,
Var(e)Mz = MzD.

This means that column vectors of My are eigenvectors of Var(g). Then
(g) follows from R(Z) = R(Mz). 1

Exercise 39 (#3.74). Suppose that
X =upud, + HE + e

where p € R is an unknown parameter, J, is the n-vector of 1’s, H is an
n X p known matrix of full rank, £ is a random p-vector with E(£) = 0 and



Chapter 3. Unbiased Estimation 129

Var(§) = O'?Ip, e is a random n-vector with E(e) = 0 and Var(e) = 021,
and £ and e are independent. Show that the LSE of y is the BLUE if and
only if the row totals of HHT are the same.

Solution. From the result in the previous exercise, it suffices to show that
the LSE of p is the BLUE if and only if J,, is an eigenvector of Var(H¢+e) =
o?HHT + 021, Since

(0HH™ + 0°1,,)Jp = 0in+ 07 Iy,

where 7 is the vector of row totals of HH™, J, is an eigenvector of the
matrix Var(H¢ + e) if and only if n = ¢J,, for some constant. I

Exercise 40 (#3.75). Consider a linear model
Xij:u+ai+ﬂj+€ij, iil,...,a,j:17...,b,

where y, a;’s, and 3;’s are unknown parameters, F(g;;) = 0, Var(e;;) = 02,
Cov(gij,erj) = 0if i # 4, and Cov(g;j,e:5:) = 02p if j # j/. Show that
the LSE of I7 3 is the BLUE for any [ € R(Z).

Solution. Write the model in the form of X = Z§ 4 ¢. Then Var(e) is a
block diagonal matrix whose jth diagonal block is o2(1 — p)I, + 02pJ,J7,
j=1,...,b, where I, is the identity matrix of order a and J, is the a-vector
of 1’s. Let A and B be as defined in Exercise 31. Then Z = (J, A B7).
Let A be the (14 a+b) x (1+a+ b) matrix whose first element is 0%p and
all the other elements are 0. Then, ZAZ" is a block diagonal matrix whose
jth diagonal block is 02pJ,J7, j = 1,...,;b. Thus,

Var(e) = 02(1 — p) I + ZAZ7.

This shows that (c) in Exercise 38 holds. Hence, the LSE of {7/ is the
BLUE for any I € R(Z). 1

Exercise 41 (#3.76). Consider the linear model X = Zg + ¢, where Z
is a known n X p matrix, § is a p-vector of unknown parameters, and ¢ is
a random n-vector with F(e) = 0 and Var(e) = a block diagonal matrix
whose ith block diagonal V; is n; X n; and has a single eigenvalue \; with
eigenvector J,, (the n;-vector of 1’s) and a repeated eigenvalue p; with
multiplicity n; — 1, @ = 1, ..., k, Zle n; = n. Let U be the n x k matrix
whose ith column is U;, where U; = (J7],0,...,0), Uy = (0,J7,...,0),...,
Uy = (0,0, ..., J7 ), and let 3 be the LSE of 3.

(i) If R(Z7) € R(UT) and A; = A, show that I3 is the BLUE of 1”3 for
any | € R(Z).

(ii) If Z7U; = 0 for all ¢ and p; = p, show that ZTB is the BLUE of "3 for
any | € R(2).
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Solution. (i) Condition R(Z7) C R(UT) implies that there exists a matrix
B such that Z = UB. Then

Var(e)Z = Var(e)UB = A\UB = \Z
and, thus,

Z(Z7Z)"Z"Var(e) = \Z(Z7Z2)" Z7,
which is symmetric. Hence the result follows from the result in Exercise
38.
(ii) Let A, be the (n — k) x (n — k) matrix whose columns are the n — k
eigenvectors corresponding to the eigenvalue p. Then Z7U; = 0 for all

i implies that R(Z7) C R(A}) and there exists a matrix C' such that
Z = A,C. Since

Var(e)Z = Var(e)A,C = pA,C = pZ,
we obtain that
Z(Z7Z)" Z"Var(e) = pZ(Z7Z)" Z",

which is symmetric. Hence the result follows from the result in Exercise
38.1

Exercise 42 (#3.80). Consider the linear model X = Zf + ¢, where
Z is a known n X p matrix, 8 is a p-vector of unknown parameters, and
e = (e1,...,&,) with independent and identically distributed £, ..., &, having
E(e;) = 0 and Var(e;) = 0. Let Z; be the ith row of Z, X; = Z73, § be
the LSE of 8, and h; = Z7(Z7Z)~ Z,.
(i) Show that for any € > 0,

P(|X; — EX;| > €) > min{P(e; > €/h;), P(e; < —€/h;)}.

(i) Show that X; — EX; —, 0 if and only if lim,, h; = 0.
Solution. (i) For independent random variables U and Y and € > 0,
P(lU+Y|>¢) >PU=¢)PY >0)+PU < —€)P(Y <0)
> min{P(U > ¢€), P(U < —e)}.

Using the result in the solution of Exercise 36,

Xi — EXZ = Zh”(X] - EX]) = Zhijgj = hié:i + Zhijsj’
=1 =1 i#i
Then the result follows by taking U = h;e; and Y = Z#i hije;.

(i) If X; — EX; —, 0, then it follows from the result in (i) that

lim min{P(e; > €/h;), P(e; < —e€/h;)} =0,
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which holds only if lim, h; = 0. Suppose now that lim,, h; = 0. From
Exercise 36, lim,, Var(X;) = lim,, 02h; = 0. Therefore, X; — EX; —, 0. 1

Exercise 43 (#3.81). Let Z be an n x p matrix, Z; be the ith row of Z,
hi = Z7(Z™Z)~ Z;, and A, be the largest eigenvalue of (Z7Z)~. Show that
if lim,, A\, = 0 and lim,, Z7(Z7Z)~ Z,, = 0, then lim, maxj<;<, h; = 0.
Solution. Since Z7Z depends on n, we denote (Z7Z)~ by A,. Let i, be
the integer such that h;, = maxi<i<y h;. If lim, ¢, = oo, then

Zin,

limh;, =limZ] A,Z;, <limZ] A —0,

in
where the inequality follows from ¢,, < n and, thus, A; — A, is nonnegative
definite. If 7,, < ¢ for all n, then

limh,;, =lim Z] A,Z; <lim)\, max [|Z]* = 0.
n n " n 1<i<e

Therefore, for any subsequence {j,} C {i,} with lim, j, = a € (0,00],
lim,, h;, = 0. This shows that lim, h;, = 0. 1

n n

Exercise 44 (#3.84). Consider the one-way random effects model
Xij:N+Ai+eijy j:l,...,ni,izl,...,m,

where 1 € R is an unknown parameter, A;’s are independent and identically
distributed with mean 0 and variance o2, e;;’s are independent with mean
0, and A;’s and e;;’s are independent. Assume that {n;} is bounded and
FEle;;|?*9 < oo for some § > 0. Show that the LSE /i of y is asymptotically
normal and derive an explicit form of Var(j).

Solution. The LSE of j is i = X_, the average of Xi;’s. The model under

consideration can be written as X = Zu + ¢ with Z = J,, Z7Z = n, and

1
lim max Z]7(Z"Z)” Z; =lim — = 0.
n 1<i<n non
Since we also have Ele;;|**° < oo and {n;} is bounded, by Theorem 3.12(i)
in Shao (2003),
= p
Var(3)
where Var(i) = Var(X ) =n=2Y"  (n2o2 + n;c?).

—d ]\7(07 ].),

Exercise 45 (#3.85). Suppose that
Xi=pti+¢, 1=1,...,n,

where p € R is an unknown parameter, t;’s are known and in (a,b), a and
b are known positive constants, and ¢;’s are independent random variables
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satisfying E(e;) = 0, E|e;|>T? < oo for some § > 0, and Var(g;) = o*t; with
an unknown o2 > 0.

(i) Obtain the LSE of p.

(ii) Obtain the BLUE of p.

(iii) Show that both the LSE and BLUE are asymptotically normal and
obtain the asymptotic relative efficiency of the BLUE with respect to the
LSE.

Solution. (i) The LSE of p is

b= S X
==
Zz 1t7,2

(iii) Let X = (Xy,...,X,) and ¢ = (c1, ..., ¢y). Consider minimizing

n
BE("X —p)* = Ztic?
i=1

under the constraint Yoiicit; = 1 (to ensure unbiasedness), which yields
¢; = (31, t;)~'. Hence, the BLUE of p is

p~ ZZ 1X
27, lt

(iii) The asymptotic normality of the LSE and BLUE follows directly from
Lindeberg’s central limit theorem. Since

2
ar ~ Zz 1 z
Vo) = (S

and

o2

Z?:l ti’
the asymptotic relative efficiency of the BLUE with respect to the LSE is

(i, )
Oim ) i )

Var() =

Exercise 46 (#3.87). Suppose that X = (Xq, ..., X,,) is a simple random
sample without replacement from a finite population P = {y1, ..., yn } with
all y; € R.

(i) Show that a necessary condition for h(yi,...,yn) to be estimable is that
h is symmetric in its N arguments.

(ii) Find the UMVUE of P(X; < X;), i # j.

(iii) Find the UMVUE of Cov(X;, X;), i # J.
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Solution. (i) If A(yi,...,yn) is estimable, then there exists a function
u(x1, ..., z,) that is symmetric in its arguments and satisfies

1
Ry, yn) = Elu(Xy, ..., Xn)] = Gl > (Wi, oo i, )
n/ 1<i; <<, <N

Hence, h is symmetric in its arguments.

(ii) From Watson-Royall’s theorem (e.g., Theorem 3.13 in Shao, 2003), the
order statistics are complete and sufficient. Hence, for any estimable param-
eter, its UMVUE is the unbiased estimator g(X7, ..., X;,) that is symmetric
in its arguments. Thus, the UMVUE of P(X; < X;), i # j, is

1 3 I—oo,x:) (X)) + I (oo, x;)(Xi)
721) 1<i<j<n 2

(iii) From the argument in part (ii) of the solution, the UMVUE of E(X;X})

when i # j is

U1 = % Z XiX]
(3)

1<i<j<n

Let X be the sample mean. Since

N e T
N YT AN - 1) Yibi

i=1 1<i<j<N

and
1 N
P(hE ) v
the UMVUE of 221<1<3<N Yiy; s
2
U = 1 ( -3 ZX1> .
i=1

From

= E(X

2
N2 Z YilYj»

1<i<j<n

Cov(X;, X;) = ( Z )
w2

the UMVUE of Cov(X;, X;), i # j, is

1——2 ——. '
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Exercise 47 (#3.100). Let (Xi,...,X,) be a random sample from the
normal distribution N(u,0?), where p € R and ¢? > 0. Consider the
estimation of ¥ = E[®(a + bX;)], where ® is the cumulative distribution
function of N(0,1) and a and b are known constants. Obtain an explicit
form of a function g(u,0?) = ¥ and the asymptotic mean squared error of
¥ = g(X,5?), where X and S? are the sample mean and variance.
Solution. Let Z be a random variable that has distribution N(0,1) and
is independent of X;. Define Y = Z — bX;. Then Y has distribution
N(—bp,1+b%*0?) and

E[®(a+bX;)] = E[P(Z < a+bX)]
(Z —bX, < a)

P
P(Y <a)
o

( a+ by )
VI+b22)
Hence

gmﬂ%=¢<

From Example 2.8 in Shao (2003),

Vi gt ) e ((6) (5 o))

Then, by the é-method,

a+ by )
V1+b202)"

where

K

_ b2o? (a + bp)?b*o? o a+ by 2
1+ b202 2(1 + v%0?) V1 +b%02 '

The asymptotic mean squared error of Jis k/n. 1

Exercise 48 (#3.103). Let (Xi,...,X,) be a random sample from P
in a parametric family. Obtain moment estimators of parameters in the
following cases.

(i) P is the gamma distribution with shape parameter o > 0 and scale
parameter v > 0.

(ii) P has Lebesgue density 9’16’(””*“)/01(%00)(%), a€R,0>0.

(iii) P has Lebesgue density %xa’l(l —2) 1y (z), a >0, 8> 0.
(iv) P is the log-normal distribution with parameter (u,o?) (i.e., log X1
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has distribution N(u,0?), u € R, o > 0.

(v) P is the negative binomial distribution with discrete probability density

(fj)p’“(l -p)*Tyex=rr+1,.,pe(0,1),r=1,2,...

Solution. Let u, = E(X}) and fix =n~1 Y1 | XF.

(i) Note that 3 = ay and pg — 3 = ay?. Hence, the moment estimators

are § = (fiz — fi})/fn and & = [ii /(fia — ji7).

(ii) Note that py = a+ 60 and ps — p? = 62. Hence, the moment estimators

are 6 = \/fia — 42 and a = fi; — 0.

(iii) Note that 3 = a/(a+ ) and ps = a(a + 1)/[(a + B)(a + S + 1)].

Then 1+ B/a = py', which leads to pg = p (1 + 1)/ (uy* + ™t

Then the moment estimators are & = i (fi1 — fi2)/(jiz — 42) and 3 =

(i1 — fi2) (1 = fin) /(fr2 — f13)-

(iv) Note that py = e*+to°/2 and py = €2#+29” . Then py/p2 = €%, ie.,
2 = log(pa/p?). Then pu = log py + 0/2. Hence, the moment estimators

are 62 = log(fia/fi2) and i = log iy — 4 log(jiz /i),

(v) Note that u1 = 7/p and pg — u? = r(1—p)/p*. Then r = puy and (g —

u3)p = p1(1—p). Hence, the moment estimators are p = fi1 /(jiz — i3 + fi1)

and 7 = i/ (jiz — i + fi1). B

Exercise 49 (#3.106). In Exercise 11(i), find a moment estimator of 4

and derive its asymptotic distribution. In Exercise 11(ii), obtain a moment

estimator of #~! and its asymptotic relative efficiency with respect to the

UMVUE of 1.
Solution. (i) From Exercise 11(i),

1+92—1_92+1
0 20 20

1 0
MleX1:P(Y1<1)+§/ rdr =
1

Let X be the sample mean. Setting X = (6% + 1)/(29) we obtain that
92 — 2X9 + 1 = 0, which has solutions X + v/ X2 — . Since X > L X —
vX 1 < 1. Since 6 > 1, the moment estimator of 0 is0=X+vVX

From the central limit theorem,

\/ﬁ()_(—ul)—mN(O, 0°+2 (92+2)2>.

30 402

By the §-method with g(x) =z + Va2 — 1,

V(@ —8) —a N (0’ (1 * 929_ 1)2 [933; - (924;22)2D '

(ii) From Exercise 11(ii),

—EX—1/1d+P(Y>1) LR
e Ty ), T ! 20 9 20°
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Hence the moment estimator of #=1 is 2(1 — X). From the central limit
theorem,

_ 1 1

By the d-method with g(x) = 2(1 — z),

N

Let R, =0if X; =1land R; = 1 _if X; # 1. From the solution of Exer-
cise 11(ii), the UMVUE of §=' is R = n~' Y"1 | R;. By the central limit
theorem,

Va2(1— X) — 671 —>dN<O 1 1).

0 02
Hence, the asymptotic relative efficiency of 2(1 — X)) with respect to R is
equal to (0 —1)/(360 —1). o

\/E(R—G_l)—mN(O,l 1).

Exercise 50 (#3.107). Let (X1, ..., X,,) be a random sample from a pop-
ulation having the Lebesgue density fo g(x) = aﬁ’axa’lf(oﬂ) (), where
a > 0 and 8 > 0 are unknown. Obtain a moment estimator of 6 = («, 3)
and its asymptotic distribution.

Solution. Let pu; = EX3. Note that

! /5 og af
= —_— €T xr = —
i B8« Jo a+1

and

B 2
a a+1 Oéﬁ
= — ¥ dx = .
M2 50/0 o012

Then = (14 1)u1 and

2
1 2
« «

1 po—piE/p3 — g
a It

Since a > 0, we obtain the moment estimators

which leads to

i

fiz — i} + /15 — finfi2

b= fi2 + /15 — i fio

fin

(i:

and
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where fi; = n7! 3" ij Let v = (p1,p2) and 4 = ({1, fiz). From the
central limit theorem,

vy =) =a N(0,%),

where

22( Mz—/ﬁ MB_M1M2>.
fis — paplz  fa — 43

Let a(z,y) = 2/(y — 2® + /y?> —zy) and B(z,y) = (y + V> — zy)/z.

Then
2z I z* (dz+y/\/y> —zy) 22 [14+(y—z/2)/y/y> —zy]

oo, ) y—a24\/y2 -y 2(y—a2+y/y2—ay)? (y—22+1/y2—zy)?
a(x7 y) _ y _ytVyr ooy _’_l + 2y—z
2z+/y2 —ay z? & 2x\/y2—zy
Let 6 = (&,3) and A = g((if)) |o=p1,y=p>- Then, by the d-method,

V(0 — 0) =4 N(0,ASAT). 1

Exercise 51 (#3.108). Let (Xi,...,X,) be a random sample from the
following discrete distribution:

2(1 - 0) 0
2_97 P(X1*2)*7

P(Xlzl): 2_p’

where 6 € (0,1) is unknown. Obtain a moment estimator of 6 and its
asymptotic distribution.
Solution. Note that

Hence, a moment estimator of 0 is § = 2(1 — X 1), where X is the sample
mean. Note that

2(1—6) 460 4 460 — 20 — 4
X)) = - - .
VarlXs) = = =+ 55 " Goar T @_02

By the central limit theorem and d-method,

(2—0)2(20 — 62 — 2)
LN

Vvl —6) -4 N (0,
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Exercise 52 (#3.110). Let (Xi,...,X,) be a random sample from a
population having the Lebesgue density

[ O +b) e >0
fo10.(2) = { (01 + 92)—1636/92 z <0,

where #; > 0 and 65 > 0 are unknown. Obtain a moment estimator of
(61,02) and its asymptotic distribution. _
Solution. Let u; = EX{ and fi; =n~' Y., X/. Note that

1 0 oo
= z/02 +/ —z/01g > =0, —0
M1 91 —|—02 <‘/_Oo xre X o xre X 1 2
and

1 0 oo
fo = ————— (/ 22e®/%2 g +/ xzex/eldx) =2(0% + 63 — 0,6,).
01+ 02 \J 0

Then, po — p3 = 03 + 03. Since 6; = g + 02, we obtain that
202 + 211105 + 202 — pp = 0,

which has solutions

—p1 + /20 — 33
5 .
Since 03 > 0, the moment estimators are

b, — —fn + 2/ — 313
y =
2

and

b, = 1+ /202 — 342
5 .
Let g(z,y) = (V2y — 3z — 2)/2 and h(z,y) = (v2y — 3z + z)/2. Then

_1___ 3 1
(g, h) 27 12y—3z 2v2y3z

1 3 1
2 4y/2y—3x 2y/2y—3z

Let v = (p1,p2), 4 = (fir, fiz), 6 = (01,62), and 6 = (01,65). From the
central limit theorem,

V(¥ =) —a N(0,%),
where X is as defined in the solution of Exercise 50. By the ¢ method,
V(0 —0) =4 N(0,ALAT),
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9(g,h)

where A = o(z,y) |-’E=H1,y=u2~ 1

Exercise 53 (#3.111). Let (Xy,...,X,) be a random sample from P
with discrete probability density fg ;, where 6 € (0,1), j = 1,2, fg1 is the
Poisson distribution with mean 6, and fp 2 is the binomial distribution with
size 1 and probability 6. Let hy(0,7) = Eg j(XF), k = 1,2, where Ey ; is
the expectation is with respect to fy ;. Show that

lim P (fir, = hi(6,7) has a solution) =0

when X;’s are from the Poisson distribution, where j, = n=t>" " | XF,
k=1,2.

Solution. Note that hi(0,1) = hy(0,2) = 6. Hence hy(6,7) = j1; has a
solution 6 = fi;. Assume that X;’s are from the Poisson distribution with
mean 6. Then fio —, 0 + 6%. Since ho(6,1) = 0 — 62,

It remains to show that

Since ho(0,2) = 0 + 6% and 6§ = fi; is a solution to the equation hy(0,1) =
h1(0,2) = 0, it suffices to show that

lim P (fi2 = jiy + fi3) = 0.
Let v = (u1, p2) and 4 = (i1, fiz). From the central limit theorem,
Vn(§ =) —a N(0,%),

where ¥ is as defined in the solution of Exercise 50. Then, we only need
to show that ¥ is not singular. When X7 has the Poisson distribution with
mean 6, a direct calculation shows that p, = 6, po = 0+62, uz = 0+36%2+63,
and juy = 0 + 702 4 603 4 6*. Hence,

. ( 9 0 + 262 ) _
0+20> 0+ 60%+46°
The determinant of ¥ is equal to
6 4 660° 4 46* — (0 + 20%)* = 26° > 0.
Hence ¥ is not singular. I

Exercise 54 (#3.115). Let X1,..., X, be a random sample from a pop-
ulation on R having a finite sixth moment. Consider the estimation of 3,
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where ;1 = EX;. Let X be the sample mean. When p = 0, find the asymp-
totic relative efficiency of the V-statistic X® with respect to the U-statistic
Un = (g) ' Zl§i<j<k§n XiX; Xk

Solution. We adopt the notation in Exercise 25. Note that U, is a U-
statistic with (; = (o = 0, since u = 0. The order of the kernel of U, is 3.
Hence, by Exercise 25(iii),

6(3 1
Var(U,,) = nic?’ +0 (n4> ,
where (3 = Var(X; X2 X3) = E(X?X3X2) = 0% and 0% = EX? = Var(X3).
The asymptotic mean squared error of U, is then 60 /n?.

From the central limit theorem and p = 0, \/nX —4 N(0,02). Then
n32X3 /0% —4 Z3, where Z is a random variable having distribution
N(0,1). Then the asymptotic mean square error of X3 is 0 EZ6/n3. Note
that EZ% = 15. Hence, the asymptotic relative efficiency of X3 with respect
to U, is 6/15=2/5. 1
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Estimation in Parametric
Models

Exercise 1 (#4.1). Show that the priors in the following cases are con-
jugate priors:

(i) X = (X1,..., X,,) is a random sample from Ny (0, I}), 0 € R¥, and the
prior is Ng (0, 20);

(ii) X = (X1,...,X,) is a random sample from the binomial distribution
with probability § and size k (a known positive integer), 6 € (0,1), and the
prior is the beta distribution with parameter («, 3);

(i) X = (Xi,...,X,) is a random sample from the uniform distribu-
tion on the interval (0,6), § > 0, and the prior has Lebesgue density
babe_(b—‘rl)l(a,oo) (9)7

(iv) X = (X1, ..., Xp,) is a random sample from the exponential distribution
with Lebesgue density 6~'e=*/%I ) (z), § > 0, and the prior of 6! is the
gamma distribution with shape parameter o and scale parameter ~.
Solution. (i) Let 7= """ | X; and A = nl; + X;'. The product of the
density of X and the prior density is

T —nb|?> (60— )™ 2546 —
C’Xexp{—” 2” > (0 —po) 2o ( Mo)}
~ Dy exp {— 6 - A7 (S5 o+ 1)) A0 — A~ (85 o + 7] }
2 b

where C'x and Dx are quantities depending on X but not . Thus, the
posterior distribution of # given X is Ny, (A*I(Eal,uo +T),A71).
(ii) Let 7= Y , X;. The product of the density of X and the prior
density is

CX9T+a—1(1 _ 9)nk—T+B—1’

141
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where C'x does not depend on 6. Thus, the posterior distribution of 6 given
X is the beta distribution with parameter (7' + o, nk — T + ).

(iii) Let X(,) be the largest order statistic. The product of the density of
X and the prior density is

07" 1(0,60) (X ())ba" 0~ "V I o) (0) = 070D a1 x ) 0y 00) (0)-

Thus, the posterior distribution of # given X has the same form as the prior
with a replaced by max{X,),a} and b replaced by b+ n.
(iv) Let T = 3" | X;. The product of the density of X and the prior
density is

Cx 0=t exp {—(T +~71)/0},

where Cx does not depend on 6. Thus, the posterior distribution of !
given X is the gamma distribution with shape parameter n + a and scale
parameter (T +~~1)~1. §

Exercise 2 (#4.2). In Exercise 1, find the posterior mean and variance
for each case.
Solution. (i) Since the posterior is a normal distribution,
E(0]X) = (Sg po + T)A™
and
Var(9|X) = A,
where =31 | X; and A = nl; + %5
(ii) Since the posterior is a beta distribution,
T+ao
ElX)=——
(01X) nk+a+ 0

and
(T4 a)(nk—T+ )

where T'=Y"" | X;.

(iii) A direct calculation shows that

max{X,,a}(b+n)
(b+n—-1)

E(0]X) =

and
maX{X(gn) ,a2}(b+n)

(b+n—120b+n-2)

Var(0|X) =
(iv) Let T'= 3", X;. Then

T4 ~7t

B(o]X) =~
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and
@y @y
Var(B1X) = (nta-Dn+a-2) (n+a)?

Exercise 3 (#4.4). Let X = (X1,...,, X,,) be a random sample from the
uniform distribution on the interval (0,8), where 6 > 0 is unknown. Let
the prior of § be the log-normal distribution with parameter (ug,03), where
1o € R and og > 0 are known constants.

(i) Find the posterior density of log 6.

(ii) Find the rth posterior moment of 6.

(iii) Find a value that maximizes the posterior density of 6.

Solution. (i) Let X,y be the largest order statistic. The product of the
density of X and the prior density is proportional to

1 (log @ — po)?
gn+1 & {_ 202 1(X(0y.00) (0)-

Then the posterior density of ¢ = logf given X is

1 (19—#04-7103)2}
—————expy———F5 35— (Lo oy (),
V2r00Cx p{ 203 (log X (n)00) (V)

where
Cx =10 <“°_”"3 ‘IOng))
0o

and @ is the cumulative distribution function of the standard normal dis-
tribution.

(ii) Note that E(0"|X) = E (e"'°¢?|X) and log8 given X has a truncated
normal distribution as specified in part (i) of the solution. Therefore,

po — (n —r)od —log X(n)>

0o

E(9r|X) — C)—(ler[2ug—(2n—7’)08]/2¢) (

(iii) From part (i) of the solution, the posterior density of 6 given X is

1 (log 8 — po + nod)?
m P { 203 (X (y.00)(0)-

Without the indicator function I X(n)m)(ﬂ), the above function has a unique

maximum at eto—(n+1)og Therefore, the posterior of 6 given X is maxi-
2

mized at max{eto~("+Doa X}

Exercise 4 (#4.6). Let X be the sample mean of a random sample of
size n from N(f,0?) with a known o > 0 and an unknown 6 € R. Let 7(f)
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be a prior density with respect to a o-finite measure v on R.
(i) Show that the posterior mean of 6, given X = z, is of the form

o? dlog(p(z))
o(z)=x+ - i ,

where p(z) is the marginal density of X, unconditional on .

(ii) Express the posterior variance of 6 (given X = x) as a function of the

first two derivatives of log p(z).

(iii) Find explicit expressions for p(z) and §(x) in (i) when the prior is

N (o, 03) with probability 1 — € and a point mass at 1 with probability e,

where pg, 11, and 02 are known constants.

Solution. (i) Note that X has distribution N(#,02/n). The product of

the density of X and m(6) is

Vn e—n(m—e)z/(Zaz)ﬂ_(Q).
2mo

Hence,
p(z) = / VR a0 /o) ()
2mo

and
n n —n(z—0)2 o2
p(z) = 7 / %(9 — x)e M@=/ 2o 1 (9 dw.

Then, the posterior mean is

1 \/ﬁ 2 2
5 - - 0 —n(x—0)°/(20°) 0)d
(@) p(x)/ 2ro ¢ m(0)dv

1 \/ﬁ 2 2
=+ — 0 — z)e @07/ o) 1 (9)dy
o) 5 (0 —2) 7(6)
2/
_ @)
n p(x)
o? dlog(p())

(ii) From the result in part (i) of the solution,

2
p'(z) = %/ Vvn 0 — x)zefn(mfey/(zgz)ﬂ_(a)dy B ﬂp(x)
o 2o o

Hence,
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and, therefore,

Var(6|X = 2) = E[(6 — 2)*|X = 2] — [E(0 — 2|X = 2)]°
@) o [P )]’
“wpla) T | p<x>]
ot d*logp(z) o
T n2 da? n

(iii) If the prior is N(uo,08), then the joint distribution of # and X is
normal and, hence, the marginal distribution of X is normal. The mean
of X conditional on 6 is §. Hence the marginal mean of X is po. The
variance of X conditional on 6 is 02 /n. Hence the marginal variance of X
is 02 + 02 /n. Thus, p(x) is the density of N(ug,o8 + o2/n) if the prior is
N (o, o). If the prior is a point mass at p, then

() = Y mnae—m)?/(20%)
2o

which is the density of N(uq, 2/n) Therefore, p(z) is the density of the
mixture distribution (1 — €)N (0,03 + 02/n) + eN(u1,02/n), i.e.,

—(1—¢ —Ho —H1
-0 (55 veo (2522).

where ¢(z) = e=*/2/\/27. Then

e v R =)

and d(z) can be obtained using the formula in (i). &

Exercise 5 (#4.8). Let X = (X1,...,X,,) be a random sample from P
with discrete probability density fp ;, where 8 € (0,1), j = 1,2, fp1 is the
Poisson distribution with mean 6, and fp 2 is the binomial distribution with
size 1 and probability #. Consider the estimation of # under the squared
error loss. Suppose that the prior of 6 is the uniform distribution on (0, 1),
the prior of jis P(j =1) = P(j = 2) = , and the joint prior of (6, 7) is
the product probability of the two margmal priors. Show that the Bayes

action is sy H@BE+D) + Gt +1)
@)= —HwBnrcn

where z = (ml, ey Tp) 18 the vector of observations, t = x1 + -+ + z,,
= fol 0 (1 —60)"tdo, G(t f 0te=%df, and H(z) is a function of x
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with range {0,1}.

Note. Under the squared error loss, the Bayes action in an estimation
problem is the posterior mean.

Solution. The marginal density is

m(z) = @ /01 e "00'do + @ /01 6'(1—6)"""do

C(x)G(t) + D(x)B(t)
2 i

where C(z) = (z1!---z,!)~1 and D(z) = 1 if all components of x are 0 or
1 and is 0 otherwise. Then the Bayes action is

z) [y e 011d0 + D(x) [} 61 (1 — 6)"tdg
2m(z)
H(z)B(t+1)+G(t+1)
H(z)B(t)+G(t)
where H(x) = D(x)/C(z) takes value 0 or 1. &

o(x) =

Exercise 6 (#4.10). Let X be a sample from Py, § € © C R. Con-
sider the estimation of # under the loss L(|0 — a|), where L is an increasing
function on [0,00). Let w(f|z) be the posterior density (with respect to
Lebesgue measure) of 6 given X = x. Suppose that 7w(6|x) is symmetric
about §(z) € © and that 7(6|z) is nondecreasing for § < §(z) and nonin-
creasing for 6 > §(x). Show that §(x) is a Bayes action, assuming that all
integrals involved are finite.

Solution. Without loss of generality, assume that 6(z) = 0. Then 7(0|x)
is symmetric about 0. Hence, the posterior expected loss for any action a
is

pla) = [ L(lo ~ al)m(8lo)as

= /L(| — 0 —al)m(0|x)do
(—a)

For any a > 0 and 6, define
H(0,a) =[L(|0 + a|) — L(|0 — a])][7 (0 + a|x) — 7(0 — alzx)].

If0+a>0and § —a >0, then L(|0 +a|) > L(|0 — a]) and 7 (0 + a|z) <
(0 —alx); f 04+ a <0and § —a <0, then L(|0 + a|) < L(|0 — a]) and
(0 + alx) > 7(0 —alz); if 0 —a <0< 0+ a, then 7(0 + a|z) < 7(f — a|z)
and L(|0 + a|) > L(|0 — a]) when 6 > 0 and 7(6 4+ a|z) > 7(6 — a|z) and
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L(]0 + a|]) < L(]0 — a|) when § < 0. This shows that H(#,a) < 0 for any 6
and a > 0. Then, for any a > 0,

oz/H@@w

_ /L(|€ +al) (0 + alz)dd + /L(\G — o)) (0 — a|z)d6
-/an+ﬂmw—a@me—/iue—@mw+aume
:2/qumwmm9—/ﬁﬂe+mmwwume

L(]0 — 2a])w(0|x)do

— p(2a) - p(~2a)

This means that p(0) < p(2a) = p(—2a) for any a > 0, which proves that 0
is a Bayes action. 1

Exercise 7 (#4.11). Let X be a sample of size 1 from the geometric
distribution with mean p~!, where p € (0, 1]. Consider the estimation of p
with the loss function L(p,a) = (p — a)?/p.

(i) Show that ¢ is a Bayes action with a prior II if and only if §(x) =
1— [(1=p)*dll(p)/ [(1 —p)*tdl(p), z = 1,2, ..

(ii) Let do be a rule such that do(1) = 1/2 and (50( ) =0 for all z > 1.
Show that ¢ is a limit of Bayes actions.

(iii) Let dg be a rule such that dp(x) = 0 for all z > 1 and do(1) is arbitrary.
Show that g is a generalized Bayes action.

Note. In estimating g(6) under the family of densities { fp : 6 € ©} and the
loss function w(0)[g(0) —a]?, where © C R, w(f) > 0 and [, w(0)[g(#)]*dIL
< o0, the Bayes action is

Jow Jo(x)dIl
é(x) = é@mwmwm

Solution. (i) The discrete probability density of X is (1 — p)*~!p for
x =1,2,.... Hence, for estimating p with loss (p — a)?/p, the Bayes action
when X =z is

5@%:£pqml—m*HﬂH:1 f% )WH
fol p=1(1 — p)*—1pdIl fo ye= 1410

(ii) Consider the prior with Lebesgue density [ll:gi()l]é P 1=p)* o1y (p).
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The Bayes action is

1 1 oae
Jo (1= p)rre=ipa=ldp

d(x) =1- =3
fo (1 — p)zta—2pa—1igy

I'(z+2a—1)

—1_ I'(z4+a—1)T'(a)

I(z+2a)

T'(z4a)T(a)

_q_xto-1

N r+2a—1

_ «

4201

Since )
lim o(z) = 51{1}(@ = do(z),

do(x) is a limit of Bayes actions.
(iii) Consider the improper prior density % = [p*(1 — p)]~!. Then the
posterior risk for action a is

/0 (p _ a)2(1 _ p)x—2p—2dp.

When = = 1, the above integral diverges to infinity and, therefore, any a
is a Bayes action. When = > 1, the above integral converges if and only if
a = 0. Hence 6§y is a Bayes action. 1

Exercise 8 (#4.13). Let X be a sample from Py having probability
density fo(z) = h(z) exp{0Tx—((0)} with respect to v on RP, where § € RP.
Let the prior be the Lebesgue measure on RP. Show that the generalized
Bayes action under the loss L(6,a) = ||[E(X) —al|? is §(z) = © when X =«
with [ fo(z)df < OO

Solution. Let m(z) = [ fo(z)df and p(f) = E(X). Similar to the case of
umvarlate 0, the generahzed Bayes action under loss ||u(0) — al|? is 6(z) =
S u(0) dﬁ/m( ) Let A, = (—00,¢1]x- - -x (=00, cp] forc = (C1y.ny0p) €
RP. Note that fe(z) = [, afgg””)de, c € RP. Since m(z) = [ fe(x)de < oo,

lime, so0,iz1,...p fe(2 ) = 0. Hence, [ afgér) df = 0. Slnce

i) o= Z foto) = o - o) folo)

we obtain that x [ fo(x)df = [ 1u(0) fo(x)df. This proves that 6(z) = z. 1

Exercise 9 (#4.14). Let (Xi,...,X,) be a random sample of random
variables with the Lebesgue density \/Q/We_(m_ey/QI(gyoo)(x), where § € R
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is unknown. Find the generalized Bayes action for estimating # under the
squared error loss, when the (improper) prior of 6 is the Lebesgue measure
on R.

Solution. Let X be the sample mean and X(1) be the smallest order
statistic. Then the product of the density of X1, ..., X,, and the prior density

is N Lo
(w) exp {_2 > (X - 9)2} 1(0,00) (X (1))

i=1
and, thus, the generalized Bayes action is
fOXm Ge—(X—=0)*/24p _3 fOX(l)(e _ X)e—n(X—9)2/2d9
X e=n(x-0)2/24p B JX0 emn(x=0)2/2q

Let ® be the cumulative distribution function of the standard normal dis-
tribution. Then

/X(” o n(X-0)2/2,49 _ V2r[@(vn(X ) — X)) — &(—vnX))
0 vn

and

/X(l)(g _ X)e’”()_(*")z/?de _ \/ﬂ[q"(—\/ﬁ)_() — @’(ﬁ(X(l) — )‘())].
0

n

Hence, the generalized Bayes action is
g VD) WX - X))
VAR(VA(X 1) = X)) — &(—/nX)

Exercise 10 (#4.15). Let (X1, ..., X,,) be a random sample from N (1, 0?)
and 7(p, 0%) = 0‘21(0’00) (0%) be an improper prior for (1, 0?) with respect
to the Lebesgue measure on R2.

(i) Show that the posterior density of (u,0?) given x = (x1,...,x,) is
7(pu, 0%|x) = 7 (plo?, x)me(o?|x), where m(u|o?, z) is the density of the
normal distribution N(Z,02/n), Z is the sample mean of x;’s, ma(c?|z) is
the density of w™!, and w has the gamma distribution with shape parame-
ter (n — 1)/2 and scale parameter [Y__, (z; — z)%/2] 7"

(ii) Show that the marginal posterior density of u given x is f ("T—i), where
2 = 3" (z; — 7)*/[n(n — 1)] and [ is the density of the t-distribution
tn—1.

(iii) Obtain the generalized Bayes action for estimating p/c under the
squared error loss.

Solution. (i) The posterior density m(u, o?|z) is proportional to

. 1 n B _ 7 2
o—(n+2) eXp{M (2 x)z}exp{(ga%)b}f(o,oo)(UQ)a

i=1
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which is proportional to 7y (1|02, z)m2 (0| 2).
(ii) The marginal posterior density of u is

(o) = [ vl oot
o0 — 2 n
—(n+2 n(T — p) 1 =\2 2
O(/O o ( )exp{wwigl(xiz) do

1 . 2 —n/2
1+<“ >]
n—1 T

Hence, m(u|z) is f(“=%) with f being the density of the t-distribution ¢, 1.
(iii) The generalized Bayes action is

X

a:/ﬁmwﬁwwmﬂwwwz
g

= 33/0_17r2(02|x)d02
_ I'(n/2)z .y
L((n—1)/2)V/ 3 (e — 7)2/2

Exercise 11 (#4.19). In (ii)-(iv) of Exercise 1, assume that the parame-
ters in priors are unknown. Using the method of moments, find empirical
Bayes actions under the squared error loss.

Solution. Define fi; = X (the sample mean) and fip =n~! > " X2

(i) In Exercise 1(ii),

ka
a+ 0

EX, = E[E(X1|p)] = E(kp) =

and

ko (k* — k)a(a+1)

EX} = E[E(X]Ip)] = Blkp(1 —p) + K9] = =5+t i p

Setting i = EX; and ji; = EX?, we obtain that

fio — i — fu(k —1)
fir(k = 1) + k(1 — iz /1)

d:

and
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Then the empirical Bayes action is (nX + &)/(kn + & + f3).
(ii) In Exercise 1(iii),

EX, = E[E(X1]0)] = E(0/2) = Q(baf 1)
and
EX} = E[E(X}|0)] = E[(6/2)* + 6°/12] = E(6°/3) = 3(5 2_b2>

Setting i = EX; and ji; = EX?%, we obtain that

b=1+\/312/(3f12 — 43)

=211 (b—1)/b.

and

151

Therefore, the empirical Bayes action is (n + b) max{X),a}/(n+b—1),

where X, is the largest order statistic.
(iii) In Exercise 1(iv),

EX, = E[E(X)|6)] = B(6) = ————

and
2

P(a—1)(a—2)
Setting fi; = EX; and ji; = EX?, we obtain that

EX? = B[E(X?|0)] = BE(20°) =

2 — 2j13
U= ——""5
fl2 — 2f17
and
. 1
LGRS

The empirical Bayes action is (4nX +1)/[¥(n + & — 1)]. 1

Exercise 12 (#4.20). Let X = (Xy,...,X,,) be a random sample from
N(u,0?) with an unknown g € R and a known o2 > 0. Consider the prior
e = N(po, 03), & = (o, o), and the second-stage improper joint prior
for £ be the product of N(a,v?) and the Lebesgue measure on (0, c0), where
a and v are known. Under the squared error loss, obtain a formula for the

generalized Bayes action in terms of a one-dimensional integral.
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Solution. Let T be the observed sample mean. From Exercise 2, the Bayes
action when & is known is

0_2
6(‘,1:75) = no_g + 0_2 MO +

nog

nag +027

By formula (4.8) in Shao (2003), the Bayes action is

/ 5(,€) (€| r) e

where f(£|x) is the conditional density of £ given X = x. The joint density
of (X, p,§) is

1 \" 1 RN o (p—po)®  (mo—p)?
< ) 2T exp{ 202 ;(xl 2 203 202 ’

2mo

Integrating out p in the joint density of (X, u,£) and using the identity

> at? — 2bt + ¢ gt 27Te P ¢
e - =4/ —exp{ — — =
P 2 Ve “Plaa 2

for any a > 0 and real b and ¢, we obtain the joint density of (X, ¢) as

2
nr 4 po
4 _L_M_LMM
oo/ + L 202 202 208 o no4 L
04/ 52 o2 o2 o2

where y is the observed value of 31" | X2 and d = (27)~("F1/2gny~1,
This implies that
acd(nod + 0?) — nodv?z

E(uolol, z) = .
(Holoo, ) 03(no2 + 02) + nojv?

Integrating out po in the joint density of (X,£) and using the previous
identity again yields the joint density of (X, 03) as

de—v/(20%) 1 1

7_’_7_7
1 2 2 no4 1
UO\/%“F?S v 70 o2 o2

flw,00) =
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Then the generalized Bayes action is

oo [o? o2z nol
0 |: ii%ﬂag ) + 77,0'2-4?02x f(a()7 )do—?}
[ st sciaras - |

fo UOa dUo

Exercise 13 (#4.21). Let X = (Xy,...,X,,) be a random sample from
the uniform distribution on (0,8), where § > 0 is unknown. Let 7(0) =
babﬁf(b“)I(a,DO) (0) be a prior density with respect to the Lebesgue measure,
where b > 1 is known but a > 0 is an unknown hyperparameter. Consider
the estimation of # under the squared error loss.

(i) Show that the empirical Bayes method using the method of moments

produces the empirical Bayes action §(a), where §(a) = bfgﬁl max{a, X},

n =1 (2]

(i) Le% h(a) = a ' J(0,00)(a) be an improper Lebesgue prior density for a.
Obtain explicitly the generalized Bayes action.

Solution. (i) Note that EX; = E[E(X1]|0)] = E(0/2) = ab/[2(b — 1)].
Then a = 2(2;1) >, X; is the moment estimator of a. From Exercise 2,
the empirical Bayes action is 6(a).

(ii) The joint density for (X, 0, a) is

bab*l@*(’ﬂ‘i’lﬂ“l)l(x(n) ,00) (9)[(079) (0,)

Hence, the joint density for (X, 0) is

0
/0 ba’ 107"k oy (O)da =6~k o) (0)
and the generalized Bayes action is

fX(n) 0-"deo _ nX(n) '
[ 6 n1

Exercise 14 (#4.25). Let (Xy,...,X,) be a random sample from the

exponential distribution on (0,00) with scale parameter 1. Suppose that

we observe T' = X7 4+ -+ + Xy, where 6 is an unknown positive integer.

Consider the estimation of § under the loss function L(#,a) = (0 — a)?/0

and the geometric distribution with mean p~! as the prior for @, where
€ (0,1) is known.

(i) Show that the posterior expected loss is

E[L(0,a)T =t =1+&—2a+ (1 —e *)a?/¢,

where £ = (1 —p)t.
(i) Find the Bayes estimator of 6 and show that its posterior expected loss
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is1—&> 00 ems,

(iii) Find the marginal distribution of (1 — p)T', unconditional on 6.

(iv) Obtain an explicit expression for the Bayes risk of the Bayes estimator
in part (ii).

Solution. (i) For a given 0, T has the gamma distribution with shape
parameter 6 and scale parameter 1. Hence, the joint probability density of
(T,0) is

1
f(t,0) = mt"—le—tp(l —p)?t t>060=12,..

and ,
= i [ =p)t] ¢
f(t,0) =pe™ =pe?
2 2 Gy
Then,
> 2
_ a
Bialr =1 =pe S D g0
0=1
:e%ig _ 9272ae*5i£9—719
0! 0!
6=1 0=1
©  +0-1
2 ¢ 3
+a’e (,Z: o1
=1

=1+¢—2a+ (1-e%)a?/e.

(ii) Since E[L(0,a)|T = t] is a quadratic function of a, the Bayes estimator
is 6(T) = (1 —p)T/(1 — e~ =PT). The posterior expected loss when T’ = ¢
is

—&
E[L©,6()T = 1] = 1 - ’fe _ —626
(iii) As shown in part (i) of the solution, the marginal density of T is
ooy f(t,0) = pe~Pt, which is the density of the exponential distribution

on (0,00) with scale parameter p~1.
(iv) The Bayes risk of 6(T) is

E{E[L(0,5(T)|T)} =1—-E {(1 _p)T i em(lp)T}
=1-(1-p pi/ o~ (=)t —pt gy
m=1 0

> 1
BRI DY ey 2
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where the first equality follows from the result in (ii) and the second equality
follows from the result in (iii). &

Exercise 15 (#4.27). Let (Xi,...,X,) be a random sample of binary
random variables with P(X; =1) =p € (0,1).

(1) Show that the sample mean X is an admissible estimator of p under the
loss function (a — p)?/[p(1 — p)].

(ii) Show that X is an admissible estimator of p under the squared error
loss.

Note. A unique Bayes estimator under a given proper prior is admissible.
Solution. (i) Let T = nX. Consider the uniform distribution on the
interval (0,1) as the prior for p. Then the Bayes estimator under the loss
function (a — p)2/[p(1 — p)] is

fol pT-Y(1—p)n—T-1dp 1 '

Since the Bayes estimator is unique, X is an admissible estimator under
the given loss function.
(ii) From the result in (i), there does not exist an estimator U such that

E(U -p)* _ B(X —p)°
p(l-p) = p(l-p)

for any p € (0,1) and with strict inequality holds for some p. Since p €
(0,1), this implies that there does not exist an estimator U such that

E(U -p)* < BE(X - p)?

for any p € (0,1) and with strict inequality holds for some p. Hence X is
an admissible estimator of p under the squared error loss. I

Exercise 16 (#4.28). Let X = (Xy,...,X,,) be a random sample from
N(u,1), p € R. Show that the sample mean X is an admissible estimator
of 1 under the loss function L(p,a) = |u — al.

Solution. Consider a sequence of priors, N(0,5), 7 = 1,2,.... From
Exercise 1, the posterior mean under the jth prior is §; = an, where
a; =nj/(nj+1). From Exercise 6, 0; is a Bayes estimator of p. Let 7, be
the Bayes risk for an estimator 7. Then, for any j, r, > Ts, and

rs, = BIE(|l;X — pl|p)] = a; EIE(IX — aj 'l )] = ayr,

J

where the last inequality follows from Exercise 11 in Chapter 1 and the fact
that given u, p is a median of X. Hence,

027, —re2(a;—ry =—(nj+ D,
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1

which implies that T;, — Tg converges to 0 at rate j~' as j — oo. On the

other hand, for any finite interval (a,b), the prior probability of u € (a,b)
is ®(b/\/j) — ®(a/+/j), which converges to 0 at rate j~'/2, where ® is
the cumulative distribution of N(0,1). Thus, by Blyth’s theorem (e.g.,
Theorem 4.3 in Shao, 2003), X is admissible. 1

Exercise 17. Let X be an observation from the negative binomial distri-
bution with a known size r and an unknown probability p € (0,1). Show
that (X +1)/(r + 1) is an admissible estimator of p~! under the squared
error loss.

Solution. It suffices to show that do(X) = (X +1)/(r + 1) is admissible
under the loss function p?(a — p~1)2. The posterior distribution of p given
X is the beta distribution with parameter (r + «, X —r + ). Under the
loss function p?(a — p~1)?2, the Bayes estimator is

E(p|X) X+a+p+1

oX) = E@?X)  rd+a+l
which has risk
_ r(d-p) [(a+B8+1)p—(a+ 1)
Ré(p)i(r—i—oz—i—l)2 (r4+a+1)2

and Bayes risk

. Uz N 3 af(a+B+1)
b (a+B)(r+a+1)?2 (a+B)2(r+a+1)? (a+p)i(r+a+1)F

Also, §p(X) has risk

_rl-p+(1-p)?
R50 (p) - (’F 4 1)2

and Bayes risk

_ B n 52 n af
o T @ )+ 2 (@t PR+ 12 (at Bt Dot B+ 12
Note that

a;rgﬁ(rao—r&):A—FB—FC’,
where
A—Z 1 _ 1 2r
Cal(r+1)? (r+a+1)? (r+1)3

ifa—0and 8 —0,

__ B o 1 2
_a(a+ﬁ)[(r+1)2 <r+a+1>2}%<r+1>3
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ifa—0,8—0and a/8 — 0, and
1 1 a+p/+1

C=Es r+1)2a+B+1) (r+a+l)?
Cla—(a+B)r+Dr+a+1+(a+ B+ 1)(r+ 1)
N (a+B)(a+B+1D)(r+1)2(r+a+1)2
2
N
ifa —0,8—0and a/8 — 0. Therefore,

a+p
af
ifa—0,8—0and o/ — 0. For any 0 < a < b < 1, the prior probability
of p € (a,b) is

(réo - 7’5) —0

_ I(a+5) ’ a—1 -1
Wa,ﬁ—m/ap (1—p)’dp.

Note that al'(a) =T'(a + 1) — 1 as a — 0. Hence,

b
a(jﬁﬁm,ﬁ%/a p ' (1—p) tdp

as o — 0 and 8 — 0. From this and the proved result, (r, —r,)/ma,3 — 0
if a =0, 8—0and a/8 — 0. By Blyth’s theorem, do(X) is admissible. &

Exercise 18 (#4.30). Let (Xi,...,X,) be a random sample of binary
random variables with P(X; = 1) =p € (0,1).
(i) Obtain the Bayes estimator of p(1 — p) when the prior is the beta dis-
tribution with known parameter («, 3), under the squared error loss.
(ii) Compare the Bayes estimator in (i) with the UMVUE of p(1 — p).
(iii) Discuss the bias, consistency, and admissibility of the Bayes estimator
in (i).
(iv) Let [p(1 — p)]~'1(0,1)(p) be an improper Lebesgue prior density for p.
Show that the posterior of p given X;’s is a probability density provided
that the sample mean X € (0, 1).
(v) Under the squared error loss, find the generalized Bayes estimator of
p(1 — p) under the improper prior in (iv).
Solution. (i) Let 7= >""" ; X;. Since the posterior density given T =t is
proportional to

P (1= p) T 1) (),

the Bayes estimator of p(1 — p) is

5(T) = Jo P (L—p)" Py (T+a+1)(n—T+p)
Jo T (L= py T dp - (b et BH2)ntat B A1)




158 Chapter 4. Estimation in Parametric Models

(ii) By considering functions of the form aT? + bT of the complete and
sufficient statistic T, we obtain the UMVUE of p(1 — p) as

Tn—-T)

N TCE

(iii) From part (ii) of the solution, E[T(n — T)] = n(n — 1)p(1 — p). Then
the bias of 6(7) is
n(n —1)
n+a+8+2)n+a+p4+1)

=1 p(l-p)

(a+D(n+p6)+pn(f—a—1)
(n+a+B+2)(n+a+p+1)
which is of the order O(n~1). Since lim,,(T/n) = p a.s. by the strong law
of large numbers, lim,, §(T) = p(1 —p) a.s. Hence the Bayes estimator 6(T)
is consistent. Since 6(T) is a unique Bayes estimator, it is admissible.
(iv) The posterior density when T' = ¢ is proportional to

Pt - p)n_t_lf(o,l)(p)7

which is proper if and only if 0 < t < n.
(v) The generalized Bayes estimator is

fo —p)"Tdp T(n—T)

fo pT—1( 1,p)n T-1qp, n(n+1)

Exercise 19 (#4.35(a)). Let X = (X1, ..., X;,) be a random sample from
the uniform distribution on (6,6 + 1), # € R. Consider the estimation
of 6 under the squared error loss. Let 7(6) be a continuous and positive
Lebesgue density on R. Derive the Bayes estimator under the prior 7 and
show that it is a consistent estimator of 6.

Solution. Let X(;) be the jth order statistic. The joint density of X is

To.041) (X)L (0.041) (X)) = L(x) -1, 1)) (0)-

Hence, the Bayes estimator is

X
fx<(1))  Om(0)dd

fX(m

Note that lim, X(;) = ¢ a.s. and lim, X(,) = 6 + 1 a.s. Hence, almost
surely, the interval (X(n) - 1,X(1)) shrinks to a single point 6 as n — oc.
Since 7 is continuous, this implies that lim, §(X) =0 a.s. 1

6(X) =
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Exercise 20 (#4.36). Consider the linear model with observed vector
X having distribution N,,(Z3,0%I,), where Z is an n x p known matrix,
p<mn,€RP, and o > 0.

(i) Assume that o2 is known. Derive the posterior distribution of 3 when
the prior distribution for 38 is N,(By,0%V), where 3y € RP is known and
V' is a known positive definite matrix, and find the Bayes estimator of {73
under the squared error loss, where [ € R? is known.

(ii) Show that the Bayes estimator in (i) is admissible and consistent as
n — 00, assuming that the minimum eigenvalue of Z7Z — oo.

(iii) Repeat (i) and (ii) when o2 is unknown and o2 has the gamma dis-
tribution with shape parameter o and scale parameter v, where o and
are known.

(iv) In part (iii), obtain Bayes estimators of o2 and I73/c under the squared
error loss and show that they are consistent under the condition in (ii).
Solution. (i) The product of the joint density of X and the prior is pro-
portional to

J_nexp{_ X - Zﬁll2}exp {_(ﬁ — B)V (8= ) }

202 202

Since

exp{_lX—Zﬁz} _ exp{ SSR}eXp {_(B—B)TZTZ(B—@ }

202 202 202

where 3 is the LSE of 8 and SSR = || X — Zf||2, the product of the joint
density of X and the prior is proportional to

202

{ BT(Z7Z+ VY3 —287(V16y + Z7Z3) }
exXp § — )

which is proportional to

exp {_ (B=p)(Z7Z+ V) (B - B) } ’

202

where R
B*=(Z"Z+V Y Y V1B 4+ Z7Zp).

This shows that the posterior of 3 is N,(8*,0%(Z7Z+V ~1)~1). The Bayes
estimator of {73 under the squared error loss is then [” 3*.

(ii) Since the Bayes estimator {73* is unique, it is admissible. If the mini-
mum eigenvalue of Z7Z — oo as n — oo, then ﬁ —p 5,

im!™(Z7Z + V- H~'v=15, =0,
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and
lim(Z"Z +VY)"'z7Z1=1.

Hence, I 3* =, 3.
(iii) Let w = o~2. Then the product of the joint density of X and the prior
is proportional to

== e {wnX - Zﬂll2} exp {_ww — 50)" V(B = Bo) } |

2 2

which is proportional to (under the argument in part (i) of the solution),

O/ o {_wSQSR} exp {_ (B=p) (27 Z+V ) (B-5) } '

202

Hence, the posterior of (8,w) is p(B|w)p(w) with p(B|w) being the density
of N(B*,w™(Z"Z + V~1)71) and p(w) being the density of the gamma
distribution with shape parameter n/2 + o and scale parameter (y~! +
SSR/2)~!. The Bayes estimator of {73 is still [73* and the proof of its
admissibility and consistency is the same as that in part (ii) of the solution.
(iv) From the result in part (iii) of the solution, the Bayes estimator of

2 -1
/ wp(w)dw
0

o =w""1is
It is consistent since SSR/n —, 0. Using
E(B/0) = E[E(B/c|o)] = Elo™ E(B]0)]

and the fact that 3* does not depend on 02, we obtain the Bayes estimator
of I"3/o as

7' +SSR/2
 on/24a-1"

T(n/2+ o +1/2)

(n/2+ a)y/y~L +SSR/2

lim Fn+a+1/2) _1,
n /nl(n+ a)
the consistency of the Bayes estimator follows from the consistency of [” 3*
and SSR/n. 1

ZT,G*/ w1/2p(w)dw ="p"
0 T

From the fact that

Exercise 21 (#4.47). Let (Xq,...,X,,) be a random sample of random
variables with the Lebesgue density 4 /2/71'67(170)2/2[(9,00)(17), where § € R
is unknown. Find the MRIE (minimum risk invariant estimator) of # under
the squared error loss.

Note. See Sections 2.3.2 and 4.2 in Shao (2003) for definition and discus-
sion of invariant estimators.
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Solution. Let f(z1,...,x,) be the joint density of (Xi,...,X,). When
=0,

D) n/2 1 n
XL =ty X — t) = (W) eXp{—2 Z(Xi—t)z}fu,oo)(X(l))

i=1

2\ "/? ) o
— () e*(nfl)s /2efn(X7t) /21(t7oo)(X(1));

™

where X is the sample mean, S? is the sample variance, and X(1) is the
smallest order statistic. Under the squared error loss, the MRIE of 0 is
Pitman’s estimator (e.g., Theorem 4.6 in Shao, 2003)

ftf(Xl —t, ., Xy = t)dt B fOX(l) te_n(j(_t)z/th
JIG =t X =)t [X0 omn(X—02/2q4 "

which is the same as the estimator § given in Exercise 9. 1

Exercise 22 (#4.48). Let (Xy,...,X,) be a random sample from the
exponential distribution on (u, 00) with a known scale parameter 6, where
p € R is unknown. Let X(;) be the smallest order statistic. Show that

(i) X(1)y —0log2/n is an MRIE of x under the absolute error loss L(p—a) =
ln—al;

(ii) X(1) —t is an MRIE under the loss function L(p —a) = I o) (|t — al).
Solution. Let D = (X; — X,,..., X;—1 — X,). Then the distribution
of D does not depend on u. Since X(;) is complete and sufficient for u,
by Basu’s theorem, X(;) and D are independent. Since X(;) is location
invariant, by Theorem 4.5(iii) in Shao (2003), X (1) — u. is an MRIE of p,
where u, minimizes Eo[L(X (1) —u)] over v and Ej is the expectation taken
under p = 0. Since Eo[L(X (1) —u)] = Eo| X (1) — ul, ux is the median of the
distribution of X (1) when p = 0 (Exercise 11 in Chapter 1). Since X(;) has
Lebesgue density n9‘1e_"””/91(0700) () when p =0,

% B g/u* e 0y =1 — emmus/?
0

and, hence, u, = 0log2/n.

(ii) Following the same argument in part (i) of the solution, we conclude
that an MRIE of p is X(1) — u., where u, minimizes Eo[L(X 1) — u)] =
Po(| X1y —u| > t) over v and Ey and Py are the expectation and probability
under p = 0. When u <0, Py(|X1) —u| > t) > Po(Xq) > t). Hence, we
only need to consider u > 0. A direct calculation shows that

Eo[L(X(l) — u)} = Po(X(l) > U +t) + Po(X(l) <u-— t)

- 1— e—nmin{u—t,O}/S + e—n(1z—0—t)/97
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which is minimized at u, = ¢. 1

Exercise 23 (#4.52). Let X = (X,...,X,,) be a random sample from a
population in a location family with unknown location parameter p € R
and 7" be a location invariant estimator of 1. Show that 7" is an MRIE under
the squared error loss if and only if T is unbiased and E[T(X)U(X)] = 0 for
any U(X) satisfying U(X7 +¢, ..., X, + ¢) = U(X) for any ¢, Var(U) < oo,
and E[U(X)] = 0 for any pu.

Solution. Suppose that T"is an MRIE of p. Then T is unbiased. For any
U(X) satistying U(X1 + ¢, ..., X +¢) = U(X) for any c and E[U(X)] =0
for any u, T+ tU is location invariant and unbiased. Since T is an MRIE,

Var(T) < V(T + tU) = Var(T) + 2tCov (T, U) + t*Var(U),

which is the same as 0 < 2tE(TU) + t*Var(U). This is impossible unless
E(TU) = 0.

Suppose now that 7' is unbiased and E[T(X)U(X)] = 0 for any U(X)
satisfying U(X;1 + ¢,..., X, + ¢) = U(X) for any ¢, Var(U) < oo, and
E[U(X)] = 0 for any p. Let Ty be Pitman’s estimator (MRIE). Then
U =T — Ty satisfies U(X;1 + ¢, ..., X;, + ¢) = U(X) for any ¢, Var(U) < oo,
and F[U(X)] = 0 for any p. Then E[T(T — Tp)] = 0. Since Tp is an
MRIE, from the previous proof we know that E[To(T — Tp)] = 0. Then
E(T — Ty)? = E[T(T — Ty)|— E[To(T — Tp)]=0. Thus, T = Tp a.s. and T
is an MRIE. 1

Exercise 24 (#4.56). Let (Xi,...,X,) be a random sample from the
uniform distribution on (0,0) and consider the estimation of o > 0. Show
that the MRIE of o is 2(”+1)71X(n) when the loss is L(o,a) = |1 — a/0o|,
where X, is the largest order statistic.

Solution. By Basu’s theorem, the scale invariant estimator X, is in-
dependent of Z = (Z3,...,Z,), where Z; = X;/X,, it = 1,...,n— 1, and
Zp = Xyn/|Xn|. By Theorem 4.8 in Shao (2003), the MRIE is X(,)/u.,
where u, minimizes E1[1 — X(,,)/u| over v > 0 and E; is the expectation
under ¢ = 1. If u > 1, then |1—X(n)/u| = 1—X(n)/u > 1_X(n) = ‘1—X(n)‘
Hence, we only need to consider 0 < u < 1. Since X, has Lebesgue density
nx" g 1y(x) when o =1,

x

21
u

2"tz

Bil(Xe /) =1 = [

u 1
:ﬂ/ (u—x)x"_ldx—i—ﬁ/ (x —u)z" tdx
U Jo U Jy
n n 1—u"t!
. n (1 ="
n—|—1u +n—|—1 u ( u”)
n n 1
= u + 1

)

n+1 n—I—la_



Chapter 4. Estimation in Parametric Models 163

which is minimized at u, = 2-®+1)7", Thus, the MRIE is 2("+1)_1X(n). ]

Exercise 25 (#4.59). Let (Xi,...,X,) be a random sample from the
Pareto distribution with Lebesgue density aoa:c*(a“)f(moo) (), where o >
0 is an unknown parameter and o > 2 is known. Find the MRIE of o under
the loss function L(o,a) = (1 —a/o)?.

Solution. By Basu’s theorem, the scale invariant estimator X(; is in-
dependent of Z = (Z1,...,Z,), where X(1) is the smallest order statistic,
Z; =X;/Xn,i=1,...,n—1, and Z,, = X,,/|X,|- By Theorem 4.8 in Shao
(2003), the MRIE is X(1)/u., where u, minimizes E1(1 — X(1)/u)? over
u > 0 and Ej is the expectation under ¢ = 1. Since X(;) has Lebesgue
density nozx_("aH)I(l’oo)(x) when o0 =1,

El(X21 ) — 2uE1(X(1)) + u?
By(1 = Xy fu)? = —— g
no 2no

= - ].
(na—2)u?2  (na—1)u +h

which is minimized at u, = (na — 1)/(na — 2). Hence, the MRIE is equal
to (na —2)Xqy/(na—1). 1

Exercise 26 (#4.62). Let (Xi,...,X,) be a random sample from the
exponential distribution on (u,00) with scale parameter o, where p € R
and o > 0 are unknown.

(1) Find the MRIE of ¢ under the loss L(o,a) = |1 —a/o|P with p =1 or 2.
(ii) Under the loss function L(u,0,a) = (a — p)?/o?, find the MRIE of p.
(iii) Compute the bias of the MRIE of y in (ii).

Solution. Let X(1) = minj<i<, X; and T = Y7 | (X; — X1)). Then
(X1, T) is complete and sufficient for (u,0); X (1) and T" are independent;
T is location-scale invariant and 7'/c has the gamma distribution with
shape parameter n — 1 and scale parameter 1; and X(; is location-scale
invariant and has Lebesgue density no~te™(@=m/o[  (z).

(1) Let W = (Wl,...,Wn,1)7 where Wz = (Xl - Xn)/(Xn,1 - Xn), 1 =
1,..n—2,and W,,_1 = (X;,—1 — Xp)/|Xn—1 — Xn|. By Basu’s theorem,
T is independent of W. Hence, according to formula (4.28) in Shao (2003),
the MRIE of o is T'/u., where u, minimizes E;|1 — T'/u|P over u > 0 and
F1 is the expectation taken under o = 1.

When p =1,
% Uou(u O (D)t + [o(t - u)fn(t)dt]

/Ou Fa(t)dt — i/ou tfn(t)dt
+ % /:o tfo(t)dt — Lm fn(t)dt,

E1|1 —T/u|
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where f,(t) denotes the Lebesgue density of the gamma distribution with
shape parameter n — 1 and scale parameter 1. The derivative of the above
function with respect to u is

W(u) = % (/Ou L (D)t — [O tfn(t)dt> .

The solution to 1 (u) = 0 is u, satisfying

/Ou* tf()dt = /:O tfo ()t

Since tf,(t) is proportional to the Lebesgue density of the gamma distri-
bution with shape parameter n and scale parameter 1, u, is the median of
the gamma distribution with shape parameter n and scale parameter 1.
When p = 2,
Ei(T?) —2uE(T) +u?> nn-1) 2(n-1)

Ei(1—T/u)* = . L

which is minimized at u, = n.

(ii) By Basu’s theorem, (X(qy,T') is independent of W defined in part (i) of
the solution. By Theorem 4.9 in Shao (2003), an MRIE of p is X (1) — u.T,
where wu, minimizes E071(X(1) — uT)2 over v and FEjy; is the expectation
taken under 4 = 0 and o = 1. Note that

Eo1(Xqy —uT)? = Eo1(X() — 2uEo 1 (X(1)) B (T) + u?Eo 1 (T?)

2 2(n—1
T a2 %M(n— 1)u?,
which is minimized at u, = n~2. Hence the MRIE of W is X(l) —n 2T,
(iii) Note that
5 o (n—1)c o
E(X(l)—n T)zﬁ—&—u—i:u—i-—.

n? n?
Hence, the bias of the MRIE in (ii) is o/n?.

Exercise 27 (#4.67). Let (Xi,...,X,) be a random sample of binary
random variables with P(X; = 1) = p € (0,1). Let T be a randomized
estimator of p with probability n/(n + 1) being the sample mean X and
probability 1/(n + 1) being 2. Under the squared error loss, show that T
has a constant risk that is smaller than the maximum risk of X.
Solution. The risk of T is

n 2
n+1+(p_§) n+1] 4(n+1)

E|(p-X)?
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The maximum risk of X is

pl—p) _ 1 1
=—>_— 1
05p21  n i~ 4(n+1)

Exercise 28 (#4.68). Let X be a single sample from the geometric
distribution with mean p~!, where p € (0,1). Show that Iél} is a
minimax estimator of p under the loss function L(p, a) = (a— (1-p)].
Solution A. The risk function of any estimator §(X) of p is

If 6(1) # 1, then lim, 3 Rs(p) = oo and, hence, supy.,.; Rs(p) = oco. If
0(1) =1, then

sup R(;()>hmR5 —1—|—Z

0<p<1

The risk of I;1y(X) is

oo
l—p+p*) (1-p"?=1
=2

Therefore, I{1}(X) is minimax.

Solution B. From Solution A, I{1}(X) has constant risk 1. Let II; be the
beta distribution with parameter (j7!,1), j = 1,2, .... Under prior Hj, the
Bayes estimator of p under loss (a — p)?/[p(1 — p)]

-1
i >
Si(X)={ =151 T=
(%) { : i
and its Bayes risk is

11— 1 i 1 0:(x) — 2 1— z=2
7,5]‘:/ D dP+Z/ [0;() p]( p) o dp
o JP 0 Jp

_J o [6;(@)]*T(z = (™)
_j+1+Z jF(x+j—1 1)

r=2

_iZ&j()(aj—l) +1) i (x—1)T —1+2).

= Jl(x+571 Flxz+j-t+1)
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For any x =2,3,...and 5 = 1,2, ...,
6@PTE - )IG™Y _ 1

et t-1 = Pla-12
Hence,
o [0 (@)D (= — DY)
1 =0.
]gch T(x+jL—1) 0
Similarly,
=20, () (z— DG+ 1)
1 J =0
M e
and

I i I(z— 1G4 2)

=0.
J(x+7714+1)

j—o0
=

Thus, lim;_ T, = 1. By Theorem 4.12 in Shao (2003), I{1;(X) is mini-
max. 1

Exercise 29 (#4.72). Let (Xi,...,X,,) be a random sample from
N(pe,02) and (Y1,...,Y,) be a random sample from N(py,07). Assume
that X;’s and Y}’s are independent. Consider the estimation of A =, — g
under the squared error loss.

(i) Show that ¥ — X is a minimax estimator of A when o, and o, are
known, where X and Y are the sample means based on X;’s and Y;’s, re-
spectively.

(ii) Show that ¥ — X is a minimax estimator of A when o, € (0,c,] and
oy € (0,¢y], where ¢; and ¢, are constants.

Solution. (i) Let II, ; = N(0,5) and II, ; = N(0,j), j = 1,2, ..., and let
I, ; x I, ; be the prior of (p, Ly)- From Exercise 1, the Bayes estimators

for p, and p, are m;nﬁagX and anfUQY, respectively. Hence, the Bayes
z v

estimator of A is

(5 _ n] \/ m] v
T g+ 032/ mj + o2
with Bayes risk
_ oy jo?
o, = 3 - =
nj + oy mj) + oz
Since ) )
g g
lim r, =%+ -2,
j—oo 7 n m

which does not depend on (/Lm,_,uy) and is equal to the risk of Y — X, by
Theorem 4.12 in Shao (2003), Y — X is minimax.
(ii) Let © = {(pa, pty,02,02) : iy € Rypty € R,04 € (0,¢4),04 € (0,¢y]}

Yy
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and ©¢ = {(pm,,uy,ag,ag) D pa € Rty € R,04 = Cz,0y = ¢y}. From

(i), Y — X is minimax when Qg is considered as the parameter space. Let
Ry _ £ (0) be the risk function of ¥ — X. Since

+ = = sup Ry_x(0),

[ASISH)

sup Ry _ 5 (0) =
(USIC)

3 |
3 |

we conclude that Y — X is minimax. I

Exercise 30 (#4.73). Consider the linear model with observed vector
X having distribution N,,(Z3,0%I,), where Z is an n x p known matrix,
p<n, 3€RP, and 6? > 0, and the estimation of [”3 under the squared
error loss, where [ € R(Z). Show that the LSE {7 is minimax if o2 € (0, ¢]
with a constant c.

Solution. Using the same argument in the solution for the previous exer-

cise, we only need to show the minimaxity of {"3 in the case where o? is

known.

Assume that o2 is known. The risk of I7§ is 0217 (Z7 Z)~ 1, which does
not depend on 3. Consider a sequence of prior N,(0,5711,), j = 1,2,....
From Exercise 20, the Bayes estimator of 73 is

0; = A; 2773,
where A; = (Z7Z + j7'1,)~'. The risk of §; is
Var(6;) + (ES; —17B8)? = c* 1T A; 27 Z A1+ ||(ITA; 27 Z — 17) 82
Hence, the Bayes risk of §; is
rj = Var(d;) + (ITA; Z7Z — " )E(BB™)(ZTZ Al — 1)
= o I"A; 27 ZA;L+ 3| 27 Z A1 — 12
Since | € R(Z) = R(Z7Z), there is ¢ € RP such that | = Z7Z(. Then
Z"ZAl -1 =(Z"ZA;Z27Z — Z7Z)C.
Let I' be an orthogonal matrix such that I''I' = I, and I'"Z7ZT' = A, a
diagonal matrix whose kth diagonal element is A;. Then
B=T1"(Z"ZA;Z"Z - Z"Z)T

=I"Z7ZITT AT Z7ZT — A

=AI(Z"Z + 7' )T PA - A

=AA+71,) A — A,

which is a diagonal matrix whose kth diagonal element is equal to
=57 "N/ Ak +371). Then

JNZTZA;0— 1| = TB*T™¢ — 0
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as j — oo. Similarly,
oA TA;ZTZ Al — oPT(Z7Z) 1

as j — 0o. This shows that lim;_,o 7; = the risk of 17 3. Hence, by Theorem
4.12 in Shao (2003), I7 3 is minimax. I

Exercise 31 (#4.74). Let X be an observation having the hypergeometric
distribution with discrete probability density

0\ (N—06
() )
)
where N and r are known and 6 is an unknown integer between 1 and N.

Consider the estimation of /N under the squared error loss.

(i) Show that the risk function of T(X) = aX/r + ( is constant, where
a={1+/(N-=r)/[r(N-1]}Land 3= (1-a)/2.

(ii) Show that T in (i) is the minimax estimator of /N and the Bayes
estimator with the prior

x =max{0,r — (N —0)},...,min{r, 0},

1({o}) [?Ei)c])zfo (];)t9+c—1(1—t)N—9+c—1dt, 0—1,..N,

where ¢ = 8/(a/r — 1/N).
Solution. (i) From the property of the hypergeometric distribution, E(X)

=70/N and Var(X) = r0(N — 0)(N —r)/[N?(N — 1)]. Hence, the risk of
T is

E (T_ ]f/‘)g = %Var(X) + [(jE(X) + 8- ;]2

_ 0®0(N = 0)(N —r) [(a 16 +ﬂ]2

rN2(N — 1) N
B a?(N—-7)  2(a-1)
ﬂ2+[rN(N—l) N ]9

(R

Setting the coefficients in front of # and 62 to 0, we conclude that T has a
constant risk if @ = {1+ /(N —r)/[r(N —1)]} 7! and B = (1 — a)/2.
(ii) The posterior of € is proportional to

(Z) (va—_re) (]g[) /1 t9+cfl(1 o t)N79+cfldt7
0

()
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which is proportional to

N _ 1
(9 B ;d) /0 t6+c—1(1 _ t)N_9+C_1dt,

0 ==x,....,N —r+ z. The posterior mean of 6 is

oo () Jo e - N ey

N-— — 1 _ ot :
o=a  (50) Jo T A — N0t

From the property of the binomial distribution,

N—r+x
N =7\ - N—r—0+
t (11—t AR |
> (52))erasn

0=z

and
N—r+z (N oy

Z (0 —x) 0_

O=x

>t9_m(1 — )Nt — (N — )t

Hence, the posterior mean of 6 is equal to

(N =) [ t7re(1 — t)r—=te=lqy e W@t

x + I
fo tw-i—c—l(l _ t)r—z+c—1dt r—+ 2c

Then, the Bayes estimator of /N is

1+N—r X | (N-r)e
r+2c) N  N(r+2c)

A direct calculation shows that when ¢ = 3/(a/r — 1/N) with 8 and «
defined in (i), the Bayes estimator is equal to T'. Since T" has constant risk
and is a unique Bayes estimator, T' is minimax. 1

Exercise 32 (#4.75). Let X be an observation from N(u,1) and let u
have the improper Lebesgue prior density m(u) = e. Under the squared
error loss, show that the generalized Bayes estimator of p is X + 1, which
is neither minimax nor admissible.

Solution. The posterior density of i is proportional to

SYRUEC SRS R ETE 3

Thus, the posterior distribution of p is N(X + 1,1) and the generalized
Bayes estimator is E(u|X) = X+1. Since the risk of X +1is E(X+1—u)? =
1+ E(X —u)? > E(X — p)?, which is the risk of X, we conclude that X +1
is neither minimax nor admissible. I
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Exercise 33 (#4.76). Let X be an observation from the Poisson distri-
bution with unknown mean 6 > 0. Consider the estimation of # under the
squared error loss.
(i) Show that supy Ry (6) = oo for any estimator T'= T'(X), where Ry (6)
is the risk of T
(ii) Let S = {aX +b:a € R,b € R}. Show that 0 is an admissible estima-
tor of 6 within .
Solution. (i) When the gamma distribution with shape parameter o
and scale parameter v is used as the prior for 6, the Bayes estimator is
5(X) =v(X +a)/(y+ 1) with Bayes risk r, = ay?/(y+ 1). Then, for any
estimator T, ,
> = Oé’}/
T

as y — o0o.
(ii) The risk of 0 is §2. The risk of aX + b is

a*Var(X) + [aBE(X) +b— 0> = (a — 1)%0* + [2(a — 1)b + a?]0 + b
If 0 is inadmissible, then there are a and b such that
02 > (a—1)%0? + [2(a — 1)b + a®]0 + b?
for all 8 > 0. Letting 8 — 0, we obtain that b = 0. Then
0> (a—1)29—|—a2

for all & > 0. Letting & — 0 again, we conclude that a = 0. This shows
that 0 is admissible within the class <. I

Exercise 34 (#4.78). Let (Xi,...,X,) be a random sample from the
uniform distribution on the interval (u— %, W+ %) with an unknown p € R.
Under the squared error loss, show that (X() + X(,))/2 is the unique
minimax estimator of j, where X; is the jth order statistic.

Solution. Let f(x1,...,x,) be the joint density of X7, ..., X,,. Then

1 p—l<ag <zp<p+d
f@1 = py sy — 1) = { 0 otherwise.

The Pitman estimator of p is

o Xay+3
f—oo tf(Xl —t, o, Xy — t)dt X<n)—§ tdt _ X(l) + X(n)

JER X =t X —tydt pXo g 2
Xim—3
Hence, (X (1) + X(,))/2 is admissible. Since (X (1) + X(5))/2 has constant
risk, it is the unique minimax estimator (otherwise (X 1)+ X(,))/2 can not
be admissible). I
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Exercise 35 (#4.80). Let (Xi,...,X,) be a random sample from the
exponential distribution on (0,00) with unknown mean 6 > 0 and X be
the sample mean. Show that (nX + b)/(n + 1) is an admissible estimator
of § under the squared error loss for any b > 0 and that nX/(n + 1) is a
minimax estimator of § under the loss function L(6,a) = (a — 6)2/62.
Solution. The joint Lebesgue density of Xy, ..., X,, is

e—ne—nX/QI(O’OO) (X(l))a

where X1y is the smallest order statistic. Let T(X) = X, 9 = —0~!, and
c(¥9) = 9™. Then the joint density is of the form c(9)e’” with respect a
o-finite measure and the range of ¥ is (—o0,0). For any ¥y € (—o0,0),

190 0
/ ety lgy = [ e /Y9149 = .

LS 0o

By Karlin’s theorem (e.g., Theorem 4.14 in Shao, 2003), we conclude that
(nX +b)/(n + 1) is admissible under the squared error loss. This implies
that (nX +b)/(n + 1) is also admissible under the loss function L(6,a) =
(a — 6)2/62. Since the risk of nX/(n + 1) is

- 2
1

1z nXer_t9 _ 1 ’
62 n+1 n+1

nX/(n + 1) is an admissible estimator with constant risk. Hence, it is
minimax. I

Exercise 36 (#4.82). Let X be a single observation. Consider the esti-
mation of E(X) under the squared error loss.
(i) Find all possible values of a and 8 such that aX + 8 are admissible
when X has the Poisson distribution with unknown mean 6 > 0.
(ii) When X has the negative binomial distribution with a known size r and
an unknown probability p € (0,1), show that aX + § is admissible when
a< g and >r(l-a).
Solution. (i) An application of the results in Exercises 35-36 of Chapter 2
shows that X + (3 is an inadmissible estimator of EX when (a) a > 1 or
a<0or (b)a=1and g #0. If &« =0, then, by Exercise 36 of Chapter 2,
aX + § is inadmissible when G < 0; by Exercise 34 of Chapter 2, o X + 3
is admissible when 8 > 0.

The discrete probability density X is #%e=%/2! = e*eﬁeﬂ‘/”/x!, where
¥ = logh € (—o00,00). Consider o € (0,1]. Let @ = (1 + A\)~! and

B =~A/(1+ X). Since
0 e—'y)\ﬂ
| =

e—Ae?

— 00
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if and only if Ay > 0, and

00—y AY
/ eidﬁ =00
0

e—re?

if and only if A > 0, we conclude that aX + (3 is admissible when 0 < o < 1
and # > 0; and aX + [ is admissible when @ = 1 and § = 0. By Exercise
36 of Chapter 2, o X + 3 is inadmissible if 5 < 0.

The conclusion is that aX + (§ is admissible if and only if (a, 3) is in
the following set:

{a=0,>0tU{a=1,=0U{0<a<1,8>0}

(ii) The discrete probability density of X is (fj) (1f;y evlos(1-p)  Tet

0 =log(1 —p) € (—00,0), = (1+ A)~1, and 3 =~)\/(1+ \). Note that

0 60 Ar
/ e~ (0> df = ¢
c 1—e

_r_

7‘+1;

c 66 Ar
—Mv0 _
/7006 v (1_69> df =

if and only if v > r, i.e,, 8 > rA/(1 4+ A) = (1 — «). The result follows
from Karlin’s theorem.

if and only if A\r > 1, ie., a <

Exercise 37 (#4.83). Let X be an observation from the distribution with
Lebesgue density 1c(6)ef~12l, |9 < 1.

(i) Show that c(0) =1 — 6.

(ii) Show that if 0 < o < 1, then aX + 3 is admissible for estimating F(X)
under the squared error loss.

Solution. (i) Note that

L 1% ool
- = z—|z| g
o) 2 /,of !
1 0 o0
== (/ e dy +/ eewzdx)
2 —00 0
_1 / 67<1+9>dx+/ —(1=0)z g,
2 0 0
_ bt
T 2\1+460 1-6
1
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(ii) Consider first & > 0. Let a = (1+A)~! and 8 = yA/(1+ A). Note that

C [
Lo ], o=

if and only if A > 1, ie., a < % Hence, aX + 3 is an admissible estimator
of E(X) when 0 < a < 3.
Consider o« = 0. Since

1— 62 0 o
E(X) = 5 </ 2t dy —|—/ xeewwdx>
— o0 0
1 _ 02 o] [e%e]
= (—/ ze gy + / :ve_(l_g)‘”dx>
2 0 0
C1-6/1+60 1-06
2 1—-60 1496
20
1—62’

which takes any value in (—o0, 00), the constant estimator [ is an admissible
estimator of E(X) (Exercise 34 in Chapter 2). I

Exercise 38 (#4.84). Let X be an observation with the discrete prob-
ability density fop(z) = [2!(1 — e )] 7167 %11 5 1(z), where § > 0 is
unknown. Consider the estimation of /(1 — e~%) under the squared error
loss.

(1) Show that the estimator X is admissible.

(i) Show that X is not minimax unless supy Rr(6) = oo for the risk Ry ()
of any estimator T'= T'(X).

(iii) Find a loss function under which X is minimax and admissible.
Solution. (i) Let ¥ = logf. Then the range of ¥ is (—o0, 00). The proba-
bility density of X is proportional to

x ,—0 —e?
0%e _ e oo
1—ef 1—¢¢

Hence, by Corollary 4.3 in Shao (2003), X is admissible under the squared
error loss for E(X) =60/(1 —e™?%).
(ii) The risk of X is

0+ 02 62 0—e?(0+0%

Var(X) = BOX) — [BOOJ = {2~ e = (e

which diverges to co as § — co. Hence, X is not minimax unless sup, Ry ()
= oo for any estimator T'= T'(X).
(iii) Consider the loss [E(X)—a]?/Var(X). Since X is admissible under the
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loss [E(X) — a]?, it is also admissible under the loss [E(X) — a]?/Var(X).
Since the risk of X under loss [E(X) — a]?/Var(X) is 1, it is minimax. 1

Exercise 39 (#4.91). Suppose that X is distributed as N, (¢, I,), where
6 € RP. Consider the estimation of # under the loss (a—0)"Q(a—0) with a
known positive definite p x p matrix (). Show that the risk of the estimator

Q _ v _ r(p—2)
o =X g RE g

is equal to

(Q) — 2r = *)(p = 2)*E(|Q 2 (X = ¢)|| 7).
Solution. Without loss of generality, we assume that ¢ = 0. Define 6, =
0F, Y = QX = QY2
r(p—2) ’

—1
o E? Y

mm=Rmm=4k—

and

g(n) = t(Q) — (2r —*)(p — 2)*E(|Q” /X 7?)
=t1(Q) — (2r —r*)(p - 2’E(|Q7Y 7).
Let A, > 0 be the largest eigenvalue of Q~!. Consider the following family
of priors for p:
(N0, (@ +X)Q — Q) o > 0},
Then the marginal distribution of Y is N, (0, (o + A\)Q?) and
Elg(w)] = tr(Q) — (2r —r*)(p — 2 E(|Q™'Y[|7%)

—tr(@) - F =2 _al)i’i -2

Note that the posterior distribution of p given Y is

Q1 1
N, IL,—— Y Q———1I,]).
p(<p o+ . @ a+ AP

Hence,
P—Q) , 2
2
= (2r —r)(p—2) »
_a-i—)\* )y

(2r =) (p—2)

= (Q) - T
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This shows that E[h(p)] = Elg(p)]. Using the same argument as that in
the proof of Theorem 4.15 in Shao (2003), we conclude that h(u) = g(u)
for any p.

Exercise 40 (#4.92). Suppose that X is distributed as N, (0, 02 D), where
f € RP is unknown, o2 > 0 is unknown, and D is a known p x p positive
definite matrix. Consider the estimation of # under the loss ||a —8||?. Show
that the risk of the estimator

§o—x T(p*2)(72

SR e e R

is equal to
o? [tr(D) — (2r —r*)(p — 2)*0*E(| D™HX — )| 7)] -

Solution. Define Z = 0~ 'D~Y/2(X —¢) and ¢ = 0= 'D71/2(f — ¢). Then
Z is distributed as N, (¢, I,) and
r(p— 2)0D71/2Z

Oep —C= oD'V27 —

|D-1/2Z]12
—2)oD!
—oDV? |7 — 1"(1)72
’ |D=12Z]?
= UDl/Q(Sé?T,

where (50% is defined in the previous exercise with () = D. Then the risk of
SC T

Rs, () = B [(e = 0) (e 9)]
= B [(60, = ¥)"D(E, — b))
= o [tr(D) - 2)2B(|D~"/22] )]

= o? [tr(D) — (2r = 7*)(p — 2)**E(| D71 (X — )| 7)] ,

c,r

where the third equality follows from the result of the previous exercise. 1

Exercise 41 (#4.96). Let X = (Xi,...,X,,) be a random sample of
random variables with probability density fy. Find an MLE (maximum
likelihood estimator) of # in each of the following cases.

(i) fo(w) =071, gy(x), 0 is an integer between 1 and 6.

(ii) fo(x) =€~ Co ‘9)](900)( ), 6 > 0.

(iil) fo(x )—9(1—56)9 To,1)(x), 0> 1.

(iv) fo(z) = t2a®= D00 1 (2), 6 € (5.1).
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v) fo(x) =2"te l2=0 9 e R.
vi) fo(x) = 027211900y (z), 0 > 0.

vii) fo(z) = 07(1 = 0)' " I10,13(2), 0 € [5, 7.
viii) fg(x) is the density of N(0,6%),0 € R, 0 #0
€ R x (0,00)
) Jo(#) = e 08O o (@), 0= (,0%) € R x (0,00).

2mox

(@
Xi) fe(x) = 1(0,1)(95) if 9 =0 and fg( ) = (
xii) fo(z) = B~ %ax*" g 5 (2), 0 = (o, B)
xiit) fo(z) = (2)p"(1 — p)?~L{o1, 0y (2),

(xiv) fo(z) = 2(1—6%)ef=~ 7l g € (—-1,1).

Solution. (i) Let X(,) be the largest order statistic. The likelihood func-
tion is £(0) = 9_"I{X(n)7...,00}(9)7 which is 0 when 6 < X(,,) and decreasing
on {X(n), ..., 00}. Hence, the MLE of 0 is X,

(ii) Let X(;) be the smallest order statistic. The likelihood function is
00) = exp{—>21_(X; — 0)}(0,x,,)(0), which is 0 when 6 > X(;) and
increasing on (0, X(1y). Hence, the MLE of 6 is X(y).

(iii) Note that £(6) = 0™ [T", (1 — X;)?"'1(0,1)(X;) and, when 6 > 1,

2\/5)_1](7 (z )1f9—1
><(0 00).

(
(
(
( 0
(ix) fo(x) = o me =Ml o) (%), 0 = (p,0)
( 0
(
(
( ,..., where p € (0,1) is

8log€ 0%log ¢(6 n
— *+Zlog and T():—G—Z<O.
The equation % = 0 has a unique solution § = —n/ 3" log(1 — X;).

If § > 1, then it maximizes £(f). If § < 1, then £(6) is decreasing on the
interval (1,00). Hence the MLE of 6 is max{1,0}.
(iv) Note that

dlogt(0)  n
0 0(1-0) Z log Xi

and 81%5(9) = 0 has a unique solution § = (1 —n~' 327" log X;)~*. Also,
al%;(e) < 0 when 6 > 6 and 81%04(9) > 0 when 6 < 6. Hence, the MLE of
0 is max{6, i}
(v) Note that £() = 27" exp{— >, | X; — 0|}. Let F,, be the distribution
putting mass n~! to each X;. Then, by Exercise 11 in Chapter 1, any
median of F;, is an MLE of 6.
(vi) Since £(6) = 6" ], X{QI(O)X(D)(G), the same argument in part (ii)
of the solution yields the MLE X|y).
(vii) Let X be the sample mean. Since

dlogl(#) nX n-—nX

00 6 1-0"
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dlog £(0) 9log £(0)

= 0 has a unique solution X, 57~ < 0 when 6 > X, and

90
9102 8%) - () when 6 < X. Hence, the same argument in part (iv) of the

o0
solution yields the MLE

H
=1
m
=)
N

Aleo NI-
-

>

Il
N[ :><§\ N[
S

m

—
INTUR Sl
=

(viii) Note that

25 (g g)
i=1

i=1

The equation 81%02(9) = 0 has two solutions

g, mi Xt CL X F A X7
2n ’

Note that limgy_,q log £(#) = —oo. By checking the sign change at the neigh-
borhoods of 0, we conclude that both 6_ and 6 are local maximum points.
Therefore, the MLE of 6 is

g {6 i) =0y)
- { 0 if 6(0-) < £(04).

(ix) The likelihood function

00) = o " exp {i Z(Xi - u)} To0,x01y) (1)

=1

is 0 when p > X(q) and increasing on (0, X(1)). Hence, the MLE of p
is X(1). Substituting u = X(;) into £(#) and maximizing the resulting
likelihood function yields that the MLE of o is n=' 31" | (X; — X(1)).

(x) Let Y; =log X;, i =1, ...,n. Then

() = WGXP{—W;(K‘—M) —;Yi}-

Solving m%;(e) = 0, we obtain the MLE of yas Y =n~' Y7 | V; and the
MLE of 0% as n™1 Y (V; — V)2

(xi) Since £(0) =1 and £(1) = (2" ]}, vVX;)~!, the MLE is equal to 0 if
2" [Ti—, vVX; <1 and is equal to 1 if 2" [T, X, > 1.

(xii) The likelihood function is £(8) = a™3 "], X?_lf(x(n),oo)(ﬁ),
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which is 0 when 8 < X(,,) and decreasing in 3 otherwise. Hence the MLE
of B is X(y). Substituting 3 = X, into the likelihood function, we obtain
the MLE of a as n[>_7"; log(X )/ X;)] "

(xiii) Let X(,,) be the largest X;’s and T'= Y7 ; X;. Then

n 9 o
i=1 N
For 6 = X(n)aX(n) +1,..,

06 +1) 6+
=1-pJ]———.
o p)ﬁﬁ+1—&

Since (0 4+ 1)/(0 + 1 — X;) is decreasing in 6, the function £(6 + 1)/¢(6) is
decreasing in 6. Also, limg_, o (60 +1)/¢(8) = (1 — p)™ < 1. Therefore, the
MLE of 6 is max{60 : 0 > Xy, £(0 +1)/£(0) > 1}.
(xiv) Let X be the sample mean. Then

0log ¢(0) - 2nf

00 "t T 1-e2

The equation 61%;(9) = 0 has two solutions 63 = +v1+ X2 — 1. Since
f_ < —1 is not in the parameter space, we conclude that the MLE of 0 is

Vi+X2-1.1

Exercise 42. Let (Xy,..., X,,) be a random sample from the uniform dis-
tribution on the interval (6,6 + |0|). Find the MLE of 6 when

(i) 6 € (0,00);

(ii) 6 € (—00,0);

(iii) € R, 6 £ 0.

Solution. (i) When 6 € (0, c0), the distribution of X is uniform on (¢, 26).
The likelihood function is

0o) = 9_”1()((”)/27)((1))(9)-

Since 67" is decreasing, the MLE of 0 is X,/2.
(ii) When 6 € (—o00,0), the distribution of X; is uniform on (6,0). Hence

6(9) = ‘9‘ _n‘[(foo,X(l)) (9)

Since [0|~" is decreasing, the MLE of 6 is X(y).

(iii) Consider 6 # 0. If 8 > 0, then almost surely all X;’s are positive. If
0 < 0, then almost surely all X;’s are negative. Combining the results in
(i)-(ii), we conclude that the MLE of 6 is X(,,)/2 if X; > 0 and is Xy if
X1 <0.1
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Exercise 43 (#4.98). Suppose that n observations are taken from N (u, 1)
with an unknown u. Instead of recording all the observations, one records
only whether the observation is less than 0. Find an MLE of p.

Solution. Let Y; = 1 if the ith observation is less than 0 and Y; = 0
otherwise. Then Y7, ..., Y, are the actual observations. Let p = P(Y; = 1)
= ®(—u), where P is the cumulative distribution function of N (0, 1) (p)
be the likelihood function in p, and "= Y. ; ¥;. Then

dlogt(p) T n—-T

odp 6 1-6

The likelihood equation has a unique solution T'/n. Hence the MLE of p is
T/n. Then, the MLE of p is —®~1(T/n). »

Exercise 44 (#4.100). Let (Y1, Z1), ..., (Ya, Z,) be independent and iden-
tically distributed random 2-vectors such that Y; and Z; are independently
distributed as the exponential distributions on (0, co) with scale parameters
A >0 and p > 0, respectively.
(i) Find the MLE of (X, u).
(ii) Suppose that we only observe X; = min{Y;, Z;} and A, = 1if X; =Y;
and A; =0 if X; = Z;. Find the MLE of (\, ).
Solution. (i) Let £(X, ut) be the likelihood function, ¥ =n=t 3" | ¥;, and
Z =n"13"" | Z;. Since Y;’s and Z;’s are independent,
Olog (A, 1) __r, nY and 0log L(\, 1) __n, ﬂ
oA A A2 ou w2

Hence, the MLE of (\, ) is (Y, Z).
(i) The probability density of (X;, A;) is A== (Ai=De=(""+u" Dz Tt
T=",X,and D=5 " A;. Then

0O p) = AfDqunef()\_lﬁu_l)T'
If 0 < D < n, then

dlog (A, ,u) D T dlogl(A\,u) D—-n T
B3 )\+)\2 and B\ = +M2.

The likelihood equation has a unique solution A = T/D and i = T/(n—D).
The MLE of (A, 1) is (A, f1).
If D=0,
U\ ) = p e ATHRTHT

which is increasing in A\. Hence, there does not exist an MLE of \. Similarly,
when D = n, there does not exist an MLE of p. 1
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Exercise 45 (#4.101). Let (Xi,...,X,,) be a random sample from the
gamma distribution with shape parameter o > 0 and scale parameter v > 0.
Show that almost surely the likelihood equation has a unique solution that
is the MLE of 6 = (a, 7). Obtain the Newton-Raphson iteration equation
and the Fisher-scoring iteration equation.

Solution. Let X be the sample mean and ¥ = n~! Z?zl log X;. The
log-likelihood function is

log£(f) = —nalogy —nlog'(a) + (a — 1)nY —y 'nX.
Then, the likelihood equations are
() a X
+Y =0 and ——+— =0.
INGY) v o2

The second equation yields v = X /a. Substituting v = X/« into the first
equation we obtain that

—logy —

I(a)
T'(«@)

M) _ s N~ L1
I'(a) C+kz_:o(k+1 k—l—a)

h(a) =loga — +Y —log X =0.

From calculus,

and

d [T()] f: 1
do | T(a) | = (k+ a)?’
where C' is the Euler constant defined as

Then

,  — 1
e =G - L Ear

d I'a+1)
= + —1

da I'(a)
h do 8 «

CQl= 2l Q= O
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Hence, h(«) is decreasing. Also, it follows from the last two equalities of
the previous expression that, for m = 2,3, ...,

I'(m) 1 1 ') 21
Dm) m—1 m-2 " TUTT) T &kt
Therefore,
. I'(m) i m-2 4
Jin[logm — ) = [logm “ 2t

by the definition of C. Hence, lim,_. h(a) = Y —log X, which is negative
by Jensen’s inequality when X;’s are not all the same. Since

g“/((fj )) }

= lim
a—(

) oga — k+1 k+ao

o0 1_
loga+C+ 1+Z <
=1

1 (o]
:hm (logaJr >+C1+Z
P (k+ 1Dk

= 00,

a—0

lim [log o —

hm

we have lim,_,0 h(a) = oo. Since h is continuous and decreasing, h(a) =
0 has a unique solution. Thus, the likelihood equations have a unique
solution, which is the MLE of 6.

Let
dlog ¢(0) I () a X
s(0) 50 n< BV~ Ty TV T E)
2
D) |” _ T(e) _1
R(@) _ 82 IOgE(e) —n |:F((l) :| F(a) ~
89697— _ 1 o g ’
v 72 v
and )
{F’(a)} _ M 1
F(9) = E[R(®)] =n| LI Ie) v
1 e

Then the Newton-Raphson iteration equation is
G+ — k) _ [R(é(k))]fls(é(k)), k=0,1,2,..
and the Fisher-scoring iteration equation is

G+ = §F) — [F(EM)]~1s(6™), k=0,1,2,... 1
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Exercise 46 (#4.102). Let (X1, ..., X,,) be a random sample from a pop-
ulation with discrete probability density [z!(1 — 6_9)]_10%_9[{1,2’,”}(a:),
where ¢ > 0 is unknown. Show that the likelihood equation has a unique
root when the sample mean X > 1. Show whether this root is an MLE of
0.

Solution. Let ¢(0) be the likelihood function and

Olog £(0) X 1
h<9)=ae:”(a‘1‘ee_1>-

Obviously, limg_, k() = —n. Since limg_q0/(e? —1) =1,

. N VA B
fm (0 =njim g (¥ ) —n=os

when X > 1. Note that h is continuous. Hence, when X > 1, h(6) = 0 has
at least one solution. Note that

X el
MO)=n|=+-——5|<0
=[5+ @] <
because (e? —1)% /e = (e? —1)(1—e~?) > 62. Hence, h(6) = 0 has a unique
solution and log ¢(6) is convex. Therefore, the unique solution is the MLE
of 6. 1

Exercise 47 (#4.104). Let (X,Y7),...,(X,,Y,) be independent and
identically distributed as the bivariate normal distribution with E(X;) =
E(Y1) =0, Var(X;) = Var(Y1) = 1, and an unknown correlation coefficient
p € (—1,1). Show that the likelihood equation is a cubic in p and the
probability that it has a unique root tends to 1 as n — oo.

Solution. Let T'= )" (X? 4+ Y?) and R = >, X,Y;. The likelihood
function is

é<p>=<2wm>-"exp{ pR__T }

= 21— 07

Hence,

Ologllp) _ _mp R
9  1—pr (1-p?)2 (1-p?)?

and the likelihood equation is h(p) = 0, where
h(p) = p(1 = p*) =n"'Tp+n"'R(1 +p°)

T

is a cubic in p. Since h is continuous,

lim h(p) = —n (T — 2R) = f% D (X =Y)? <0

p—1



Chapter 4. Estimation in Parametric Models 183

and
n

lim h(p) = n~ (T +2R) = %Z(Xi LY >0,

p——1 —t
the likelihood equation has at least one solution. Note that
B(p)=1-3p> —n'T +2n"'Rp.

Asn — 0o, n T —, Var(X1) + Var(Y1) =2 and n 'R —, E(X1Y1) =p
Hence,
R'(p) —p 1 —3p* —2+2p* = -1 —p* < 0.

Therefore, the probability that h(p) = 0 has a unique solution tends to 1. i

Exercise 48 (#4.105). Let (Xi,...,X,,) be a random sample from the
Weibull distribution with Lebesgue density a9‘1xa_1e_””a/9.f(07oo)(ac),
where o« > 0 and # > 0 are unknown. Show that the likelihood equa-
tions are equivalent to h(a) = n=t >0 1logX and 0 = n~ 'Y " X¢,
where h(a) = (30, X&) >0 , X®log X; —a~ !, and that the likelihood
equations have a unique solution.

Solution. The log-likelihood function is

n 1 n
log ¢(cr,0) = nloga —nlogf + (o — I)ZIOgXi - 52)({"

i=1 i=1
Hence, the likelihood equations are

0log (v, 0) o

— = +ZlogX - ;X log X; =0

and

Ologl(c,0) n o _ )
00 - 92ZX

which are equivalent to h(a) = n=!>"" logX; and § = n=t 3" | X
Note that

Yoy Xp(log X0 S0 Xy - (S0, Xelog X 1

(e X572 a?

by the Cauchy-Schwarz inequality. Thus, h(«) is increasing. Since h is
continuous, lim, o h(a) = —co, and

Si () s X,

a—00 a—oo Zn ( X; )O‘
i=1 \ X0

B (a) =

1 n
—log X =% log X,
og (n)>n; og
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where X, is the largest order statistic and the inequality holds as long
as X;’s are not identical, we conclude that the likelihood equations have a
unique solution. I

Exercise 49 (#4.106). Consider the one-way random effects model
Xij:,u—Q—Ai—l—eij, j:l,...,n,i:l,...,m,

where € R, A;’s are independent and identically distributed as N (0, 02),
e;j’s are independent and identically distributed as N (0,0?), 02 and o2 are
unknown, and A;’s and e;;’s are independent.

(i) Find an MLE of (¢2,0%) when p = 0.

(ii) Find an MLE of (u, 02, 02).

Solution. (i) From the solution of Exercise 33 in Chapter 3, the likelihood
function is

2 _2y_ _PE _ — )2
g(lu70-a70— )fexp{ 20_2 2(0_2+n0_g) 2(0_2_1_”0_2) Z(X ,LL) }7
where Sq = n) " (Xi — X.)%, Sp = 30, 0 (X — Xi)? X =

(nm) =132, 300y Xij, Xoo =07t 300, Xy, and € is a function of o and
o2. In the case of = 0, the likelihood function becomes

2(05,02) zfexp{— Se — SA},

202 2(0? 4 no?)

where S4 = n Y7, X?. The statistic (S, Sg) is complete and sufficient
for (02,0%). Hence, {(02,0?) is proportional to the joint distribution of
S4 and Sg. Since X,;’s are normal, Sg/ o2 has the chi-square distribution
an(nfl) and 5',4/(02 + no?2) has the chi-square distribution x?2,. Since the
distribution of Sg does not depend on 62 and S, is complete and sufficient
for 02 when o2 is known, by Basu’s theorem, S4 and Sg are independent.
Therefore, the likelihood equations are

dlogl(a2,07%) nSa nm
o2 02+ no?2 02+ no?
and
dlogl(o2,0%) nSa nm Sg m(n—1) 0
do? 024 no?2  o2+no2 ot o2 7

A unique solution is

.9 SE o Sa SE
6°=——"— and 6;=—1— ———.
m(n —1) nm  nm(n—1)
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If 62 > 0, then the MLE of (02,02?) is (62,62). If 62 < 0, however, the
maximum of (02, 0?) is achieved at the boundary of the parameter space
when o2 = 0. Note that

dlog £(0,0?) nS'A nm Sg  m(n—1)

Oo? o2 02 ot o2

has a unique solution 6% = (nSa + Sg)/[nm + m(n — 1)]. Thus, the MLE
of (02,0?) is (0,62) when 62 < 0.

(i) It is easy to see that X.. maximizes £(u,02,0%) for any o2 and o2.
Hence, X.. is the MLE of y. To consider the MLE of (02, ¢2), it suffices to
consider

U(X.,020%) = Eexp {—

Se. Sa nm
202 2(c2+4no2) 2(c?+no?)

Note that this is the same as £(02,02) in the solution of part (i) With Sy
replaced by S4 and Sa/(0? + no ) has the chi-square distribution x?2, ;.

Using the same argument in part (i) of the solution, we conclude that the
MLE of (02,02) is (62,62) if 62 > 0, where
~92 SE

62=——— and 6= Sa__ Sk
m(n —1) “ nm-1) nmn-1)

and is (0,52) if 62 < 0, where 6% = (nSa + Sg)/[n(m — 1) + m(n — 1)]. &

Exercise 50 (#4.107). Let (Xy,..., X,) be a random sample of random
variables with Lebesgue density 6 f(6x), where f is a Lebesgue density on
(0,00) or symmetric about 0, and 6 > 0 is an unknown parameter. Show
that the likelihood equation has a unique root if z f/(z)/f(x) is continuous
and decreasing for x > 0. Verify that this condition is satisfied if f(z) =
71+ 22) !
Solution. Let £(#) be the likelihood function and

- 0X; f/(exi)]

h(0) = 1+ ——.
" z S0
Then N
Olog (0 1 0X;f (60X
T =g 1 e =0
T — f(0X,)

is the same as h(f) = 0. From the condition, h(#) is decreasing in 6 when
0 > 0. Hence, the likelihood equation has at most one solution. Define
g(t) =1+1tf'(t)/f(t). Suppose that g(t) > 0 for all ¢ € (0,00). Then ¢f(t)
is nondecreasing since its derivative is f(¢)g(t) > 0. Let tg € (0,00). Then
tf(t) > tof(to) for t € (to,00) and

12/toof(t)dtz/m“i(t°)dt_

to
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which is impossible. Suppose that g(¢) < 0 for all ¢t € (0,00). Then tf(¢) is
nonincreasing and tf(t) > tof(to) for t € (0,t9). Then

to o tof(t
1> [ ft)dt> / “ft( 0) gt o0,
0 0

which is impossible. Combining these results and the fact that g(t) is
nonincreasing, we conclude that

60— 00 4
i=1
and, therefore, h(f) = 0 has a unique solution.
For f(z) =711+ 2?)7 1,
zf'(x) 212
fl@) — 1+a?

which is clearly continuous and decreasing for z > 0.

lim
6—0 4
=1

Exercise 51 (#4.108). Let (Xi,...,X,) be a random sample having
Lebesgue density fo(x) = 0f1(x)+ (1—0) fa(z), where f;’s are two different
known Lebesgue densities and 6 € (0, 1) is unknown.

(1) Provide a necessary and sufficient condition for the likelihood equation
to have a unique solution and show that if there is a solution, it is the MLE
of 6.

(ii) Derive the MLE of # when the likelihood equation has no solution.
Solution. (i) Let £(6) be the likelihood function. Note that

310gg — f2(Xy)
s(0) = Z Hx +9[f1( 0~ R

which has derivative

X)) — fo(X)P
Z{fz +9[f1( )= R =

Therefore, s(f) = 0 has at most one solution. The necessary and sufficient
condition that s(f) = 0 has a solution (which is unique if it exists) is that
limg_,¢ s(#) > 0 and limp_,1 s(f) < 0, which is equivalent to

The solution, if it exists, is the MLE since s'(6) < 0.
(ii) If >, ?g y < n, then s(#) > 0 and £(0) is nondecreasing and, thus,

the MLE of ¢ is 1. Similarly, if ", }CI(X g < n, then the MLE of 6 is 0. 1
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Exercise 52 (#4.111). Let X;;, j = 1,..,7 > 1, i = 1,...,n, be inde-
pendently distributed as N(u;,02). Find the MLE of 6 = (u1, ..., fin, 02).
Show that the MLE of o2 is not a consistent estimator (as n — oo).
Solution. Let £(6) be the likelihood function. Note that

10g€(9):——log (27m0?) ZZ ij — 15)?,

=1 j=1

0log ¢(6
—on —Uzz i3 = i),

Z

and
0log £(0) nr J 9
“o07 207 T 2 2K
i=1 j=1
Hence, the MLE of p; is X;. = r~! Z;Zl Xij, 9 =1,...,n, and the MLE of
o? is
1 n T _ )
= >N (X - X
i=1 j=1

Since

j=1

by the law of large numbers,

. r—1
&2 o2

L

2

as n — co. Hence, 6 is inconsistent. I

Exercise 53 (#4.112). Let (Xi,...,X,,) be a random sample from the
uniform distribution on (0, ), where 6 > 0 is unknown. Let 6 be the MLE
of § and T be the UMVUE.

(i) Obtain the ratio of the mean squared error of T' over the mean squared
error of § and show that the MLE is inadmissible when n > 2.

(ii) Let Z, ¢ be a random variable having the exponential distribution on

(a,00) with scale parameter 6. Prove n(6 — ) —q Zog and n(0 — T) —4
Z_g,9. Obtain the asymptotic relative efficiency of 6 with respect to T
Solution. (i) Let X(,) be the largest order statistic. Then 6 = X(n) and
T(X) = 2L X(,,). The mean squared error of 0 is

20?2

P == )
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and the mean squared error of T is

32

E(T —6)? = Mt

The ratio is (n + 1)/(2n). When n > 2, this ratio is less than 1 and,

therefore, the MLE 6 is inadmissible.
(ii) From

P(n0—0)<z) = P(Xp20-7)

0
9*"/ nt"tdt
0—z/n

1)

—1—e /"

as n — 0o, we conclude that n(6 — é) —dq Zo,g. From

n@—-T)=n(l—0)—46

and Slutsky’s theorem, we conclude that n(6 — T) —4 Zy¢ — 6, which has

the same distribution as Z_y g. The asymptotic relative efficiency of 6 with
respect to T is E(Zzg,g)/E(Zgﬂ) =0%/(0>+06%) = 1.

Exercise 54 (#4.113). Let (Xi,...,X,,) be a random sample from the
exponential distribution on (a,c0) with scale parameter 6, where a € R
and € > 0 are unknown. Obtain the asymptotic relative efficiency of the
MLE of a (or 6) with respect to the UMVUE of a (or 6).

Solution. Let X(;) be the smallest order statistic. From Exercise 6 in
Chapter 3, the UMVUE of a and 6 are, respectively,

n

_ 1
a= Xy — 771(” Y ;(XZ - X))

and

From Exercise 41(ix), the MLE of (a, 0) is (&,8), where

a=Xq and 6==>(X;-Xq)).

=1

S|
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From part (iii) of the solution of Exercise 7 in Chapter 2, 2(n — 1)6/6 has
the chi-square distribution X%( 1) Hence,

n—

2(n— 1) <z - 1) —4 N(0,1),

i.e.,

NG (é - 9) —4 N(0,26%).

Since 6 = ”7715, 6 has the same asymptotic distribution as 6 and the
asymptotic relative efficiency of 6 with respect to 6 is 1.

Note that n(a —a) = n(X(1) —a) has the same distribution as Z, where
Z is a random variable having the exponential distribution on (0, c0) with
scale parameter 6. Then

N 1 <
n(a — a) = n(X(l) — a) — n—1 Z<XZ — X(l)) —d Z — 97
i=1

since =3 | (X; — X(1)) —p 0. Therefore, the asymptotic relative effi-
ciency of a with respect to a is E(Z — 0)?/E(Z?) = 3. a
Exercise 55 (#4.115). Let (Xy,..., X,,), n > 2, be a random sample from
a distribution having Lebesgue density fy j, where 6 > 0, j = 1,2, fg1 is
the density of N(0,62), and fgo(x) = (20) e~ l21/0.
(i) Obtain an MLE of (6, j).
(ii) Show whether the MLE of j in part (i) is consistent.
(iii) Show that the MLE of  is consistent and derive its nondegenerated
asymptotic distribution.
Solution. (i) Let 77 = Y i, X2 and T» = > | |X;|- The likelihood
function is .
—n/2p—n,—T1/(207) L
“o.5) = { 2m) 10 e 7=
S j=2.

Note that 6; = \/T} /n maximizes £(6,1) and 6 = Ty /n maximizes £(6, 2).
Define

N 1 £(61,1) > €(6,,2)
! )1,1) < £(62,2),
which is the same as

[
1(;2

IA

[
292

V

oo
I
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and define

Then .
€0,7) > £(9,7)

for any 6 and j. This shows that (é,}) is an MLE of (6, 5).
(ii) The consistency of j means that

lim P(j = j) =1,

which is equivalent to

timp (2 <\ /2 { A

n 0 m 0 ifj=2.
It suffices to consider the limit of él/ég. When j =1, él —p 0 and éz —p
\/20 (since E|X;| = \/20) Then 6, /0, = /5 < \/ % (since 2 < de).
When j = 2, 6, —p V20 and 6, —p 0. Then él/ég —p V2 > 1/2?6 (since

e < 7). Therefore, j is consistent.
(iii) When j = 1, by the result in part (ii) of the solution,

limP(f = 6,) =1.

Hence, the asymptotic distribution of 0 is the same as that of 6; under the
normal distribution assumption. By the central limit theorem and the §-
method, \/ﬁ(él —0) —4 N(0,6%/2). Similarly, when j = 2, the asymptotic
distribution of 6 is the same as that of ég. By the central limit theorem,
Vn(ly — 0) =4 N(0,62). n

Exercise 56 (#4.115). Let (Xy, ..., X,,), n > 2, be a random sample from
a distribution with discrete probability density fy ;, where § € (0,1), j =
1,2, fo1 is the Poisson distribution with mean 8, and fg o is the binomial
distribution with size 1 and probability 6.

(i) Obtain an MLE of (6, j).

(ii) Show whether the MLE of j in part (i) is consistent.

(iii) Show that the MLE of  is consistent and derive its nondegenerated
asymptotic distribution.

Solution. (i) Let X = (Xy,...,X,), X be the sample mean, g(X) =
(IT=, X;H~', and h(X) = 1 if all X;’s are not larger than 1 and h(X) =0
otherwise. The likelihood function is

N e_"99"X9(X) J=1
00,5) = { onX (1 — )" Xp(X) j=2.
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Note that X = T'/n maximizes both (6, 1) and £(6,2). Define

Then

0(X,5) = €0, 5)

for any # and j and, hence, (X, ) is an MLE of (#,7). We now simplify
the formula for j. If at least one X; is larger than 1, then h(X) = 0,
((X,1) > £(X,2), and j = 1. If all X;’s are not larger than 1, then
hMX)=g(X)=1and

(X2 - ¢ 0¥
(_7 ):(17X)n7nX6nX21
(X, 1)
because of the inequality (1 —¢)1~t > e~ for any ¢t € [0,1). This shows
that
. (1 hX)=0
Sl 2 mX)=1.

(ii) If j = 2, h(X) = 1 always holds. Therefore, j is consistent if we can
show that if j = 1, lim,, P (h(X) = 1) = 0. Since P(X; = 0) = ¢~% and
P(X;=1)=e¢7%),

PIX) =1) =Y <Z> (e~ 00)k (¢~ )
-
< Zn: (Z) 6k (1 — )19,

For any fixed 6 € (0,1) and any € > 0, there exists K such that (1—6)*=¢ <
€ whenever k > K. Then, when n > K,

n

<y (Z) 6% (1—6)"1 =% + é (Z) k(1 — g)n(1=9

k=K

K
€+ Z <Z> 0 (1 — )19,
k=0

o
=
s
i
=
A\

IN

For any fixed K,

K
n
hm§ j o1 — 6)"(=9 — g,
" k=0 <k) | )
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Hence, limsup,, P (h(X) = 1) < e and the result follows since € is arbitrary.
(iii) By the central limit theorem, v/n(X — ) —4 N(0, Var(X;)), since
E(X) = 6 in any case. When j = 1, Var(X;) = 6 and when j = 2,
Var(X1) =6(1—0). 1

Exercise 57 (#4.122). Let 6, be an estimator of § € R satisfying
VB, —0) =4 N(0, v(f)) as the sample size n — oo. Construct an esti-
mator 6,, such that v/n(6,, —0) —4 N(0,w(0)) with w(h) = v(6) for § # 6,
and w(fp) = t2v(fy), where t € R and 6, is a point in the parameter space.
Note. This is a generalized version of Hodges’ superefficiency example
(e.g., Example 4.38 in Shao, 2003).

Solution. Consider

i 0, if |6, — 6| > n—1/4
") th,+ (1 —t)0y if |0, — 6o < n /4

We now show that 6,, has the desired property. If 8 # 6, then 0, —
o —, 0 — 0y # 0 and, therefore, lim,, P(|6,, — 6| < n~/*) = 0. On the
event {|6, — 0] > n*1/4} 0,, = 0,. Hence the asymptotic distribution of
V(6, — 6) is the same as that of \/n(f, — 6) when 6 # 6;.

Consider now 6 = 6y. Then

lim P(|6,, — 60| < n=Y*) = lim P(v/n|6,, — 60| < n'/%)
= lim[®(n'/4) — ®(—n'/%))
= ]_7
where @ is the cumulative distribution function of N(0,1). On the event
{16 — 6] <n= Y1}, /a0, — bo) = v/t (6n — o) —a N(0,t%0(6p)). 1

Exercise 58 (#4.123). Let (Xi,...,X,) be a random sample from a
distribution with probability density fy with respect to a o-finite measure
v on (R,B), where § € © and © is an open set in R. Suppose that for
every z in the range of X, fyp(x) is twice continuously differentiable in 6

and satisfies 5
89/% Z/%W(l‘)dV

for 1g(x) = fo(x) and = Ofy(x)/00; the Fisher information

L) =£| 2 10g fo(Xl)}

e

is finite and positive; and for any given # € ©, there exists a positive
number ¢y and a positive function hy such that E[hg(X1)] < oo and
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SUD|y_g|<c, ‘%| < hg(x) for all z in the range of X;. Show that

log £(6 +n~1/2) —log (6) + I,(0)/2
1,(9)

—d N(O, 1),

where £(0) is the likelihood function.
Solution. Let L(vy) = log (). By Taylor’s expansion,
LO+n~"2) = L(0) = n 2L (0) + (2n) 'L (&),

where &, satisfies |¢, — 0] < n~Y/2. Let fj(z) = 0fy(x)/00. Then

v =3 5

fo(X3)

Note that ;é E§,§> 1 = 1,...,n, are independent and identically distributed
v £4(X) £5(x)
ELOZ — 0 and Var(" "):19
7a(X) foxy) =10

(under the given condition). Hence, by the central limit theorem,

n~Y2L(0) =4 N(0,1,(6)).

By the law of large numbers and the given condition,

gy - Ly 921os fo(X) 9log fo(X1)\ _ _
n L(&)fn; 2 -, E T = —1(0).

Since 0% log fy(x)/06? is continuous in 6, n=1[L"(¢,) — L" ()] — 0 for any
fixed X1, Xo, ..., i.e., n 1L (&,) —p —11(0) for any fixed X7, Xo,.... Under
the given condition,

n~HL" (&) <n”t Z ho(Xi) =p Elhe(X1)].

Hence, by the dominated convergence theorem, n='E[L"(&,) — L"(6)] — 0,
which implies that n=1L"(&,) —, —I1(6). Then, the result follows from
Slutsky’s theorem. 1

Exercise 59 (#4.124). Let (X1, ..., X;;) be arandom sample from N (p, 1)
truncated at two known points o < [, i.e., the Lebesgue density of X; is

(V2r[®(B — p) — ®(a — )]} L @ 2L, g (2),

where @ is the cumulative distribution function of N(0,1). Show that the
sample mean X is the unique MLE of § = EX; and is asymptotically



194 Chapter 4. Estimation in Parametric Models

efficient.
Solution. The log-likelihood function is

n

log () = —n1og(®B(5 — 1) — Blar— 1)) — 3 " (X; — ).
=1

Hence,
dlog £() >
=n[X —
o n[X —g(p)],

where (3 |- )
—p) = P'(a—p
g(p) =p— :
(8 —p) — (o —p)
Since the inverse function g~! exists, g~ 1(X) is the unique solution of the
likelihood equation and, hence, it is the unique MLE of u. Note that

1 B
(B —p) = P(a—p) = 7%/ e~ (@ 2y,
[e7

ﬁ 2
-0 = @la—pl= o [ et

and
1 B 2
9 = 1'6_(w_ﬂ) /2 T
VaR[8(3 — 1) — %o —p) / ¢
=+ : / (o = e 2
V2r[®(B — p) — P(a — )] Ja

= g(p).

Hence, X is the unique MLE of 6. By the asymptotic property of the MLE
(e.g., Theorem 4.17 in Shao, 2003), X is asymptotically efficient. 1

Exercise 60 (#4.127). Let (Xy,...,X,,) be a random sample such that
log X; is distributed as N(6,0) with an unknown 6 > 0. Show that one of
the solutions of the likelihood equation is the unique MLE of . Obtain the
asymptotic distribution of the MLE of 6.

Solution. Let Y; =log X;, T =n"'>" | Y2 and £(6) be the likelihood
function. Then

n

~nlogf 1 ' 9
g (0) =~ = 35 5 - 7",
dlogl(0) _n (T 1 1
9  2\02 ¢
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and
9*log () n nT
062 202 43
The likelihood equation m%:(a) = 0 has two solutions
=V1+4T -1
—
At each solution, T = 6 +6? and % = —n(55z +3) < 0. Hence, both

solutions are maximum points of the likelihood function. Since 6 > 0, the
only positive solution, § = (v/1 4+ 4T —1)/2, is the unique MLE of . Since
EY? = 0+ 62, the Fisher information is

B d*logl(0)\ n  nT\ (204+1)n
L(0) =-& (aez) = (292 - es) =

Thus, /(0 — 0) —4 N(0,202/(20 +1)).

Exercise 61 (#4.131). Let (Xi,...,X,) be a random sample from the
distribution P(X; = 0) = 60?2 — 40 + 1, P(X; = 1) = 6 — 202, and
P(X; =2) = 30—46?, where 6 € (0, 3) is unknown. Obtain the asymptotic
distribution of an RLE (root of likelihood equation) of 6.

Solution. Let Y be the number of X;’s that are 0 and Z be the number
of X;’s that are 1. Then, the likelihood function is

0(0) = (660% — 46 + 1) (0 — 26%)7(30 — 46°)" Y 7,
Ologl(9) _ (120 —4)y  (1-40)Z (3-80)(n—Y - 2)

00 602 —40+1 6 — 262 360 — 402 ’

and

82 log £(6) (7202 — 480 + 4)Y (802 — 46 + 1)Z

902 (602 —40+1)2 (9 —262)2
(320> =240 +9)(n - Y - 2)
(30 — 462)2 '

By the theorem for RLE (e.g., Theorem 4.17 in Shao, 2003), there exists
an RLE @ such that /n(f — 0) —4 N(0,1;(6)), where

1.(6) 7%E {321@&5@]

062
720% — 480 + 4 892749+1+32027249+9
6602 — 40 + 1 6 — 262 30 — 462
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Exercise 62 (#4.132). Let (Xi,...,X,) be a random sample from
N(p, 1), where g € R is unknown. Let § = P(X; < c¢), where ¢ is a
known constant. Find the asymptotic relative efficiencies of the MLE of
with respect to the UMVUE of 6 and the estimator n=! 37" | Ii_ o ¢(X;).
Solution. The MLE of p is the sample mean X. Let ® be the cumu-
lative distribution function of N(0,1). Then # = ®(c — ) and the MLE
of 6 is § = ®(c — X). From the central limit theorem and the d-method,
Vil — 0) =4 N(0,[®(c — p)]?). From Exercise 3(ii) in Chapter 3, the

UMVUE of 6 is § = ®((c — X)/v/1 —n~1). Note that

Vild—i) = Vi e (\/%) - a(c- X)]

V' (6,)(e ~ ) (g ~ 1)

O'(€n)(c = X)
VA1 —n= (1 ++1—-n"T)
—p 0,
where &, is a point between ¢ — X and (¢ — )/\/1 —n~1. Hence, the

asymptotic relative efficiency of 6 with respect to 6 is 1. For the estimator
T =n">0"  Ii—wq(X;), by the central limit theorem, /n(T — 0) —q4

N(0,6(1 — 6)). Hence, the asymptotic relative efficiency of 0 with respect
to T is O(1 — 0)/[®' (c — p)]. »

Exercise 63 (#4.135). Let (Xi,...,X,) be a random sample from a
population having the Lebesgue density

_ [ (Ot ) e >0
fo1.0.(2) = { (01 + 92)—163?/92 z <0,

where #; > 0 and 05 > 0 are unknown.
(i) Find the MLE of 6 = (64, 05).
(ii) Obtain a nondegenerated asymptotic distribution of the MLE of 6.
(iii) Obtain the asymptotic relative efficiencies of the MLE’s with respect
to the moment estimators.
Solution. (i) Let T} :ZZL:I XiI(O,oo) (X;) and To=— ZZL:I XiI(foo,O] (X5).
Then, the log-likelihood function is
n Ty
00 05
T1 n TQ
1+92 92’_914-92—’_9%)

0? IOgE < 1+92 (91r92)2 >

log £(0) = —nlog(6y + 02) —
3log€

and

p= n 2T
- 00007 91+92)2 (61+62)2 Tg’z




Chapter 4. Estimation in Parametric Models 197

Since the likelihood equation has a unique solution, the MLE of 6 is

0= (01,05) =n (VW To + Ty, /TiTo 4+ Ts).

(ii) By the asymptotic theorem for MLE (e.g., Theorem 4.17 in Shao, 2003),
\/ﬁ(a - 9) —d N2(07 [Il (0)]71)7 where

1 [0%log () 1 1422
I = ——F = 01
10 =—2 { 0007 } (01 + 62)2 -1 1+%

and

_ 01 + 02)? 1+20
[11(9)] ' = 202 - 2)261 ( 192 1+% ’
(1+W)(1+@)—1 7

(ili) Let pj = EX!, j =1,2. From Exercise 52 in Chapter 3,

01+ 02 = /2 — 3p7

Oy /202 —3pF —

O \/2p9 —3uf +
Let 7; (1, 2) be the jth diagonal element of the matrix AXAT in the solu-
tion of Exercise 52 in Chapter 3. Then, the asymptotic relative efficiency
of 91 with respect to the moment estimator of #; given in the solution of
Exercise 52 in Chapter 3 is

2 2
1 2\/2;/‘2—3“1—;/,1 1 9 V22 —3pi+p1 _1
Tk, i2) {( + V212 —3p3 41 + V/2p2—3p2—p1
_ 2
(212 — 3p1) (1 S, RVA i e 3“1+’“)

and

V212 =3p3 =1

and the asymptotic relative efficiency of 0y with respect to the moment
estimator of 05 is

Srie— 312wt V/2p2 313+
RV T W PRV TR T e BT
To(fi1, p12) [( 2 e RISy

Doy — 1 2\/2;1273#?*#1
(2p2 3#1)( MRSV o

Exercise 64 (#4.136). In Exercise 47, show that the RLE p of p satisfies
Vi(p—p) =a N(0,(1 = p*)?/(1+p%)).
Solution. Let £(p) be the likelihood function. From Exercise 47,

dlog {(p)

op - °)?h(p),
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where h(p) = p(1—p*) =n""Tp+n""R(1+p?), T =31, (X7 +Y7?), and
R=>"",X,Y;. Then,

> logl(p) _ nl'(p) L Anoh(p)

Ip? (1-p?2  (1-p?)%
Since E[h(p)] =0 and E[W (p)] = —(1 + p?),

92 log £(p) 1+ p?
ap? | (A-p)*

By the asymptotic theorem for RLE, \/n(p — p) —a N(0,[I1(p)]"!). The
result follows. I

1
Li(p) = _EE =

Exercise 65 (#4.137). In Exercise 50, obtain a nondegenerated asymp-
totic distribution of the RLE 6 of § when f(z) = n~1(1 + 2?)~%.
Solution. For f(x) = 7= 1(1 +22)~! and fs(z) = 0f(0z),

Ofo(x)  1—06%a? and D?fo(x)  2022(0%* — 3)
00 (14 6222)2 002 w(1+60222)3
which are continuous functions of . For any 6y € (0, c0),
sup Ofo(x)| sup 1— 6222
0€(60/2,200] | 00 6€(00/2,200) | T(1 + 0%2%)?
1
S sup e
0€(00/2,200) T(1 4 0222)

B 1
- wl+ (00/2)%2)

which is integrable with respect to the Lebesgue measure on (—o0, 00).
Also,

sup 0% fo(x) 2022 (6%22% — 3)
0cl0o/2,200] | 020 0cl0o/2,200) | T(1+ 0222)3
< sup 720 T3
000 /2,26,] TO(1 + 6222)

2C
m(60/2)[1 + (60/2)%2°)"

which is integrable, where C' does not depend on 6. Therefore, by the
dominated convergence theorem,

689/—00 Yo(x)dx = - %wg(x)dx
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holds for both g (z)

sup

0€[00/2,260]

06?

8

sup
0€(00/2,

sup
0€l00/2,

4
+

and, when X; has density 6y f(0oz),

4
E _
[ea*

2X?

1

290]
1

260]

222

1+%ﬁﬂﬁ}<

gzt

ol

= fp(x) and 6f9 9f0lx) Note that

02 log fo(x) _

22

1+ (60/2)%22

Q.

14 0222

22%(1 — 6%2?)

(1 + 0222)?
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Therefore, the regularity conditions in Theorem 4.17 of Shao (2003) are
satisfied and

V(0 —0) =4 N(0, [11(0)]~

It remains to compute I;(6). Note that

where the identity

is used. 1

5L(0) = —

1 2

002

| Ploshin]

i+279/oo $2(1—92I2)
2" 7 ) 0+ 6a2)p
12 [TaP-a?)
7t or /oo 112

dx

x?)

)daj

1).

1,2 ® 3(14 22) — 2 — (1 +22)2
92 92 (1+$2)3

1 2 > 1
m+mﬁF/mu«wﬂx

_ 9 " dr—
/,oo<1+a: e

1

1,23
02 62 \2

2)3

3_1>
4

/.

1
—d
1+ 22 4

1

Wa

/°° L VAl )
—o (T+a?)* (k)
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Exercise 66 (#4.138). Let (Xi,...,X,,) be a random sample from the
logistic distribution on R with Lebesgue density

f@(l‘) = o-_le—(m—li)/a/[l + e—(af—,u)/a]Q’

where ¢ € R and ¢ > 0 are unknown. Obtain a nondegenerated asymptotic
distribution of the RLE 0 of 6 = (, o).

Solution. Using the same argument as that in the solution for the previous
exercise, we can show that the conditions in Theorem 4.17 of Shao (2003)
are satisfied. Then

V(0 —0) —a N(0,[11(0)] 7).

To obtain I (6), we calculate

Olog fo(x) 1 2
—_— =
ou o o[l +e(@-n/o]
9%log fo(x) 3 2e~(—m)/o
aluZ - 0-2[1_’_67(17;1,)/0'}2’
and
2 00 2(z—p)/o
o[Plees(x] 2 ‘ "
8/12 o2 . 0[1 + e(zf,u)/a}él
2 [ e
SR B —
o2 /_oo (Tt ev)i™
2 -1,/ 1 1
o2 J, 1 (1 " t)
9 1
= — 1 —t)tdt
% [a-o
1
302’
where the second equality follows from the transformation y = —(x — u) /o

and the third equality follows from the transformation t = (1+¢¥)™! (y =
log(1 — t) —logt). Note that

9% log fo(x)
oudo

S LA R T e T

T 2l +e@m/o] g2l + e~ (@—m/0]2

is odd symmetric about p and fy(x) is symmetric about u. Hence,

9%log fo(X1)]
E {auao] =0.
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Differentiating log fp(x) with respect to o gives

Olog fo(x) _ 1 _z—p 2z =)
do o o 021 + e~ (@=1)/0]
and
Plogfolx) 1 2Av—p) _ Ae—p)  2Ac—p?e
Oo2 T g2 o3 0-3[1 + e—(w—u)/o'] 0-4[1 + e—(-'E—M)/UP .
From E(X; — ) = 0 and the transformation y = —(x — p)/o, we obtain
that
621 1 4 o] 2y 9 00 2,2y
_E [Ogée(w)} S N N N B
0o 02 02 J_ (1+eY) 02 J_o (1+eY)

From integration by parts,

/°° ye2y yeY e 1/°° e¥ + ye¥
dy = [ Ty
v ® =i T2 Tre)
1 [ ey 1 [ ey
YR T
2 o Ureg®ta ) Grep
_ !
S 2
and
o] 2 2y o] 2,2y
/ e = / v
oo (1 e¥)? o (1+ev)?
_ e 02 /°° (2y + y?)e”
C3(1+ev)d| . 3Jy (L+ev)d
Qu+y)|° 2 [* 14y
=smawz| T3] Ao
3(1+ev)?| 3Jo (L+ev)
Ayt 2 e
3(1 + ev) 3/, 1rev®
1 2 [ ye %
= - — f/ dy.
3 3 0 1+6_y
Using the series (1 +e7¥)"t =372 (—e¥)/, we obtain that

ye 2

1+e7Y

r

j=

dy:/ ye Yy (~1Ye vy
0 =

(—1)] / ye—U+Dugy
0
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Noting that (—1)? = 1 when j is even and (—1)/ = —1 when j is odd, we
obtain that

> 1 =1 > 1
Z<_1)J 222 2_2 2
= (j+2) = (2k)* = (2k+1)
=1 > 1 1 1
_;(Qkﬁ_;{(2k+1)2+(2k)2_(2k)2
=1 =1
B 3N Oy
k=1 Jj=2
Tl &1
=32 @ pt!
k=1 Jj=1
1ex 1
=1-32 72
k=1
T
o 12°

Combining these results, we obtain that
92 log fo(z) 1 2 2 (1 2 w2 1 w2
S o =P LA R A [ (i | [
{ o2 o? * o2 + o213 3 12 302 * 902

Therefore,
1 (L o0
LO) == 3 A |
v 02<0 §,+’zf>

Exercise 67 (#4.140). Let (Xy,...,X,) be a random sample of binary
random variables with P(X; = 1) = p, where p € (0,1) is unknown. Let 0
be the MLE of § = p(1 — p).

(i) Show that 0 is asymptotically normal when p # %

(ii) When p = %, derive a nondegenerated asymptotic distribution of 0 with
an appropriate normalization.

Solution. (i) Since the sample mean X is the MLE of p, the MLE of
6 =p(1 —p)is X(1 — X). From the central limit theorem, \/n(X — p) —4
N(0,60). Using the é-method with g(x) = z(1 — z) and ¢'(z) = 1 — 2z,
we obtain that /n(0 — 0) —4 N (0, (1 — 2p)26). Note that this asymptotic
distribution is degenerate when p = 3.

(ii) When p = £, /n(X — %) =4 N(0,1). Hence,

1 o 1)’ )
4n 1—9 =4n X—§ —a x3i- 1
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Exercise 68 (#4.141). Let (X1,Y1),...,(Xn,Ys) be independent and
identically distributed random 2-vectors satisfying 0 < X; <1,0<Y; <1,
and

PXy>z,Yi>y)=01-2)1-y)(1 - max{:c,y})9

for0<z<1,0<y<1, where § > 0 is unknown.

(1) Obtain the likelihood function and the likelihood equation.

(ii) Obtain the asymptotic distribution of the MLE of 6.

Solution. (i) Let X = X; and Y = Y;. Note that F(z,y) is differentiable
when x # y but not differentiable when x = y. Hence, when z # y, (X,Y)
has Lebesgue density

0+1)(1—2z)f 2>y

BE
fe(“"’y)‘{ O+ 11—y z<y

and

PX>t,Y>t,X#Y)=2P(X>t,Y >t,X>Y)
1 T
:2(0+1)/ / (1 — z)?dyda
t t
1

= 2(0+1)/ (x—t)(1 —2)%dx
t

2(1 —)9+2

0+2
Also, P(X > t,Y >t) = (1 —t)’+2. Hence,

PX>t,X=Y)=PX>t,Y>t,X=Y)
=PX>t,Y>t)—-PX>t,Y >t, X #Y)

9(1—t)9+2

0+2

This means that on the line x = g, (X, Y) has Lebesgue density 6(1—¢)%+1.
Let v be the sum of the Lebesgue measure on R? and the Lebesgue measure
on {(z,y) € R?> : = y}. Then the probability density of (X,Y) with
respect to v is

O+1D(1-2)f 2>y
folxy)=q O+D(1 -y’ =<y
O(1 — x)0+1 x=y.
Let T be the number of (X;,Y;)’s with X; = Y; and Z; = max{X;,Y;}.
Then the likelihood function is

(o) =@ +1)""o" ﬁ(l ~ 7;)° H (1-2)

i=1 X =Y;

+
+
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and the likelihood equation is

dlogl() n—-T T I B
+5+izzllog(1 Z;) =0,

90  6+1

which has a unique solution (in the parameter space)

j_ Vi =W)2+4WT — (n— W)

2w ’
where W = — "7 log(1 — Z;).
(ii) Since
6210g€(9)__n—T —£<O
002 (0+1)2 62 ’

0 is the MLE of 6. Since E(T) = nf/(0 + 2), we obtain that

1
11(9):_E[ (0 +2)(0+ 1)2

0% log f(e)} 02+ 40 + 1
n

o6z |~
Hence,

. 0(0 +2)(0 + 1)

Vi - 0) = (0. 2 2

Exercise 69. Consider the one-way random effects model
Xij:/J—‘rAi-l-eij, jzl,...,n,izl,...,m,

where i € R, A;’s are independent and identically distributed as N (0, 02),
e;j’s are independent and identically distributed as N(0,0?), o2 and o?
are unknown, and A;’s and e;;’s are independent. Obtain nondegenerate
asymptotic distributions of the MLE’s of u, 02, and o2.

Solution. From Exercise 49(ii), the MLE of p is X.., which is always
normally distributed with mean y and variance m=1(02 + n=1o?).

From Exercise 49(ii), the MLE of 02 is 6 = Sg/[m(n — 1)] and the
MLE of 62 is 62 = Sa/[n(m —1)] — Sg/[nm(n — 1)], provided that 62 > 0.
We now show that as long as nm — oo, P(62 < 0) — 0, which implies that,
for the asymptotic distributions of the MLE’s, we may assume that 62 > 0.
Since Sg/o? has the chi-square distribution an(nfl), Sg/[m(n —1)] —,
0% as nm — oo (either n — oo or m — o). Since Sa/(0? + no?) has
the chi-square distribution x2,_;, the distribution of S4/[n(m — 1)] is the
same as that of (02 + n~1o?)W,,_1/(m — 1), where W,,_; is a random
variable having the chi-square distribution y2, ;. We need to consider
three different cases.

Case 1: m — oo and n — oco. In this case, Sg/[nm(n —1)] —, 0 and
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(02 +n"to?)Wp_1/(m — 1) =, 02 > 0. Hence, 62 —, 02 > 0, which
implies P(62 < 0) — 0.
Case 2: m — oo but n is fixed. In this case, Sg/[nm(n—1)] =, n~'o? and
(024n"1o?)Wy—1/(m—1) —, (62 +n"'0?). We still have 62 —, 02 > 0.
Case 3: n — oo but m is fixed. In this case, Sg/[nm(n — 1)] —, 0 and
(02 + n o)W1 /(m — 1) =4 02W,,—1/(m — 1). Hence, by Slutsky’s
theorem, 62 —4 02W,,—1/(m—1), which is a nonnegative random variable.
Hence, P(62 < 0) — 0.

Therefore, the asymptotic distributions of MLE’s are the same as those
of 62 and 62. Since Sg/o? has the chi-square distribution an(n_l),

Vvnm (6% — 0®) =4 N(0,20%)

as nm — oo (either n — oo or m — o0). For 62, we need to consider the
three cases previously discussed.
Case 1: m — oo and n — oco. In this case,

Vi | T ﬂ o
and i (Zm_i _ 1) —a N(0,2).

Since Sa/[n(m—1)] and (02 +n~t0?)W,,_1/(m — 1) have the same distri-
bution,

2 2
mwias)—m[&“(agﬁ)ﬁ St
n

n(im—1) n  nm(n—1)

has the same asymptotic distribution as that of
2 W,
() (1)
n m—1

Vm(6% — 02) =4 N(0,202).

Thus,

Case 2: m — oo but n is fixed. In this case,

From the argument in the previous case and the fact that S, and Sg are
independent, we obtain that

Vm(62 — o2) =a N (0,2(02 + n”'0)* + 20"n 7).
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Case 3: n — oo but m is fixed. In this case, Sg/[nm(n —1)] —o?/n —, 0

and )
Jz-l-i Win-1 —1) =402 Win-1 —-1].
n m—1 m—1

Therefore,

Exercise 70 (#4.151). Let (Xi,...,X,) be a random sample from the
logistic distribution on R with Lebesgue density

fa(x) = J_le_(w_u)/o'/[l + e_(I—M)/U]27

where p € R and o > 0 are unknown. Using Newton-Raphson and Fisher-
scoring methods, find

(i) one-step MLE’s of u when o is known;

(ii) one-step MLE’s of o when p is known;

(iil) one-step MLE’s of (p, 0);

(iv) y/n-consistent initial estimators in (i)-(iii).

Solution. (i) Let ¢(u) be the likelihood function when o is known. From
Exercise 66,

Olog ¥t n 2w~ e Ximn)/o
s (1) = Olog £(p) - Z

Em P S T
02 log ((p) 2 e~ (Xi=w)/o
S;(‘LL): 2 - 722 —(Xi—p)/o2’
o 02 &~ [1 + e~ (Xi=)/a]

and

Hence, the one-step MLE of p is

e A CH A

by the Newton-Raphson method, where /i(°) is an initial estimator of s,
and is
/l(l) - ﬂ(o) + 302n_1sg(ﬂ(0))

by the Fisher-scoring method.
(ii) Let (o) be the likelihood function when p is known. From Exercise 66,

_dloglla)  n ~Xi—p < 2(X; — p)
sulo) = do o ; o +;0'2[1—i-e—(Xi—“)/"}’
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92 log (o)
su(0) = =5 3 —
_n 20X ¢ 4(Xi — p)
T ; & ; o3[ + e~ (Ximm/7]

n 2(X; — ) 20— (Xi—p)/o
_Z ol + e~ (Xi—w)/o]2

=1

0*logl(o)] 1 (1 =?
—E[aaz]—gz<3+9)-

Hence, the one-step MLE of o is

and

&) = 50) _ [3:1(&(0))]_1314(&(0))

by the Newton-Raphson method, where (9 is an initial estimator of o,
and is
(¢

(1) _ 500)
=Y )3

su(6 ©)

by the Fisher-scoring method.

(iii) Let £(u, o) be the likelihood function when both p and o are unknown.
From parts (i)-(ii) of the solution,

s, o) = 208U 0) _ ( 5o () )

p, 0) su(0)
and )
02 log £(6) ( si(u) s >
s o) = — o o ,
9 = S aomar  \ s slo)
where

n p)e-(Xi=n)/o

[ ORlg) g 1
o opdo B — 0'2[1+e (X M)/U 0'21+€ Xfu)/a]

i=1

Hence, by the Newton-Raphson method, the one-step MLE of (i, o) is

(1) ~(0) .
( g(l) ) = < gw) ) - [S'(ﬂ(o),&(o))} S(i®, 5,

From Exercise 66,

O wik
W=

+ o
wﬁo
SN—

~Els/(1,0)] = 2 (
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Hence, by the Fisher-scoring method, the one-step MLE of (u, o) is
< at > _ ( a© > L 6OP 8550 () |
5 5@ )T 0 s 6O/ (F+ %)

(iv) Note that logistic distribution has mean y and variance o2 /3. Thus,
in (i)-(iil), we may take (%) = X (the sample mean) and

A(O):ﬁ l - X — X)2
7 T n;(z )%

which are y/n-consistent. I



Chapter 5

Estimation in
Nonparametric Models

Exercise 1 (#5.3). Let p > 1 and F,, be the set of cumulative distribution
functions on R having finite pth moment. Mallows’ distance between F' and
G in F), is defined to be

oar, (F.G) = inf (B|| X = Y||")!/7,

where the infimum is taken over all pairs of random variables X and Y
having marginal distributions F' and G, respectively. Show that o M, is a
distance on Fp.
Solution. Let U be a random variable having the uniform distribution
on the interval (0,1) and F~1(¢) = inf{z : F(z) > t} for any cumulative
distribution function F. We first show that

o, (F.G) = [E|[F~1(U) = G~H(U)|7]'/?.
Since F~1(U) is distributed as F' and G~!(U) is distributed as G, we have

ou, (F,G) < [BIFTH(U) = GTHU) PP

Let X and Y be any random variables whose marginal distributions are F'
and G, respectively. From Jensen’s inequality for conditional expectations,

EIX-Y|P=E[E(|X -Y|’IX)] > E|X —EY|X)]P.
Since X and F~!(U) have the same distribution, we conclude that

o, (F.G) > [E|FTH(U) = E(Y|F~H(U)F]/7.

209
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Then the result follows if we can show that E(Y|F~Y(U)) = G~Y(U).
Clearly, G=1(U) is a Borel function of U Since Y and G~}(U) have
the same distribution, [, YdP = [, G~ (U)dP for any B € o(F~(U)).
Hence, E(Y|F~1(U)) = G_l(U) a.s.

It is clear that ¢y, (F,G) = 0and 0 (F,G) = 0y (G, F). If o), (F,G)
= 0, then, by the established result, E|F~Y(U) — F~Y(U)[? = 0. Thus,
F~1(t) = G71(t) a.e. with respect to Lebesgue measure. Hence, F = G.
Finally, for F', G, and H in Fp,

QMP(F7 G) = [E\F_l(U) 1(U)|p]1/p
< [EIF' W) - B O)P)
+ [E|H'(U) - 1(U)|p]1/p

= QMP(F7H) +QMP( ,G),

where the inequality follows from Minkowski’s inequality. This proves that
O, is a distance. 1

Exercise 2 (#5.5). Let 7 be the collection of cumulative distribution
functions on R with finite means and g, be as defined in Exercise 1. Show
that

() ory, (F, G) = fy [F~1(8) = G~ ()]t

(it) opy, (F.G) = [7 |F(2) — G(x)|da.

Solution. (i) Let U be a random variable having the uniform distribu-

tion on the interval (0,1). From the solution of the previous exercise,
on, (F,G) = E|F~Y(U) — G7Y(U)|. The result follows from

EIFY(U) - GTH(U)| = ; [F=H(t) — GTH(t)]dt.

(ii) From part (i), it suffices to show that

/jo F(z) — G()|dz = /O F=L(1) — G (0)|dt.

Note that [*_|F(x) — G(z)|dx is equal to the area on R? bounded by two

curves F(z) and G(z) and fol |F~1(t) — G71(t)|dt is equal to the area on
R? bounded by two curves F~1(¢t) and G~1(¢). Hence, they are the same
and the result follows. I

Exercise 3. Let g, be the Mallows’ distance defined in Exercise 1
and {G,G1,Gs,...} C Fp. Show that lim, QMP(G,L,G) = 0 if and only
if lim,, [ |z[PdG,(z) = [|2z[PdG(z) and lim, G,(z) = G(x) for any z at
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which G is continuous.
Solution. Let U be a random variable having the uniform distribution on
(0,1). By the solution of Exercise 1,

ou, (G, G) = [BIG(U) = GTHU)P]™.

Assume that lim,, 0y, (Gn,G) = 0. Then lim, E|G,,*(U) - G"HU)|P =
0, which implies that lim, E|G,Y(U)? = E|G~YU)|P and G, (U) —4
G~1(U). Since G,,1(U) has distribution G,, and G=1(U) has distribution G,
we conclude that lim,, [ |2[PdG,(z) = [ |z|PdG(z) and lim, G, (z) = G(x)
for any x at which G is continuous.

Assume now that lim, [ |2[PdG,(z) = [ |z|PdG(z) and lim, G, (x) =
G(z) for any = at which G is continuous. Using the same argument in
the solution of Exercise 54 in Chapter 1, we can show that G,,*(U) —,
G~Y(U). Since lim,, [ |z|PdG,(z) = [ |z|PdG(z), by Theorem 1.8(viii) in
Shao (2003), the sequence {|G, *(U)|P} is uniformly integrable and, hence,
lim,, E|G,'(U) — G='(U)[? = 0, which means lim,, ¢,; (G, G) = 0. 1

Exercise 4 (#5.6). Find an example of cumulative distribution functions
G, G1, Ga,... on R such that

(i) limy, 05 (G, G) = 0 but gy, (Gy,G) does not converge to 0, where
O, is the distance defined in Exercise 1 and g, is the sup-norm distance
defined as o (F,G) = sup,, |F(z) — G(z)| for any cumulative distribution
functions F' and G;

(ii) lim, o5, (Gy, G) =0 but g, (G, G) does not converge to 0.
Solution. Let U be a random variable having the uniform distribution on
the interval (0, 1).

(i) Let G be the cumulative distribution function of U and G,, be the
cumulative distribution function of

U — U ifuU>n"1
Tl n? U <n L

Then lim,, P(|U, — U| > €) = lim,n~! = 0 for any ¢ > 0 and, hence,
U, —4 U. Since the distribution of U is continuous, by Pdlya’s theorem
(e.g., Proposition 1.16 in Shao, 2003), lim,, o, (G, G) = 0. But E|U,| >
n?P(U < n~') =n and E|U| = 1. Hence lim,, E|U,| # E|U|. By Exercise
3, QMP(Gn, @) does not converge to 0.

(ii) Let G,, be the cumulative distribution function of U/n and G(z) =
Ijg,00)(x) (the degenerate distribution at 0). Then lim, E|U/n[P = 0 for
any p and U/n —4 0. Thus, by Exercise 3, lim, QMP(Gn,G) = 0. But
G,(0) = P(U < 0) = 0 for all n and G(0) = 1, i.e., G,(0) does not
converge to G(0). Hence o, (G, G) does not converge to 0. i

Exercise 5 (#5.8). Let X be a random variable having cumulative dis-
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tribution function F. Show that

(i) E|X|? < oo implies [{F(t)[1 — F(t)]}?/2dt < oo for p > 1;

(ii) E|X |9 < oo with some & > 0 implies [{F()[1 — F(t)]}'/2dt < oc.
Solution. (i) If F|X|? < oo, then, by Exercise 23 in Chapter 1,

E|X|? :/ P(IX|* > t)dt = 2/ sP(|X| > s)ds
0 0

which implies that lims o s%[1 — F(s)] = 0 and lim,_, o, s?F(s) = 0.
Then, lim, o sP[1 — F(s)]?/? = 0 and lim,_, o, sP[F(s)]?/? = 0. Since
p > 1, we conclude that f_OOO[F(S)]p/zdS < oo and [;°[1— F(s)]P/?ds < o0,
which implies that

/oo {Ft)[1 — F)]}P2dt < /0 [F(t)]P/2dt + /Oc[l — F(£)]P/2dt < oo.

0

(ii) Similarly, when E|X |>*° < oo,
(o)

(oo}
E|X >0 :/ P(|X [>T > t)dt = (2+6)/ P(|X| > s)s'ds,
0 0

which implies lim, o, 2T [1—F(s)] = 0 and lims_, o, s>T°F(s) = 0. Then,
lim, o0 8719/2[1 — F(s)]/? = 0 and lim,_, o, s*%/2[F(s)]'/? = 0. Since
6 > 0, this implies that

¢S] 0 00
/ {Ft)[1 — F(t)]}Y2dt < / [F(t)]Y2dt + / [1— F(t))2dt < co. ¥
o —c0 0

Exercise 6 (#5.10). Show that p; = ¢/n, i = 1,...,n, A = —(¢/n)" ! is
a maximum of the function

H(pi,....pn, A) = Hpi + A (Zpi — c)
i=1 i=1

over p; >0,i=1,...,n, > pi=c

Note. This exercise shows that the empirical distribution function (which
puts mass n~! to each of n observations) is a maximum likelihood estimator.
Solution. It suffices to show that

n e\ ™
Hpi < (*)

. n
i=1

forany p; >0,i=1,...,n, > =, p; = c. Let X be a random variable taking
value p; with probability n~!, i = 1, ...,n. From Jensen’s inequality,

fZIngzf (log X) <log E(X log( Zpl> 1og< )
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which establishes the result. 1

Exercise 7 (#5.11). Consider the problem of maximizing [];__, p; over

n n
pi >0, i=1,..,n, ZPiZL and Zp,-ui =0,
i=1 i=1

where u;’s are s-vectors. Show that the solution is
. 1 1
;= —————, t1=1,..,n,
bi n(l+ ATu;)

and A € R® satisfying

n

U; -
Zl+/\7ui =0

i=1
Solution. Consider the Lagrange multiplier method with

Hp1y ooy Pry Ty A) = Zlogpi +7 (Zpi — 1) —nA"T Zpiui.
i=1 i=1 i=1

Taking the derivatives of H and setting them to 0, we obtain that

b

1 n n
f—|—T—n)\Tui=O, i1=1,...,n, Zp,' =1, and Zpiui =0.
i=1 i=1

The solution to these equations is 7 = —n and
. 1 1
= ——————, i=1,...,n.
bi n(l+ ATu;)
Substituting p; into 2?21 piu; = 0, we conclude that A is the solution of

n

u;
ZTH\TW =0. 1

i=1

Exercise 8 (#5.15). Let 41, ..., §,, be n observations from a binary random
variable and

n n+1 1-4
Up1yopngn) = [0 | D wi
i=1 j=i+1

(i) Show that maximizing ¢(p1, ..., pnt1) subject to p; > 0,i=1,...,n+1,
n+1 _ . . Ce .
Zi:l p; = 1 is equivalent to maximizing

n

qul(l _ qi)n7i+176i,

i=1
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where ¢; =Pi/Z?;1 D, 1 =1,...,n.
(ii) Show that

5' 1—1 5 n
= J[(1- "), i=Lin, Pusr=1- p;
bi n—z’—i—lj_l( n—j+1>’ FT e Pt -

maximizes £(p1, ..., pnt1) subject top; > 0,i=1,...,n+1, Z;:ll p; = 1.

(iii) For any z1 < x5 < -+ < x,, show that

n+1
~ R 51.
i=1

x; <t

(iv) When §; = 1 for all 4, show that p; =n~1, i =1,....,n, and p,1 = 0.
Note. This exercise shows that the well-known Kaplan-Meier product-
limit estimator is a maximum likelihood estimator.

Solution. (i) Since

+1
log=1- Di B Z;‘L:iJrlpj
i = 1 = 1 )
Z;'L:i pj Z?:l pj
1-46; —1
n n n+1 n+1
d; -0 _ (2
Hqi (1—q) _sz‘ Z Pj ij
i=1 i=1 j=it1 =i

From

n n+1 n—1 n+1 n—2 n+1
[0 - = (ijm Lj=sPi\ L=l
2 - n4+1
Z )

1 +1
i=1 j=1Pj E?:z by Z;’l:n—l pj
n+1 n+1 n+1
SIS oY
j=2  j=3 j=n
n n+l
=11 »
i=1 j=i
we obtain that
1—57;
n ) n n+1
[T —a)y == =1]w [ D »s
i=1 i=1 j=i+1

The result follows since ¢, ..., q, are n free variables.
(ii) From part (i),
n

log £(p1y .y Pt1) = Z[dz logg; + (n—i+1—9;)log(l — q;)].

i=1
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Then
dlogl 6 mnm—i+1-—46; )
:—77:07 Z:L...,TL,
0q; qi 1—gq
have the solution 5
= —— i=1,..,n,
G n—1+1 ! "
which maximizes £(p1, ..., pn+1) since
0%log ¥ 0; —i+1-0; 0%logt
Plogl o _noitl-bi o g Plosl
0q; q; (1- Qi) 0q;0qy,

for any i and k # 4. Since

n+1 n+1
j=1 ka 2pk Zk i—1Pk k=i

we obtain that

i n+1 n+1 n+1
k k k
H(l_qﬂ) >kt 2P 2k 3p . k=i P :E :pk,

9

4 H(l —qj)=pi, i=1,...,n

j=1
Hence, by (i), £(p1, ..., Pnt1) is maximized by

i

and P =1—3" 1 ps.

(iil) Define o = 0 and z, 41 = co. Let t € (z;,2;41], ¢ = 0,1, ...,

x; <t j=1

Hence,

n+1 (5
;MMW:“HQ‘%HJ'

x; <t
(iv) When §; = 1 for all 4,

i—1 .
. 1 n—j
pl_n—i%—ljl;[ln—j—i-l
1 n—1n-—2 n—1+1
n—t14+1 n n-—1 n—1+2
1

=—.1
n

&5 0;
(1—g;) = ——— 1—-—r =1, ...
H a5) n—i+1j1:[1( n—j+1)’ '

215

n. Then

I (- g) Moo -2-50-1-30
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Exercise 9 (#5.16). Let (X,...,X,) be a random sample of random
variables with Lebesgue density f,

1 n
Fn(t) = E ZI(,OOJ] (Xz), teR,
=1

be the empirical distribution, and

EF.(t+ M) — Fo(t— A\
ulty = DAEM) Bt M) g

where {),} is a sequence of positive constants.

(i) Show that f,, is a Lebesgue density on R.

(ii) Suppose that f is continuously differentiable at ¢, lim, A, = 0, and
lim,, nA,, = co. Show that the mean squared error of f,(t) as an estimator

of f(t) equals
f®) 1

as n — 0o.
(iii) Under lim,, nA3 = 0 and the conditions in (ii), show that

Vindalfa() = F(B)] =a N(0, f(2)/2).

(iv) Suppose that f is continuous on [a,b], —00 < a < b < 00, lim,, \,, =0,
and lim,, n\,, = co. Show that

/ab fa(t)dt —, /ab ft)de.

Solution. (i) Clearly, f,(t) > 0. Note that

1 n
fn(t) = Ty ; Iix,—a X120 (B)-

Therefore

00 1 n XitAn 1 n
/700 falt)dt = 2nA, Zz:/ dt = 2n\, ;2)\71 -

1/ Xi—An

(ii) Note that 2nA, f,(t) has the binomial distribution with size n and
probability F(t + A,) — F(t — \,,), where F is the cumulative distribution
function of X;. Then

F(t4+ X)) = F(t—\,)

E[fn(t)] = 2\, = f(t) + O()‘n)
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and
— B - — _ 2
Var(fu(t)) = Ft+M\) - F(t An)4n/[\l;“(t+ An) — F(t —\)]
1) 1\ | [0(\) +0(2)]
2, ¢ (n> Y

0 1
'-an+0<mm>’

since lim,, A,, = 0. Therefore, the mean squared error is

Var(fult) + (Bl (0] = 10 = 45 + 0 (5] +002)

(iii) Since 2nA\,f,(t) has the binomial distribution, by the central limit

theorem,
fo(t) = E[fn(t)]
Var(fn(t))
From part (ii) of the solution, nA, Var(f,(t)) = f(¢)/2 4+ o(1). Hence,

VX fa(t) = E[fa ()]} —a N(0, () /2).

From part (ii) of the solution,

VIALEL(0)] = £} = 0 (Vi) = o(1)

under the given condition. Hence,

Vidalfu() = F(O)] =4 N (0, £(2)/2)-

—a N(0,1).

(iv) Note that

B [ naa= [P0 gy [ e,

by the mean value theorem, where [, ,, —t| < A, and, hence, lim,, & ,, = t.
From the continuity of f, f(&: ) is bounded and lim,, f(&,,) = f(t). By
the dominated convergence theorem,

liTanE/b Fat)dt = /b F(t)dt.

Because
1

2nA\,

fn(t) = ZI[t—)\n,t+)\n)(Xi)a
i=1
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for any t < s,

1 n n
Tnlfa(8) = oa3s DO T aian) (X Tamx, ian) (X5)

noj=1 j=1

1 n
= e > Tioanian (X0)
n =1

1
vz 2 e (X s-x, ) (X5)-

i#]
Then,
Bl 0fn(o)] = T2t T
(n = DIF(E+An) = F(t = A)IF(s + An) = F(s = M)l
+ 4n X2
_ max{0, F(t+ \,) — F(s — A\)} + (n—=1)f(&.n)f(Msn)
dnX2 n ’

where [&., —t| < A, and |15, — s| < A,. By the continuity of f and the
fact that t < s,

lim B[, (1)f(s)] = £(0)1(s):

Then, by Fubini’s theorem and the dominated convergence theorem,

b 2 b ,
/a fn(t)dt] =lim B /a fn(t)dt] [ /a fn(s)ds]

= lirrln /ab /ab E[fn(t)fn(s)]dtds

- [ [ s
Vab f(t)dt] }

Combining this result and the previous result, we conclude that

liﬁnV&r (/b fn(t)dt> =0

and, therefore, f: fa(t)dt —, f; ft)dt. n

lim F
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Exercise 10 (#5.17). Let (Xi,...,X,) be a random sample of random
variables with Lebesgue density f, w be a known Lebesgue density on R,

and
(1) = 1< o (=X
T n\, P An ’

where {\,} is a sequence of positive constants.

(i) Show that f is a Lebesgue density on R.

(ii) Show that if A\, — 0, nA,, — 0o, and f is bounded and continuous at ¢
and wo = [ _[w(t)]?dt < oo, then

Vidadf(t) = EIF (O]} —a N(0,wof(t)).

(iii) Assume that lim, nA3 = 0, [ |t|jw(t)dt < oo, f' is bounded and
continuous at ¢, and the conditions in ( i) hold. Show that

Vi [f(t) = F(£)] —a N(0,wof(t)).

(iv) Suppose that A\, — 0, nA,, — 0o, w is bounded, and f is bounded and

continuous on [a,b], —0o < a < b < co. Show that fab f(t)dt —, fab f()dt
Solution. (i) The result follows from

IR Z/ (555 )a [ s

(ii) Let Vi, = w (
distributed with

. Then Y1, ..., Y,, are independent and identically

B0 = [ w(522) s@de =, [~ wti s - Aas =0 (1)

—0Q0 —00

and

vt = [ o (55) o= [ (52 s
o [ WA~ Ay + 00%)

= Mwo f(t) + o(An),

since f is bounded and continuous at t and wo = [ _[w(t)]?dt < co. Then

wo f () 1
Var = 2)\2 ZV . +0(n)\n>.
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Note that f(t) — Ef(t) = >0, [Yin — E(Yin)]/(nA,). To apply Lindeberg’s
central limit theorem to f (t), we note that, for any € > 0,
E(Y{ vy —Bvin)|>evinay) :/

An () — E(Yin)|>evkn

which converges to 0 under the given conditions.
(iii) Note that

E[F®) - £(t) = Ay E(Yin) — £(1)
- / W)= Any) — F(E)]dy

[w(y)]? f(t — Any)dy,

= A / yw gt,y, )dlh

where |& ,.» —t| < A,. Under the condition that f” is bounded and con-
tinuous at ¢ and [ [y|w(y)dy < oo,

lim v/n A {E[f ()] = (1)} = lim VA, 0\

Hence the result follows from the result in part (ii).
(iv) Since f is bounded and continuous,

lim £ / " Floydt = lim / " Bl )t
fhm/ / ft = Apy)dydt

— [ fwar
For t # s,
A e - X; - X
B0 = i | X L w (55w (S52)
n i=1 j=1 n "
1 t— X4 s—X,
~ e (50) e (550)
-1 t—X - X
+nn)\%E[w( )\nlﬂE{w 5 1)]
1 e t—s+ Ay
= W N ( N > w(y)f(s - /\ny)dy
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which converges to f(¢)f(s) under the given conditions. Hence,

lirranar (/b f(t)dt) =0

and, therefore, f; ft)ydt —, fab f(tydt. n

Exercise 11 (#5.20). Let ¢(6,&) be a likelihood function. Show that a
maximum profile likelihood estimator 6 of @ is an MLE if £(), the maximum
of sup, £(6, &) for a fixed 6, does not depend on 6.

Note. A maximum profile likelihood estimator 6 maximizes the profile
likelihood function £p(0) = £(0,£(0)), where £(0,£(0)) = sup, £(0,§) for
each fixed 6.

Solution. Suppose that ¢ satisfies £(6,€) = sup, £(0, §) for any 6. Then
the profile likelihood function is £p(0) = ¢(6 é) If 6 satisfies Ep(é)) =
supy £p(0), then £(0,€) = £p(0) > Lp(0) = £(0,€) > £(6,€) for any 0 and &.
Hence, (é,é) is an MLE of (0,£). 1

Exercise 12 (#5.21). Let (X1, ..., X;,) be arandom sample from N (,0?).
Derive the profile likelihood function for p or o2. Discuss in each case
whether the maximum profile likelihood estimator is the same as the MLE.

Solution. The likelihood function is

U, 0%) = (2m) "2 (0®) 7 2 exp {—2;2 Z(Xi - u)z} -

For fixed o2, £(u,0%) < £(X,0?), since Y1 (X; — p)? > Y0 (X — X)?,
where X is the sample mean. Hence the maximum does not depend on ¢?
and the profile likelihood function is

U(X,0%) = (2m) 2 (0?) ™2 exp {—%; Z(Xl - )_()2} .

By the result in the previous exercise, the profile MLE of o2 is the same as
the MLE of o2. This can also be shown by directly verifying that £(X, o?)
is maximized at 62 =n"' 31 (X; — X)?.

For fixed 1, £(p, 0?) is maximized at o%(p) =n~' > 1| (X; —p)?. Then
the profile likelihood function is

n n/2
U, 02(1)) = (2m) /22 [w} '

Since Y (X; — p)? > Y0 (Xs — X)2, Up, 2(M)) is maximized at X,
which is the same as the MLE of u (although o%(1) depends on f1). W
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Exercise 13 (#5.23). Let (X1, ..., X,,) be a random sample from a distri-
bution F and let w(x) = P(6; = 1|X; = x), where §; = 1 if X is observed
and §; = 0 if X, is missing. Assume that 0 < 7 = [ 7(2)dF(z) < 1.

(i) Let Fy(x) = P(X; < z|6; = 1). Show that F and F} are the same if and
only if 7(x) = .

(ii) Let F be the empirical distribution putting mass r~! to each observed
X, where r is the number of observed X;’s. Show that F(x) is unbiased
and consistent for Fy(z), x € R.

(iii) When () = 7, show that F'(z) in part (i) is unbiased and consistent
for F(z), # € R. When 7 () is not constant, show that F'(z) is biased and
inconsistent for F'(x) for some z € R.

Solution. (i) If n(z) = m, then X; and J; are independent. Hence,
Fi(z) = P(X; <z|6; =1) = P(X; < x) = F(z) for any z. If Fi(z) = F(x)
for any x, then P(X; < x,0; = 1) = P(X; < 2)P(4; = 1) for any = and,
hence, X; and ¢; are independent. Thus, 7(z) = 7.

(ii) Note that
Z?:l 51](—oo,x] (Xz)

Z:‘L:l 9i
Since E[6;](—co,2)(X:)|0i] = 0;F1(x), we obtain that

F(z) =

E[F(2)] = E{E[F(2)[61, ..., 6,]}
o i Bloid (oo ) (X4)|04]
=F { Z:‘L:l 0; }
_ X diFi(2)
=F { Z?:l d; }

= Fl(x)a

ie., F’(x) is unbiased. From the law of large numbers,
1 n
- D 0l coa)(Xi) —p E[01](—o0,0)(X1)] = E[01Fy (z)] = 7F) ()
i=1

and

1

Hence, F(z) —, Fy(z).

(iii) When n(z) = 7, F(z) = Fy(z) (part (i)). Hence, F/(x) is unbiased and
consistent for F(x) (part (ii)). When 7(z) is not constant, F;(z) # F(z)
for some z (part (i)). Since F'(z) is unbiased and consistent for F} (z) (part
(ii)), it is biased and inconsistent for F(z) for x at which F(x) # Fi(x). 1

Exercise 14 (#5.25). Let F be a collection of distributions on R%. A
functional T' defined on F is Gateaux differentiable at G € F if and only if
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there is a linear functional Lg on D = {¢(G1—G2) : c € R,G; € F,j = 1,2}

(i.e., La(ciAr14caAg) = c1La(Ar)+caLg(Asz) forany Aj € Dand ¢j € R)

such that A € D and G 4+ tA € F imply
lim T(G+tA) - T(G)
t—0 t

~ Le(A)| =o0.

Assume that the functional L is continuous in the sense that ||A;—A|loc —
0 implies Lp(A;) — Lp(A), where D € D, D; € D, and || Do =
sup,, |D(z)| for any D € D is the sup-norm. Show that ¢p(x) = Lp (0, —F)
is a bounded function of x, where ¢, is the degenerated distribution at x.
Solution. Suppose that ¢p is unbounded. Then, there exists a sequence
{x,} of numbers such that lim,, |¢z(z,)| = co. Let t,, = |¢r(x,)|"*/? and
H, =1,(0;, — F). Then H, € D and by the linearity of L,

|Le(Hp)| = tal L(8s, = F)| = talr(za)] = [$r(2)]"/* = 00

as n — oco. On the other hand, ||Hy|oo < t, — 0 implies Ly(H,) — L(0)
if L is continuous. This contradiction shows that ¢z is bounded.

Exercise 15 (#5.26). Suppose that a functional T is Géateaux differ-
entiable at F' with a bounded and continuous influence function ¢p(z) =
Lp(d, — F), where 0, is the degenerated distribution at x. Show that Lp
is continuous in the sense described in the previous exercise.

Solution. From the linearity of L,

/(/)F(x)dG = /LF((SI — F)dG = L (/&ch - F) =Lp(G-F)
for any distribution G. Hence,
Lp(D) = / 6r()dD, D € D.

If |Dj — D||s — 0, then, since ¢ is bounded and continuous, [ ¢r(z)dD;
— [¢r(z)dD. Hence, Lp(D;) — Lp(D). 1

Exercise 16 (#5.29). Let F be the collection of all distributions on R
and z be a fixed real number. Define

T(G) = / Gz — y)dG(y), G e F.

Obtain the influence function ¢ for T' and show that ¢p is continuous if
and only if F' is continuous.

Solution. For G € Fand A € D= {¢(G1—G32) : c€ R,G; € F,j =1,2},
T(G +tA) - T(C) = / (G + ) (= — y)d(G + tA)(y) — / Gz - y)dG(y)

= 2t/A(z — y)dG(y) + t* / Az — y)dA(y).
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Hence,

. TG+ tA
lim
t—0

—Z/Az— )dG (y)

and the influence function is
or(a) =2 [(0o = e = dF) =2 |FG = 0)~ [ FG=ar()].

where J, is the degenerated distribution at z. Hence ¢ is continuous if
and only if F' is continuous. &

Exercise 17 (#5.34). An L-functional is defined as
T(G) = / 2 J(G(2)dG(@), G € Fo,

where Fy contains all distributions on R for which T is well defined and
J(t) is a Borel function on [0, 1].
(i) Show that the influence function is

or@) = - [ (6 — F))J(F())dy,

where 4, is the degenerated distribution at .

(ii) Show that [ ¢r(x)dF(z) =0 and, if J is bounded and F has a finite
second moment, then [[¢r(z)]2dF(z) < co.

Solution. (i) For F and G in Fy,

T(G) - T(F) = / 2J(G(2))dG(z) — / 2 J(F(2))dF(z)
_ / G — P ) (tde

)
// dxJ(t
1(t)

(@)

- / / J(t)dtdz

—oo JG(z)

_ /_ T [Fe) - G@)J(F(x))dx
_ / - Ug(z)[G(z) — F(x)]J(F(x))dx,

— 00
where

ff((;) J(t)dt
Uslx) ={ Gw-FamEey ~+ G@)# F), J(F(z)) #0

0 otherwise
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and the fourth equality follows from Fubini’s theorem and the fact that the
region in R? between curves F(z) and G(x) is the same as the region in R?
between curves G~1(¢t) and F~1(t). Then, for any A € D = {c(G; — G>) :
ceR,GjeF,j=1,2},

lim =

T(F +tA) — T(F) 0
fig = - [ @i

— 00
since lim;_,o Up1¢a(2) = 0 and, by the dominated convergence theorem,
o0

lim UppeaA(x)J(F(z))dx = 0.

t—0 o

Letting A = §, — F', we obtain the influence function as claimed.
(ii) By Fubini’s theorem,

[ erwira =~ [ [ [6. - Pwar)| JF@)ay =0,

since [ d,(y)dF(xz) = F(y). Suppose now that |J| < C for a constant C.
Then

sr@l<c [ " 1oa) — F(y)ldy

([ _rwar+ [Tu-rw)

<c (|x [ Pwas [Tn- F(y)]dy)
= C(jl + BIX)),

where X is the random variable having distribution F'. Thus,
[or(2)]? < C*(je| + E|X])?
and [[¢p(z)]?dF(z) < co when EX? < co. 1

Exercise 18 (#5.37). Obtain explicit forms of the influence functions
for L-functionals (Exercise 17) in the following cases and discuss which of
them are bounded and continuous.

() J = 1.

(ii) J(t) =4t — 2.

(iif) J(t) = (8 — @) ' I(4,5)(t) for some constants o < f.

Solution. (i) When J =1, T(G) = [ 2dG(z) is the mean functional (F
is the collection of all distributions with finite means). From the previous
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exercise, the influence function is

o) = - | T Buly) - F)ldy

—0o0

- /_; F(y)dy — /j[l — F(y)ldy

-/ e [ OOO Fdy— | - Fly)ldy

:wf/mde(y)

This influence function is continuous, but not bounded.
(ii) When J(¢t) = 4t — 2,

oo

or) =2 [ " F(y)2F() — dy - 2 | - FwRre) - 1

x

Clearly, ¢ is continuous. Since

Jm [ F@RP@ -ty = [ F@IFG) - 1y = o
and -
Jim [ 1= F(y)][2F(y) — 1]dy = 0,
we conclude that lim, o ¢r(x) = co. Similarly, lim,_,_ ¢p(z) = —o0.

Hence, ¢ is not bounded.
(iti) When J(t) = (8 — a) " L(a3(8),

F=H(p3)
NG p— / 16.:(y) — F(y)ldy,

-« F-1(a)

which is continuous. ¢ is also bounded, since

Lo Fo(B) - F(a)
7o o, ) - Fly s TG

[or(z)] <

Exercise 19. In part (iii) of the previous exercise, show that if F is
continuous at F~!(a) and F~1(j3), then

“a)1—a)-F~! — —
F ()@ /g F— (B B)—T(F) r<F 1(a)

—Q

dp(x) = T QPG00 _p(F)  FYa) <z < FY(B)
PGB e () v > F(B).
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Solution. When = < F~1(a),

1 FY(B)
ore) = g [y
y[l - F(y)]

F=H(B) 1 F=Y(B)
- ydF(y)
B—a F-1(a) ﬂ_a/F—l(a)

PN ) = PO g
f—a ’

since F(F~1(a)) = a and F(F~1(3)) = 8. Similarly, when x > F~1(53),

@ FTHB)
or@) = 5= [ Fadi- g2 [ 1= P

/P @) -
B %F—(Zg raw B - a /:lm) virw
oz — Fl(a)ag_il(m(l -0 T(F). u

Exercise 20 (#5.67, #5.69, #5.74). Let T be an L-functional defined
in Exercise 17.

(i) Show that T'(F') = 0 if F is symmetric about 6, J is symmetric about
1 and [; J(t)dt = 1.
(ii) Assume that

= [ [ IR IEG)F g ) - F@)F)dsdy

is finite. Show that 0% = [[¢r(z)]?dF (z), where ¢ is the influence func-
tion of T'.
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(iii) Show that if J = 1, then o2 in (ii) is equal to the variance of F.
Solution. (i) If F is symmetric about 6, then F(x) = Fy(x — 6), where
Fp is a cumulative distribution function that is symmetric about 0, i.e.,
Fy(z) =1 — Fy(—x). Also, J(t) = J(1 —t). Then

/ 2] (Fy(w))dFy () = / (1= Fo(=))dFo(z)
= /xJ(Fo(*x))dFO(x)
_ / yJ (Fo(y))dFo (y),

ie., [2J(Fy(z))dFy(z) = 0. Hence,
T(F) = / 2 J(F(z))dF (z)
.y / J(F(z))dF (z) + /(:c —0)J(Fo(z — 0))dFo(x — )
= 9/ dt+/yJ(Fo(y))dFo(y)

(i) From Exercise 17, ¢p(z) = — [7 — F(y)]J(F(y))dy. Then

e = | [ - F><y>J<F<y>>dy] 2

— 00

=/OC (0 = F)(y)J(F(y ))dy/(x> (0r = F)(2)J (F(x))dx

— 00

/ / (60 — F)(x)(6: — F)(y)](F (@) (F(y))ddy.
Then the result follows from Fubini’s theorem and the fact that
[~ P)a)(6 ~ P)0)aF @) = Fminge. ) - F@)F).

(iii) When J = 1, by part (i) of the solution to the previous exercise,
op(z) =2 — fde . Hence, [[¢r(x)]?dF(z) is the variance of F' when
J = 1. The result follows from part (ii). 1

Exercise 21 (#5.65, #5.72, #5.73). Let T be an L-functional given in
Exercise 18(iii) with 3 =1—a and a € (0, %), and let F,, be the empirical
distribution based on a random sample from a distribution F'.

(i) Let X(1) <--- < X(y,) be the order statistics. Show that

1 n—meg
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which is called the a-trimmed sample mean.
(ii) Assume that F is continuous at F'~!(a) and F~!(1—«) and is symmetric
about 6. Show that

Fyli-a)
o = ﬁ {/0 w?dFy(z) + o[ Fy (1 O‘)]Q}’

where Fy(z — 0) = F(z), is equal to the 0% in part (ii) of the previous
exercise with J(t) = (1 — 2a) ™ q1-a) ().

(iii) Show that if F§(0) exists and is positive, then lim,_, 1 o2 =1/[2F}(0))%
(iv) Show that if 02 = [2%dFy(x) < oo, then lim,_,o 02 = o2

Solution. (i) Note that

1(F) = [l (Fu@)aFale) = =377 (£) X,

since F,(X¢;y) = i/n, i = 1,...,n. The result follows from the fact that
J(%) is not 0 if and only if m, <7 <n —mg.

(ii) Note that J is symmetric about 3. If F is symmetric about 6, then
T(F) = 6 (Exercise 20) and F~(a) + F~1(1 — a) = 26. From Exercise 19

with 8 =1 — a, we conclude that

Fy '(a)

— r < F Y a)

or(x) = 11_*21 Fla)<z<F1(1-0q)
F 11—« _
01—(2(1 ) x> F (1 -a),

where Fy '(a) = F7'(a) — 6 and F; ' (1 —a) = F~(1 — a) — 6. Because
Fy'(a) = —F; (1 — a), we obtain that

—1 2 —1 —a 2
/[¢F(£L')]2dF(l') _ [(}170 ;aoé))L o+ [F?l (12a)2)]

F7l(1-a) (.’L‘ _ 9)2
+/ ——dF(x
Fi@) (1—2a)? (@)

_ 20[F'(1-a)? /Fo‘ me) 2
- (1-20) i) (1—2a)

0

=0

By Exercise 20, we conclude that o2 = o%.

(ili) Note that Fyy '(3) = 0. Since F}(0) exists and Fj(0) > 0,
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where lim,, ,1 Rq /(o — 1) =0. Then

1\2
Pl = @2
[Fo ()] O + Ua,
e hma%% Ua/ (o = %)2 = 0. Hence,
ol -af L afF@P 1
oy (1-20) sy dla—3)2  REOP

Note that

Fyl(1-a) 1—a
/O 22dFy(x) = / 7L ()2t

1

2

and, by ’Hépital’s rule,

B B
aﬁ% (1 - 204)2 a—3 4(1 — 20()

Hence, lim,, , 1 o2 =1/[2F}(0)]%
(iv) Note that limy—o F; '(1 — a) = co. Since [x2dFy(x) < oo, we have
lim, 0 22[1 — F(z)] = 0. Hence, lim, o a[F; ' (1 — a)]? = 0. Then,

a—0 a—0

Fl(1-a)
lim 02 = lim 2 {/ ’ 22dFy(x) + o[Fy 1 (1 — a)]z}
0

oo
=2 / r2dFy(z)
0
= 0 5
since Fp is symmetric about 0. I

Exercise 22 (#5.75). Calculate 0% defined in Exercise 20(ii) with J(¢) =
4t — 2 and F being the double exponential distribution with location pa-
rameter p € R and scale parameter 1.

Solution. Note that F is symmetric about p. Using the result in part (ii)
of the solution to Exercise 18 and changing variable z = y — i, we obtain
that

o0

T—p
or@ =2 [ RRRW - -2 [ L= R@)2R) - .

—00 T—u
where Fj is the double exponential distribution with location parameter 0
and scale parameter 1. Let X be a random variable having distribution F'.
Then X — p has distribution Fy and, therefore, the distribution of ¢p(X)
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does not depend on p and we may solve the problem by assuming that
u = 0. Note that

Op(x) = F(2)[4F(z) — 2] + [1 - F(2)][4F (z) — 2] = 4F (z) —
Hence,

or(x) = / "WUF(y) — 2dy + e,

where c is a constant. For the double exponential distribution with location
parameter 0 and scale parameter 1,

1

§€y y<0
Flyy=<¢ 1 y

5+5(1—e?) y>0

and, hence,
/ UP(y) — 2dy = 2/ (1—eV)dy =2z — 1+ ¢
0 0

when z > 0 and

/ [4F(y) — 2]dy = 2/ (e —1)dy =2(e* —1—1x)
0 0
when z < 0. Thus,
or(z) =2(z) —1+e ") +c.
From the property of influence function, F[¢r(X)] = 0. Hence,
c=—2B(X| -1+ Xl) =1,

since | X| has the exponential distribution on (0, 00) with scale parameter
1. Then,

(05 (X)]?
(2| X| — 3+ 2¢~ X2
(4 X7 +9 + 4e 21X — 12X + 8| X|e~ X — 12¢71X1)

I
w\\IOO tijtijtij

4
9+§—12+2—6

Exercise 23 (#5.59). Let T(G) = G~!(p) be the pth quantile functional.
Suppose that F has a positive derivative F’ in a neighborhood of 6 =
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F~Y(p). Show that T is Gateaux differentiable at I’ and obtain the influence
function.

Solution. Let H; = F+t(G — F). Differentiating the identity H;(H; *(p))
= p with respect to t at ¢ = 0, we obtain that

G(F~X(p)) = F(F~}(p)) + F'(F~"(p)) H{(0) = 0.

Hence,

p—GF " (p))
FI(F~(p))

Let G = §,, the degenerated distribution at z. Then the influence function

® P = Tipooy (F1(p))
F(F-1(p))

Hi(0) =

or(z) = o

Exercise 24 (#5.51). Let F, be the empirical distribution based on
a random sample of size n from a distribution F' on R having Lebesgue
density f. Let ¢,(t) be the Lebesgue density of the pth sample quantile
F.1(p). Prove that

n

eult) = ) IFOI 1 = PO 1),

where [, = np if np is an integer and [, = 1+ the integer part of np if np
is not an integer, by

(i) using the fact that nF,(t) has a binomial distribution;

(i) using the fact that F, 1(p) = CrpX(m,) + (1= Cnp) X(m,+1), Where X;
is the jth order statistic, m, is the integer part of np, c,, = 1 if np is an
integer, and ¢y, = 0 if np is not an integer.

Solution. (i) Since nF,(t) has the binomial distribution with size n and
probability F'(¢), for any t € R,

P(E;Y(p) <t) = P(Fu(t) > p)

_ _Z (3)irern-ror-.

Differentiating term by term leads to

onl) = 3 (77)i[F<t>r—1[1 C RO

. 1
i=ly,

- Z ( )= F L - )
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- (n)‘p[Funlrlu — PO £(t)

lp
w0 3 (G0 Jrortn - oo
i=lp+1
n—1

-2 (” B 1) PO [L = PO (1)

— ()T )F@OP - PP ),

(ii) The Lebesgue density of the jth order statistic is

n(” B 1) F@P L — F@)" £().

ji—1
Then, the result follows from the fact that

Fnl(p){

and [, = m,, if np is an integer and I, = m, + 1 if np is not an integer. i

X(my) if np is an integer
X(mp+1) if np is not an integer

Exercise 25 (#5.52). Let F, be the empirical distribution based on a
random sample from a distribution F' on R with a finite mean. Show that
the pth sample quantile F;!(p) has a finite jth moment for sufficiently
large n, j = 1,2,..., where p € (0, 1).
Solution. From the previous exercise, the cumulative distribution function
of F, 1 (p) is
n
n i n—i
Gulo) =3 (7 )reontn - Feop
i=l,
where I, = np if np is an integer and [, = 1+ the integer part of np if np
is not an integer. When n — oo, I, = 0o and n — [, — co. Hence, j <,
and j < n — 1, + 1 for sufficiently large n. Since [;~[1 — F(z)]dz < oo (F
has a finite mean),
lim 2771 — F(2)]" ! < lim max{l — F(z),2’ '[1 = F()’ "'} =0

T—00 TrT—00

fori=1,...,1, — 1. Thus,
/ PP - F(z)]"dz < / 21 - F(z)]"~dz < oo
0 0

for i =1,...,1, — 1, which implies that

Iy—1

/OOO o/ 7L = Gu(e)lde = ) (?) /OO 2 HF(@)]'[1 = F(2)]""de < oo,

i=1 0
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Similarly, for i ={,,l, +1,...,n,

0

/ 2 F@) 1 - F(ao)]"id < / 2~ [F(a)]de < oo

and, thus,
0 ; " /n 0 , , ‘
/ 2 G ()da = > () / 2 [F(2)]f[1 — F(z)]""dz < oo.
i
e i=l, -
Therefore,

h |27 dG () = OoxjdGn(x)—i— i |27 dG,, (2)
oo 0 —c0

[ee) 0
= j/ 771 — G (x)]dx —|—j/ |z’ G () da
0 —0o0

< 00. 1

Exercise 26 (#5.54). Let F, be the empirical distribution based on a
random sample from a distribution F' on R with Lebesgue density f that is
positive and continuous at = F~1(p), p € (0,1). Using Scheffé’s theorem
(e.g., Proposition 1.18 in Shao, 2003), prove that

VAlE ) = 6] = v (0.5,

Solution. From Exercise 24, the Lebesgue density of \/n[F, 1(p) — 0] is

l—1 n—ly
o) )] Pl m)] ol ).
where [, = np if np is an integer and [, = 1+ the integer part of np if np
is not an integer. Using Stirling’s formula, we obtain that
1
2mp(1 —p)
From Taylor’s expansion and the fact that {,/(np) — 1,
lp—1
Flo+ )] [1-ro+%)
p L—p

l—l

n—I,
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- {(lp - 1)logF (9; %> + (n—1,)log - Fl(f: %)

= exp {nplog : <9 ; %) + (n —np)log - Fl(f; %) +o(1)

= o oo (14 S32) 0ot (1= E0 ) ot}
— exp { Vs @~ LLE o) - v - LI o))
ol )

Also, lim,, f(@ + L) = f(6). Hence, the density of v/n[F, *(p) — 0] con-

verges to
fO) f_OPy
21p(1 — p) P { 2p(1 —p) }

for any y, which is the Lebesgue density of N (O,p(l — p)/[f(@)]Q). Hence,
the result follows from Scheffé’s theorem. i

Exercise 27 (#5.55). Let {k,} be a sequence of integers satisfying
kn/n = p+ o(n~/?) with p € (0,1), and let (X3, ..., X,) be a random
sample from a distribution F' on R with F’(6,) > 0, where 6, = F~1(p).
Let X(;) be the jth order statistic. Show that

V(X g,y — 0p) —a N(0,p(1 — p)/[F'(6,)]).

Solution. Let p, = k: /n = p+o(n~'/2?) and F, be the empirical distribu-
tion. Then X,y = F, '(py) for any n. Let t € R, o = /p(1 — )/F’( b)s
Pt = F(0, + ton~ 1/2)7 and ¢,y = fpm D)/ /Pnt(1 — pnt). Define
Znt = [Bn(pnt) — npnt]/v/1Pnt(1 — put), where B, (q) denotes a random

variable having the binomial distribution with size n and probability gq.
Then

P(Vn(Xg,) —0,) < to) = P(F, 1( ) < 0, +ton~'/?)
= P(pn < Fo(bp +ton™ 1/2))
(Znt > _Cnt)

= ‘P(cnt) +o(1)

by the central limit theorem and Pélya’s theorem, where ® is the cumulative
distribution function of N(0,1). The result follows if we can show that
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lim,, ¢,y = t. By Taylor’s expansion,
Pt = F (0, +ton™Y2) = p 4+ ton=Y2F'(0,) + o(n~/?).

Then, as n — 00, Pt — p and /n(pnt — pn) = toF'(6,) + o(1), since
pn —p = o(n~'/?). Hence,

V(D — P to " (0,)

Cnt = — =1.
pnt(l _pnt) P(l _p)

Exercise 28 (#5.112). Let G, G4, Ga,..., be cumulative distributions on
R. Suppose that lim, sup, |G, (z) — G(z)| = 0, G is continuous, and G~!
is continuous at p € (0, 1).

(i) Show that lim, G, 1(p) = G~ 1(p).

(i) Show that the result in (i) holds for any p € (0,1) if G'(z) exists and is
positive for any z € R.

Solution. (i) Let ¢ > 0. Since lim, sup, |G,(z) — G(x)| = 0 and G is
continuous, lim,, G,(G7*(p —€)) = G(G7 (p — €)) = p — € < p. Hence, for
sufficiently large n, G,,(G=*(p —€)) < p, i.e., G71(p —€) < G (p). Thus,

G (p—e€) <liminf G, ' (p).

Similarly,
G (p+e€) > limsup G, (p).

Letting e — 0, by the continuity of G=1 at p, we conclude that lim,, G, (p)
=G (p).

(ii) If G'(x) exists and is positive for any = € R, then G~! is continuous
on (0,1). The result follows from the result in (i). i

Exercise 29 (#5.47). Calculate the asymptotic relative efficiency of the
Hodges-Lehmann estimator with respect to the sample mean based on a
random sample from F' when

(i) F is the cumulative distribution of N (u,c?);

(ii) F' is the cumulative distribution of the logistic distribution with loca~
tion parameter p and scale parameter o;

(iii) F is the cumulative distribution of the double exponential distribution
with location parameter u and scale parameter o;

(iv) F(z) = Fo(x — p), where Fy(z) is the cumulative distribution of the
t-distribution ¢, with v > 3.

Solution. In any case, as estimators of u, the sample mean is asymp-
totically normal with asymptotic mean squared error Var(X)/n, where X
denotes a random variable with distribution F', and the Hodges-Lehmann
estimator is asymptotically normal with asymptotic mean squared error
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(129%)71, where v = [[F'(x)]?dx (e.g., Example 5.8 in Shao, 2003). Hence,
the asymptotic relative efficiency to be calculated is 12y?Var(X).
(i) In this case, Var(X) = o2 and

202 J_ 210 J_o 2\/To

Hence, the asymptotic relative efficiency is 12y?Var(X) = 3/7.
(ii) Note that Var(X) = o27%/3 and

1 [ e 2z-p)/o p 1 [ e2® d 1
s /,oo Lo @™ =5 /m 1+e)i™ " 6o
(Exercise 66 in Chapter 4). Hence, the asymptotic relative efficiency is

12y2Var(X) = 72/9.
(iii) In this case, Var(X) = 202 and

1 o 1 [ 1
V== e 2e=nl/o gy = —/ e 2leldy = o
oo o

402 J_ oo 4o

Hence, the asymptotic relative efficiency is 12y?Var(X) = 3/2.

(iv) Note that Var(X) = v/(v —2) and

_ e /"‘” dr om0 ()T ()
()™

[T (5)]*T(v+1)

Hence, the asymptotic relative efficiency is

2 12VW[ ()] [0 ()]
12y“Var(X) = [T (%)] SONETT i |

Exercise 30 (#5.61, #5.62, #5.63). Consider a random sample from a
distribution F' on R. In each of the following cases, obtain the asymptotic
relative efficiency of the sample median with respect to the sample mean.
(i) F is the cumulative distribution of the uniform distribution on the in-
terval (0 — 3,0+ 1), 0 € R.

(ii) F(z) = Fo(x — 0) and Fo is the cumulative distribution function with
Lebesgue density (14 22) ' (_. 0 (z)/ [ (1 +2?)"1dt.

(iii) F(x) = (1—€)® (%)+6D (=£), where e € (O, 1) is a known constant,
® is the cumulative distribution function of the standard normal distribu-
tion, D is the cumulative distribution function of the double exponential
distribution with location parameter 0 and scale parameter 1, and p € R
and o > 0 are unknown parameters.

Solution. In each case, the asymptotic relative efficiency of the sample
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median with respect to the sample mean is 4[F'(0)]?Var(X}).

(i) Let 6 be the mean of F. In this case, Var(X;) = 1/12 and F’'(0) = 1.
Hence, the asymptotic relative efficiency of the sample median with respect
to the sample mean is 1/3.

(ii) The Lebesgue density of Fy is

o I(fc,c)(x)
f) = 2arctan(c)(1 + x2)’

Hence, F'(#) = [2arctan(c)]~!. Note that

¢ x2dz

. 2arctan(c)(1 + z2)

Var(X;) = /

_ / o de / ’ dx
~ J_. 2arctan(c) _c 2arctan(c)(1 + x2)
c

arctan(c)

Therefore, the asymptotic relative efficiency of the sample median with
respect to the sample mean is [c — arctan(c)]/[arctan(c)]?.
(iii) Note that

Var(X;) = (1 — €)o? + 2¢0? = (1 +€)0?

and

1—¢ €
F' = — 4+ —.
(1) s 1oy

Hence, the asymptotic relative efficiency of the sample median with respect

to the sample mean is 4 (\1/% + %) /(1+e€). 1

Exercise 31 (#5.64). Let (X1,..., X,) be a random sample from a dis-
tribution on R with Lebesgue density 271(1 — 62)e?*~ 1l where 6 € (—1,1)
is unknown.

(i) Show that the median of the distribution of X; is given by m(f) =
(1 —6)"tlog(1+ 6) when 6 > 0 and m(#) = —m(—60) when 6 < 0.

(ii) Show that the mean of the distribution of X is u() = 20/(1 — 62).
(iii) Show that the inverse functions of m(#) and u(6) exist. Obtain the
asymptotic relative efficiency of m~1 (1) with respect to u~'(X), where m
is the sample median and X is the sample mean.

(iv) Is u~1(X) asymptotically efficient in estimating 6?7

Solution. (i) The cumulative distribution function of X; is

1%96(“_9);8 <0
1-— 1%967(170)93 x> 0.

Fy(x) =
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If 0 > 0, Fp(0) = 152 < 1. Hence, the median is the solution to

-1
2

ie., (1—60)"1log(1l+6) = m(f). If 6 < 0, then the median is the solution
to

1 1496
_ %6_(1_9)367

1 1-6

g 76(1+9)z7

2 2

ie, —(1+60)"tlog(l — ) = —m(—0). If & = 0, the median is clearly
0 = m(0).

(ii) The mean of X is

1—6% [ 1—6%27] (0 oo
5 / zef* 17l gy = 5 [/ et gy —|—/ xe(la)zdx}
— o0 —o0 0

162 1 1

T [<1+e>2+<1—e>2}
20

g

(iii) Since
L2 46?
WO = 1" T a—ey

>0,

u(#) is increasing in § and, thus, the inverse function = exists. For § > 0,
m() is the product of log(1+6) and (1—6)~1, both of which are increasing
in 6. Hence, m(#) is increasing in 6 for 6 € [0,1). Since m(f) = —m(—0)
for 6 < 0, the median function m(#) is increasing in ¢. Hence, the inverse
function m~1! exists.

When 6 > 0, the density of X; evaluated at the median m(6) is equal
to

1=6% om@-tm@) _ 1=0% _1—oym@e) _ 1 =9

(& = —
2 2 2

When 6 < 0, the density of X; evaluated at the median —m(—0) is equal
to
2 2
1—07 om0y |—m=0) _ L= 0" om0y _ 10
2 2 2
In any case, the density of X; evaluated at the median is (1—16])/2. By the
asymptotic theory for sample median (e.g., Theorem 5.10 in Shao, 2003),

N 1
Vi —m(0)] —4 N <O, (1_9)2> .
When 6 > 0,
1 log(1+0)

mO) =1+ 1 ey
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Hence, for § € (—1,1),

1 log(1+10]) 1 — 10|+ (1 + [0])log(1 + |0])
1= (-0 (L+10)(1 —|0[)? '

m'(0)

By the d-method,

—1/4 (1702)2
Al ) =0 = ¥ (0 g e )

For p~1(X), it is shown in the next part of the solution that

VAla (X) = 6] =4 N (o, m) .

Hence, the asymptotic relative efficiency of m~! () with respect to u =1 (X)
is

[1—16] + (1 4 |6]) log(1 + [6])]?
2(1+62) '

(iv) The likelihood function is

0(0) =27"(1 — 6*)" exp {nGX — i: |XZ-|} .

i=1
Then,
dlogt(0) n n -
o0 1+6 1.9 ™
and
Plogl(®) ~  n  n <0
002 (1+6)2 (1-0)2 ’

Hence, the solution to the likelihood equation 17 — %5 + nX = 0 is the
MLE of 0. Since %5 — 1% = nu(f), we conclude that p~1(X) is the MLE

of 6. Since the distribution of X7 is from an exponential family, pH(X) is
asymptotically efficient and /n[u=*(X) — 0] —4 N(0,[[1(0)]~!), where

o 1 201+06?)
LO =G Y a—er -

Exercise 32 (#5.70, #5.71). Obtain the asymptotic relative efficiency
of the trimmed sample mean X,, (Exercise 21) with respect to

(i) the sample mean, based on a random sample of size n from the double
exponential distribution with location parameter € R and scale parameter
1.

)
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(ii) the sample median, based on a random sample of size n from the Cauchy
distribution with location parameter § € R and scale parameter 1.
Solution. (i) Let Fy be the double exponential distribution with location
parameter 0 and scale parameter 1. The variance of Fy is 2. Hence, the
asymptotic relative efficiency of the trimmed sample mean X, with respect
to the sample mean is 2/02, where o2 is given in Exercise 21(ii). Note that
Fy'(1—a) = —log(2«). Hence,

1 ~log(20) 2alog(2a)]?
2 _ - 2 —x 21052
Ta = (17204)2/0 Te et Ty
_ 2aflog(2a) —1] + 1
N (1—2a)? '

Thus, the asymptotic relative efficiency is 2(1 —2a)?/{2alog(2a) — 1] + 1}.
(ii) Let Fy be the Cauchy distribution with location parameter 0 and scale
parameter 1. Note that Fjj(0) = 1/7 and F; *(1 — a) = tan(r — 7a).
Hence, the asymptotic relative efficiency of the trimmed sample mean X,
with respect to the sample median is 72/(402), where

. 2 /tan(”_’m) 22dx 2aftan(m — wa)]?
* (1-2a)2 ) m(1+ 22) (1-2a)?
B 2 tan(r —ma) tan(m—ma) _dz
- (1—2a)2 [ ™ /0 (1 + a?)
2aftan(m — ma)]?
(1 —2a)?
_ 2 tan(m — ra) 1 -2« 2aftan(r — Ta))?
T (1-2a)? [ T 2 } (1—2a)2
_ 2tan(m — ) 1 2aftan(r — 7a))?
T oa(l-20)2  1-2a i-2a2

Exercise 33 (#5.85). Let (X1,..., X,) be a random sample from a dis-
tribution F' on R that is symmetric about 8 € R. Huber’s estimator of
is defined as a solution of Y., ¢(X;,t) = 0, where

C t—ax>C
(x,t) =< t—=x |z —t| <C
—-C t—x<-C
and C' > 0 is a constant. Assume that F' is continuous at § — C and 8 + C.
(1) Show that the function

v+C
V() = [ (= a)dF(@) + CF(y - C) = ClL = F(y+C)
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is differentiable at # and ¥(#) = 0.
(ii) Show that the asymptotic relative efficiency of Huber’s estimator with
respect to the sample mean is Var(X;)/o0%, where

;jcc(a — l’)QdF(x) + C’QF(Q - )+ 02[1 — F(0+0O))

[F(0+C)—F(@—-0))?

o3 =

Solution. (i) Since F' is symmetric about 6, F(§ — C) = 1— F(0 + C),
dF(0 —y) = dF(8 + y), and

0+C C C
/9 (0 — 2)dF(z) = / dF 0+ y) = - / _dF(O =)

—_C —

where the first equality follows by considering x = 6 + y and the second
equality follows by considering x = 6§ — y. Hence, f;fg(& —x)dF(x) =0
and, thus, ¥(6) = 0.

From integration by parts,

v+C v+C
/ (7 — 2)dF(z) = ~C[F(y+ C) + F(y - C)] + / F(z)dz.
~y—C y—-C
Hence,
y+C
U(y) = / | Pl —c.

which is differentiable at 6 and ¥'(0) = F(6 + C) — F(0 — C).
(ii) The function

v+C
JWwleFar@ = [ (-afdP@)+C*FG - 0)+ €= Pl +C)

is continuous at #. Hence, by the result in (i) and Theorem 5.13(i) in Shao
(2003), Huber’s estimator @ satisfies /n(d — ) —4 N(0,0%). This proves
the result. i

Exercise 34 (#5.86). For Huber’s estimator 6 in the previous exercise,
obtain a formula e(F') for the asymptotic relative efficiency of 6 with respect
to the sample mean, when

F(z) = (1-® (52) +d (=2),

where ® is the cumulative distribution function of N(0,1), o > 0, 7 > 0,
and 0 < € < 1. Show that lim,_, e(F) = co. Find the value of e(F) when
e=0,0=1,and C =1.5.



Chapter 5. Estimation in Nonparametric Models 243

Solution. The variance of F is (1 — €)o? + er?02. Let 02 be given in the
previous exercise. Then

(1 —¢€)o? + er?0?

e(F) = J% )
where
, S - g (2)+ed ()] 4207 [(1 - )@ (-§) +ed (- F)]
E 2[1-e@ (£)+e@(£)] -1 '

Since 0% is a bounded function of 7, lim, . e(F) = co. When € = 0,
oc=1,and C = 1.5,

1 (C o —y?)2 2
o(F) = T5= [oyPe v Py + 2070 (=C)
20(C) —

— /20 4 8(C) - #(=C) +2C70(~C)
25(C) —

—0.3886 + 0.8664 + 0.3006
0.8664

= 0.8984. 1

Exercise 35 (#5.99). Consider the L-functional T" defined in Exercise 17.
Let F,, be the empirical distribution based on a random sample of size n
from a distribution F, 0 = [[¢pp(2)]?dF (), and 0F, = [[¢F, (x)]?dF,(z),
where qbg denotes the influence function of T at distribution G. Show that
lim,, o2 7, = = 0% a.s., under one of the following two conditions:

(a) Jis bounded, J( ) =0 when t € [0,a]U[5, 1] for some constants o < 3,
and the set D = {x : J is discontinuous at F'(z)} has Lebesgue measure 0.
(b) J is continuous on [0,1] and [ z2dF(z) < oco.

Solution. (i) Assume condition (a). Let C = sup, |J(x)|. Note that
lim, sup,, |F;,(y) — F'(y)] = 0 a.s. Hence, there are constants a < b such
that

b
br(z) = — / (6, — F)(y)J(F(y))dy
and

b
orF, () = _/ (6x — Fn)(y)J(Fn(y))dy a.s.

The condition that D has Lebesgue measure 0 ensures that

b
tin [ |I(F() — JE()ldy =0 as
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Hence,
b
6m, (2) = 6 ()] = ] [ = P E )

b
+ / (60 — F)@)[I(F () — J(Ea(y))]dy
C(b—a) Sl;p |Fu(y) — F(y)|

IN

b
+ / T(F(y)) — T(Fa(y))\dy
— 0 a.s.

Since sup,, |¢F, (z)| < C(b— a), by the dominated convergence theorem,

lim / or, (0P dF (@) = [or@PiF(@) as

By the extended dominated convergence theorem (e.g., Proposition 18 in
Royden, 1968, p. 232),

hm/qbp d(F, — F)(z) =0 as.

This proves the result.
(ii) Assume condition (b). Let C' = sup,, |J(z)|. From the previous proof,
we still have

oo

br, (z) — bir(z) = / (Fy — F)()J(Ea(y))dy

— 00

[ 6= PIEW) - I )y

— 00

The first integral in the previous expression is bounded in absolute value
by C [ |F. — F|(y)dy, which converges to 0 a.s. by Theorem 5.2(i) in
Shao (2003). The second integral in the previous expression is bounded in
absolute value by

supl5(Ea ) = JEI [ P+ [T - Flanf

Y —o00 T
which converges to 0 a.s. by the continuity of J and [ 22dF (z) < oo. Hence,
lim, ¢r (x) = ¢r(z) a.s. for any z. The rest of the proof is the same as
that in part (i) of the solution, since [¢p, ()] < C?[|z| + [ |z|dF(z)]? (see
the solution of Exercise 17) and [ z?dF(z) < occ. I

Exercise 36 (#5.100). Let (Xi,...,X,) be a random sample from a
distribution F on R and let U,, be a U-statistic (see Exercise 25 in Chapter



Chapter 5. Estimation in Nonparametric Models 245

3) with kernel h(x1, ..., 2,,) satisfying E[h(Xq, ..., X;n)]? < 0o, where m <
n. Assume that ¢; = Var(hi(X1)) > 0, where hy(z) = Elh(z, Xa, ..., Xim)]-
Derive a consistent variance estimator for U,.

Solution. From Exercise 25 in Chapter 3, it suffices to derive a consistent
estimator of Cl' Since <1 = E[hl(Xl)]Q — {E[hl(Xl)}}2 = E[hl(Xl)P —
{E(U,)}? and U, is a consistent estimator of E(U,,), it suffices to derive a
consistent estimator of p = E[hy(X1)]?. Note that

2

—/U.../h(x,yl,...,ym1)dF(y1).--dF(ym1) dF ()
:/.../h(%yl,.,.,ym_l)h(x,ym,...,y2m+1)dF(y1)"'dF(y2m+1)dF($)-

Hence, a consistent estimator of p is the U-statistic with kernel

h(xayla ceey ym.—l)h(xayma -~-7y2m+1)~ 1

Exercise 37 (#5.101). For Huber’s estimator defined in Exercise 33,
derive a consistent estimator of its asymptotic variance o%.

Solution. Let f be Huber’s estimator of 6, F,, be the empirical distribution
based on X1, ..., X,,, and

. S0 - 2)2dB, (@) + C2E,(0— C) + C2[1 — Fu( + C)]
e [Fu(0+C) — Fulh— O) |
Using integration by parts, we obtain that
v _ 2 750 — ) F(z)dz + C2
[F (9+C)* F0—C)?
and
L2 JEC(0 = 2) Py (2)da + 02.

e [<6+0) Fo(0 - C)?

To show that U%n is a consistent estimator of 0%, it suffices to show that
lim F, (0 4+ C) —, F(6 + C)
n

and A
o+C 0+C

liin . (0 — z)Fy(z)dx —) /efc (0 — x)F(z)dx.

The first required result follows from

|F(0+C)—F@O+C)| <|F(0+C)—F(0+C)| +sup|Fy(z) — F(z)],
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the fact that lim, sup, |F,(z) — F(z)| = 0 a.s., the consistency of 4, and
the assumption that F' is continuous at F'(6 + C'). Let

v+C
)= [ - P

Then g(v) is continuous at # and, thus, g() —, g(6). Note that

0+Cc 6+C .
| G=oR @ [0 =0lF@) - F@ds+ o(0)

-C 6—C

and

‘ /@éj(é — 2)[Fo(x) — F(z)]do

< 902 sup | Fy(z) — F(x)]

Hence, the second required result follows. I
Exercise 38 (#5.104). Let Xi,..., X, be random variables. For any
estimator 6, its jackknife variance estimator is defined as

2
n

n—1 A 1< &
v, = " Z 9_1‘—5;9_3‘ 5

i=1

where é,i is the same as 6 but is based on n — 1 observations X1, .., X1,
Xit1,y X, i = 1,...,n. Let X be the sample mean and 6 = X2. Show
that _ _

B 4X32¢y 4Xeés 64 — &3

T n—1 (n—-12 (n—1)3%

where &, =n"! >0 (X; — X)*, bk =2,3,4.

Solution. Let X_; be the sample mean based on Xy, ..., X;—1, X;41, ..., Xp,
i=1,...,n. Then é,i = X%i,

Uy

X,Z—nX_Xl,
n—1
- XX
X, —X= ,
n—1
X, +X= 42X,

and
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Therefore,

—1 (- 1 = -
vJ:”n Z Xzi—ﬁj;ij

i=1

i=1 j=1
n—1x- o SN2 o 2 é
= X —X) (X +X)" —
S SRS (HE S R
i=1
n - 2 - 2
-1 X-X; X-X; e
n =\ n-1 n—1 (n—1)
1 LI 4 4X L
= X — X3
n(n—1)3 ( ) n(n —1)2 Z( i)
i=1 =1
1X2 KN o &
X7, 2 2 _
n(n—1) ;( ) (n—1)3
Ll AXe  4XPe &
C(n—13 (n—-12 n-1 (n—1)3
4X2%¢ 4Xe 6y — 3
_ Co _ C3 + Cyq 62 .

n—1 (n—-12 (n—1)3%

Exercise 39 (#5.111). Let X3, ..., X,, be random variables and X7, ..., X
be a random sample (i.e., a simple random sample with replacement) from
X1,...,X,. For any estimator é, its bootstrap variance estimator is v, =
Var, (0*), where 6* is the same as 6 but is based on X7, ..., X and Var, is
the variance with respect to the distribution of X7, ..., X}, given X, ..., X,,.
Let X be the sample mean and 6 = X2. Show that

4X2%¢ 4Xeé ¢4 — 63
2 3, Ga— G

v =
n n? n3

B )

where ¢, =n~1 >0 (X, — X)F k=2,3,4.
Solution. Let E, be the expectation with respect to the distribution of
Xi, ..., X}, given X1, ..., X,,. Note that

E.(X*) = E.(X}) = X,
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_ (X C
Var, (X7) = Yar(X7) (Xi) _ &
n n
and
¢y fi=j=k=1
EJ(X7 - X)(X] - X)X - X)X - X)| =4 & ifi=kj=1Li#]
0 otherwise

Thus,
S % — 1 * - * v * v * 7%
E(X =X = Y BRI - X)X - X)X - X)X - X))
1<i,j,k,l<n
1 * v \4
= Y E.X]-X)
1<i<n
1 " > * -
Y BT - XAX) - X))
1<i,j<n,i#j
64 (’I’L — 1)6%
“wmt
and, hence,
Var, (X* — X)? = B (X* — X)* - [B.(X* - X)??
& | (n—1)& o
= + T2 — [Var, (X*)]?
4 — 03
==
Also,
B.((X; - X)X - D)X = { & Hi=d =k
i J k | 0 otherwise
and, thus,
Sx — 1 * * v * %
E.(X* - X)* = 3 > EJX] - X)(X; - X)(X; - X))
1<i,j,k<n
C3
= ﬁ.

Let Cov, be the covariance with respect to the distribution of X7, ..., X},
given Xq, ..., X,,. Then

Cov, (X"~ X2, X"~ X) = B (X~ X)P= 2
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Combining all the results, we obtain that

Var, (§%) = Var,(X*?)
= Var,(X*? — X?)
= Var, ((X* - X)(X* - X +2X)
= Var, ((X* — X)* +2X(X* - X))
= Var, ((X* - X) )+4X2Var (X* - X))
+4XCov, ((X* - X)? - X)
4X32¢y  4Xég 04—03

= + +—=2.1
n n n

)
)

Exercise 40 (#5.113). Let Xi,..., X,, be a random sample from a dis-
tribution on R* with a finite Var(X;). Let X7,..., X} be a random sam-
ple from Xi, ..., X,,. Show that for almost all given sequences X;, Xo, ...,
Vn(X* — X) —4 Ni(0,Var(X;)), where X is the sample mean based on
X1, ..., X, and X* is the sample mean based on X7}, ..., X}
Solution. Since we can take linear combinations of components of X* — X,
it is enough to establish the result for the case k = 1, i.e., Xy,..., X,, are
random variables.

Let V; = X — X,i=1,...,n. Given Xy,..., X,,, Y1, ..., ¥;, are indepen-
dent and identically distributed random variables with mean 0 and variance
e =n"13"" (X, — X)?. Note that

| n _
X—X_E;YZ

and

Var, (X* - X) = 9,
n

where Var, is the variance with respect to the distribution of X7, ..., X},
given Xj,...,X,. To apply Lindeberg’s central limit theorem, we need to
check whether

1 n
— N E(Y*I .
nég ; ( i {\Yi|>6\/nz:2})

converges to 0 as n — oo, where € > 0 is fixed and F, is the expectation with
respect to P,, the conditional distribution of X7,..., X' given X;,..., X,,.
Since Y;’s are identically distributed,

1 n
-~ Z E.(Y2 v sevmay) = B (Y Ly, s eymany)-
i=1
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Note that

IN

(max X?) P, <|Y1| > e\/@)

1<i<n

E. Y4
max X? 2' A‘
1<i<n €2nco

2
maxij<i<n Xz

E*(Y12I{\Y1|>e\/@})

IN

e2n

which converges to 0 a.s. (Exercise 46 in Chapter 1). Thus, by Lindeberg’s
central limit theorem, for almost all given sequences X1, Xo, ...,

n

1
Y; -4 N(0,1).
%2; a N(0,1)

The result follows since lim,, éo = Var(X7) a.s. 1
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Hypothesis Tests

Exercise 1 (#6.2). Let X be a sample from a population P and consider
testing hypotheses Hy : P = Py versus H; : P = Py, where P; is a known
population with probability density f; with respect to a o-finite measure
v, j = 0,1. Let B(P) be the power function of a UMP (uniformly most
powerful) test of size a € (0,1). Show that a < S(P;) unless Py = P;.
Solution. Suppose that a = G(Py). Then the test Ty = « is also a UMP
test by definition. By the uniqueness of the UMP test (e.g., Theorem 6.1(ii)
in Shao, 2003), we must have fi(x) = cfo(x) a.e. v, which implies ¢ = 1.
Therefore, fi(z) = fo(x) a.e. v, i.e., Pp=P;. 1

Exercise 2 (#6.3). Let X be a sample from a population P and consider
testing hypotheses Hy : P = Py versus H; : P = P, where P; is a known
population with probability density f; with respect to a o-finite measure
v, j=0,1. For any o > 0, define

1 Hi(X) > e(a) fo(X)
To(X) =9 (@) [(X) = c(@)fo(X)
0 fi(X) < () fo(X),

where 0 < y(a) <1, ¢(a) > 0, Ey[To(X)] = a, and E; denotes the expec-
tation with respect to P;. Show that

(i) if a1 < ag, then c(ay) > c(az);

(ii) if @1 < aw, then the type II error probability of Ty, is larger than that
of Ty,, i.e., B1[1 — To, (X)] > E1[1 — Ta, (X)].

Solution. (i) Assume a; < as. Suppose that ¢(a1) < ¢(az). Then fi(x) >
c(az) fo(x) implies that f1(z) > c(aq)fo(z) unless f1(z) = fo(z) = 0. Thus,
To, () > Ty, (z) a.e. v, which implies that Ey[Ty, (X)] > Eg[Tw,(X)]. Then
a1 > ag. This contradiction proves that c(aq) > c(as).

(ii) Assume a < ag. Since Ty, is of level a and T, is UMP, Eq[T,, (X)] <
Eq[Ty,(X)]. The result follows if we can show that the equality can not

251
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hold. If Ey [Ty, (X)] = E1[Ta,(X)], then Ty, is also UMP. By the unique-
ness of the UMP and the fact that c(ay) > ¢(az) (part (i)),

Pj(c(ag) fo(X) < f1(X) < e(ar) fo(X)) =0, j=0,L

This implies that Fg[T,,(X)] =0 < as. Thus, E[Ty, (X)] < E1[Ta, (X)],
ie, E1[1 = To, (X)] > E1[1 — To,(X)]. 0

Exercise 3 (#6.4). Let X be a sample from a population P and P
and P; be two known populations. Suppose that T, is a UMP test of size
a € (0,1) for testing Hy : P = Py versus H; : P = P; and that § < 1,
where ( is the power of T, when H; is true. Show that 1 — T, is a UMP
test of size 1 — 3 for testing Hy : P = P; versus Hy : P = F.

Solution. Let f; be a probability density for P;, j = 0,1. By the unique-
ness of the UMP test,

IR > ch(X)
T*(X)‘{o 1(X) < cfo(X).

Since a € (0,1) and 8 < 1, ¢ must be a positive constant. Note that

(1 BX) > e h(X)
1_T*(X>{ 0 folX) < Th(X).

For testing Hy : P = P, versus Hy : P = Py, clearly 1 — T, has size 1 — 3.
The fact that it is UMP follows from the Neyman-Pearson Lemma. I

Exercise 4 (#6.6). Let (X1, ..., X;;) be a random sample from a popula-
tion on R with Lebesgue density fy. Let 6y and 61 be two constants. Find
a UMP test of size « for testing Hy : 8 = 6y versus Hy : 8 = 61 in the
following cases:

(i) fo(x) = e D5 o) (x), o < b1

(ii) fg(:(:) = 91'_21(9700)(3?)7 Oy # 6.

Solution. (i) Let X (1) be the smallest order statistic. Since

fo(X) { en®i=b0) Xy > 6,
foo (X) 0 90<X(1) <6,

the UMP test is either
1 X >0
T — (1) 1
! {“/ b < X1) <01

or

v X >0
Ty =
? { 0 0o <X <61
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When 6 = 6y, P(Xq) > 01) = e(o—=01) If en(0o—01) < o then T} is the
UMP test since, under 6 = 6,

E(Th) = P(Xq) > th) +vP(0o < X1) < 6h)
— en(9o—91) +'Y(1 _ en(90—91))
=«

with 7 = (o — €@ =) /(1 — eno=01))  f ¢n(®0=01) > o then T} is the
UMP test since, under 6 = 6,
E(T3) = vP(X() > 61) = 7" %~ = a
with y = a/e™(0o=01),
(ii) Suppose 67 > 6. Then

en
fo(X) _ )@ Xo>bh
feo(X) 0 90<X(1) < 0.
The UMP test is either

1 Xy >0
T, — (1) 1
! { v 0y < Xy <6

or

v Xay >0
Ty, =
’ { 0 b <Xy <0i.

When 6 = 0y, P(X@) > 61) = 03 /07. If 05 /07 < «, then Ty is the UMP
test since, under 6 = 6,
oy oy
E(T)) = 2 -0 =
(T1) o +7( 9?> o
with v = (o — z—":)/(l - z—ﬁ). If 65 /07 > o, then T, is the UMP test since,
1 1
under 6 = 6,
en
E(Ty) = ”YH%
1
with v = a7 /67.
Suppose now that 6; < 6y. Then
071,
fo(X) _ ) g Xay>0
fao(X) 0 0 < X(l) < 6.
The UMP test is either

T = { 0 X(l) > b
v 6 <X <6
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or

v X >0
T =
2 { 1 0, < X(l) < bg.

When 6 = 60y, E(T1) = 0 and E(T3) = . Hence, the UMP test is T5 with
y=ca.l

Exercise 5 (#6.7). Let fi, ..., fm+1 be Borel functions on R? that are in-
tegrable with respect to a o-finite measure v. For given constants t1, ..., t,,
let T be the class of Borel functions ¢ (from R? to [0, 1]) satisfying

/(i)fﬂill S ti, 1= ]., ey, m,

and Ty be the set of ¢’s in T satisfying

/(bfidl/:ti; z:l,,m
Show that if there are constants cq, ..., ¢,, such that

o) ={ @z an@) e
0 fim1(@) <afi(@)+ -+ cmfm(z)
is a member of 7y, then ¢, maximizes [ ¢fn,41dv over ¢ € To. Show that
if ¢; > 0 for all 7, then ¢, maximizes [ ¢fn41dv over ¢ € T.
Solution. Suppose that ¢, € Tg. By the definition of ¢,, for any other
¢ € To,
(¢* - ¢)(fm+1 - lel - Cmfm) > 0.

Therefore

/<¢* - d))(ferl - Cl.fl - _cmfm)dV Z 07

i,
/( @) fmrdv > ch/ @) fidv = 0.

Hence ¢, maximizes [ ¢fp1dv over ¢ € To. If ¢; > 0, for ¢ € T, we still
have

(¢* - ¢)(fm+l - lel - Cmfm) Z 0
and, thus,

/(¢ }) frm1dv > ch/ @) fidv > 0,

because ¢; [ (¢« — @) fidv > 0 for each i. Therefore ¢, maximizes [ ¢ fy,11dv
over p € T. 1
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Exercise 6 (#6.9). Let fy and fi be Lebesgue integrable functions on R

and
6. (2) { 1 fo(z)<0 or fo(x)=0, fi(z)>0

0 otherwise.

Show that ¢, maximizes f o(x ( )dm over all Borel functions ¢ on R

satisfying 0 < ¢(x) < 1 and f(b x)dr = f(b* (x)dz.
Solution. From the deﬁnltlon of (/)*, fqb* ( f{f0(£)<0} fo(z)dx
Since 0 < ¢(z) <1 and [ ¢() da:-fqi) )d:z:7

0 T x)dx
< /{ o A )
_ / o(2) fo(@)dz — / o) fol(z)da
{ fo(z)<0}
- / bu () folz)dz — / ¢(z) fo(z)dx
{fo(z)<0}
{fo(z)<0} {fo(=)<0}

/ [1 = ()] fo(x)dx
{fo()<0}
0.

IN

That is,

[ swn= [ - sl =0
{fo(z)>0} {fo(=)<0}

Hence, ¢(z) = 0 a.e. on the set {fo(z) > 0} and ¢(x) = 1 a.e. on the set
{fo(z) < 0}. Then, the result follows from

/ [64(2) — $(@)]fy () = / B )<0}[ G fa(x)de

/ x)dx
{fo(z >0}

— o(@)lfi(2)dx

_l_

/{fo (x)=0,f1(2) >0}

/ 6(2) i (2)da
{fo(z)=0,f1(x)<0}

[1 = ¢(@)|fi(x)dx

0(x)=0,f1(z)>0}

I
\

¢(x) f1(x)dz
{fo(@)=0.f1(x)<0}

> ]

e
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Exercise 7 (#6.10). Let I} and F be two cumulative distribution func-
tions on R. Show that Fy(z) < Fy(x) for all z if and only if [ g(z)dF»(x) <

J g(z)dFy(x) for any nondecreasing function g.

Solution. If [ g(z)dFs(x) < [ g(z)dFy(x) for any nondecreasing function
g, then

1L - Fy(y) = /I(y,oo)(m)dF2(x) < /I(y,oo)(w)dFl(l’) =1-Fi(y)

for any y, since I, () is nondecreasing. Assume now that Fy(z) < Fs(x)
for all z. Then, for any t € R, {z : Fi(z) > t} C {x : Fa(x) > t} and,
hence,

Ffl(t) =inf{x: Fi(x) >t} > inf{z: Fr(z) >t} = FQ_I(t)

for any ¢. Let U be a random variable having the uniform distribution on
(0,1). Then F;l(U) has distribution Fj, j = 1,2. If g is nondecreasing,
then g(F; H(U)) > g(Fy '(U)) and, therefore,

[ s@)iFi@) = Ela(F )] 2 Blo(Fy W) = [ g(a)dFa(o).

Exercise 8 (#6.11). Let X be an observation with a probability density
in the family P = {fy : 0 € O}, where © C R is the possible values of the
parameter 6.

(i) Show that P has monotone likelihood ratio in X when © = R and fy is
the Lebesgue density of the double exponential distribution with location
parameter  and a known scale parameter c.

(ii) Show that P has monotone likelihood ratio in X when © = R and fy is
the Lebesgue density of the exponential distribution on the interval (6, c0)
with a known scale parameter c.

(iii) Show that P has monotone likelihood ratio in X when © = R and fp
is the Lebesgue density of the logistic distribution with location parameter
# and a known scale parameter c.

(iv) Show that P has monotone likelihood ratio in X when © = R and fp
is the Lebesgue density of the uniform distribution on (6,6 + 1).

(v) Show that P has monotone likelihood ratio in X when © = {1,2, ...} and
fo(x) = (O)(N=2)/(Y) when = is an integer between r — 6 and min{r, 6},
where 7 and N are known integers.

(vi) Show that P does not have monotone likelihood ratio in X when © =R
and fp is the Lebesgue density of the Cauchy distribution with location
parameter # and a known scale parameter c.

Solution. (i) We need to show fp, (z)/fo, (x) is nondecreasing in = for any
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01 < 02 with at least one of fy, (z) is positive. For 0; < 0,

e~ (02=01)/c x <6y
;92 Ew; _ o loaal-loi=a/e _ ) —oaror-2m)/e g o0 <,
0, e(02—01)/c x> 0o,

which is a nondecreasing function of x.

(11) For 6, < 02,

f91 (.’E)

which is a nondecreasing function of x.
(iii) For 6, < 65,

fQQ(ZC) _ 0 01 <x <0
ell2=00/c 5> 9y,

2
f@z ((E) _ 6(01_02)/0 1+ o(a—01) /¢
or (o) T e

Since

>0

d (14 el@00/c\  e—00)/c _ o(z—02)/c
dx (1 + 6(51?92)/6) T (1 elm02)/e)2

when 67 < 0, the ratio fp,(z)/fe, () is increasing in .
(iV) For 0, <05 <0, +1,

f(l') 0 01<l’§92
f‘g"’(): 1 0 <z <bO+1
0\ 0 O +1<z<fy+1.

For 0 +1 <05,

fo.(x) [0 6, <z <b +1
fo,(x) L oo Oa<z<By+1.

In any case, the ratio fy,(z)/fe, (z) is nondecreasing in z.
(v) Note that

fow) _ QGG oW —b0-rta+1)
Jor(x)  (THVE/(E) 02N =0+ 1)

is an increasing function of x. Hence, for 6; < 65,

f92(z) _ f91+1(x) f91+2(1') fez(x)
foo(x)  fo,(x) foa(z)  fo,a1(2)
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is a product of increasing functions in x and, hence, it is increasing in x.
(Vi) For 0, < 927

fo,(@) _ A+ (x—01)°

fo(x) A+ (x—02)*
which converges to 1 when @ — %00, is smaller than 1 when z = #;, and is
larger than 1 when @ = 5. Hence, the ratio fy,(x)/fe, (z) is not monotone
inz. 1

Exercise 9. Let © C R and P = {fp(z) : 0 € O} be a family of functions
on X C R satisfying fp(z) > 0 for all § € © and = € X. Assume that
% log fo(z) exists.

(i) Show that P has monotone likelihood ratio in z is equivalent to one of
the following conditions:

(a) % log fo(x) > 0 for all x and 6;

(b) fo(2) g2 fol(x) > 2 fo(x) 2 fo(x) for all z and 6.

(ii) Let fo(x) be the Lebesgue density of the noncentral chi-square distri-
bution x?(f) with the noncentrality parameter § > 0. Show that the family
P = {fo(x) : § > 0} has monotone likelihood ratio in z.

Solution. (i) Note that

d o 9 d
ag;x log fo(z) = 0 pclo@) _ gogfolw) _ pro(@)pp e(x).

T 90 fo(x) fo(z) [fo(x)]?

Since fy(x) > 0, conditions (a) and (b) are equivalent.
Condition (a) is equivalent to

2 fo(x)
fo(z)

is nondecreasing in 6 for any fixed x. Hence, it is equivalent to, for 6; < 6o
and any =,

0
8?1Og Jo(z) =

%fel(x) %fez(x)
fel(x) - fez(x) 7

which is equivalent to, for 6; < 6, and any x,

0 fo,(@) _ Jo, (@) g fo, () — fo, () F: for (2) 0
Oz fo, (x) [fo, (=)]? -

i.e., P has monotone likelihood ratio in x.
(ii) Let Z be a random variable having distribution N(v/6, 1). By definition,
Z? has the noncentral chi-square distribution x%(6). Hence,

1 2 2
folz) = [e—WE—e) /2 4 o= (VE+0) /2} _
2V 2mx
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For 0 < 6, <92,

fo,(x) e~ (VE=02)*/2 | o—(Va+02)*/2
f91 (.’17) B e_(ﬁ_91)2/2 + e_(ﬁ+01)2/2
B 6_93/2(692‘/5—&-6_92\/5)

- 6_9%/2(601\/5 + 6*91\/5) '

Hence, we may apply the result in (i) to functions g (y) = €% +e~%. Note
that 9

5@90

0

il — Oy _ ,—0y
aeg"(y) y(e¥ —e ),

(y) = 0™ — e™%),

and
82

_ 0y —0y

Hence,

62 _ Oy —0y\2
96(y) aeayge(y) = Oy(e™ + e ")

> Oy(e? —e=)?

0 0
= afyge(y)%ge(y),

i.e., condition (b) in (i) holds. Hence P has monotone likelihood ratio in y.
Since y=+/x is an increasing function of x, P also has monotone likelihood
ratio in z. 1

Exercise 10 (#6.14). Let X = (X1,...,, X;;) be a random sample from a
distribution on R with Lebesgue density fy, § € © = (0,00). Let 6y be a
positive constant. Find a UMP test of size « for testing Hy : 8 < 6y versus
Hy : 0 > 60y when

(i) fo(a) = 07 eI (g 00 (2);

(ii) fo(z) =0~ 2" g1y (2);

(iii) fo(x) is the density of N(1,80);

(iv) fo(z) = 0 cca®~te= @/ Iy (), where ¢ > 0 is known.

Solution. (i) The family of densities has monotone likelihood ratio in
T(X) =", X;, which has the gamma distribution with shape parameter
n and scale parameter . Under Hy, 2T/ has the chi-square distribution
X2,- Hence, the UMP test is

1 T(X) > f0xX3na/2
T.(X) = { 0 T(X)<0X3.4/2,
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where Xf’a is the (1 — a)th quantile of the chi-square distribution 2.

(ii) The family of densities has monotone likelihood ratio in T(X) =
>oi, log X;, which has the gamma distribution with shape parameter n
and scale parameter §~'. Therefore, the UMP test is the same as T, in
part (i) of the solution but with 6 replaced by 6y L

(iii) The family of densities has monotone likelihood ratio in T(X) =
S (X;—1)? and T(X)/6 has the chi-square distribution x2. Therefore,
the UMP test is

0 T(X)< Xl

(iv) The family of densities has monotone likelihood ratio in T(X) =
Z?zl X¢, which has the Gamma distribution with shape parameter n and
scale parameter €. Therefore, the UMP test is the same as T} in part (i)
of the solution but with 6, replaced by 6§.

Exercise 11 (#6.15). Suppose that the distribution of X is in a family
{fo : 0 € O} with monotone likelihood ratio in Y (X), where Y (X) has
a continuous distribution. Consider the hypotheses Hy : 8 < 6, versus
Hy : 0 > 0y, where 0y € O is known. Show that the p-value of the UMP
test is given by Py, (Y > y), where y is the observed value of Y and Py is
the probability corresponding to fy.

Solution. The UMP test of size « is

1 Y >¢
T, = -
{0 Y < ca,

where ¢, satisfies Py, (Y > ¢,) = a. When y is the observed value of Y, the
rejection region of the UMP test is {y > ¢, }. By the definition of p-value,
it is equal to
a=inf{la:0<a<1,T, =1}
=inf{la:0<a<l,y>cy}
= inf Py, (Y > c4)
Y>Ca

Y

PGO(Y > y)a

where the inequality follows from Py, (Y > y) < Py, (Y > ¢4 ) for any a such
that y > ¢,. Let Fy be the cumulative distribution function of Py. Since
Fp, is continuous, ¢, = F(;Ol(l —a). Let o* = Py, (Y > y) = 1 — Fp, (y).
Since Fy, is continuous,

Cor = Fe_ol(l —a”) = FQ_Ul(Fgo(y)) <uy.

This means that o* € {a : 0 < a < 1,y > ¢,} and, thus, the p-value
& < a*. Therefore, the p-value is equal to a* = Py, (Y > y). I
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Exercise 12 (#6.17). Let F' and G be two known cumulative distribu-
tion functions on R and X be a single observation from the cumulative
distribution function F(z) 4+ (1 — 8)G(x), where 6 € [0, 1] is unknown.

(i) Find a UMP test of size « for testing Hp: 6 < 0y versus Hy : 6 > 0,
where 6y € [0, 1] is known.

(ii) Show that the test T4 (X) = « is a UMP test of size « for testing
Hy: 60 <0y or 0> 06, versus Hy : 0; < 6 < 0, where §; € [0,1] is known,
j=1,2, and 61 < 6s.

Solution. (i) Let f(z) and g(x) be the Randon-Nikodym derivatives of
F(z) and G(z) with respect to the measure v induced by F(z) + G(z),
respectively. The probability density of X is 0f(z) + (1 — 0)g(z). For
0<6; <6< 1,

6af () + (1= 6)g(x) _ Pobs} + (1~ 62)

Ouf(x)+(1=0)g(@) 0,48+ (1 -0y

is nondecreasing in Y (x) = f(z)/g(x). Hence, the family of densities of X
has monotone likelihood ratio in Y (X) = f(X)/g(X) and a UMP test is

given as

1 Y(X)>c
T=¢ 1~ Y(X)=c
0 Y(X) <e,

where ¢ and v are uniquely determined by E[T(X)] = a when 6 = 6.
(ii) For any test T', its power is

Br(6) = / T()[0f (x) + (1 - B)g(x))dv
.y / — g(@))dv + / T(2)g(z)du,

which is a linear function of 6 on [0, 1]. If T has level «, then 8r(0) < a for
any 0 € [0, 1]. Since the power of Ty is equal to the constant «, we conclude
that T, is a UMP test of size «. I

Exercise 13 (#6.18). Let (Xi,...,X,) be a random sample from the
uniform distribution on (0,6 + 1), 8 € R. Suppose that n > 2.

(i) Show that a UMP test of size a € (0,1) for testing Hp : 6 < 0 versus
Hy : 6 > 0 is of the form

0 Xp<l—a'™ X, <1
T*(X(1)7X(n))={ 1 W ()

where X;y is the jth order statistic.
(ii) Does the family of all densities of (X (1), X(,)) have monotone likelihood

otherwise,
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ratio?
Solution A. (i) The Lebesgue density of (X (1), X(,,)) is

fo(z,y) =n(n —1)(y — )" L) (x)(z,641)()-

A direct calculation of Sr, (0 f T.(z,y) fo(x,y)dzdy, the power function
of T, leads to

0 6 < —al/m
Br.(6) = 0+ at/m)" —al/m <9 <0
T l+a—(1-6" 0<6<1—al/n
1 0>1—al/m

For any #; € (0,1 — o'/"], by the Neyman-Pearson Lemma, the UMP test
T of size « for testing Hy : 8 = 0 versus Hy : 0 = 0 is

1 Ky >1
T = a/(lfel)" 0, <X(1) <X(n) <1
0 otherwise.

The power of T" at #; is computed as
6T(01) =1- (1 — 91)” + «

which agrees with the power of T, at #;. When 6 > 1 —a!/", T, has power
1. Therefore T, is a UMP test of size « for testing Hy : 8 < 0 versus
H1 : 0 > 0

(ii) The answer is no. Suppose that the family of densities of (X(1), X(n))
has monotone likelihood ratio. By the theory of UMP test (e g., Theorem
6.2 in Shao, 2003), there exists a UMP test T of size o € (0, 1) for testing

0o:60 <0 versus Hy : 8 > 0 and T; has the property that for 6; €

(0,1—al/™), Ty is UMP of size ag = 1+ — (1—6;)" for testing Hy : 6 < 6,
versus H; : 0 > 0. Using the transformation X; — 6; and the result in (i),
the test

0 Xy <146 - Xy <146,
To, (X, Xim) = { 1 otiérwise "
is a UMP test of size aq for testing Hy : 0 < 0y versus Hy : 0 > 61. At
6 = 60y € (A1, 1—a/™], it follows from part (i) of the solution that the power
of Ty is 1+a—(1—602)™ and the power of Ty, is 1+ag—[1—(02—01)]™. Since
both Tj and Ty, are UMP tests, 1+ a—(1—02)" = 14+ a9 —[1— (A2 —01)]™
Because ag = 1+ a — (1 — 6;)™, this means that

1=(1-6)"—(1—6)"+[1—(6—6)]"
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holds for all 0 < 6; < 63 < 1—a'/", which is impossible. This contradiction
proves that the family of all densities of (X (1), X(,)) does not have monotone
likelihood ratio.

Solution B. This is an alternative solution to part (i) provided by Mr.
Jialiang Li in 2002 as a student at the University of Wisconsin-Madison. Let
Br(6) be the power function of a test T'. Since Bz, () = 1 when § > 1—a'/™,
it suffices to show that Bz, (8) > Br(0) for 6 € (0,1 — a!/™) and any other
test T. Define A = {0 < Xy £ Xy < 1}, B={0< Xy £ Xy < 1},
and C ={1< X(l) < X(n) < 6+ 1}. Then

Br.(0) — Br(0) = E[(T\ — T)Is| + E[(Tx —T)Ic]
= E((T. —T)Ip] + E[(1 - T)Ic]
> E(T.Ip) — E(TIp)

— E(T.14) — E(TIp)
> E(Tula) — E(T1a)
= Br.(0) — Br(0)

= a— fr(0),

where the second equality follows from T\ = 1 when (X(1), X(n)) € C, the
third equality follows from T\, = 0 when (X (1), X(,,)) € A but (X1, X(n)) &
B (since 0 < X(1) <0 <1~ al/”), and the second inequality follows from
I4 > Ip. Therefore, if T has level «, then Bz, (6) > Br(0) for all § > 0. 1

Exercise 14 (#6.19). Let X = (Xy,...,X,,) be a random sample from
the discrete uniform distribution on points 1, ...,0, where § = 1,2, ....
(i) Consider Hy : 8 < 6y versus Hy : 6 > 6y, where 6y > 0 is known. Show

that
1 X(n) > 0y
a Xy < bo

is a UMP test of size a.
(ii) Consider Hy : 8 = 0y versus Hy : 6 # 6. Show that

1/n

T.(X) = 1 Xn) > 6y or Xn) < oot/

- 0 otherwise
is a UMP test of size a.
(iii) Show that the results in (i) and (ii) still hold if the discrete uniform
distribution is replaced by the uniform distribution on the interval (0, 6),
6 > 0.
Solution A. In (i)-(ii), without loss of generality we may assume that 6
is an integer.
(i) Let Py be the probability distribution of the largest order statistic X,
and Ey be the expectation with respect to Py. The family {Fy : 0 =1,2,...}
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is dominated by the counting measure and has monotone likelihood ratio
in X(,). Therefore, a UMP test of size « is

1 X(n) >c
Tl(X) = Yy X(n) =cC
0 X(n) <c,

where ¢ is an integer and « € [0, 1] satisfying

c\" = (c—1)"
FEo (Ty)=1—- | — -~ 7
90( 1) (9()) +fy 98

= Q.

For any 6 > 6, the power of T} is

Eo(T1) = Po(X(n) > ¢) +7Po(X(n) = ¢)

c "= (c—=1)"

=1- — [ S——
i}
—1-(1—a)X.
1-ok

On the other hand, for 6 > 6, the power of T} is

7S IS
EQ(T*) = Pg(X(n) > 90) + an(X(n) < 90) =1- 9% + 040%.

Hence, T, has the same power as T7. Since

sup E@(T*) = Ssup Ong(X(n) S 90) = OngO (X(n) S 90) = Q,
0<0¢ 0<0¢

T, is a UMP test of size .
(i) Consider Hy : 6 = 0y versus Hy : 0 > 0y. The test Ty in (i) is UMP. For
0 > 90,

on on
Eo(T.) = Pp(X(ny > 00) + Pp(X(ny < Opa/™) =1 — 9% + 0;7”07

which is the same as the power of T;. Now, consider hypotheses Hy : 0 = 6,
versus Hy : 0 < 0y. The UMP test is

1 X(n) <d
LX)=q¢n Xn=d
0 X(n) >d

with (d— 1) " 1y
0 0
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For 6 < 6,

EQ(T*) = Pg(X(n) > 90) + Pg(X(n) < 90041/”)
= PQ(X (n) < 900&1/”)

971
—min{1, -2},
mln{ 9"}

On the other hand, the power of T when 6 > fyal/™ is

E@(TQ) = Pg(X(n) < d) + UP@(X(n) = d)
d=1)"  d"—(d—1)"
T
N
9".

Thus, we conclude that T, has size a and its power is the same as the power
of T1 when 6 > 0y and is no smaller than the power of T5 when 6 < 6.
Thus, T, is UMP.

(iii) The results for the uniform distribution on (0,6) can be established
similarly. Instead of providing details, we consider an alternative solution
for (i)-(iii).

Solution B. (i) Let T be a test of level a.. For 6 > 6y,

Ey(T.) = Eg(T) = Bgl(T = T)Ixy5001) + Bol(Te = T x <00
= Egl(1 = T)I(x,, >00)) + Eol(e = T)I(x,, <6,)]
> Epl(a —T)I(x,,, <60}]

[

= Eg,[(a — T)I(x,,<00})(00/0)"
= Eg, (. —T)(60/6)"
>0,

where the second equality follows from the definition of T, and the third
equality follows from a scale transformation. Hence, T, is UMP. It remains
to show that the size of T} is «, which has been shown in part (i) of Solution
A.

(ii) Let T be a test of level . For 6 > 6,

Eo(Ty) — Ep(T)

Eo[(1 = T)Ix,,>00}) + Eo[(Ts — T)I(x,,<00}]
Ey[(T\ — T)I(x,,, <60}

Py(X(ny < pa*/™) — Ey(TIix,, <6,})

(00/0)" — Egy(TI{x,,,<00})(00/6)"

Y

«a
0.

Y
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Similarly, for 8 < 6y,
Ey(T.) — Eg(T) > Py(X(n) < b0a™/™) = Ep(T),
which is equal to 1 — Eg(T) > 0, if § < 6pa'/™, and is equal to
a(bo/0)" — E¢(T) = a(fo/0)" — Ep,(T')(60/0)" = 0

if 0 > 0 > 0pat/™. Hence, T, is UMP. It remains to show that the size of
T, is o, which has been shown in part (ii) of Solution A.

(iii) Note that the results for the power hold for both discrete uniform
distribution and uniform distribution on (0, 6). Hence, it remains to show
that T has size a. For T} in (i),

sup Ep(T,) = sup aPp(X(n) < 00) = aPp, (X () < 60) = a.
0<6o 0<6o
For T, in (ii),
Egy(T.) = Py (X(ny < Opa'/™) = a.

Exercise 15 (#6.20). Let (X1, ..., X,,) be a random sample from the ex-
ponential distribution on the interval (a, co) with scale parameter 6, where
a € R and 0 > 0.

(i) Derive a UMP test of size « for testing Hy : a = ag versus H; : a # ayo,
when 6 is known.

(ii) For testing Hp : a = ag versus Hy : a = a1 < ap, show that any UMP
test T, of size o has power fr, (a1) = 1 — (1 — a)e~™(@0=a1)/0

(iil) For testing Hy : a = ag versus H; : a = a1 < ag, show that the power
of any size « test that rejects Hy when Y < ¢ or Y > ¢o is the same as
that in part (i), where Y = (X(1y — ao)/ Y71 (Xi — X(1)) and Xy is the
smallest order statistic and 0 < ¢; < ¢y are constants.

(iv) Derive a UMP test of size « for testing Hy : @ = ag versus H; : a # ao.
(v) Derive a UMP test of size « for testing Hy : 6 = 6p,a = ap versus
Hy:0<0g,a< agp.

Solution. (i) Let Y; = e=Xi/% i =1,...,n. Then (Y7,...,Y;) is a random
sample from the uniform distribution on (0,e~%/?). Note that the hypothe-
ses Hy : a = ag versus Hy : a # ag are the same as H : e—a/0 — g=ao/0
versus Hj : e=4/? #* e—/9  Also, the largest order statistic of Y7, ..., Y}, is
equal to e=X/? Hence, it follows from the previous exercise that a UMP
test of size « is

T 1 Xy <ap or X Zaof%loga
0 otherwise.

(ii) A direct calculation shows that, at a1 < ag, the power of the UMP test
in part (i) of the solution is 1 — (1 — a)e~"(*0=1)/¢ Hence, for each fixed
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6, the power of T, at a; can not be larger than 1 — (1 — a)e~™(®0=a1)/0,

On the other hand, in part (iii) it is shown that there are tests for testing
Hy :a = ag versus H; : a = a1 < ap that have power 1— (1 —a)e~"(@0—01)/0
at a1 < ag. Therefore, the power of T, at a; can not be smaller than
1—(1—a)e mla—a)/f

(iii) Let

1 Y <c¢ or Y >eco
T = .
0 otherwise

be a test of size « for testing Hy : a = ag versus H; : a = a1 < ag.
Let Z = 31" (X; — X(1)). By Exercise 27 in Chapter 2, Z and X 1) are
independent. Then, the power of T at aq is
E(T) = 1—P(Cl <Y<02)
=1-Plag+aZ < X(l) < ag+ c22)

n ag+caZ
=1--F / e~™M@=a)/0 gy
0 ap+c1Z

=1—FE (e*n(a07a1+C1Z)/9 _ efn(aofalJrczZ)/@)
=1 e*n(GO*al)/GE (e*nC1Z/9 _ e*’ﬂCzZ/O) )

Since 27/6 has the chi-square distribution X%(nq) (Exercise 7 in Chapter

2),b=F (e*mlz/e - e’”“zz/e) does not depend on #. Since T has size «,
E(T) at a = ag, which is 1 — b, is equal to a. Thus, b =1 — « and

E(T)=1—(1—a)e ™a-a)/f,

(iv) Consider the test T" in (iii) with ¢; = 0 and ¢ = ¢ > 0. From the result
in (iii), T has size a and is UMP for testing Hy : a = ag versus H; : a < ag.
Hence, it remains to show that T is UMP for testing Hy : a = ag versus
Hy : a > ag. Let a; > ap be fixed and 6 be fixed. From the Neyman-
Pearson lemma, a UMP test for Hy : a = ag versus H; : a = ay has the

rejection region
6a1/9_[(a1700)(X(1)) >
6ao/e[(ao,oo)(‘X(l))

for some constant c¢y. Since a; > ag, this rejection region is the same as
{Y > ¢} for some constant c. Since the region {Y > ¢} does not depend on
(a,0), T is UMP for testing Hy : a = ag versus Hy : a > ag.

(v) For fixed 6; < 6y and a1 < ag, by the Neyman-Pearson lemma, the
UMP test of size o for Hy : a = ag,0 = 6y versus Hy : a = a1,0 = 0, has
the rejection region

o [ D (X))
) grem 2on, (Xi—a0)/60 -
916 =1 ](ao}oo)(X(l))
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for some cg. The ratio in the previous expression is equal to oo when
a < X(l) < ag and

%

nal/Gle—nao/Goe(GJI—efl) E :L:l X
on
1

e

when X1y > ap. Since 00_1 - 01_1 <0,

R={X@u <ao}u {anxi < c}

i=1

for some constant ¢ satisfying P(R) = « when a = ap and 6 = 6. Hence,
¢ depends on ag and 6. Since this test does not depend on (aq,6;), it is
UMP for testing Hy : 8 = 0y, a = ag versus Hy : 0 < 6y,a < ag. 1

Exercise 16 (#6.22). In Exercise 11(i) in Chapter 3, derive a UMP test
of size a € (0,1) for testing Hy : 0 < 6y versus Hy : 0 > 0y, where 6y > 1 is
known.

Solution. From Exercise 11(i) in Chapter 3, the probability density (with
respect to the sum of Lebesgue measure and point mass at 1) of the sufficient
and complete statistic X(,), the largest order statistic, is

fg(x) = 0’”1{1}(@ =+ n07n$n71[(179) (’1})

The family {fs : & > 1} has monotone likelihood ratio in X(,). Hence, a
UMP test of size « is

1 X(n) >c
T = Y X(n) =cC
0 X(n) <ec,

where ¢ and 7y are determined by the size of T. When § = 6y and 1 < ¢ < 6,

n fo 1 c”
0 Je 0

If 6y > (1 — )~'/™, then T has size a with ¢ = (1 — a)'/™ and v = 0. If
0o > (1 — a)~Y/™, then the size of T is

Hence, T has size a with c=1and v=1— (1 — a)6}.

Exercise 17 (#6.25). Let (X1, ..., X;,) be a random sample from N (6, 1).

Show that T = I_..)(X) is a UMP test of size @ € (0,%) for testing
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Hy : 0] > 6y versus Hy : |0] < 61, where X is the sample mean and 61 > 0
is a constant. Provide a formula for determining c.
Solution. From Theorem 6.3 in Shao (2003), the UMP test is of the form

T = I(c,,c,)(X), where ¢; and c; satisfy
(I)(\/ﬁ((}g + 91)) — (I)(\/ﬁ(cl + 91)) =,
@(\/ﬁ(CQ — 91)) — @(\/ﬁ(cl — 91)) = «,

and ® is the cumulative distribution function of N(0,1). Let V; = — X,
i =1,..,n. Then (Y3,...,Y,) is a random sample from N(—6,1). Since
the hypotheses are not changed with 6 replaced by —8, the UMP test for
testing the same hypotheses but based on Y;’s is T} = I(Chcz)(—X') with
the same ¢ and co. By the uniqueness of the UMP test, T'= T} and, thus,

¢1 = —c and ¢o = ¢ > 0. The constraints on ¢;’s reduce to

B(v/i(0y + ) — D(Valth — ) = a. ¥

Exercise 18 (#6.29). Consider Exercise 12 with Hy : 6 € [0, 02] versus
Hy : 60 ¢ [01,05], where 0 < 0 < 0y < 1 are constants.

(i) Show that a UMP test does not exist.

(ii) Obtain a UMPU (uniformly most power unbiased) test of size «.
Solution. (i) Let Sr(0) be the power function of a test T. For any test T
of level a such that 87 (0) is not constant, either 87 (0) or Br(1) is strictly
less than . Without loss of generality, assume that G7(0) < . This means
that at @ = 0, which is one of parameter values under Hy, the power of T’
is smaller than T, = «. Hence, any T with nonconstant power function
can not be UMP. From Exercise 12, the UMP test of size a for testing
Hy : 0 < 6, versus Hy : 0 > 6; clearly has power larger than a at 6 = 1.
Hence, T, = « is not UMP. Therefore, a UMP test does not exists.

(ii) If a test T of level @ has a nonconstant power function, then either 57(0)
or Or(1) is strictly less than « and, hence, T is not unbiased. Therefore,
only tests with constant power functions may be unbiased. This implies
that T, = a is a UMPU test of size . 1

Exercise 19. Let X be a random variable with probability density fp.
Assume that {fp : § € ©} has monotone likelihood ratio in X, where
© C R. Suppose that for each 6y € ©, a UMPU test of size « for testing
Hy : 6 = 0 has the acceptance region {c1(0y) < X < ¢3(6p)} and is strictly
unbiased (i.e., its power is larger than « when 6 # 6;). Show that the
functions ¢;(0) and c2(0) are increasing in 6.

Solution. Let 6y < 67 be two values in © and T, and T; be the UMPU tests
with acceptance regions {c1(0y) < X < ¢3(6p)} and {c1(01) < X < e2(01)},
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respectively. Let ¥(X) = T1(X) — To(X) and Ey be the expectation with
respect to fy. It follows from the strict unbiasedness of the tests that

E(;Od}(X) = Ego(Tl) —a>0>a— E91 = Eelw(X)

If [61(90)702(90)] C [01(91),62(01)], then d)(X) S 0 and E901/}(X) S 07
which is impossible. If [¢1(01),c2(01)] C [c1(6o),c2(60)], then ¥(X) > 0
and Ep,v¥(X) > 0, which is impossible. Hence, neither of the two intervals
contain the other. If ¢1(61) < ¢1(6p) < ea(61) < c2(fp), then there is
a g € [c1(6p),c2(61)] such that ¢(X) > 0 if X < xg and ¢(X) < 0 if
X > zg, i.e., the function ¢ has a single change of sign. Since the family
has monotone likelihood ratio in X, it follows from Lemma 6.4(i) in Shao
(2003) that there is a 6, such that Eptp(X) <0 for 0 < 0, and Egyp(X) >0
for 6 > 6,. But this contradicts to the fact that Eg 1(X) > 0 > Ep, (X))
and 6y < 0;. Therefore, we must have ¢;(61) > ¢1(6p) and c2(01) > c2(6p),
i.e., both ¢;(#) and c2(0) are increasing in 6. 1

Exercise 20 (#6.34). Let X be a random variable from the geometric
distribution with mean p~!. Find a UMPU test of size a for Hy : p = po
versus Hj : p # po, where pg € (0,1) is known.

Solution. The probability density of X with respect to the counting mea-

sure is

f(z) = exp {xlog(l —p) + log 1 fp} I, 3(X),

which is in an exponential family. Applying Theorem 6.4 in Shao (2003),
we conclude that the UMPU test of size « is

1 X <e or X >
T. =< ~ X=¢ i=1,2
0 otherwise,

where ¢;’s are positive integers and ¢;’s and ~;’s are uniquely determined
by

c1—1 %)
o _ _ e
p*O:Z(l*Po)k Y (=po) T Y (i —po)
k=1

k=co+1 i=1,2
and
a c1—1 e’}
— = k(1 =po) T+ > k(1—po) T+ Y vl —po) T W
Po k=1 k=co+1 i=1,2

Exercise 21 (#6.36). Let X = (Xy,...,X,,) be a random sample from
N(u,0?) with unknown p and o2.
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(i) Show that the power of the one-sample t-test depends on a noncentral
t-distribution.

(ii) Show that the power of the one-sample t-test is an increasing function
of (1 — po)/o for testing Hy : u < pg versus Hy : > po and of |u — pol/o
for testing Hy : p = po versus Hy : pu # pg, where g is a known constant.
Note. For testing Hp : p < pg versus Hy : o > pp, the one-sample t-test of
size « rejects Hy if and only if t(X) > t,_1.4, where t(X) = v/n(X — o) /S,
X is the sample mean, S2 is the sample variance, and t, ,, is the (1 — a)th
quantile of the t-distribution ¢,.. For testing Hy : u = o versus Hy : i # o,
the one-sample t-test of size a rejects Hy if and only if [t(X)] > t,,_1 /2
Solution. (i) Let Z = \/n(X — uo)/o, U = S/o, and § = /n(p — o) /0.
Then Z is distributed as N(d,1), (n — 1)U? has the chi-square distribution
X2_,, and Z and U are independent. By definition, ¢(X) = Z/U has the
noncentral t-distribution ¢,_1(d) with the noncentrality parameter 4.

(ii) For testing Hy : u < g versus Hy : pu > g, the power of the one-sample
t-test is

P(t(X) > th-10) = P(Z > th-1,aU) = E[®(6 — th—1,U)],

where @ is the cumulative distribution function of N(0,1). Since ® is an
increasing function, the power is an increasing function of 4.

For testing Hy : u = ug versus Hy : u # o, the power of the one-sample
t-test is

P(H(X)| > tn-1,a/2) = P(Z > tn1,0/2U) + P(Z < ~ty_1,0/2U)
=E [(I>(6 - tn—l,a/2U) + (I)(f(s - tn—l,a/2U)]
= E [(I)(|(§| - tnfl,oz/QU) + q)(_|§| - tnfl’a/QU)} .
To show that the power is an increasing function of ||, it suffices to show

that ®(z — a) + ®(—x — a) is increasing in > 0 for any fixed @ > 0. The
result follows from

e—(ac—a)2/2 _ e—(ac+a)2/2

2T
e—(x2+a2)/2 (eaw _ e—aw)

- 2

d
(B —0) + B(—z — )] =

> 0.1

Exercise 22. Let X = (Xi,...,X,,) be a random sample from N (u,o?)
with unknown g and % and ¢(X) = /nX/S, where X is the sample
mean and S? is the sample variance. For testing Hy : pu/o < 6y versus
Hy : p/o > b, find a test of size o that is UMP among all tests based on
t(X), where 6 is a known constant.
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Solution. From the previous exercise, we know that ¢(X) has the noncen-
tral t-distribution ¢,_1(d), where § = y/nu/o is the noncentrality parame-
ter. The Lebesgue density of ¢(X) is (e.g., Shao, 2003, p. 26)

fa(t):/ gs(t, y)dy,

0

where

y(n*2)/26*{[t/ y/(n—1)=3]>+y}/2
/2T (251 ) /7 (n — 1)

We now show that the family {f5(¢) : § € R} has monotone likelihood ratio
in t. For 61 < 89, it suffices to show that

iféz(t) . f(gg(t)f[sl (t) - f52(t)f¢§1 (t)

gs (ta y) -

dt f5,(t) IAGE >0, teR.
Since
£t = /000[5 — t/\/y/(n = D))gs(t, y)dy = 6£5(t) — tfs(t),
where

o= [ Lt

o, () fo, (8) = fo, (£) f5, () = f5, () f5, (t) [52 — o1+t (

we obtain that

f51 (t) f52 (t)

fs, (1) ﬁxo)}

fs(t)
tial family having monotone likelihood ratio in ¢/ \/y. Hence, by Lemma
6.3 in Shao (2003), the integral f5(¢) is nonincreasing in 6 when ¢ > 0 and
is nondecreasing in § when ¢ < 0. Hence, for t > 0 and ¢ < 0,

f51 (t) _ f~52 (t)
t(m@> ﬁA@)ZO

and, therefore, fg (¢)fs, (t) — fs,(t)f5 (t) > 0. Consequently, for testing
Hy : p/o < 6y versus Hy : p/o > 0y, a test of size o that is UMP among
all tests based on ¢(X) rejects Hy when ¢(X) > ¢, where ¢ is the (1 — «)th
quantile of the noncentral t-distribution ¢,,_1(y/nfp). ¥

For any fixed t € R, the family of densities {gé(t’y) 10 € R} is an exponen-

Exercise 23 (#6.37). Let (Xi,...,X,) be a random sample from the
gamma distribution with unknown shape parameter 6 and unknown scale
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parameter 7. Let 6y > 0 and 79 > 0 be known constants.

(i) For testing Hp : 0 < 6y versus Hy : 6 > 0y and Hy : 6 = 6y versus
Hj : 0 # 0y, show that there exist UMPU tests whose rejection regions are
based on V = [, (X;/X), where X is the sample mean.

(ii) For testing Hy : v < o versus H; : 7 > 79, show that a UMPU test
rejects Hy when Y7 | X; > C([]\—, X;) for some function C.

Solution. (i) Let Y = log([]/, X;) and U = nX. The joint density
of (X1, ..., X,,) can be written as [I'(6)~?] T efY=U/7=Y which belongs to
an exponential family. From Theorem 6.4 in Shao (2003), UMPU tests
are functions of Y and U. By Basu’s theorem, V; =Y — nlog(U/n) =
log (TT;_,(Xi/X)) satisfies the conditions in Lemma 6.7 of Shao (2003).
Hence, the rejection regions of the UMPU tests can be determined by using
V1. Since V = e"1, the rejection regions of the UMPU tests can also be
determined by using V.

(ii) Let U = log(]];—, X;) and Y = nX. The joint density of (X1, ..., X,)
can be written as [[(0)7%] " e~ '"Y+0U-U From Theorem 6.4 in Shao
(2003), for testing Hp : v < 7o versus Hj : v > vp, the UMPU test is

T — 1 Y>01(U)

where C is a function such that E(T*|U) = a when v = y. The result
follows by letting C'(z) = Ci(logz). I

Exercise 24 (#6.39). Let X; and X» be independent observations from
the binomial distributions with sizes n; and no and probabilities p; and po,
respectively, where n;’s are known and p;’s are unknown.

(i) Let Y = X5 and U = X; + X5. Show that

P =ofv = =50, ) (), w= 01

p2(1—p1)
p1(1—p2)’

where A ={y:y=0,1,...,min{u,n2},u —y <ny}, § =log and

w20 ()

(ii) Find a UMPU test of size « for testing Hy : p1 > ps versus Hy : p1 < po.
(iii) Repeat (ii) for Hy : p1 = po versus Hy : p1 # po.
Solution. (i) When u =0,1,...,n1 + ng and y € A,

-1

n n uU— ny—u nog—
PY =y U=u)= (u_ly>(y2)l’1 Y(1—=p)" TP (1 — p2)™ Y
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and

PU =u) = ; ( " ) (nz)pi‘y(l —p1)" T P (1 — po)" Y.

u—y )

Then, when y € A,

< P () ()

(ii) Since 6 = log 5?8:23’ the testing problem is equivalent to testing

Hp : 0 <0 versus Hy : § > 0. By Theorem 6.4 in Shao (2003), the UMPU
test is

1 Y > C(U)
L.Y,U) =4 7(U) Y =0C)
0 Y < C(U),

where C' and ~ are functions of U such that E(T.|U) = « when 6 = 0
(p1 = p2), which can be determined using the conditional distribution of Y
given U. When 6 = 0, this conditional distribution is, by the result in (i),

-1
ny+n n n
P(Y:y‘U:u): ( 1 " 2) <u1y>(y2>IA(y), u=0,1,...,n1+ns.

(iii) The testing problem is equivalent to testing Hy : § = 0 versus H; : 0 #
0. Thus, the UMPU test is

1 Y >Ci(U) or Y <Cy(U)
0 Cl(U)<Y<CQ(U>,

where C;’s and ;s are functions such that E(T,|U) = o and E(T,.Y|U) =
aE(Y|U) when 6 = 0, which can be determined using the conditional
distribution of Y given U in part (ii) of the solution. &

Exercise 25 (#6.40). Let X; and X, be independently distributed as
the negative binomial distributions with sizes n; and ns and probabilities
p1 and po, respectively, where n;’s are known and p;’s are unknown.

(i) Show that there exists a UMPU test of size « for testing Hy : p1 < po
versus Hy : p1 > po.

(ii) Let Y = X7 and U = X; + X5. Determine the conditional distribution
of Y given U when ny = ny = 1.

Solution. (i) The joint probability density of X; and X5 is

-1 -1
(Zifl) (:,zfl)p?lpg'z eOYJrUlog(lfpz)
(1 =p1)m (1 —p2)"2
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where 6 = log(tg;), Y = X1, and U = X7 + X5. The testing problem is

equivalent to testing Hy : 6 > 0 versus Hy : § < 0. By Theorem 6.4 in Shao
(2003), the UMPU test is

1 Y <C(U)
TLY,U) =4 4U) Y =cO)
0 Y > C(U),
where C'(U) and v(U) satisfy E(T,|U) = o when 6§ = 0.
(ii) When ny = ng = 1,
u—1
P(U=u)=)Y P(X;=kXs=u—k)
k=1
_ pipa(l —pa)* ! ui:l (1 —101>]C
l=p =\l —p2
u—1
_ p1p2(l —pz)"_l 0k
B L —pm ;e

foru=2,3,..., and
PY =y, U=u)=(1—p1)" 'pi(1 —p2)" ¥ 'py

fory=1,...,u—1,u=2,3,.... Hence

(1—p)? 'pr(1—p2)“ v 'py e
PY =ylU=u) = pip2(1—p2)“~' ~u—1 g - Z“_l 0k
B e k=1 €

fory=1,...,u—1, u=2,3,.... When 0 = 0, this conditional distribution
is the discrete uniform distribution on {1,...,u —1}. 1

Exercise 26 (#6.44). Let X, j = 1,2, 3, be independent from the Pois-
son distributions with means A;, j = 1,2, 3, respectively. Show that there
exists a UMPU test of size « for testing Ho: A\ A2 <A3 versus Hy: A\ Ag > N2
Solution. The joint probability density for (X, X, X3) is

e~ (A1+A2+2A3)

X1log AM+X2log Aa+X3 log As
X 1 X0 X3! ’
which is the same as
e~ (A1+A2+As)
X 1 X1 X3!
where 0 = log A1 +log Xy —2logAs, Y = X7, U} = X5 — X5, and Uy =
X3+2X,. By Theorem 6.4 in Shao (2003), there exists a UMPU test of size

0Y +U; log Aa+Us log A3
K
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a for testing Hg : 0 < 0 versus H; : @ > 0, which is equivalent to testing
Hy: M < /\§ versus Hy : Mg > )\3. 1

Exercise 27 (#6.49). Let (X;1,..., Xin,), ¢ = 1,2, be two independent
random samples from N (u;,02), respectively, where n; > 2 and u;’s and o
are unknown. Show that a UMPU test of size a for Hy : g1 = po versus
Hy @ py # po rejects Hy when [t(X)] > t,, 1n,—1,a/2, Where

HX) = (X2 — X1)/y[nit 4y

VI =187 + (nz = 1)S3]/ (1 +n2 = 2)

X; and S? are the sample mean and variance based on X1, ..., Xjn,, i = 1,2,
and tp,4n,—1,0 is the (1 — a)th quantile of the t-distribution #,,n,—1.
Derive the power function of this test.

Solution. Let Y = X2 — X17 Ul = anl + TLQXQ, U2 = Z?:l Z?:l AX?J7
0 = (m — p2)/[(n7" +n5)0%, @1 = (mp + napa)/[(n1 + n2)o®], and
@02 = —(202)~L. Then, the joint density of X;1,..., Xin,, i = 1,2, can be

written as
(1 /27TO')nl +na 69Y+<P1 Uir+p2Us2 )

The statistic V = Y//Us — UZ/(n1 + nz) satisfies the conditions in Lemma
6.7(i1) in Shao (2003). Hence, the UMPU test has the rejection region
V < ¢y or V> cy. Under Hy, V is symmetrically distributed around 0,
i.e., V and —V have the same distribution. Thus, a UMPU test rejects
Hy when —V < ¢; or =V > ¢, which is the same as rejecting Hy when
V < —cg or V > —c;. By the uniqueness of the UMPU test, we conclude
that ¢; = —ca, i.e., the UMPU test rejects when |V] > ¢. Since

U? nineY?2
- =(ng —1)S? + (ny — 1)S%2 + ——,
2T (n1 —1)ST + (n2 — 1)55 .
we obtain that
1 nin9 1 nin9

W - (n1 + ng)(nl + ng — 2) [t(X)P ny + ng'

Hence, |V] is an increasing function of [¢(X)|. Also, ¢(X) has the t-
distribution with %,,4pn,—2 under Hg. Thus, the UMPU test rejects Hy
when [t(X)| > ), 4n,—2.a/2- Under Hy, t(X) is distributed as the noncen-
tral t-distribution ¢, 1n,—2(d) with noncentrality parameter

§—_ H27HM
o4/ nfl + n;l
Thus the power function of the UMPU test is

1- G5(tn1+n272,a/2) + G5(_tn1+n272,a/2)a
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where (G5 denotes the cumulative distribution function of the noncentral
t-distribution ¢, 4pn,—2(d). 1

Exercise 28 (#6.50). Let (X;1,...,Xin), ¢ = 1,2, be two independent
random samples from N (u;, 0?), respectively, where n > 1 and p;’s and o;’s
are unknown. Show that a UMPU test of size a for testing Hy : 03 = Ago?
versus Hj : 03 # Ago? rejects Hy when

i d S5 BoSP) 1o
X
A()Sl27 Sg &

)

where Ag > 0 is a constant, foc Jn—1)/2,(n—1)/2(v)dv = /2 and f, 5 is the
Lebesgue density of the beta distribution with parameter (a,b).
Solution. From Shao (2003, p. 413), the UMPU test rejects Hy if V < ¢;
or V > co, where

__ S3/A

- S24+52/A
and S? is the sample variance based on X;1, ..., X;,,. Under Hy (0% = 03),
V has the beta distribution with parameter ( ”;1, "51 ), which is symmetric
about %, i.e., V has the same distribution as 1 — V. Thus, a UMPU test
rejects Hy when 1 —V < ¢y or 1 —V > ¢y, which is the same as rejecting
Hg when V<1 —c¢y or V >1—¢;. By the uniqueness of the UMPU test,
we conclude that ¢; + co = 1. Let ¢; = ¢. Then the UMPU test rejects Hy
when V < cor V > 1—c and c satisfies foc Jin—1)/2,(n—1)/2(v)dv = a/2. Let
F =282/(A¢gS?). ThenV = F/(1+F),V < cifand only if F~1 > (1—c¢)/c,
and V > 1 — ¢ if and only if F' > (1 — ¢)/c. Hence, the UMPU test rejects
when max{F, F~1} > (1 — ¢)/c, which is the desired result. &

Exercise 29 (#6.51). Suppose that X; = Gy + Oit; + &4, @ = 1,...,n,
where t;’s are fixed constants that are not all the same, ¢;’s are independent
and identically distributed as N(0,0?), and By, (1, and o2 are unknown
parameters. Derive a UMPU test of size « for testing

(i) Ho : Bo < 0y versus Hy : By > bp;

(11) H() : ﬂo = 90 versus H1 : ﬂo }é 90;

(111) Hy : 81 <6y versus Hy : 51 > Op;

(IV) Ho : ﬂl = 9() versus H1 : ,61 7é 9(].

Solution: Note that (X1, ..., X,,) follows a simple linear regression model.

Let D=nY0" 12 — (0, )%,

fo = % (thz){z - ZtiztiXi>
=1 =1 =1 =1

and
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be the least squares estimators, and let

n

5051t

From the theory of linear models, BO has the normal distribution with mean
Bo and variance o231 | t2/D, 1 has the normal distribution with mean
By and variance o?n/D, (n—2)62/0? has the chi-square distribution x2_,,
and (Bo, Bl) and &2 are independent. Thus, the following results follow
from the example in Shao (2003, p. 416).

(i) The UMPU test of size « for testing Hy : By < 0y versus Hy : Sy > 6
rejects Hy when tg > t,—2 o, Where

VD(By — o)

o Zz ltz2

and t, o is the (1 — o)th quantile of the t-distribution ¢,.

(ii) The UMPU test of size a for testing Hy : Sy = 0o versus Hy : By # 6
rejects Ho when [tg] > t,_5 o /2.

(iii) The UMPU test of size « for testing Hy : §1 < 6y versus Hy : 1 > 0y
rejects Hy when t1 > t,,_2 o, where

VD( —90)
o

(iv) The UMPU test of size « for testing Hy : f1 = 6y versus Hy : 31 # 09
rejects Ho when [t1] > t,,_5 4/2.

to =

t =

Exercise 30 (#6.53). Let X be a sample from N, (Z3,0%1,), where
B € RP and ¢? > 0 are unknown and Z is an n x p known matrix of rank
r < p < n. For testing Hy : o2 < ag versus Hy : 02 > 0’0 and Hy : 0% = 0(2)
versus Hy : 0% # o, show that UMPU tests of size a are functions of
SSR = || X — ZﬁAHz7 where 3 is the least squares estimator of 3, and their
rejection regions can be determined using chi-square distributions.

Solution. Since H = Z(Z"Z)~Z" is a projection matrix of rank r, there

exists an n x n orthogonal matrix I' such that

r=(1ry; I'y) and HT =(Ty 0),
where I'y is nx7 and I'y is nx (n—7). Let Y; =7 X, j = 1,2. Consider the
transformation (Y7,Y2) = I'"X. Since I'"T' = I, (Y1, Y2) has distribution
N, (T™Zp3,0%1,). Note that

E(Y;) = ET3X)=T5Z3=T3HZ3 = 0.
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Let n =T7Z8 = E(Y1). Then the density of (Y1,Y2) is

S 0 VG A AR
(2mo2)n/2 202 o2 202 |

From Theorem 6.4 in Shao (2003), the UMPU tests are based on ¥ =
|[V1|? + ||Y2]|? and U = Y. Let V = ||Y3||>. Then V =Y — ||U||* satisfies
the conditions in Lemma 6.7 of Shao (2003). Hence, the UMPU test for
Hy:02< 08 versus Hy : 02 > 0(2) rejects when V' > ¢ and the UMPU test
for Hy : 02 = o versus Hj : 02 # 02, rejects when V < ¢y or V > ¢y. Since

¥ = 0l + V2l = 11X - ZBIP,
min [¥i — 1 + [¥al” = min | X — Z5]?

and, therefore, .
V =|Y2|* = | X - Zp||* = SSR.

Finally, by Theorem 3.8 in Shao (2003), SSR/0? has the chi-square distri-
bution x2_,. &

Exercise 31 (#6.54). Let (Xq,...,X,) be a random sample from a bi-
variate normal distribution with unknown means p; and ps, variances o?
and o3, and correlation coefficient p. Let X;; be the jth component of X;,
j=1,2 Xj and sz be the sample mean and variance based on X, ..., Xy,

and V = v/n — 2R/v/1 — R2, where

Z(Xil — X1)(Xi2 — Xo)

i=1

1

R=55m-1

is the sample correlation coefficient. Show that the UMPU test of size «
for Hy : p < 0 versus Hy : p > 0 rejects Hy when V' > t,,_5, and the
UMPU test of size a for Hy : p = 0 versus Hy : p # 0 rejects Hy when
V| > ty—2,a/2, Where t,, 5, is the (1 — a)th quantile of the t-distribution
tn—2.

Solution. The Lebesgue density of (X1, ..., X,,) can be written as

C(:“ln“’?a 01, 0—27/)) exp {9Y + QOTU}?

where C(+) is a function of (u1, u2, 01,02, p),

p

Z 1422 or02(1 — p?)

i=1

U= (iX?l, iX?g, iXﬂ’ iXm) )
i=1 i=1 i=1 i=1

)
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and

1 1 1 2 )
p=|- y— ; —Opy, v —Ouz | .
( 208(1 = p?)" 205(1—p?) of(1—p?) o3(1—p?)
By Basu’s theorem, R is independent of U when p = 0. Also,

Y — U3U4/TL
V(UL = U3 /n)(Us — UZ/n)’

which is linear in Y, where Uj is the jth component of U. Hence, we may
apply Theorem 6.4 and Lemma 6.7 in Shao (2003). It remains to show that
V has the t-distribution ¢,,_o when p = 0, which is a consequence of the
result in the note of Exercise 17 in Chapter 1 and the result in Exercise
22(ii) in Chapter 2. 1

Exercise 32 (#6.55). Let (Xq,...,X,,) be a random sample from a bi-
variate normal distribution with unknown means yp; and pg, variances o2
and o2, and correlation coefficient p. Let Xi; be the jth component of Xj,
7=12, )_(j and sz be the sample mean and variance based on Xy, ..., X,
and S19 = (Tl — 1)_1 Z?:l(Xﬂ — Xl)(XZQ — XQ)

(i) Let Ag > 0 be a known constant. Show that a UMPU test for testing
Hy : 09/01 = Ag versus Hy : 03/01 # Ay rejects Hy when

R=|A357 — S31/\/(A3S7 + 53)2 — 44352, > c.

(ii) Find the Lebesgue density of R in (i) when o2/01 = Ay.
(iii) Assume that o1 = 05. Show that a UMPU test for Hy : u1 = pg versus
Hi : g # ps rejects Hy when

V=X — Xu|/\/(n—1)(S2+ 53 — 2512) > c.

(iv) Find the Lebesgue density of V in (iii) when pq = po.

Solution. (i) Let
Yo\ (Ao 1 Xi
Yio )\ Ap -1 Xio )

Then Cov(Y;1,Yia) = A2o? — 03. If we let p, be the correlation between
Y;1 and Yjq, then testing Hy : o9/01 = Ag versus Hy : o9/01 # Ag is
equivalent to testing Hy : p, = 0 versus H; : p, # 0. By the result in the
previous exercise, the UMPU test rejects when |V,.| > ¢, where V,, is the
sample correlation coefficient based on the Y-sample. The result follows
from the fact that |V, | = R.
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(ii) From Exercise 22(ii) in Chapter 2, the Lebesgue density of R in (i)
when o9/01 = Ag is

(i) Let
(E)=(1 D) ().

Then (Y;1,Yi2) has the bivariate normal distribution

() (R fe )

Since Y;; and Y5 are independent, the UMPU test of size a for testing
Hy : py = po versus Hy @ py # o rejects Ho when [¢(Y)[ > t,_1 /2, where
t(Y) = /nYs/Sy,, Yo and 532,2 are the sample mean and variance based on
Yia, ..., Yn2, and ¢,_1 o is the (1 — a)th quantile of the t-distribution ¢,,_.
A direct calculation shows that

o)1= \/(\S/;If ;22__)22;12) = veln =1

(iv) Since t(Y") has the t-distribution ¢,_; under Hy, the Lebesgue density
of V- when p1 = o is

Vil'(5
Vl(%57)

(1+nv?)™"/2

Exercise 33 (#6.57). Let (X1, ..., X,,) be a random sample from the ex-
ponential distribution on the interval (a, co) with scale parameter 6, where
a and 0 are unknown. Let V =23"" | (X; — X(1), where X(y) is the small-
est order statistic.

(i) For testing Hy : 8 = 1 versus H; : 6 # 1, show that a UMPU test of size
«a rejects Hy when V < ¢y or V' > ¢y, where ¢;’s are determined by

/: Jan—2(v)dv = /: fon(0)dv=1—a

and f,,(v) is the Lebesgue density of the chi-square distribution x?,.
(ii) For testing Hy : a = 0 versus H; : a # 0, show that a UMP test of size
a rejects Hyg when X(1) < 0 or 2nX(1)/V > ¢, where c is determined by

(n— 1)/00(1—|—11)"dv =1-a.
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Solution. Since (X (1), V) is sufficient and complete for (a, ), we may con-
sider tests that are functions of (X, V).

(i) When 6 = 1, X(y) is complete and sufficient for a, V' is independent of
X1y, and V/2 has the Gamma distribution with shape parameter n — 1
and scale parameter §. By Lemma 6.5 and Lemma 6.6 in Shao (2003), the
UMPU test is the UMPU test in the problem where V/2 is an observation
from the Gamma distribution with shape parameter n—1 and scale param-
eter 0, which has monotone likelihood ratio in V. Hence, the UMPU test
of size «a rejects Hy when V' < ¢; or V > ¢y, where V has the chi-square
distribution X%(n—l) when 0 = 1 and, hence, ¢;’s are determined by

ca2
/ fon—2(W)dv=1—-«
c1
and

/02 U fon—a(v)dv = (1 — ) /00 v fop—2(v)dv = (1 — a)(2n — 2).

C1 0

Since (2n — 2) "t fa,_2(v) = fan(v), ¢i’s are determined by

Cc2 Cc2
/ fon—2(v)dv = / fon(v)dv =1 — a.
c1 C1

(ii) From Exercise 15, for testing Hy : a = 0 versus Hy : a # 0, a UMP
test of size a rejects Ho when X(;) < 0 or 2nX(1)/V > c¢. It remains to
determine c. When a = 0, X(;)/0 has the chi-square distribution X3, V/0
has the chi-square distribution X3, _,, and they are independent. Hence,
2nX(1)/[V(n — 1)] has the F-distribution F5 (,—1). Hence, 2nX(1)/V has
Lebesgue density f(y) = (n — 1)(1 + y)~ ™. Therefore,

(nl)/oc(ler)”dy—la. 1

Exercise 34 (#6.58). Let (Xi,...,X,) be a random sample from the
uniform distribution on the interval (6,1), where —oco < 8 < ¥ < 0.

(i) Show that the conditional distribution of the smallest order statistic
X(1) given the largest order statistic X(,) = x is the distribution of the
minimum of a random sample of size n — 1 from the uniform distribution
on the interval (0, x).

(ii) Find a UMPU test of size « for testing Hy : 6 < 0 versus Hy : 6 > 0.
Solution. (i) The joint Lebesgue density of (X (1), X(»)) is

o) =" Ly ) 0)
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and the Lebesgue density of X, is

g(x) = Wf(e,ﬁ)(fﬂ)-

Hence, the conditional density of X(;) given X(,) = z is

L, n—1(z—y)" 2
f;(x?)/) - (x)_(e)nilz Lo.2)(y),

which is the Lebesgue density of the smallest order statistic based on a
random sample of size n — 1 from the uniform distribution on the interval
0, z).

(ii) Note that (X(1y, X(»)) is complete and sufficient for (6,1) and when
0 = 0, X(,) is complete for ¥J. Thus, by Lemmas 6.5 and 6.6 in Shao (2003),
the UMPU test is the same as the UMPU test in the problem where Xy,
is the smallest order statistic of a random sample of size n — 1 from the
uniform distribution on the interval (6,x). Let Y = 2 — X(;). Then Y is
the largest order statistic of a random sample of size n— 1 from the uniform
distribution on the interval (0,7), where n = x — 6. Thus, by the result in
Exercise 14(i), a UMPU test of size « is

« Y <z
T:
{0 Y >z

conditional on X(,) = . Since x — X1y =Y,

Exercise 35 (#6.82). Let X be a random variable having probability
density fo(z) = exp{n(0)Y (z)—&(0) }h(z) with respect to a o-finite measure
v, where 7 is an increasing and differentiable function of 6 € © C R.

(i) Show that log () — log£(fy) is increasing (or decreasing) in Y when
6 > 0y (or 6 < 0), where £(0) = fy(x), 0 is an MLE of 6, and 6, € ©.

(ii) For testing Hy : 61 < 60 < 05 versus Hy : 6 < 01 or 6 > 05 or for testing
Hy : 6 = 0y versus Hy : 0 # 0, show that there is a likelihood ratio (LR)
test whose rejection region is equivalent to Y (X) < ¢; or Y(X) > ¢ for
some constants ¢; and cs.

Solution. (i) From the property of exponential families, 6 is a solution of
the likelihood equation

0log £(0)

o = (O)Y(X) ~€(6) =0
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and ¥(0) = &'(0)/n'(0) has a positive derivative ¢’'(#). Since 7'(0)Y —
€'(6) = 0, 0 is an increasing function of Y and % > 0. Consequently, for
any 0y € O,

= g (@)~ 1og 0(00)] = = [0(@Y — £0) ~ n(60)Y +(60)]
= SO +n(d) — € (6) ~n(e)
= WO € @) + 1) —n(60)

= n(0) —n(6o),

which is positive (or negative) if 6 > 6, (or 6 < o).
(ii) Since #(0) is increasing when 6 < 6 and decreasing when 6 > 0,

0(01) A
su 0(0) 5((;1) <h
M) = TP0seste ) )y 6, < <0,
supgee £(0) 0(6) .
M 0 > 0,

for §; < 05. Hence, A(X) < c if and only if § < dy or 0 > dy for some
constants d; and dz. From the result in (i), this means that A(X) < c¢ if
and only if Y < ¢; or Y > ¢ for some constants ¢; and co. I

Exercise 36 (#6.83). In Exercises 55 and 56 of Chapter 4, consider
Hy:j=1versus Hy : j = 2.

(i) Derive the likelihood ratio A(X).

(ii) Obtain an LR test of size a in Exercise 55 of Chapter 4.

Solution. Following the notation in Exercise 55 of Chapter 4, we obtain
that

1 j=1
AMX) = 5 il .
( ) Z(@hl,q—l) j= 9
£(02,5j=2)
VTi/n 2e
1 Tg/n S ?
2e Tz/n " \ Tl/n > 2e
T /Tl/n T>/n T
where 77 = >, X? and T» = Y., |X;|. Similarly, for Exercise 56 of
Chapter 4,
1 h(X)=0
AMX) = X
o X)) =1,
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where X is the sample mean, h(X) = 1 if all X;’s are not larger than 1 and
h(X) = 0 otherwise.
(ii) Let ¢ € [0,1]. Then the LR test of size « rejects Hy when

2e TQ/TL 1/n

?7%171/” <c 5

is the ath quantile of the distribution of y/2¢-—12/%

™ \/Tl/n

X1, ..., Xp are independent and identically distributed as N(0,1). &

1/n

where ¢ when

Exercise 37 (#6.84). In Exercise 12, derive the likelihood ratio A(X)
when (a) H0:9§90; (b) H0:91§0§02; and (C) H0:6‘§6‘1 OI‘QZQQ.
Solution. Let f and g be the probability densities of F' and G, respectively,
with respect to the measure corresponding to F'+ G. Then, the likelihood
function is

(0) = 0f(X) — g(X)] + 9(X)
and
o [ O F0) 2 g(x)
e ) { oX)  F(X) < g(X)
For 6y € [0, 1],
ey [ B0 g+ 0(X) F(X) > g(X)
oo, 1) = { 9(X) F(X) < g(X).

Hence, for Hy : 6 < 6,

M) = 90[f(X)}!(I§()§)]+9(X) F(X) > g(
1 f(X) <

F0r0§01§92§1,

B0 — g0 He(X)  F(X
e 10 = { 0LF(X) — g(X)] +g(X)  F(X) < g

and, thus, for Hy : 61 < 6 < 0,

GIOO-gOLX) f(x) > g(X)

61[f(X);(9§<}§)]+9(X) f(X) < g(X).

AX) =

Finally,

sup £(0) = sup £(0).
0<0<0,,02<6<1 0<0<1

Hence, for Hy: 0 < 61 or § > 02, A(X) =1. 1
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Exercise 38 (#6.85). Let (Xi,...,X,) be a random sample from the
discrete uniform distribution on {1, ...,0}, where 6 is an integer > 2. Find
a level o LR test for

(i) Ho : 0 < 6y versus Hy : 6 > 0y, where g is a known integer > 2;

(ii) Ho : 8 = 6y versus Hy : 0 # 6y.

Solution. (i) The likelihood function is

00) = 0" I1x (), Xy +1,...3(0),

where X, is the largest order statistic. Then,

sup £(0) = X(;L’)‘,
9=23,...
X X <0
sup £(0) = (n) (n) =70
0=2,...,00 0 Xn) > bo,

and
1 X <6
0 X(n) > 6.

Hence, a level « test rejects Ho when X(,,) > 6y, which has size 0.
(ii) From part (i) of the solution, we obtain that

X )" <
o= (G8) Xwsn
0 X(n) > 6.

Then, AM(X) < ¢ is equivalent to X(n > 0y or Xy < Opc/™. Let ¢ = a.
When 6 = 6y, the type I error rate is

P (Xe < fa'/") = [P(X: < 0¥/

the integer part of /™ )n

(
gg%; )

Hence, an LR test of level a rejects Hyg if X(,,) > 0 or X,y < Opa/™. n

Exercise 39 (#6.87). Let X = (X3,..., X;,) be a random sample from
the exponential distribution on the interval (a,c0) with scale parameter 6.
(i) Suppose that 6 is known. Find an LR test of size « for testing Hy : a < ag
versus Hy : a > ag, where ag is a known constant.

(ii) Suppose that 6 is known. Find an LR test of size « for testing Hy : a =
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ag versus Hy : a # ag.

(iii) Repeat part (i) for the case where 6 is also unknown.

(iv) When both 6 and a are unknown, find an LR test of size « for testing
Hy : 0 =0y versus Hy : 0 # 6.

(v) When a > 0 and 6 > 0 are unknown, find an LR test of size a for
testing Hy : a = 0 versus Hy : a # 0.

Solution. (i) The likelihood function is

E(CL 9) _ e—nena/Ge—nX/GI(mOO) (X(l))7

where X is the sample mean and X, (1) is the smallest order statistic. When
0 is known, the MLE of a is X(;). When a < ag, the MLE of a is
min{ag, X(1y}. Hence, the likelihood ratio is

B 1 X(l) < ag
)‘(X) - { e—(X@y—ao)/0 X(l) > ag.

Then A(X) < ¢ is equivalent to X (1) > d for some d > ag. To determine d,
note that

na/6 0
sup P(X () > d) = sup ne / e /0y
d

a<ap a<ag 0
nenao/é [es} 3
— e nz/&dm
0 d
_ en(aofd)/G.

Setting this probability to « yields d = ap — n~101log a.
(ii) Note that £(ag,f) = 0 when X (1) < ag. Hence the likelihood ratio is

{ 0 X(l) < ap

)\(X) = e—(X@y—ao)/0 X(l) > ap.

Therefore, A(X) < cis equivalent to X1y < ag or X (1) > d for some d > ay.
From part (i) of the solution, d = ag — n~'0loga leads to an LR test of
size a.

(iii) The MLE of (a, ) is (X (1), X - X1)). When a < ag, the MLE of ag is
min{ag, X1y} and the MLE of 6 is

é _ )E' —X(l) X(l) < ap
0 X — ap X(l) Z ag.

Therefore, the likelihood ratio is
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where T(X) = (X—X))/(X —ao). Hence the LR test rejects H if and only
if T(X) < ¢!/™. From the solution to Exercise 33, Y = (X — X(1))/(X —a)
has the beta distribution with parameter (n — 1,1). Then,

X-X
sup P (T(X) < cl/"> = sup P (_(1) < cl/”>
a<ag a<ag X_a+a_a0

—p (Y < cl/”)

o/

= (n— 1)/O " 2dx

— n=1)/n
Setting this probability to « yields ¢ = a"/("~1. -
(iv) Under Hy, the MLE is (X(y),60). Let Y = 65 'n(X — X(;)). Then the
likelihood ratio is

AMX) =emyme Y.
Thus, A(X) < c is equivalent to Y < ¢; or Y > ¢o. Under Hy, 2Y has
the chi-square distribution x3, 5. Hence, an LR test of size a rejects Hy
when 2Y < X%(nfl),lfa/2 or 2Y > X%(n71)7a/2’ where x%a is the (1 — a)th
quantile of the chi-square distribution 2. -
(v) Under Hy, the MLE is (X, X). Let Y = X(1)/(X — X(1)). Then the
likelihood ratio is

/\(X) = enX—n(X — X(l))n = e"(l + Y)_n,

where Y = X(1)/(X — X(1)). Then M(X) < ¢ is equivalent to Y > b for
some b. Under Hy, the distribution Y is the same as that of the ratio Y7 /Y5,
where Y7 has the exponential distribution on the interval (n,o0) and scale
parameter 1, Y5 has the gamma distribution with shape parameter n — 1
and scale parameter 1, and Y7 and Y5 are independent. Hence, b satisfies

a= L/m vy e /°° ey dys
= 2
F(TL _ 1) 0 max{n,byz}
Ln—1) J, 7 |

Exercise 40. Let (Xy,...,X,) and (Y7,...,Y;,) be independent random
samples from N(u1,1) and N(ug,1), respectively, where —oco < pg < py <
0.

(i) Derive the likelihood ratio A and an LR test of size a for Hy : pu3 = po
versus Hy : 1 > po.

(ii) Derive the distribution of —2log A and the power of the LR test in (ii).
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(iii) Verify that the LR test in (ii) is a UMPU test.
Solution. (i) The likelihood function is

U1, p2) = (271r)" exp {—; Z(Xi —p1)? - %Z(Y; - M2)2} .

i=1 i=1

Let X be the sample mean based on X;’s and Y be the sample mean based
on Y;’s. When pu; = pa, £(pu1, p12) is maximized at g = (X + Y)/2 The
MLE of (j1, pt2) is equal to (X,Y) when X > Y. Consider the case X < Y.
For any fixed pu; <Y, £(pu1, j12) increases in us and, hence,

sup Ly, p2) = sup L(p, ).
<Y, pa<p 1Y

Also,

sup  L(p1, pe) = sup £(u1,Y) < sup £(ua, ),
p1>Y, pe<py w1>Y <Y

since X < Y. Hence,

sup L(p1,p1) = sup £(p1, pa) = L(fL, i),
o <p1 <Y

since fi <Y when X < Y. This shows that the MLE is (ji, ii) when X < Y.
Therefore, the likelihood ratio A = 1 when X < Y and

eXp{*’ i (Xi — l_i)z - % i (Yi— /2)2}

exp{ 3 i (Xi = X)? — % i1 (Yi — Y)Q}
=exp{-2(X -Y)*}

A=

|
[\
<}
E}
>
|
—N
S I3
I
I
=i
e
b
]

X<Y.
Note that A < ¢ for some ¢ € (0,1) is equivalent to /3(X —Y) > d for
some d > 0. Under Hy, \/g (X —Y) has the standard normal distribution.
Hence, setting d = ®~!(1 — a) yields an LR test of size a, where @ is the
cumulative distribution function of the standard normal distribution.
(ii) Note that —2log A > 0. Let § = \/% (1 — p2). Then Z = \/5(X - Y)
has distribution N(d,1). For ¢t > 0,

P(—2log\ <t) = P(—2logA <t,Z >0)+ P(—2log\ <t,Z <0)
=P(Z<Vt,Z>0)+P(Z<Vt,Z<0)
=P0<Z<Vt)+P(Z<0)
P(
o

Z <\/t)
Vit —6).
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The power of the LR test in (ii) is then
—®(d—08)=1—-d(> (1 —-a)-9).
(iii) The likelihood can be written as
Cx,y exp {6X + npoU — n(py + p2)/2}

where 0 = n(u; — p2), U = X +Y, and Cx y is a quantity does not depend
on any parameters. When 6 = 0 (u1 = ps2), Z is independent of U. Also,
Z = \/%(2X —U). Hence, by Theorem 6.4 and Lemma 6.7 in Shao (2003),
the UMPU test for Hy : € = 0 versus H; : 6 > 0 rejects Hy when Z > ¢ for
some ¢, which is the same as the LR test in (ii). §

Exercise 41 (#6.89). Let X1, ..., Xin,, i = 1,2, be two independent ran-
dom samples from the uniform distributions on (0, 6;), i = 1, 2, respectively,
where #; > 0 and 05 > 0 are unknown.

(i) Find an LR test of size « for testing Hy:6, =0 versus Hy :6, #0s.

(ii) Derive the limiting distribution of —2log A when n1/ns — & € (0, 00),
where A is the likelihood ratio in part (i).

Solution. (i) Let ¥; = max;j—1 __ ,, X;j, ¢ = 1,2, and ¥ = max{Y7,Y>}.
The likelihood function is

£(01,02) = 0705 10,0,)(Y1)1(0,0,)(Y2)
and the MLE of 0; is Y;, i = 1,2. When 6, = 05,
£(01,01) = 07" " 1g,0,)(Y)
and the MLE of 8, is Y. Hence, the likelihood ratio is

ny na
}3 }é

A= Ynitnz

Assume that 6, = 65. For any t € (0,1),

PA<t)=PA<t,Y1 2Y2)+ P(A<t, Y1 <Y>)
= P(Yz < tV/my, Y, > Yz) +P(Y1 <tV/mY, v, > Y2)

_p (Y2 < t””?Yl) +P (Y1 < t”"%)

tl/nle
n 1. n
—n1n2// 2 hy N dysdy,

l/nlyz

—|—n1n2/ / 1 ! n2 ldyldlh
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1 1
— nlt/ y?ﬁnrldyl + ngt/ y;’ﬁ”z*ldyg
0 0

1
= (m +n2)t/ ymtnz=lgy
0

=t.

Hence, the LR test of size « rejects Hy when A < a.

(ii) Under Hy, by part (i) of the solution, A has the uniform distribution on
(0,1), which does not depend on (ny,ng). The distribution of —2log A is
then the exponential distribution on the interval (0, 00) with scale param-
eter 271, which is also the chi-square distribution y?. Consider now the
limiting distribution of —2log A when n1/ny — k € (0,00). Assume that
01 < 05. Then

P(Y1>}/2):P(}/2—Y1—(92—91)<—(92—91))—>0

since Yo —Y; —, 62 — 0. Thus, for the limiting distribution of —2log A, we
may assume that Y7 < Y5 and, consequently, —2log A = 2n1(log Yo—log Y7).
Note that

nl(ﬁz — Y;) —d GZZ“ 1= 1,2,

where Z; has the exponential distribution on the interval (0, c0) with scale
parameter 1. By the d-method,

n;(log6; —logV;) —a Z;, i=1,2.
Because Y7 and Ys are independent,

—2log A +2log(01/62)" = 2[ni(logth —logYi) — tns(log b —logYs)]
—d 2(21 — HZQ),

where Z; and Z5 are independent. The limiting distribution of —2log A for
the case of 7 > 6> can be similarly obtained. I

Exercise 42 (#6.90). Let (X;1,..., Xin,), ¢ = 1,2, be two independent
random samples from N (u;,07), i = 1,2, respectively, where p;’s and 02’s
are unknown. For testing Hy : 03 /0% = A versus Hy : 03 /03 # Ag with a
known Ag > 0, derive an LR test of size o and compare it with the UMPU
test.

Solution. The MLE of (u1, pio, 0%, 03) is (X1, Xo,67,62), where X; is the
sample mean based on X1, ..., X;n, and

o 1 .
57 = ;Z(Xij - X;)%,
)
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i =1,2. Under Hy, the MLE of (u1, u2,0%) is (X1, X2,5%), where
o _ Do it (Xny — Xa)? + 300, (X — Xo)?

1 Ao(nl =+ ’I’Lg) '
Then the likelihood ratio is proportional to

1 n1/2 F n2/2
(ce) (7))

where F' = 53 /(A¢S7) and S} is the sample variance based on X1, ..., Xip,,
i = 1,2. Under Hy, F has the F-distribution F;,,_1,,,—1. Since the likeli-
hood ratio is a unimodal function in F', an LR test is equivalent to the one
that rejects the null hypothesis when F' < ¢; or F' > ¢o for some positive
constants ¢; < ¢z chosen so that P(F < ¢1) + P(F > ¢3) = « under H.
Note that the UMPU test is one of these tests with an additional require-
ment being unbiased, i.e., the ¢;’s must satisfy P(B < ¢1)+P(B > ¢3) = a,
where B has the beta distribution with parameter (MTH, ”1—2_1) (e.g., Shao,
2003, p. 414). 1

Exercise 43 (#6.91). Let (X;1,Xi2), ¢ = 1,...,n, be a random sample
from the bivariate normal distribution with unknown mean and covariance
matrix. For testing Hy : p = 0 versus H; : p # 0, where p is the correlation
coefficient, show that the test rejecting Hp when |R| > ¢ is an LR test,

where
n

R = Z(Xil - X1)(Xi2 — Xz)/ [Z(Xil -X1)*+ Z(Xiz - Xo)?
i=1 i=1 i=1

is the sample correlation coefficient and X j is the sample mean based on
X1j, ..., Xpj. Discuss the form of the limiting distribution of —2log A, where
A is the likelihood ratio.
Solution. From the normal distribution theory, the MLE of the means are
X; and X5 and the MLE of the variances are n~! o (X — X1)? and
nEY T (X — X5)2, regardless of whether Hy holds or not. The MLE
of p is the sample correlation coefficient R. Under Hy, p = 0. Using these
results, the likelihood ratio is A = (1 — R?)™/2. Hence, an LR test rejects
Hy when |R| > ¢ for some ¢ > 0.

The distribution of R under Hy is given in Exercise 9(ii) in Chapter 2.
Hence, the Lebesgue density of —2log A is

T(r=l
\/7?(F(2n:2)(1_e L) 1/26 (n 2>L/2[(0,oo)(£)~

When p # 0, it follows from the result in Exercise 9(i) of Chapter 2 that
V(R = p) —a N(0,(1 = p*)2/(1 + p?)). By the 6-method,

—2log A 2
Jn | =284 —log(1 —pQ)] -4 N (0,%) .
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Exercise 44. Consider the problem in Exercise 63 of Chapter 4. Find an
LR test of size « for testing Hy : 81 = 03 versus Hy : 67 # 0. Discuss the
limiting distribution of —2log A, where X is the likelihood ratio.

Solution. From the solution of Exercise 44, the MLE of (61,65) is equal
to n Y (VT To + T1, VT To + Ty), where Ty = Dy Xil(0,00)(X:) and Ty =
— > oi XiI (oo 0)(X;). When 6y = 05, the distribution of Xj is the double
exponential distribution with mean 0 and scale parameter 6, = 6. Hence,
the MLE of 6, = 0 is (T} + T2)/n. Since the likelihood function is

T T:
0(01,05) = (61 + 03) "expd — L — 24
0, 0,
the likelihood ratio is
(VT + VT)*"

T (T + o)
Under Hy, the distribution of A does not depend on any unknown param-
eter. Hence, an LR test of size a rejects Hy when A\ < ¢, where c is the
(1 — a)th quantile of A under Hj.

Note that
no? n[203(01 + 62) — 6]
E(T;) = t—  Var(T;) = L o1 =1,2,
) 01 + 62 ) (01 +02)2
and 9292
n-676
Cov(Ty, Ts) = —E(T))E(Ty) = ——22.
(Th, T3) (Th)E(T3) (01 4 0572
Hence, by the central limit theorem,
7/ 6% 03(01+202) 6763
ymny | 61+62 (01+02)2 (01+62)2
v (Tg/n) 03 —a N2 | 0, 6303 03 (02+20,)
01+02 (61+62)2 (01+62)2

Let g(z,y) = 2log(v/z + /y) — log(z + y) — log2. Then n~'log\ =
g(T1/n, Tz /n). The derivatives

dg(w,y) 1 1 dg(x,y) 1 1

Oz :c+,/my_:c+y dy _y+,/xy_x+y

at © = F(T1) and @ = E(T») are equal to z:gz%;z%g and z;gz%;z;, respec-
tively. Hence, by the §-method,

_ 01+62)>
\/ﬁ[n 1logA—log% —q N(0,72),

where

22 [919%(91 + 292) + 929%(92 + 291) + 29%9%](91 — 92)2 i
(01 + 02)2(0F + 03)*
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Exercise 45 (#6.93). Let X; and X, be independent observations from
the binomial distributions with sizes n; and ny and probabilities p; and po,
respectively, where n;’s are known and p;’s are unknown.

(i) Find an LR test of level « for testing Hy : p1 = po versus Hy : p1 # pa.
(ii) Find an LR test of level « for testing Hy : p1 > po versus Hy : p1 < po.
Is this test a UMPU test?

Solution. (i) The likelihood function is

)’I’Ll—Xl X2

Py (1 —po)2= 2

U(p1,p2) = Cxpy' (1 —

i

where C'x is a quantity not depending on (p1,p2). The MLE of (p1,p2) is
(X1/n1,X2/n2). Under Hy, the MLE of p; = pa is U/n, where U = X;+ X5
and n = ny + ny. Then, the likelihood ratio is

@ a-9H""
OGO
ni ni ng n2

An LR test rejects Hy when A; < ¢, which is equivalent to (X7, X2) >
g(U) for some function g, where

X1 ni1—X1 Xo ny—Xo
s = ()" 057 ()" (0 3)

is the denominator of \;. To determine g(U), we note that, under Hy,
the conditional distribution of (X1, X5) given U does not depend on any
unknown parameter (which follows from the sufficiency of U under Hy).
Hence, if we choose g(U) such that P(y(X1,X2) > g(U)|U) < «, then
P(y(X1,X2) > g(U)) < a.

(ii) Using the same argument used in the solution of Exercise 40, we can
show that the MLE of (p1, p2) under Hy (p1 > p2) is equal to (X1 /n1, Xa/n2)
if X1/nq > Xo/ny and is equal to (U/n,U/n) if X1/n1 < X5/ny. Hence,
the likelihood ratio is

\ = )\1 Xl/n1<X2/n2
1 Xi/n1 > Xo/no,

A=

where Ay is given in part (i) of the solution. Hence, an LR test rejects
Hy when Ay < ¢ and X;/n; < Xs/ng, which is equivalent to the test
that rejects Hy when A\{* > ¢~ and U/(1 + ni/ny) < Xa. Note that
A= h(X2,U)/q(U), where

= (52 -5 () -

ni n1 n2 n2
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and
o) = (2) (1= 2",

% > 1 when U/(1 + n1/n2) < Xo, the derivative

dlog h(X,,U) o < Xo(ni — U + X) > -0
X (n2 — X2)(U — Xa) ’

Since

i.e., h(X2,U) is increasing when U/(1 + n1/n2) < Xa. Thus, the LR test
is equivalent to the test that rejects Hy when X5 > ¢(U) for some function
¢(U). The difference between this test and the UMPU test derived in
Exercise 24 is that the UMPU test is of size a and possibly randomized,
whereas the LR test is of level o and nonrandomized. I

Exercise 46 (#6.95). Let X; and X3 be independently distributed as
the exponential distributions on the interval (0,00) with unknown scale
parameters 6;, i = 1,2, respectively. Define § = 61 /6. Find an LR test of
size « for testing

(i) Hy : 0 = 1 versus Hy : 0 # 1;

(ii) Hp: 0 <1 versus Hy : 6 > 1.

Solution. (i) Since the MLE of (61, 63) is (X1, X5) and, under Hy, the
MLE of 6; = 65 is (X1 + X3)/2, the likelihood ratio is

X\X;  AF
(X1-2+X2)2 1+ F)?

where F' = X5/X;. Note that A < ¢ is equivalent to F' < ¢; or F > ¢ for
0 < ¢1 < ca. Under Hy, F is has the F-distribution F5 2. Hence, an LR
test of size a rejects Hy when F' < ¢; or F' > ¢y with ¢;’s determined by
P(F < c¢1)+ P(F > ¢3) = a under Hy.

(ii) Using the same argument used in Exercises 40 and 45, we obtain the

likelihood ratio
A\ { 1 X1 < Xo

oy X2 X

Note that A\ < c if and only if 4F/(1 + F)? < ¢ and X; > X, which is
equivalent to F' < b for some b. Let F5 2 be a random variable having the
F-distribution F5 . Then

b6
sup P(F <b)= sup P (Fgg < 01) =P (Fy2<b).

01<02 01 <62 2

Hence, an LR test of size a rejects Hy when F < b with b being the ath
quantile of the F-distribution F5 . §
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Exercise 47 (#6.98). Let (X1, ..., X,,) be a random sample from N (p, 0'2).
(i) Suppose that 02 = yu? with unknown v > 0 and p € R. Find an LR
test for testing Hy : v =1 versus Hy : v # 1.

(ii) In the testing problem in (i), find the forms of Wald’s test and Rao’s
score test.

(iii) Repeat (i) and (ii) when o2 = yu with unknown v > 0 and p > 0.
Solution. (i) The likelihood function is

E(pyy) = (V2my|pl) " exp {—Mlﬂg Z(Xi - u)2} :

The MLE of (u,7) is (f1,9) = (X,6%/X?), where X is the sample mean
and 62 =n~t 3" (X; — X)2. Under Hy, by Exercise 41(viii) in Chapter
4, the MLE of u is

o { K+ g(/'c-‘rv 1) > e(:u’—v 1)
p— Apg, 1) < Llp-, 1),

where

—X +5X2 4 462
bt = 5 .
The likelihood ratio is

0o, 1) e/26™ exp {n62 + n(jo — X)? } 7

A= —— = — -
O5) o™ 203

which is a function of X2/62. Under Hy, the distribution of X2/62 does not
depend on any unknown parameter. Hence, an LR test can be constructed
with rejection region A < c.

(ii) Let
_n | n(X—p) Z:l: (Xi—p)?
S(,U, fy) = M — H Y + lfyu?»
; () . " (X
oy Zem TR
2y 20272

The Fisher information about (u,7) is

L

In(p,y) = E{s(p, M) [s(k. 7)™} = n ( WL " le ) :

ey 272

_|_

Then, Rao’s score test statistic is

Ry, = [s(j10, )] [Ln(ji0, 1)] " s(f10, 1),

where fig is given in part (i) of the solution.
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Let R(u,v) = v —1. Then OR/Opu = 0 and OR/Oy = 1. Wald’s test
statistic W, is equal to [R(j1,4)]? divided by the last element of the inverse
of I,(f1,%), where i and ¥ are given in part (i) of the solution. Hence,

2,}/2 +4fyd

(iii) Let T =n"1>"" | X2. The likelihood function is

nT nX np
)= (VR e gL )
() = ) 2y oy 2y

When ~ = 1, it is shown in Exercise 60 of Chapter 4 that the MLE of p

is fio = (V1+4T —1)/2. For the MLE of (u,7), it is equal to (i1,7) =
(X,6%/X) when X > 0. If X <0, however, the likelihood is unbounded in
v. Hence, the likelihood ratio is

N e”/zﬁnﬂo)*”ﬂexp{f% +n)7(7"7ﬂ°} X>0
0 X <o.
To construct an LR test, we note that, under Hy, T is sufficient for u.

Hence, under Hy, we may find a ¢(7T') such that P(A < ¢(T)|T) = « for every
T. The test rejecting Hy when A < ¢(T') has size a, since P(A < ¢(T)) = «

under Hy.
Note that
_ Olog(p,7) _ —3p t P 5
s(ﬂﬁ)—ﬁ— _no nT  nX | nu |
/,L,’Y 27 272M 72 272
O*logl(p,y) n nT
oz 2u Apd
O*logl(p,y)  nT L
opdy 2922 29
and

0% log £(p, ) n nT 20X np

= =+ .
Oy P E

Hence, the Fisher information about (u,7) is
1 1 1
—_— + —_
Ln(py) = ( a2 )

and Rao’s score test statistic is

Ry, = [s(f10, 1)]" [ (fi0, D] ™" s(f10, 1).
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Similar to that in part (ii), Wald’s test statistic W, is equal to (¥ — 1)?
divided by the last element of the inverse of I, (f,%), i.e.,

_ (-1
"R

Note that W, is not defined when X < 0. But lim, P(X < 0) = 0 since
w>0.1

Exercise 48 (#6.100). Suppose that X = (X, ..., X;) has the multino-
mial distribution with a known size n and an unknown probability vector
(p1,...,px). Consider the problem of testing Hy : (p1, ..., Pk) = (P01, -+ Dok )
versus Hy : (p1,...,pr) # (Po1, ---, Pok ), where (po1, ..., pox) is a known prob-
ability vector. Find the forms of Wald’s test and Rao’s score test.
Solution. The MLE of 6§ = (p1,...,px_1) is 0 = (X1/n, ..., Xx_1/n). The
Fisher information about 6 is

I,(6) = n[D(0)] " + I%kau,:,l,

where D(#) denotes the (k—1) x (k—1) diagonal matrix whose k—1 diagonal
elements are the components of the vector § and Ji_; is the (k — 1)-vector
of I's. Let 6y = (po1,..-,Po(k—1)). Then Hy : 6 = 6 and the Wald’s test
statistic is

I
—
>
I
>
(=}
N
3
:’\1
—~
>
N~—
—
>
|
>
(=}
~—

Wn

using the fact that J7_,(f — 6g) = pox — X/n. Let £(6) be the likelihood
function. Then

Blogé(ﬁ) (Xl Xk Xk,1 Xk>
s)=—72"—=|—-—, .., —— .
a0 P1 Dk Pk—1 Dk
Note that
[L.(0) ' =n"'D(@) —n 60"
and
k—1
X, npr — X,
(97-8((9)2 (X]—k> :n—Xk—fk(l—pk)Z Pk k.
Pk Pk
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Also,

oo (52

- X, 2 2
=zpj(ﬂ—n) o (5e-0)
— Dj
J
k—1
X, X
5 () (-3
; "\ pj Dk

kfl
”Pa (1= pyy K= )

Jj=1 Pk

+2[(n — X) — (1 — pp)] (n - ;(:)

k—1 2 2
_ (XJ — 'npj) + [HTS(H)]Q _ (X — npk)

j=1 pj Pk

4 2(Xk — npk)z

Pk
k 2

= > B s

<
Il
—

Hence, Rao’s score test statistic is
Ry, = [5(60)]"[1(60)]*s(60)
=n"'ls (90)V (90)8(90) —n (07 5(60)]?

:Z npoj .I

n
j=1 Poj

Exercise 49 (#6.101). Let A and B be two different events in a proba-
bility space related to a random experiment. Suppose that n independent
trials of the experiment are carried out and the frequencies of the occurrence
of the events are given in the following 2 x 2 contingency table:

| A A
B | Xi1 X
B¢ | X1 X

Consider testing Hy : P(A) = P(B) versus H;y : P(A) # P(B).
(i) Derive the likelihood ratio A and the limiting distribution of —2log A
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under Hy.

(ii) Find the forms of Wald’s test and Rao’s score test.

Solution. Let p;; = E(X;;/n),i=1,2, j = 1,2, and 6 = (p11, p12,p21) be
the parameter vector (pee = 1 — p11 — p12 — p21). The likelihood function
is proportional to

X2, Xo1

£0) = P{(flpm port (1 = p11 — pi2 —p21)"_X“_X12_X21.

Note that Hy is equivalent to Hg : pa1 = p12.
(i) The MLE of 6 is = n~'(X11, X12, X21). Under Hy, The MLE of p;
is still X71/n, but the MLE of p1a = po1 is (X12 + X21)/(2n). Then

[(X12 + X21)/2]X12+X21

A=
X12 v Xo1
X5 X35,

Note that there are two unknown parameters under Hy. By Theorem 6.5
in Shao (2003), under Hy, —2log A —4 X3

(ii) Let R(f) = p12 — p21. Then C(0) = OR/00 = (0,1, —1). The Fisher
information matrix about 6 is

Py 0 0 L (111
L®=n|l 0 po 0 |+—| 1 11
0 0 py P2\ 11
with

1 [ P 0 0 1
[1,(0)] ' =~ pi2 0 | — =007

n n

0 P21

Therefore, Wald’s test statistic is

W, = [R(O)]™{[C(O)]"[L.(0)]C(0)} " R(D)
_ n(Xi2 — Xo1)?
n(Xi2 + Xo1) — (X12 — Xo1)?'
Note that
Xin . Xos
11 1—p11—p12—p21
o 00sl0) | oy x
( ) - 00 - P12 1-pi1i—pi2—p21
Xo1 X9y
P21 1—p11—p12—p21

and, hence, 5(9) evaluated at é = nil(XH, (X12 + X21)/2, (Xlg + Xgl)/Q)
is
0
n (X12—X21)
8(0) nX12+X21
n(X21—Xi2)
Xi12+X21
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Therefore, Rao’s score test statistic is

) ) i B 2
o = O 100 0) - S22

Exercise 50 (#6.102). Consider the r x ¢ contingency table

1 2 e
1| X1 X2 o Xie

Xo1 Xoo -+ Xo
r Xrl XT2 e ch

with unknown p;; = E(X;;)/n, where n is a known positive integer.

(i) Let Ay,..., A, be disjoint events with 4; U---U A, = Q (the sample
space of a random experiment), and let By, ..., B, be disjoint events with
By U---UB, = Q. Suppose that X;; is the frequency of the occurrence of
A; N B; in n independent trials of the experiment. Derive the x? goodness-
of-fit test for testing independence of {4, ..., A.} and {By, ..., B.}, i.e.,

Hy :pij = pip.; foralli,j versus Hj:p;; # pi.p.; for some 1,7,

where p;. = P(B;) and p.; = P(4;),i=1,...,r,j=1,...,c.

(ii) Let (X1j,...,Xrj), 5 =1,...,¢, be ¢ independent random vectors having
the multinomial distributions with sizes n; and unknown probability vectors
(p1j,--sPrj)s § = L,...,c, respectively. Consider the problem of testing
whether ¢ multinomial distributions are the same, i.e.,

Hy :pij =pn foralli,j versus Hi:p;; # pu for some ¢, 7.

Show that the x? goodness-of-fit test is the same as that in (i).
Solution. (i) Using the Lagrange multiplier method, we can obtain the
MLE of p;;’s by maximizing

T c T c
D2 Xiglogpy =A| D> piy— 1],
i=1 j=1 i=1 j=1

where A is the Lagrange multiplier. Thus, the MLE of p;; is X;;/n. Under
Hy, the MLE’s of p;.’s and p.;’s can be obtained by maximizing

ij i §) = i — 1| = g1,
>3 Xij(logpi. +logp.;) — M (Zp 1) Ao | D opy—1
i=1 j=1

i=1 j=1
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where A; and A are the Lagrange multipliers. Thus, the MLE of p;. is
Xi. = >25-; Xij/n and the MLE of p.; is X.; = >7;_, Xj;/n. Hence, the
x? statistic is

The number of free parameters is r¢ — 1. Under Hy, the number of free
parameters is r — 1 +c¢c—1 = r + ¢ — 2. The difference of the two is
rc—r—c+1=(r—1)(c—1). By Theorem 6.9 in Shao (2003), under
Hy, X% =4 X%rfl)(cfl)' Therefore, the x? goodness-of-fit test rejects Hy
when 2 > X?rfl)(cfl)JN where X%’rfl)(cfl),a is the (1 — a)th quantile of
the chi-square distribution X%r—l) (c—1)"

(ii) Since (Xij,..., X,;) has the multinomial distribution with size n; and
probability vector (p1;, ..., prj), the MLE of p;; is X;;/n. Let Y; = Z;Zl Xij.
Under Hy, (Y7,...,Y;) has the multinomial distribution with size n and
probability vector (pi1,...,p,1). Hence, the MLE of p;; under Hy is X;. =
Y;/n. Note that n; = nX;, j = 1,...,c. Hence, under Hp, the expected
(4, 7)th frequency estimated by the MLE under Hy is n.X;. X.;. Thus, the x>
statistic is the same as that in part (i) of the solution. The number of free
parameters in this case is ¢(r—1). Under Hy, the number of free parameters
is r — 1. The difference of the two is ¢(r — 1) — (r — 1) = (r — 1)(c — 1).
Hence, x? —q X%r—l)(c—l) under Hy and the x? goodness-of-fit test is the
same as that in (i). 1

Exercise 51 (#6.103). In Exercise 50(i), derive Wald’s test and Rao’s
score test statistics.

Solution. For a set {a;;,i = 1,...,r,j = 1,...,¢,(4,j) # (r,¢)} of rc — 1
numbers, we denote vec(a;;) to be the (rc¢ — 1)-vector whose components
are a;;'s and D(a;;) to be the diagonal matrix whose diagonal elements are
the components of vec(a;;). Let 6 = vec(pi;), J be the (rc — 1)-vector of
1’s, and £(6) be the likelihood function. Then,

s(6) = dlog £(6) _ vee <Xij) Xe

o0 pij ) 1-J76
and
0% log £(0) X Xre
e R 5) e g,
0000 pfj (1—J76)2 JJ

Since E(X;;) = np;j, the Fisher information about 6 is
1,(0) = nD(p;;') + np;l JJ"

with
[In(G)]_l = n_lD(pij) —n"lo0".
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Let p;; be the MLE of p;; under Hy and 6 = vec(pi;). Then Rao’s score
test statistic is

Ry, =n"'[s(O)]"[D(pi;) — 007)s(0).
Note that

éTS(é): E XZ_XLPZ]»« :n_ch XTCJ q:n_Xch
To1-Jrh
(1,4)#(r.c)

where pr. =1 — J0=X,X.. Also,

[sO)"D(Biy)s(0) = D B ({(U - XTC>2

(i)Are) NP Pre

~ X’L 2 ~ ch 2
= Z pij(~”j_n) +(1_prc) <n_ﬁ )

(i) Are) NP

Xii X
+2 ﬁi‘(~l‘7 n) (n ~Tc)
Z / Dij DPre

(1,5)#(r:¢)

~ X’L 2 ~ ch ?
- () e ()

(i) Are) NP

Hence,

1 Xi; ? X,e\’
Rn:* Ni' 2 ~rc 7~7‘C
vz piGen) o (-32)

(1,d)£(r,c) Pij

1 r c ~ X 2
“ax x5 )

i=1 j=1

o - c (le’I'LXZX)2
B ZZ ]n)_(l)_( ’ ’

i=1 j=1 J

using the fact that p;; = X;. X.; (part (i) of the solution to Exercise 50).
Hence, R,, is the same as x? in part (i) of the solution to Exercise 50.

Let 7(0) be the (r — 1)(c — 1)-vector obtained by deleting components
prj and pic, j =1,...,c—1,9=1,...,r — 1, from the vector § and let {(9)
be n(6) with p;; replaced by p;pj, i =1,..,r =1, j = 1,...,c — 1. Let
0 = vec(X;j/n), the MLE of 0, R(0) = n(0) — ((#), and C(0) = 53 — 9.
Then, Wald’s test statistic is

Wo = [ROI{ICONLa(0)] T CB)} R(B). n
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Exercise 52 (#6.105). Let (Xi,...,X,,) be a random sample of binary
random variables with § = P(X; = 1).

(1) Let II(0) be the beta distribution with parameter (a,b). When II is used
as the prior for 6, find the Bayes factor and the Bayes test for Hy : 8 < 6
versus Hy : 0 > 6.

(ii) Let mol[,,00)(6) + (1 — mo)II(0) be the prior cumulative distribution,
where IT is the same as that in (i) and mo € (0,1) is a constant. Find the
Bayes factor and the Bayes test for Hy : § = 6y versus H; : 0 # 6.
Solution. (i) Under prior II, the posterior of # is the beta distribution
with parameter (a+7,b+n—T), where T = """ | X;. Then, the posterior
probability of the set (0, 6p] (the null hypothesis Hy) is

I'la+b+n) fo _ T
T) = a+T—1 1— b+n—T-1 )
p(T) F(a+T)F(b+n—T)/O “ (1—u) du

Hence, the Bayes test rejects Hy if and only if p(T) < L and the Bayes

2
factor is
posterior odds ratio  p(T')[1 — m(0)]

prior odds ratio  [L — p(7)]x(0)’
where )
I'(a+0b) / Coam1 b—1
7m(0) = ——+ w1 —u du
0= tarw Y
is the prior probability of the set (0, 6y].
(ii) Let

mq (T)

/ 67 (1 — 6)"~TdI1(9)
000

_ a+b / gatT—1(1 _ g)t+n-T-149

(+b (a+T)T(b+n—T)
T(a+ b+ n)T(a)D(b)

Since the likelihood function is £(6) = (7.)67(1—6)"~T, the posterior prob-
ability of the set {6y} (the null hypothesis Hyp) is

(T) . fezeo E(e) 7TOI[00 oo)(e) + (1 - 7TO)H(Q)]
P = T U0 0Ty ) (0) + (1 — mo) ()]
B mofF (1 — o)1
el (1 —00)" T + (1 — mo)ma (T)

Hence, the Bayes test rejects Hy if and only if p(T) < 5 and and the Bayes

p(TM)(1-mo)

factor is A= p (D)o -
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Exercise 53 (#6.114). Let (Xi,...,X,) be a random sample from a
continuous distribution F' on R, F, be the empirical distribution, D =
SUp, e [Fn(z)—F(x)], and D,, = sup,cr[F(z)—F,(x)]. Show that D, (F)
and D,/ (F) have the same distribution and, for ¢ € (0,1),

P(Df(F)<t) = n!H/ o duy -+ - dun,.

" i=1 max{O,"%i"*'l—t}

Proof. Let X(; be the ith order statistic, i = 1,...,n, Xy = —oo, and
X(nt1) = o0. Note that

1
D} (F) = max sup [ - F(x)}
0Sisn Xy <o <Xy LT
= max |— — inf F(z)
0<i<n |n X@<e<Xgin
[
= max |— — F(X(i))
0<i<n | n

7
= max **U(i) y
0<i<n [N

where U(;y = F(X(;)) is the ith order statistic of a random sample of size
n from the uniform distribution on (0,1). Similarly,
]

J
= max sup F(x)— =
0sisn | X (j) <e<X(t) n

[,

D, (F) = max sup {F(x) -
0SISn X (j)<e<X(j41)

_ T
~ 0%)%n _U(H'l) n}

1

Since (1—U(), ..., 1 = Ugyy) has the same distribution as (U, ..., U(1)), we
conclude that D, (F) and D (F) have the same distribution. For ¢ € (0, 1),

P(D}(F)<t)=P < max Li - U(i)} < t>

0<i<n

n

n Up—it+2
:n!H/ duy -+ -du,. 1

i=1 max{0, 2=41 ¢}

:P<U(i) > Z—t,z‘:1,...,n>
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Exercise 54 (#6.116). Let (Xi,...,X,) be a random sample from a
continuous distribution F' on R, F,, be the empirical distribution, and
Cn(F) = [[Fu(z) — F(z)]?dF(x). Show that the distribution of C,,(F)
does not vary with F.
Solution. Note that

Co(F) = /Ol[Fn(F‘l(t)) — #Pat
/01
:/01

where the last equality follows from the fact that X; < F~1(¢) if and only if
F(X;) <t. Since (F(X1), ..., F(X,)) is a random sample from the uniform
distribution on (0, 1), the distribution of C,,(F') does not depend on F. i

2
1 n
- > T s rry(Xi) - t] dt
i=1

2
1 n
- > oy (F(Xy) — t} dt,
=1

Exercise 55 (#6.123). Let 0,, be an estimator of a real-valued parameter
0 such that Vn_1/2(én —6) =4 N(0,1) for any 6 and let V,, be a consistent
estimator of V,,. Suppose that V;, — 0.

(i) Show that the test with rejection region V[l/z(én —0p) > 2 is a con-
sistent asymptotic level « test for testing Hy : 0 < 6y versus Hy : 8 > 6,
where z, is the (1 — a)th quantile of N(0,1).

(ii) Apply the result in (i) to show that the one-sample one-sided t-test for
the testing problem in (i) is a consistent asymptotic level « test.

Solution. (i) Under H; : 6 > 6, V{l/z(én —6) =4 N(0,1). Therefore,
the test with rejection region V[l/ 2 (én —00) > z, is an asymptotic level «
test. Also,

P (Vn—lﬂ(én — ) >za) —p (Vn—l/z’(én ) >V V20— 90)) =1

as n — oo, since Vn_1/2(9 — 60y) —p 0o. Hence, the test is consistent.

(ii) Let (Xq,...,X,) be a random sample from a population with finite
mean @ and variance o2. For testing Hy : 6 < 6y versus Hy : 6 > 6y,
the one-sample t-test rejects Hy if and only if ¢(X) = /n(X — 6)/S >
th—1,0, Where X and S? are the sample mean and variance and th—1,a
is the (1 — a)th quantile of the t-distribution ¢,_;. By the central limit
theorem, v/n(X — 6) —4 N(0,02). Hence V,, = 0%/n — 0. By the law of
large numbers, S? —, o2. Hence V., = 52/n is a consistent estimator of

V... Note that the t-distribution ¢,_; converges to N(0,1). Then, by the
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result in Exercise 28 of Chapter 5, lim,, t,,_1 o = 2o. From the result in (i),
the one-sample t-test is a consistent asymptotic level a test. 1

Exercise 56 (#6.124). Let (Xi,...,X,,) be a random sample from the
gamma distribution with shape parameter # and scale parameter 7y, where
6 > 0 and v > 0 are unknown. Let T, = n> 1, X?/(> 1, X;)?. Show
how to use T, to obtain an asymptotic level a and consistent test for testing
Hy:0=1versus Hy : 0 # 1.

Solution. From the central limit theorem,

Al 1) - (5] ~emon,

where

s ( PO -[EX)P  EQXY) - B(X1)E(XT)
_(E(X?)—E(Xl)E(Xf) E(XY) - [BE(XD)P? >

Since the moment generating function of the gamma distribution is g(¢) =
(1 - ryt)_07
E(X1)=4'(0) = 0,

and
B(XH) =4¢"(0)=000+1)(0+2)(0+3)"
Hence,
5= 0~ 20(0 + 1)~3
2000 +1)7> 2000 +1)(20 +3)y* )~
Note that

1 n 2 n n
7 2ie1 X 1 1
n i=1“*1 =1 1=1

with h(z,y) = y/2,
E
ox
H(z,y) = ( oh )
3y

_2(0+1)
H(E(Xy), E(X2)) = H(67,0(0 + 1)72) = ( s )

92,72

I
/N
\
w"" ] ‘1\3
wle

x

and
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By the d-method,

V[T — h(B(X1), E(X?))] —a N(0,07),

where
0® = [H(07,6(0 + 1)) "SH(67,6(60 + 1))
40+1)%2 200+1)(20+3) 8(6+1)2
= 03 + 93 - 03
2(0+1)
=T
Note that
00+ 1)y2 1
R(E(X,), B(X?)) = h(67,6(8 + 1)7°) = (M” =14

Combining all the results, we obtain that
—1/2 1
v, T—1-2)—=aN(0.1)

with V,, = 2(6 +1)/(63n). From the asymptotic normality of T,

1
71 —p 0.

Hence, a consistent estimator of V, is

1
5 2(T—1 H) 27(T — 1)°
V= T .
T-1° "

From Theorem 6.12 in Shao (2003), an asymptotic level a and consistent
test for Hg : 0 = 1 versus Hy : 0 # 1 rejects Hy if and only if

Vnil(T - 2)2 > X?,aa
which is the same as

n(T —2)?

2
= > X
oT(T —1)2 ~ Xte

where X%,a is the (1 — a)th quantile of the chi-square distribution x?2. &
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Confidence Sets

Exercise 1 (#7.4). Let (X;1,X;2), ¢ = 1,...,n, be a random sample

from the bivariate normal distribution with unknown p; = E(Xy;), 0]2- =

Var(le), j = 1,2, and 012 = COV(Xll,Xlg). Let 0 = [1,2/,u1 be the
parameter of interest (1 # 0), Y;(0) = X2 — 0X,1, and

R _
S2(0) = — > ¥i(0) = Y(0))* = S5 — 2051, + 6°SF,
1=1

where Y'(6) is the average of Y;(#)’s and S? and S;o are sample variances
and covariance based on X;;’s. Discuss when Fieller’s confidence set for 6,

C(X) = {0 : n[Y (0)*/S*(0) < t7_1 a2}

is a finite interval, the complement of a finite interval, or the whole real
line.

Solution. Note that nY2(6)/S2() < ¢2

n—1,a/2 18 equivalent to

a02+b0+020,

where a = tifl,oz/2512 —nX2 b = 2nX; Xy — t72171,a/2512)’ and ¢ =
tifl’a/zsg —nX2. Then the confidence set C'(X) represents the whole
real line if @ > 0 and b? — 4ac < 0; the complement of a finite interval if
a > 0 and b? — 4ac > 0; a finite interval if @ < 0 and b? — 4ac > 0. 1

Exercise 2 (#7.6). Let X = (Xi,...,X,) be a random sample from
N(0,0) with an unknown € > 0. Find a pivotal quantity and use it to
construct a confidence interval for 6.

Solution. Let X be the sample mean and R(X,6) = n(X — 0)2/6. Since
X is distributed as N(0,6/n), R(X,0) has the chi-square distribution y?

309
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and, thus, is a pivotal quantity. Let X%,a be the (1 — a)th quantile of x?
and ¢ = x7 ,/(2n). Then

CX)={0:R(X,0) < 3.} ={0:6°—2(X + )0+ X% <0}

is a confidence set for @ with confidence coefficient 1 — . If X > —c/2,
then
C(X)= [)_(—i—c— V2eX +c2 X +ec+ 20)_(—1—02}

is an interval. If X < —c/2, then C(X) is the empty set.

Exercise 3 (#7.7). Let T be a random variable having cumulative dis-
tribution function F. For any ¢ € (0,1), show that P(F(T) < t) <t and
P(F(T-) >1—1t) <t, where F(z—) denotes the left limit of F' at x.
Solution. Let F~1(t) = inf{z : F(z) > t}. If F(T) < t, then, by defini-
tion, T' < F~1(t). Thus,

P(F(T)<t) < P(T<Ft)=FF ' t)-) <t,

since F(z) < t for all z < F~1(t) so that the left limit of F at F~1(¢) is no
larger than t. Similarly, F(T—) > 1 —t implies T > F~!(1—t) and, hence,

PF(T-)>1-t)<P(T>F'1-t)=1-FF '(1-1)<t,
since F(F~1(1—t))>1—t. 1

Exercise 4 (#7.9). Let (Xq,...,

Xn
variables having Lebesgue density 4 (£)“” I(O o)(x), where a > 1 is known
and 6 > 0 is unknown.
(i) Construct a confidence interval for 6 with confidence coefficient 1 — «
using the cumulative distribution function of the largest order statistic X,).
(ii) Show that the confidence interval in (i) can also be obtained using a
pivotal quantity.
Solution. (i) The cumulative distribution function of X, is

) be a random sample of random

0 t<0
Fo(t) =1 (t/6)" 0<t<®
1 t>0,

which is decreasing in 6 for any fixed ¢ € (0,0). Also, for ¢ > 0, limg_,o Fp(¢)
=1 and limg_, o Fyp(t) = 0. By Theorem 7.1 in Shao (2003), a 1 — « confi-
dence interval for 6 has upper limit being the unique solution of Fy(T) = a3
and lower limit being the unique solution of Fp(T") = 1—aq, where a1 +ag =

a. Consequently, this confidence interval is [T'/(1 — ag)(7m)71,T/agna)_1].
(ii) Note that U(6) = (X(n)/G)na has the uniform distribution on (0,1)
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and, hence, is a pivotal quantity. The 1 — « confidence interval constructed
using U(0) is the same as that in part (i) of the solution. &

Exercise 5 (#7.10). Let (X1,..., X,,) be a random sample from the ex-
ponential distribution on (a,c0) with scale parameter 1, where a € R is
unknown.

(i) Construct a confidence interval for a with confidence coefficient 1 — «
by using the cumulative distribution function of the smallest order statistic
X(l).

(ii) Show that the confidence interval in (i) can also be obtained using a
pivotal quantity.

Solution. (i) The cumulative distribution function of Xy is

0 t<a
Fa(t) = { 1— efn(tfa) t > a,

which is decreasing in a for fixed ¢t > a. By Theorem 7.1 in Shao (2003), a
1 — « confidence interval for a has upper limit being the unique solution of
F.(T) = a1 and lower limit being the unique solution of F,(T) = 1 — axq,
where a; + az = a. Then, [T + n~tlog(as),T +n~tlog(l — ay)] is the
resulting confidence interval.

(ii) Note that W(a) = n(X(;) — a) has the exponential distribution on
(0,1) with scale parameter 1 and, hence, it is a pivotal quantity. The 1 — «
confidence interval for a constructed using W (a) is the same as that derived
in part (i) of the solution. i

Exercise 6 (#7.11). Let X be a single observation from the uniform
distribution on (6 — 1,6 + 1), where § € R is unknown.

(i) Show that X — 0 is a pivotal quantity and that a confidence interval of
the form [X + ¢, X +d] with some constants —% <c<d< % has confidence
coefficient 1 — «v if and only if its length is 1 — a.

(ii) Show that the cumulative distribution function Fy(z) of X is nonin-
creasing in 6 for any = and it can be used to construct a confidence interval
for 6 with confidence coefficient 1 — a.

Solution. (i) The distribution of # — X is the uniform distribution on

(=1, 1). Hence, § — X is a pivotal quantity. For —% <e<d< %,

272
PX+c<f0<X+d)=Pl<td-X<d)=d—-c

Hence, [X + ¢, X + d] is a confidence interval with confidence coefficient

1—c«ifand only if d — ¢ =1 — @, i.e., the length of [X +¢, X +d] is 1 — a.
(ii) For z € R,

1 0<x—3

Fy(z)=¢ z+1-96 r—i<l<z+1i



312 Chapter 7. Confidence Sets

which is nonincreasing in §. By Theorem 7.1 in Shao (2003), a 1 — « confi-
dence interval for a has upper limit being the unique solution of Fp(X) = ay
and lower limit being the unique solution of Fyp(X) = 1 — ag, where
a1 + ag = . This confidence interval is [z + ag — %,X + % —ay]. 1

Exercise 7 (#7.12). Let Xy, ..., X;, be a random sample of random vari-
ables with Lebesgue density Ha‘gx_(e'*‘l)l(a’oo)(m), where 8 > 0 and a > 0.
(i) When 6 is known, derive a confidence interval for a with confidence co-
efficient 1 — o by using the cumulative distribution function of the smallest
order statistic Xq).

(ii) When both a and 6 are unknown and n > 2, derive a confidence interval
for 6 with confidence coefficient 1 — a by using the cumulative distribution
function of T' =[]}, (Xi/X(1)).

(iii) Show that the confidence intervals in (i) and (ii) can be obtained using
pivotal quantities.

(iv) When both @ and 6 are unknown, construct a confidence set for (a, 6)
with confidence coefficient 1 — « by using a pivotal quantity.

Solution. (i) The cumulative distribution function of Xy is

1—a"?/x"0 a<x
Fa(x)—{ 0 a>x,

which is nonincreasing in a. By Theorem 7.1 in Shao (2003), a 1 — a confi-
dence interval for a has upper limit being the unique solution of F,(X (1)) =
a; and lower limit being the unique solution of F,,(X(1)) = 1 — ag, where

o1 + az = . This leads to the interval [aé"e) 1X(1), (1- al)(”e)_lX(l)].
(ii) Consider Y; = log X;. Then (¥7,...,Y,) is a random sample from
the exponential distribution on the interval (b,00) with scale parameter
0~', where b = loga. From the result in Exercise 7 of Chapter 2 and
the fact that Y(;) = log X(y) is the smallest order statistic of the ¥ sam-
ple, 20logT = 20" | (Y; — Y(1)) has the chi-square distribution X%(n—l)'
Hence, the cumulative distribution function of T is

P(T <t)= P(20logT < 20logt) = Fy(,—1)(20logt)

for ¢ > 1, where Fy(,_1) denotes the cumulative distribution function of
the chi-square distribution X% n1)" From Theorem 7.1 in Shao (2003), a
1 — « confidence interval for 6 has upper limit being the unique solution
of Fy;,—1)(201ogT) = 1 — a and lower limit being the unique solution
of Fyn_1)(20logT) = a1, where a; + az = a. The resulting interval is
[X§(7L_1)71_a1/(210gT),Xg(n_l)ﬂz/(ﬂogT)], where xg(n_ma denotes the
(1 — a)th quantile of X%(nfl)'

(iii) When 6 is known, X(1)/a is a pivotal quantity. The confidence interval
constructed using X(;)/a is the same as that in part (i) of the solution.
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When both a and 6 are unknown, it follows from part (ii) of the solution
that 20logT is a pivotal quantity. The confidence interval constructed
using 20log T is the same as that in part (ii) of the solution.

(iv) From part (i) of the solution,

X*G 1
(1) 1/6
< = < =1 - —.
P < 0 t) P (X(l) at ) 1 m

Hence, a pivotal quantity is X(Gl)/a. Let 0 < ¢; < c2 be constants such that

;" —c3" =1—a. Then, a 1 — a confidence set for (a, ) is

C(X) = {(a,e) ic1a < X(gl) < Cga} A |

Exercise 8 (#7.13). Let X = (X3, ..., X,,) be a random sample from the
Weibull distribution with Lebesgue density %xa_le_la/ef(om)(x), where
a > 0 and § > 0 are unknown. Show that R(X,a,0) = [],(X2/0) is
pivotal. Construct a confidence set for (a,#) with confidence coefficient
1 — « by using R(X,a,6).

Solution. Let Y; = X?/0. Then Y; has the exponential distribution on
(0, 00) with scale parameter 1. Since Y7, ..., Y, are independent, R(X, a, )=
[T;,(X¢/0) is pivotal. Since the distribution of R(X, a, #) is known, we can
find positive constants ¢; and c¢s such that P(¢; < R(X,a,0) < ¢3) =1—a.
A confidence set for (a, @) with confidence coefficient 1 — « is

C(X)= {(a,ﬂ) " < ﬁXf < 629"}. 1

i=1

Exercise 9 (#7.14). Let F and G be two known cumulative distribution
functions on R and X be a single observation from the cumulative distribu-
tion function 0F(x) + (1 — 0)G(z), where 6 € [0, 1] is unknown. Construct
a level 1 — a confidence interval for # based on the observation X. Find a
condition under which the derived confidence interval has confidence coef-
ficient 1 — a.

Solution. Let f(z) and g(x) be the probability densities of F' and G, re-
spectively, with respect to the measure induced by F'+G. From the solution
of Exercise 12 in Chapter 6, the family of densities

{0f(x) + (1 —-0)g(x) : 0 € [0,1]}

has monotone likelihood ratio in Y(X) = f(X)/g(X). Let Fyy be the
cumulative distribution function for Y (X). By Lemma 6.3 in Shao (2003),
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Fy,p(X) is nonincreasing in ¢ for any fixed X. Thus, by Theorem 7.1 in
Shao (2003), a level 1 — a confidence interval for 6 is [0, 8], where

0 =sup{f : Fyo(X) > a1}, 0=inf{0: Fyoy(X—) <1-—aa},

and oy + as = . A sufficient condition for this interval to have confidence
coefficient 1 — « is that Fyg(x) is continuous in x, which is implied by
the condition that F” and G’ exist and the set {z : F'(z) = ¢G’'(x)} has
Lebesgue measure 0 for any fixed c. I

Exercise 10 (#7.16). Let (Xy,...,X,) be a random sample of binary
random variables with P(X; = 1) = p. Using the cumulative distribution
function of T'= Y"1 | X;, show that a level 1 — « confidence interval for p
is

1 T By 41),2(n—T),00

1+ %MFQ(n—T—i-l),QT,az T 14 %F2(T+1)72(n—T),a1 ’

where a; + a2 = «a, F,p.q is the (1 — a)th quantile of the F-distribution
Fop, and Fy 0 is defined to be oo.

Solution. Since T has the binomial distribution with size n and proba-
bility p and the binomial family has monotone likelihood ratio in T, the
cumulative distribution function of T', Fr p(¢), is decreasing in p for fixed
t. By Theorem 7.1 in Shao (2003), a level 1 — « confidence interval for p
is [p,p], where P is the solution to Fr ,(T) = «; and p is the solution to
Fr,(T—) =1 — as. Let Y be a random variable having the beta distri-
bution with parameter (¢t,n —t + 1). Using integral by parts, we obtain
that

P n!
P =p) = /0 myt’l(l —y)" 'y
n! ¢ n—t b n! t n—t—1
:mp(l_p) +/0 my(l—y) dy
=2 Z-g(nnii)lpi(l -p)"
= 1_— Frp,(t—).

Therefore, p is the asth quantile of the beta distribution with parameter
(T,n —T +1) if T > 0 and is equal to 0 if ' = 0. For p, it is the solution
tol —a; =1— Fp,(T + 1-). Hence, p is the (1 — «;)th quantile of the
beta distribution with parameter (T'+1,n—T) if T < n and is equal to 1 if

T =n. Let F, be a random variable having the F-distribution Fy ;. Then,
% has the beta distribution with parameter (a/2,b/2). Hence

T+1
e P21 41) 2(n—T), 04

? pr—
L+ T Fy (1), 2(n-T) 00



Chapter 7. Confidence Sets 315

when Fj, o« is defined to be co. Similarly,

_T
n—T+1"2T2(n=T+1),1—-c2

p .
Tl Bratemin 1o

Note that Fa_ bl has the F-distribution Fj ,. Hence,
1

p= — .
= 14+ =R i1 2T s

Exercise 11 (#7.17). Let X be a sample of size 1 from the negative
binomial distribution with a known size r and an unknown probability
p € (0,1). Using the cumulative distribution function of T = X — r, show
that a level 1 — « confidence interval for p is

1 7For 2T,y
T+1 ’ r
I+ T F2(T+1),2r,a2 1+ TFQT,QT,al

b

where a1 + ap and Fy p o is the same as that in the previous exercise.
Solution. Since the negative binomial family has monotone likelihood ratio
in —T', the cumulative distribution function of T', Fr p(¢), is increasing in p
for fixed t. By Theorem 7.1 in Shao (2003), a level 1 —« confidence interval
for p is [p, B], where p is the solution to Fr ,(T') = ag and P is the solution to
Fr,(T-) =1-ay. Let B,,, denote a binomial random variable with size
m and probability p and 3, denote a beta random variable with parameter
(a,b). Then,

Fry(t) = P(Birp > 1 —1) = P(Biyrp 2 1) = P(Bri41 < p).
Hence, p is the asth quantile of 3, 741. Since Frp,(T—) = Fr,(T —1), D

is the (1 — a1)th quantile of 8,1 if T'> 0 and 1 if T' = 0. Using the same
argument as that in the solution of the previous exercise, we conclude that

1 T F2r 2T 0y
T+1 ’ r
1+ T FQ(T+1),2T,(12 1+ TFQT,QT,ozl

[p,p] =

Exercise 12 (#7.18). Let T be a statistic having the noncentral chi-
square distribution x2(f), where the noncentrality parameter § > 0 is
unknown and r is a known positive integer. Show that the cumulative
distribution function of T', Fy(t), is nonincreasing in 6 for each fixed ¢ > 0
and use this result to construct a confidence interval for § with confidence
coefficient 1 — a.

Solution A. From Exercise 27 of Chapter 1,

Fy(t)=e ") (62 Gjtr(t),

g!

Jj=0
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where Goj4r(t) is the cumulative distribution function of the central chi-
square distribution ng_H? j=1,2,.... From the definition of the chi-square
distribution ng . it is the distribution of the sum of 2j+r independent and
identically distributed x} random variables. Hence, Ga;,(t) is decreasing
in j for any fixed ¢ > 0. Let Y be a random variable having the Poisson
distribution with mean 6/2 and h(j) = Gaji+r(t), t > 0, j = 0,1,2,....
Then Fy(t) = Ep[h(Y)], where Ejy is the expectation with respect to the
distribution of Y. Since the family of distributions of ¥ has monotone
likelihood ratio in Y and A(Y") is decreasing in Y, by Lemma 6.3 in Shao
(2003), Ey[h(Y)] is nonincreasing in §. By Theorem 7.1 in Shao (2003), a
1 — « confidence interval for @ is [0, 8] with

0 =sup{f: Fy(T) > a1} and 0=inf{f: Fp(T)<1—as},

where a7 + a9 = a.
Solution B. By definition,

Fot) =P (X +Y <) :/OOOP(X<t—y)f(y)dy7

where X has the noncentral chi-square distribution x?(6), Y has the central
chi-square distribution x2_;, f(y) is the Lebesgue density of Y, and X and
Y are independent (Y = 0 if » = 1). From Exercise 9(ii) in Chapter
6, the family of densities of noncentral chi-square distributions x?(6) has
monotone likelihood ratio in X and, hence, P(X <t — y) is nonincreasing
in 6 for any ¢ and y. Hence, Fy(¢) is is nonincreasing in 6 for any ¢ > 0.
The rest of the solution is the same as that in Solution A. 1

Exercise 13 (#7.19). Repeat the previous exercise when x2(6) is replaced
by the noncentral F-distribution F}, ,,(#) with unknown 6 > 0 and known
positive integers r; and rs.

Solution. It suffices to show that the cumulative distribution function
of F,, ,(0), Fy(t), is nonincreasing in 6 for any ¢ > 0, since the rest of
the solution is the same as that in Solution A of the previous exercise. By
definition, Fy(¢) is the cumulative distribution function of (Uy/r1)/(Us/72),
where U; has the noncentral chi-square distribution x2 (6), U, has the
central chi-square distribution ngv and U; and U, are independent. Let
g(y) be the Lebesgue density of r1Us/re. Then

Fy(t) = P(Uy < t(r1Us/rs)) / P(UL < ty)g(y)dy.

From the previous exercise, P(U; < ty) is nonincreasing in 6 for any ¢ and
y. Hence, Fy(t) is nonincreasing in 6 for any ¢. i

Exercise 14 (#7.20). Let X;;, j = 1,...,n;, @ = 1,...,m, be indepen-
dent random variables having distribution N(u;,02), i = 1,....,m. Let
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po=mn"t3" nu and 0 = 0723 n;(p; — ji)?. Construct an upper

confidence bound for @ that has confidence coefficient 1 — « and is a func-
tion of T = (n — m)(m — 1)~1SST/SSR, where

SSR = i i(Xij - X;)? SST = i i(xij ~X)?,
i=1 j=1 =

X;. is the sample mean based on X1, ..., X;y,,, and X is the sample mean
based on all Xj;’s.

Solution. Note that Z?=1(Xm — X;.)? has the chi-square distribution
X%i—l, i = 1,...,m. By the independence of X;;’s, SSR has the chi-square
distribution x2_,,, where n. = > ;" n;. Let Y = (X1.,..., X;5.) and A be
the m x m diagonal matrix whose ith diagonal element is \/n;/o. Then
AY has distribution N,,(, I,), where I, is the identity matrix of order m

and ¢ = (ui1y/n1/0, ..., fim+/Tm /o). Note that

SSA = mi (K~ X)P = YT AL, — 0 K K )AY.

=1

where K, = (\/n1, ..., \/im). Since K7 K, = n, (I, —n 'K, K] )? =
(I, —n 'K,,K") and, by Exercise 22(i) in Chapter 1, SSA has the non-
central chi-square distribution x2,_;(d) with

§=[BAY)|" (I, —n 'K, K] )E(AY) = 6.

m

Also, by Basu’s theorem, SSA and SSR are independent. Since SSA = SST
— SSR, we conclude that

~n—m _ SSA/(m—1)

T m—1  SSR/(n —m)

has the noncentral F-distribution F,,,_1 ,,—m (#). From the previous exercise,
the cumulative distribution function of T', Fy(t), is nonincreasing in 6 for
any t. Hence, by Theorem 7.1 in Shao (2003), an upper confidence bound
for 6 that has confidence coefficient 1 — « is

0 =sup{f: Fy(T) > a}. ¥

Exercise 15 (#7.24). Let X;, i = 1,2, be independent random variables
distributed as the binomial distributions with sizes n; and probabilities p;,
i = 1,2, respectively, where n;’s are known and p;’s are unknown. Show

how to invert the acceptance regions of UMPU tests to obtain a level 1 —«
p2(1—pi1)
p1(l—p2)"

confidence interval for the odds ratio
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Solution. Let § = % From the solution to Exercise 24 in Chapter

6, a UMPU test for Hy : 8 = 0y versus H; : 0 # 0y has acceptance region
Abo) ={(Y,U) : c1(U,00) <Y < (U, 6o)},

where Y = X5, U = X; + X5, and ¢;(U,0) are some functions. From
Exercise 19 in Chapter 6, for each fixed U, ¢;(U, ) is nondecreasing in 6.
Hence, for every 6,

{0€A0))=1{0:c(U.0) <Y <ea(U,0)} = [c55(Y), cT (Y],

where
cl_é(Y) =inf{x : ¢;(U,z) > Y}.

From Theorem 7.2 in Shao (2003), [c; U(Y) cl_%](Y)] is a level 1 — « confi-
dence interval for 6. 1

Exercise 16 (#7.25). Let X = (Xy,...,X,,) be a random sample from
N(p,0?).

(i) Suppose that 02 = yu? with unknown v > 0 and p € R, 1 # 0. Obtain
a confidence set for v with confidence coefficient 1 — « by inverting the
acceptance regions of LR tests for Hy : v = 7o versus Hj : v # 7Yo.

(ii) Repeat (i) when 02 = yu with unknown v > 0 and p > 0.

Solution. (i) The likelihood function is given in part (i) of the solution
to Exercise 47 in Chapter 6. The MLE of (u,v) is (&, 'y) (X,56%2/X?),
where X is the sample mean and 62 =n=1 3" (X; — X)2. When v = 7,
using the same argument in the solution of Exercise 41(viii) in Chapter 4,
we obtain the MLE of u as

fi(v0) = { iy (0)  Llpg(70),70) > £z (70),70)
p—(v0)  Lp+(70):70) < (- (70), %)

where

pt(v0) =

—X +/(5X2 +462)/vo
5 :

The likelihood ratio is

_LX _n&Q—I-n[(o X)?
M) = I a

The confidence set obtained by inverting the acceptance regions of LR tests

is {v: A(y) > c(v)}, where ¢(7y) satisfies P(A(7) < ¢(7)) = a.
(ii) The likelihood function is given in part (ii) of the solution to Exercise

47 in Chapter 6. The MLE of (i,7) is (X,62/X) when X > 0. If X <0,
however, the likelihood is unbounded in v. When v = 7y, using the same
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argument as that in the solution to Exercise 60 of Chapter 4, we obtain the
MLE of u as fi(v0) = (\/78 + 4T — 7)/2, where T = n~'Y"" | X2. The
likelihood ratio is

es> —n/2 nT nX nf(yo0) X
[%ﬂ(’m)} exp {72%/1(70) BT 2700 } X >0

0 X <o.

A0) =

The confidence set obtained by inverting the acceptance regions of LR tests
is {v: A(y) = c(T,7)}, where ¢(T,~) satisfies P(A(y) < ¢(T,7)|T) = a. 1

Exercise 17 (#7.26). Let X = (Xy,...,X,,) be a random sample from
N(u,0?) with unknown g and 2. Discuss how to construct a confidence
interval for 8 = p/o with confidence coefficient 1 — a by

(i) inverting the acceptance regions of the tests given in Exercise 22 of
Chapter 6;

(ii) applying Theorem 7.1 in Shao (2003).

Solution. (i) From Exercise 22 in Chapter 6, the acceptance region of a test
of size a for Hy : 6 < 6y versus Hy : 0 > 0y is {X: t(X) < ¢q(6p)}, where
t(X) = v/nX /S, X is the sample mean, S? is the sample variance, and c,, (6)
is the (1 — a)th quantile of the noncentral t-distribution ¢,_1(y/nf). From
the solution to Exercise 22 in Chapter 6, the family of densities of ¢,,—1(1/n6)
has monotone likelihood ratio in #(X). By Lemma 6.3 in Shao (2003),
co(0) is increasing in 6 and, therefore, {6 : c,(0) > t(X)} = [0(X), 0)
for some 6(X). By Theorem 7.2 in Shao (2003), [#(X), c0) is a confidence
interval for 8 = pu/o with confidence coeflicient 1 — . If it is desired to
obtain a bounded confidence interval for ¢, then we may consider C'(X) =
{0 1 cayo(0) > t(X) > doj2(0)}, where do(0) is the is the ath quantile
of t,—1(y/nf). By considering the problem of testing Hy : 6 > 6y versus
Hy : 0 < 6y, we conclude that {6 :¢(X) > d,/2(f)} is a confidence interval
for @ with confidence coefficient 1 — «/2. Hence, C(X) is a confidence
interval for € with confidence coefficient 1 — a.

(ii) The cumulative distribution function of ¢(X) is

Fylt) = / " a(ty - 0)f(y)dy,

where ® is the cumulative distribution function of N(0,1), f(y) is the
Lebesgue density of /W/(n — 1), and W has the chi-square distribution
x2_,. Hence, for any fixed t, Fy(t) is continuous and decreasing in 0,
limg_yoo Fo(t) = 0, and limp_,_o Fy(t) = 1. By Theorem 7.1 in Shao
(2003), [0, 6] is a confidence interval for § with confidence coefficient 1 — a,
where § is the unique solution to Fy(t(X)) = 1 — /2 and @ is the unique
solution to Fyp(t(X)) = a/2. 1

Exercise 18 (#7.27). Let (Xy,...,X,) be a random sample from the



320 Chapter 7. Confidence Sets

uniform distribution on (6 — 3,6+ 3), where 6 € R. Construct a confidence
interval for § with confidence coefficient 1 — a.

Solution. Note that X; + § — 6 has the uniform distribution on (0,1). Let
X(;) be the jth order statistic. Then

1
P(X(1)+29§C)1(1C)n.

Hence
P X(l)—1+a1/n<9 :1—0[1.
2 L =

Similarly,

1 n
Let o = a1 + as. A confidence interval for 8 with confidence coefficient

i then [Xr) 3 +ad/ ™ Xy + 3 - "]

Exercise 19 (#7.29). Let (X1, ..., X,,) be a random sample from N (u, 02)
with unknown 6 = (u,0?). Consider the prior Lebesgue density m(0) =
71 (p|o?)me(0?), where 7y (u|o?) is the density of N(ug,o50?),

1 1\ 2
o) = () o)

and j, 02, a, and b are known.

(i) Find the posterior of  and construct a level 1 —a HPD credible set for
L.

(ii) Show that the credible set in (i) converges to the confidence interval
[X — tn_lﬁa/g%,)_( + tn_lya/g%} as 03, a, and b converge to some limits,
where X is the sample mean, S? is the sample variance, and tn—1,q is the
(1 — a)th quantile of the t-distribution ¢,,_;.

Solution. (i) This is a special case of the problem in Exercise 20(iii) of
Chapter 4. Let w = o~2. Then the posterior density of (u,w) is p(u|w)p(w),
where p(u|w) is the density of N (pi.,w ™ e; 1), pe = (05 2po+nX)/(n+oy?),
Cx =n+0y 2 and p(w) is the density of the gamma distribution with shape
parameter a + n/2 and scale parameter v = [b=! + (n — 1)5%/2]7!. The
posterior density for p is then

o0
fp) = / p(plw)p(w)dw
0
00 —(a4+n/2
= 4@7 ( /)wa+(n*1)/2e*h*1+6*(u*u*)2/2]wdw
0 vV 27TF(CL + %)

L Tl r)ymey e
- VAl(a+ 5)[2y 71 + el — pa)2er (D2
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Since this density is symmetric about p., a level 1 — o HPD credible set
for 1118 [fts — tu, ps + ti], where t, > 0 satisfies

s tts
[ sdu=1-a.
s —Tx

(i) Let 02 — 00, a — —1/2, and b — oco. Then, u, — X, c. — n,
2771 — (n—1)S?, and

D(3)vil(n — 1$?)n /2
VAL ()0~ D87 + = X2

() —

which is the density of (S/4/n)T with T being a random variable having
t-distribution ¢, 1. Hence, t. — t,_1 /25/+v/n and the result follows.

Exercise 20 (#7.30). Let (X1, ..., X,,) be a random sample from a distri-
bution on R with Lebesgue density % f (%), where f is a known Lebesgue
density and p € R and o > 0 are unknown. Let Xy be a future observation
that is independent of X;’s and has the same distribution as X;. Find a
pivotal quantity R(X, Xy) and construct a level 1 —« prediction set for Xj.
Solution. Let X and S? be the sample mean and sample variance. Con-
sider T = (X — X)/S. Since

v Xo Xo—p 1 Xi—p
Xoin - Zzl o

S 9 1/2
1 Zn Xi—p 1y Xji—p
n—1 i=1 o n Jj=1 o

and the density of (X; — pu)/o is f, T is a pivotal quantity. A 1 — «
prediction set for X is {XO X — X[ < cS}, where c is chosen such that
P(T|<e¢)=1—a. 1

T =

Exercise 21 (#7.31). Let (Xi,...,X,) be a random sample from a
continuous cumulative distribution function F' on R and Xy be a future
observation that is independent of X;’s and is distributed as F. Sup-
pose that F is increasing in a neighborhood of F~!(a/2) and a neigh-
borhood of F~(1 — a/2). Let F, be the empirical distribution. Show
that the prediction interval C(X) = [F, 1(a/2), F,,; (1 — a/2)] for X, sat-
isfies lim,, P(Xog € C(X)) =1 — a, Where P is the joint distribution of
(Xo, X1, ..., Xpn).

Solution. Since F is increasing in a neighborhood of F~1(a/2), F71(t) is
continuous at /2. By the result in Exercise 28 of Chapter 5, hmn “(a/2)
= F~}«a/2) a.s. Then Xo — F, (a/2) =4 Xo — F~}(a/2) and, thus

hmP( "a/2) > Xo) = P(F*(a/2) > Xo) = a/2,
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since F' is continuous. Similarly,
limP(Xo < F,'(1-a/2)) = P(Xo < F ' (1—a/2)) =1—a/2.
Hence,

h}LnP(XO € C(X)) = 11711nP(Fn’1(a) <Xo<F'1-a/2)=1-a.

Exercise 22 (#7.33). Let X = (X1,..., X,,) (n > 1) be a random sample
from the exponential distribution on the interval (8, oo) with scale param-
eter 6, where 6 > 0 is unknown.

(i) Show that both X /6 and X(1)/0 are pivotal quantities, where X is the
sample mean and X(;) is the smallest order statistic.

(ii) Obtain confidence intervals (with confidence coefficient 1 — «) for 6
based on the two pivotal quantities in (i).

(iii) Discuss which confidence interval in (ii) is better in terms of the length.
Solution. (i) Note that X;/6 — 1 has the exponential distribution on the
interval (0, 00) with scale parameter 1. Hence, X /0 — 1 has the gamma dis-
tribution with shape parameter n and scale parameter n~' and X /01
has the exponential distribution on (0, co) with scale parameter n~*. There-
fore, both X /0 and X(1y/0 are pivotal quantities.

(ii) Let ¢, be the ath quantile of the gamma distribution with shape
parameter n and scale parameter n~'. Then

X
Vig (cn,a/2 < g -1< Cn,la/2) =1-a,
which leads to the 1 — « confidence interval
X X
1+ Cn,l—(x/Z7 1+ Cn,a/2 .

& - |

On the other hand,

1 1 X(l) 1 1
Pl -1 <—2_ 1< -log— | =1-
<n Ogl—a/2_ 6 =0 %% @

which leads to the 1 — « confidence interval

X X
1—n"1llog(l—a/2)"1—n"tlog(a/2)|"

Co(X) = [

(iii) The length of C(X) is

X(Cn,a/Q - Cn,l—a/Z)
(1 + cn,a/Q)(l + cn,lfa/Q)
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and the length of C3(X) is

X(l) 10g(2/a - l)n_l
[1—n=tlog(a/2)][1 —n-1llog(l — a/2)]

From the central limit theorem, lim,, \/n(cp,a/2 = Cp,1—a/2) > 0, assuming
a < % Hence, for sufficiently large n,

log(2/a — 1)n=t (Cna/2 = Cni—ay2)
[1—n~tlog(a/2)][1 —n~tlog(l —a/2)] ~ (14 cha/2)(l+cni—ase)

Also, X > X(1). Hence, for sufficiently large n, the length of Cy(X) is
shorter than the length of Cy(X). i

Exercise 23 (#7.34). Let > 0 be an unknown parameter and 7' > 0 be
a statistic. Suppose that 7'/6 is a pivotal quantity having Lebesgue density
f and that 22 f(x) is unimodal at z in the sense that f(z) is nondecreasing
for x < xg and f(x) is nonincreasing for z > xy. Consider the following
class of confidence intervals for 6:

b
Cz{[blT,alT]: a>0,b>0,/ f(x)da:zl—a}.

Show that if [b;1T,a;1T) € C, a?f(a.) = b2f(bs) > 0, and a. < x¢ < bs,
then the interval [b; 1T, a;!T] has the shortest length within C.
Solution. We need to minimize % - % under the constraint f; flx)dx

1—a. Lett = %, then

[ s [ 1(3) *d

Since f is unimodal at @, f(1)7% is unimodal at ¢ = -~. The result follows
by applying Theorem 7.3(i) in Shao (2003) to the functlon f(3) %

Exercise 24 (#7.35). Let t,_1, be the (1 — a)th quantile of the t-
distribution ¢,,_; and z, be the (1 — a)th quantile of N(0,1), where 0 <
a < % and n = 2,3, .... Show that

V2I(3)
V(%51
Solution. Let X = (X, ..., X,,) be a random sample from N(u,0?). If 02

is known, then a 1—2a confidence interval obtained by inverting the UMPU
tests is C1(X) = [X —zq0/v/n, X + 240 /+/n], where X is the sample mean.

th—1,0 = %0, N=2,3,...
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If o2 is unknown, then a 1 — 2« confidence interval obtained by inverting
the UMPU tests is Co(X) = [X — th_1.05/vn, X + tn_1.45//n], where
S? is the sample variance. For any fixed o, both C1(X) and C2(X) are
unbiased confidence intervals. By Theorem 7.5 in Shao (2003), C1(X) is
the UMAU (uniformly most accurate unbiased) confidence interval. By
Pratt’s theorem (e.g., Theorem 7.6 in Shao, 2003), the expected length of
C4(X) is no larger than the expected length of Cy(X). The length of C3(X)
is 2t,,1,4.5/y/n. Since (n — 1)5?/0? has the chi-square distribution x2_;,

2 (2
B = o,
Vnl'(%5)
which implies that the expected length of Ca(X) is
20 V2I'(%) .
Vi () “’—f

the length of Cy(X). This proves the result. I

n=23,..,

Exercise 25 (#7.36(a),(c)). Let (X1,...,X,,) be a random sample from
N(p,0?), p € R and o2 > 0.

(i) Suppose that y is known. Let a,, and b,, be constants satisfying a2 f,, (ay)
= b2 fn(b,) > 0 and f:? fn(x)dz = 1— «, where f,, is the Lebesgue density
of the chi-square distribution x2. Show that the interval [b; T, a,, 'T] has
the shortest length within the class of intervals of the form [b=1T,a=1T],

f fo(z)dz =1 —a, where T'= Y"1 (X; — p)*.

(ii) When p is unknown, show that [b, 1, (n —1)S% a,, ", (n — 1)5?] has the
shortest length within the class of 1 — « confidence intervals of the form
b~ (n —1)5?, a7t (n — 1)S?], where S? is the sample variance.

(iii) Find the shortest-length interval for o within the class of confidence
intervals of the form [b=/2y/n — 15,a=/2y/n — 15], where 0 < a < b < o0,
andf foc1(z)dz =1 - a.

Solution. () Note that T/o? has the chi-square distribution x2 with
Lebesgue density f, and z2f,(x) is unimodal. The result follows from
Exercise 23.

(ii) Since (n —1)S? has the chi-square distribution x2_;, the result follows
from part (i) of the solution with n replaced by n — 1.

(iii) Let t = 1/y/z. Then

/f dx_/ff" 1() 2

Minimizing ﬁ - ﬁ under the constraint fa fr—1(z)dz =1 —« is the same

1
as minimizing % - % under the constraint [V f,_1 (%) 2t\/dt =1—a.
7
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It is easy to check that f,—1( \/) NG is unimodal. By Exercise 23, there ex-

f f such that b3fn 1(bs) = a2 f,_1(a.) and the confidence inter-
val [by =180 A = 15] has the shortest length within the class
of Conﬁdence intervals of the form [b=/2y/n — 1S,a~/2y/n — 18], where
0<a<b<oo,and f;fn,l(x)dle—a. 1

Exercise 26 (#7.38). Let f be a Lebesgue density that is nonzero in
[z_,z4] and is 0 outside [z_,z4], —o0 < z_ < x4 < 0.

(i) Suppose that f is decreasing. Show that, among all intervals [a, b] sat-
isfying f; f(z)dz = 1 — «, the shortest interval is obtained by choosing
a=x_ and b, so that f;* flx)dz=1-a.

(ii) Obtain a result similar to that in (i) when f is increasing.

(iii) Show that the interval [X ), a~t/nx (ny] has the shortest length among
all intervals [b™'X(,),a ' X(,,)], where X, is the largest order statistic
based on a random sample of size n from the uniform distribution on (0, 9).
Solution. (i) Since f is decreasing, we must have z_ > —oco. Without loss
of generality, we consider a and b such that x_ < a < b < ;. Assume
a < by. If b <b,, then

/:f(x)dx:/:*f(x)dm—/:*f(m)dx<1_a_/abf(x)dm:

which is impossible, where the inequality follows from the fact that f is
decreasing. If b > b, but b —a < b, —x_, then

/abf(x)dx:/ab* f(x)d:c+/:f(x)dm

b
< [ @+ 1000,
b

< f(@)dx + f(a)(b—by)

.
< / f(@)da + fla)(a—z)
</ " fapde + IRCE
=1—-aq,

which contradicts f; f(z)dz = 1—«a. Hence, we must have b—a < b, —x_.
Ifa>b, and b —a < b, —x_, then

b
[ e < s@o - < 50,00, 2 < [ =1-a
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Hence, we must have b —a > b, — x_.

(ii) When f is increasing, we must have z, < co. The shortest interval is
obtained by choosing b = x, and a, so that f:+ f(z)dz = 1—a. The proof
is similar to that in part (i) of the solution.

(iii) Let X, be the largest order statistic based on a random sample of size
n from the uniform distribution on (0,6). The Lebesgue density of X (/60
is na" "o 1y(x). We need to minimize a~' — b~" under the constraint

-1

b a
lfa:/nxnfldx:/ 7n1dy7 0<a<b<1.
a b71 yn+

Note that n/y"*! is decreasing in [1,00). By (i), the solution is b= = 1
and o~ satisfying [ ny=*tYdy = 1 — a, which yields a = o!'/". The
corresponding confidence interval is [X ), al/ "Xyl 1

Exercise 27 (#7.39). Let (Xy,...,X,) be a random sample from the
exponential distribution on (a,00) with scale parameter 1, where a € R
is unknown. Find a confidence interval for a having the shortest length
within the class of confidence intervals [X (1) + ¢, X(1) + d] with confidence
coefficient 1 — a, where X(;) is the smallest order statistic.

Solution. The Lebesgue density of Xy — 0 is ne™""Ijy (), which is
decreasing on [0, 00). Note that

PXgy+te<a<Xg+d)=P(-d<Xg-a<—o= / ne” " dz.
—d

Hence, —c > —d > 0. To minimize d — ¢, the length of the 1 — « confidence
interval [X (1) + ¢, X(1) + d], it follows from Exercise 26(i) that —d = 0 and

—c satisfies
—C
/ ne” "dxr =1— «,
0

which yields ¢ = n~!log . The shortest length confidence interval is then
[X(l) +nt log «, X(l)]. 1

Exercise 28 (#7.42). Let (X3,...,X,,) be a random sample from a dis-
tribution with Lebesgue density 9909_1[(071)(:10)7 where 6 > 0 is unknown.
(1) Construct a confidence interval for § with confidence coefficient 1 — a,
using a sufficient statistic.

(ii) Discuss whether the confidence interval obtained in (i) has the shortest
length within a class of confidence intervals.

(iii) Discuss whether the confidence interval obtained in (i) is UMAU.
Solution. (i) The complete and sufficient statistic is T = — >, log X;.
Note that 8T has the gamma distribution with shape parameter n and scale
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parameter 1. Let f(x) be the Lebesgue density of 7. Then a confidence
interval of coefficient 1 — « can be taken from the following class:

C= {[(bT)l’(aT)l] ; /;;2 <310) do =1 a}.

(ii) Note that f(2) is unimodal. By Exercise 23, [(b.T)~, (a.T) '] with
f(ax) = f(b«) has the shortest length within C.

(iii) Consider testing hypotheses Hy : 6 = 6y versus Hy : 6 # 6y. The
acceptance region of a UMPU test is A(6y) = {X : 1 < 00T < c2}, where
c1 and ¢y are determined by

/C2f(x)dx:1—a and /Cme(x)dxzn(l—a).

Thus a UMAU confidence interval is [¢1 /T, ¢2/T], which is a member of C
but in general different from the one in part (ii). &

Exercise 29 (#7.45). Let X be a single observation from N (6 — 1,1) if
<0, N0,1)if 6 = 0, and N(0 +1,1) if 6 > 0.

(i) Show that the distribution of X is in a family with monotone likelihood
ratio in X.

(ii) Construct a ©’-UMA (uniformly most accurate) lower confidence bound
for # with confidence coefficient 1 — a, where ©" = (—o0, 0).

Solution. (i) Let x(0) be the mean of X. Then

0—1 0 <0
w@)=4¢ 0 =0
0+1 0 >0,

which is an increasing function of 6. Let fy(x) be the Lebesgue density of
X. For any 65 > 61,

f92 (LE)
f91 (.13)

is increasing in x. Therefore, the family {fy : 6 € R} has monotone likeli-
hood ratio in X.

(ii) Consider testing Hy : 8 = 6y versus Hy : 6 > 6y. The UMP test has ac-
ceptance region {X : X < ¢(6y)}, where Py(X > ¢(0)) = o and Py denotes
the distribution of X. Since Py is N(u(6),1), c(8) = zo + (), where z,
is the (1 — a)th quantile of N(0,1). Inverting these acceptance regions, we
obtain a confidence set

[11(0)]? — [u(Gl)}z}

—exp {u(o) — ol - P

CX)={0: X < 20 + ().
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When X — 2z, > 1, if 6 < 0, then u(f) > X — z, cannot occur; if 6 > 0,
w(f) > X —z, if and only if > X —z, —1; hence, C(X) = (X —z,—1, 00).
Similarly, when X — z, < =1, C(X) = (X — z4 + 1,00). When -1 <
X — 24 <0, u(6) > X — 2z, if and only if § > 0 and, hence, C(X) = [0, c0).
When 0 < X — 2z, <1, u(0) > X — z, if and only if § > 0 and, hence,
C(X) = (0,00). Hence, a (—00,8)-UMA confidence lower bound for 6 is

X —2z4—1 X >zqa+1
0 Za — 1< X <zp+1 1
X —z4+1 X < zo—1.

S
I

Exercise 30 (#7.46). Let X be a vector of n observations having distri-
bution N,,(Zf3,0%1,), where Z is a known n x p matrix of rank r < p < n,
B is an unknown p-vector, and 2 > 0 is unknown. Let § = L3, where L is
an s X p matrix of rank s and all rows of L are in R(Z),

X - ZB(H)HQA— IX - Z5]°]/s
1X = 2Z5|2/(n =)

W(X,0) =

)

where 3 is the LSE of [ and, for each fixed 6, B(G) is a solution of

A 2 o 2
X = ZBO)I* = min [1X - 28]

Show that C(X) = {6 : W(X,0) < c,} is an unbiased 1 — « confidence set
for 0, where ¢, is the (1 — a)th quantile of the F-distribution Fy ,_,.
Solution. From the discussion in §6.3.2 of Shao (2003), W(X,n) has the
noncentral F-distribution Fj ,,_,.(6), where § = ||n—6||? /o2 for any n = L7,
v € RP. Hence, when 6 is the true parameter value, W (X, #) has the central
F-distribution F§ ,_, and, therefore,

P(0 e C(X)) = P(W(X,0)<ci)=1—a,

i.e., C(X) has confidence coefficient 1 — a.. If ¢’ is not the true parameter
value,

P(#' € C(X)) = P(W(X,0) < co) <P(W(X,0) <co) =1—a,

where the inequality follows from the fact that the noncentral F-distribution

cumulative distribution function is decreasing in its noncentrality parameter
(Exercise 13). Hence, C'(X) is unbiased. 1

Exercise 31 (#7.48). Let X = (X1, ..., X;;) be arandom sample from the
exponential distribution on (a, 00) with scale parameter 6, where a € R and
f > 0 are unknown. Find a UMA confidence interval for ¢ with confidence
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coefficient 1 — .

Solution. From Exercises 15 and 33 of Chapter 6, for testing Hy : a = ag
versus Hy : a # ag, a UMP test of size a rejects Hy when Xy < ao
or 2n(X ) — ag)/V > ¢, where X() is the smallest order statistic, V =
257 1(X; — X(1)), and c satisfies (n — 1) [[(1 + v)"dv = 1 — a. The
acceptance region of this test is

A(ao):{X:0<2n(X(l)_aO)<c}.

\%
Then,

C(X)={a:a€ Ala)}

2n(X 1y —
:{a.0<w<c}

cV
= {Xu) ~ 5 X(l)]

b
n
is a UMA confidence interval for a with confidence coefficient 1 — . I

Exercise 32. Let X = (Xy,..., X;,) be a random sample from the uniform
distribution on (0,6 4 1), where § € R is unknown. Obtain a UMA lower
confidence bound for 6 with confidence coefficient 1 — a.

Solution. When n > 2, it follows from Exercise 13(i) in Chapter 6 (with
the fact that X; — 6 has the uniform distribution on (6 — 6y,6 — 6y + 1))
that a UMP test of size a for testing Hy : 0 = 6y versus Hy : 0 # 6 has
acceptance region

A(fo) ={X : Xy — 0 < 1—a'/™ and X, — 0 <1},

where X(;) is the jth order statistic. When n = 1, by Exercise 8(iv) in
Chapter 6, the family of densities of X has monotone likelihood ratio in
X and, hence, the UMP test of size « rejects Hy when X > ¢ and ¢
satisfies P(X > ¢) = « when 0 = 6, ie.,, ¢ = 1 — a + 6y. Hence, the
acceptance region is {X : X < 1 — a+ 6y}, which is still equal to A(6)
since X (1) = X(,) = X when n = 1. Therefore, a (—o0,)-UMA confidence
set for 6 with confidence coefficient 1 — « is

C(X) = {0: X € A(6)}
Z{HZX(l)—(l—Oél/n) <6 and X(n)—1<9}
= {9 : max{X(l) — (1 — Ocl/n),X(n) — 1} < 9}
= [Q,OO],

where
Q = maX{X(l) — (1 — Ozl/n),X(n) — 1}
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is a (—00,0)-UMA lower confidence bound for 6 with confidence coefficient
l1—a.l

Exercise 33 (#7.51). Let (Xi,...,X,) be a random sample from the
Poisson distribution with an unknown mean ¢ > 0. Find a randomized
UMA upper confidence bound for # with confidence coefficient 1 — a.
Solution. Let Y = Y"1 | X; and W = Y +U, where U is a random variable
that is independent of ¥ and has the uniform distribution on (0,1). Note
that Y has the Poisson distribution with mean nf. Then, for w > 0,

§=0
> e (ng)d .
=S O ()
=0
and
folw) = L P(W < w)
w) = — w
0 dw
. e (np)i
:Z j(: ) I(j 541 (w)
7=0 ’
ean(ne)[w]

where [w] is the integer part of w. For 61 < 63,

f@z(w) — en(91—92) <€2)[w]
f91 (’LU) 61

is increasing in [w] and, hence, increasing in w, i.e., the family {fy: 6 >0}
has monotone likelihood ratio in W. Thus, for testing Hy : 8§ = 6y versus

H; : 0 < 6, the UMP test has acceptance region {W : W > ¢(0y)}, where
foc(eo) foo(w)dw = a. Let ¢(0) be the function defined by foc(e) fo(w)dw =
a. For 6 < 0y, if ¢(61) > c(62), then

c(61) c(61) c(02)
a= / fo, (w)dw > / fo, (w)dw > / fo, (w)dw = «,
0 0 0

where the first inequality follows from Lemma 6.3 in Shao (2003). Thus,
we must have c(6;) < c(62), i.e., c(f) is nondecreasing in 6. Let ¢~ 1(t) =
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inf{6 : ¢(0) > t}. Then W > ¢(6) if and only if c=1(W) > 0. Hence, a ©'-
UMA upper confidence bound with confidence coefficient 1 — « is ¢=1(W),
where ©’ = (6,00). 1

Exercise 34 (#7.52). Let X be a nonnegative integer-valued random
variable from a population P € P. Suppose that P contains discrete prob-
ability densities indexed by a real-valued # and P has monotone likelihood
ratio in X. Let U be a random variable that has the uniform distribution

n (0,1) and is independent of X. Show that a UMA lower confidence
bound for § with confidence coefficient 1 — « is the solution of the equation

UFy(X)+(1-U)Fp(X —1)=1—«

(assuming that a solution exists), where Fy(z) is the cumulative distribution
function of X.

Solution. Let W = X + U. Using the same argument in the solution of
the previous exercise, we conclude that W has Lebesgue density

fo(w) = Fy([w]) — Fy([w] — 1),

where [w] is the integer part of w. Note that the probability density function
of Fy with respect to the counting measure is Fy(z)—Fp(x—1), 2 =0,1,2, ....
Since P has monotone likelihood ratio in X,

F92($)—F92($—1)
F91<x)—F91(:L‘—1)

is nondecreasing in X for any #; < 65 and, hence, the family of densities
of W has monotone likelihood ratio in W. For testing Hy : 6 = 6 versus

0o : 0 > 6y, a UMP test of size a rejects Hy when W > ¢(6p), where
fco{;o) fo,(w)dw = . Let ¢(6) be the function defined by fco(f;) fo(w)dw = a

and

A0) ={W . W < c(6)}

= {W : /W fo(w)dw > » fo(w)dw = oz}.

Since fW fo(w)dw is nondecreasing in 6 (Lemma 6.3 in Shao, 2003),

C(W) ={0:W e A(0)}

o [ o]

= [0, 00),
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where 6 is a solution to [, fo(w)dw = a (assuming that a solution exists),

i.e., a solution to X+U fo(w)dw =1 — a. The result follows from

/OX+U folw /]+1 )i /X+U fo(w)dw

X

-1

I ||
'Mil

<
I
=)

[Fe(J) — Fo(j — )] + U[Fp(X) — Fp(X — 1)]

I
B

X =1+ U[Fp(X) — Fp(X = 1)]
FQ(X) + (1 - U)FQ(X — 1). 1

|
-

Exercise 35 (#7.60(a)). Let X; and X5 be independent random vari-
ables from the exponential distributions on (0, co) with scale parameters 6,
and 6, respectively. Show that [aY/(2— «), (2 —a)Y/a] is a UMAU confi-
dence interval for 65 /6, with confidence coefficient 1 —a, where Y = X5/ X;.
Solution. First, we need to find a UMPU test of size a for testing
Hy : 05 = M0y versus Hy : 03 # A1, where A > 0 is a known constant.
The joint density of X; and Xj is

1 X 1 Xo
——ex — - ==
91 92 P 91 92 ’
which can be written as

1 1 A
%exp{—Xl (01—02> ()\X1+X2)02}
Hence, by Theorem 6.4 in Shao (2003), a UMPU test of size « rejects Hy
when Xy < ¢;1(U) or Xy > ¢2(U), where U = AX; + X5. Note that X;/Xo
is independent of U under Hy. Hence, by Lemma 6.7 of Shao (2003), the
UMPU test is equivalent to the test that rejects Hy when X;/Xs < dy or
X1/X5 > da, which is equivalent to the test that rejects Hy when W < by or
W > by, where W = 11475 and by and by satisfy P(by < W < by) =1—a
(for size ) and E[W I, 4,y (W)] = (1 — a)E(W) (for unbiasedness) under

Hy. When 6y = A0y, W has the same distribution as 1flz/1 ?}2, where Z;

and Zj are independent and identically distributed random variables having
the exponential distribution on (0, 00) with scale parameter 1. Hence, the
distribution of W under Hy is uniform on (0,1). Then the requirements on
b, and by become by —b; =1 —«a and b% — b% = 1 — «, which yield b; = «/2
and by = 1 — /2 (assuming that 0 < a < %) Hence, the acceptance region
of the UMPU test is

A(A):{W:Z‘gng—o‘}z{Y: « <§ 2‘“}.

(0%
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Inverting A()\) leads to

oY (2-a)Y

DireAn) = |50, S0

which is a UMAU confidence interval for A = 65/6; with confidence coeffi-
cient 1 —a.

Exercise 36 (#7.63). Let (X;1,..., Xin,;), @ = 1,2, be two independent
random samples from N (u;,02), i = 1,2, respectively, where all parameters
are unknown. Let 0 = p; — po, X; and Si2 be the sample mean and sample
variance of the ith sample, i = 1, 2.

(i) Show that

X1 —Xo—0

R(X,0) = - -
ny 'S +ny ' S3

is asymptotically pivotal, assuming that n;/ny — ¢ € (0,00). Construct a
1 — a asymptotically correct confidence interval for 6 using R(X, 6).
(ii) Show that

HX,0) = (X1 = %> — 0)/\/ni + 07!
VI =S+ (2 = DSF/ (1 4 nz = 2)

is asymptotically pivotal if either ny/ny — 1 or 1 = o2 holds.
Solution. (i) Note that

Xl—Xg—H U%—F(nl/ng)dg

R(X,0) =
\/nflof + n;log \/Sl2 + (n1/n2)S3

—d N(07 1)7

because X; — X, is distributed as N(0,n] ‘o7 4+ ny'03) and

Vo2 + (n1/ng)o? . o2+ co2 _
V5% + (n1/n9)S3 b 0?2 + cos
by the fact that S? —, 02, i = 1,2. Therefore, R(X,0) is asymptotically

pivotal. A 1 — « asymptotically correct confidence interval for 6 is

[)_(1 - X5 — za/2 ny'S? +nytS3, Xy — Xo + Za /2 nytS? —&—nQIS%} ,

where z, is the (1 — a)th quantile of N(0,1).
(i) If 02 = 03, then (X, 0) has the t-distribution ¢, 1,,_2. Consider now
the case where o1 # o9 but ny/ns — 1. Note that
X, —Xo— 6
t(X’ 9) = g(X)v

-1 _2 -1 _2
ny 01 +ny 03
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where
_ V1 +n2—2 U%+(TL1/’H2)O’§ N 1
vt nzy/[(n1 — 1)/n2] 87 + [(na — 1)/n1]S3 "

when ny/ng — 1. Then, ¢(X,0) —4 N(0,1) and, therefore, is asymptoti-
cally pivotal. I

9(X)

Exercise 37 (#7.64). Let (Xy,...,X,) be a random sample of binary
random variables with unknown p = P(X; = 1).

(i) The confidence set for p obtained by inverting acceptance regions of
Rao’s score tests is

C3(X) ={p:n(p—p)* <p1—p)xia}t

where p=n~' 3" | X; and x7 , is the (1 —a)th quantile of x7. Show that
C3(X) = [p—, p+] with

215+ 33 o £ /03 o 4D(1 = ) + 23 ]
2(n+xi.4)

b+ =

(ii) Compare the length of C3(X) with

Co(X) =[P~ 21-a/2VD(L = D)/n, p+ 21_a/2vVD(1 — D)/n],

the confidence set for p obtained by inverting acceptance regions of Wald’s
tests.

Solution. (i) Let g(p) = (n+x3,)p* — (2np+x1 ,)p+np*. Then Cs5(X) =
{p: g(p) < 0}. Since g(p) is a quadratic form of p with ¢"(p) > 0, C5(X)
is an interval whose limits are two real solutions of g(p). The result follows
from the fact that py are the two real solutions to g(p) = 0.

(ii) The length of the interval C5(X) is

VG almp(l =) +33 ]
- n+Xia

I3(X)

and the length of the interval Ca(X) is

Since
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we conclude that I5(X) > I3(X) if and only if

n
(l—p)> ———. 1
p( p) - 4(277/"‘)(%70()

Exercise 38 (#7.67). Let X = (Xy,...,X,,) be a random sample from
the Poisson distribution with unknown mean 8 > 0 and X be the sample
mean.

(i) Show that R(X,0) = (X —0)/+/0/n is asymptotically pivotal. Construct
a 1 — « asymptotically correct confidence interval for 0, using R(X,6).

(ii) Show that Ry (X,0) = (X —0)/+/X /n is asymptotically pivotal. Derive
a 1 — « asymptotically correct confidence interval for 6§, using R;(X,0).
(iii) Obtain 1 — « asymptotically correct confidence intervals for 6 by in-
verting acceptance regions of LR tests, Wald’s tests, and Rao’s score tests.
Solution. (i) Since F(X;) = Var(X;) = 0, the central limit theorem im-
plies that /(X — 0) —4 N(0,6). Thus, R(X,0) = /n(X — 0)/vV0 —q4
N(0,1) and is asymptotically pivotal. Let z, be the (1 — «)th quantile of
N(0,1). A 1— « asymptotically correct confidence set for 6 is

C(X)=1{0:[R(X,0) < 22/2} ={0:n0* - (2nX —i—zi/g)ﬁ—i—nXQ < 0}.
Since the quadratic form nf? — (2n.X + zi/2)9 +nX? has two real roots

, nX + 22 /2i1/4ani/2+zi/2
+

- 2n ’

we conclude that C(X) = [#_,04] is an interval.

(ii) By the law of large numbers, X —, 6. By the result in part (i) of the
solution and Slutsky’s theorem, R(X,0) = /n(X —60)/vVX —4 N(0,1) and
is asymptotically pivotal. A 1 — « asymptotically correct confidence set for
0 is

Cr(X) ={0: [Ri(X,0)]" < 230} = {0 : (X — )" < X2 o},

which is the interval [X — za/QX/f X + 202X /).
(iii) The likelihood function is
() = e on¥
Then 5 ) _
log nX
o0~ "tg
and

92 log £(0) nX

002 92
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The MLE of 6 is X. Since E(X) = 6, the Fisher information is I,,(6) = n/6.
For testing Hy : 0 = 0y versus H; : 0 # 6y, Wald’s test statistic is

(X —600)°1n(X) = (X — 6)*(n/X) = [R1(X, 6)]*.

Hence, the confidence interval for  obtained by inverting acceptance regions
of Wald’s tests is C1(X) given in part (ii) of the solution. Since 6y is the
MLE of # under Hy, Rao’s score test statistic is

(—n + 7’;))()2 [1,(60)]" = [R(X, 00)]%.

0

Hence, the confidence interval for 8 obtained by inverting acceptance regions
of Rao’s score tests is C(X) given in part (i) of the solution. The likelihood
ratio for testing Hy : 8 = 0y versus H; : 0 # 0 is

i o\ X
¢ X

Note that A > ¢ for some ¢ is equivalent to ¢; < X /6o < co for some ¢; and
co. Hence, the confidence interval for 6 obtained by inverting acceptance
regions of LR tests is [c; X, co X], where ¢; and ¢y are constants such that
lim, P(c; X <0< cX)=1—a.1

Exercise 39 (#7.70). Let X = (Xq,..., X;,) be a random sample from
N(u, ) with unknown 6 = (u, ). Obtain 1 — o asymptotically correct
confidence sets for p by inverting acceptance regions of LR tests, Wald’s
tests, and Rao’s score tests. Are these sets always intervals?

Solution. The log-likelihood function is

n

log ¢(0 Z — glogcp — glog(%r).
=1

Note that

sn(0) = 810;96(0) _ (n(X - QLZ n >

and the Fisher information is
O >
L .
22

I,(0)=n <

The MLE of 0 is § = (X,$), where X is the sample mean and ¢ =
n=ST (X — X)2

[=E
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Consider testing Hg : u = po versus Hy : u # po. For Wald’s test,
R(0) = pn — po with C = OR/96 = (1,0). Hence, Wald’s test statistic is

ROPACT(L@O) 0y = ME o)

Let z, be the (1—«)th quantile of N(0,1). The 1—« asymptotically correct
confidence set obtained by inverting the acceptance regions of Wald’s tests

is
n(X — u)?
PRCSTFENY

which is the interval
|:X — Ra/2V @/naX+2a/2 V @/TL:| :

Under Hy, the MLE of p is n™ 2 31" (X; — po)? = @+ (X — p1o)?. Then

the likelihood ratio is
(k)
| .
¢+ (X — po)

The asymptotic LR test rejects Hg when \ < efzi/2/2, ie.,
v 2 22, /n ~
(X = po)™ > (€72 = 1)

Hence, the 1 —a asymptotically correct confidence set obtained by inverting
the acceptance regions of asymptotic LR tests is

{H (X —po)? < (ezi”/n - 1)@} ;

which is the interval

{X—VM%M—U@X+vw%“—n4'

Let 0 = (10, + (X — 10)?) be the MLE of  under Hy. Then Rao’s
score test statistic is

R}, = [s(0)] L (6)] ' 5()-

Note that

Hence,
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and the 1 — a asymptotically correct confidence set obtained by inverting
the acceptance regions of Rao’s score tests is

{min=22)(X = w)? <2250},
which is the interval

[X—za/Q cﬁ/(n—zi/z),X—FZQ/g gb/(n—zip)}.l

Exercise 40. Let (X7, ..., X,,) be arandom sample from a distribution with
mean g, variance o2, and finite 4th moment. Derive a 1 — o asymptotically
correct confidence interval for 6 = u/o.

Solution. Let X be the sample mean and 6% = n= 23" (X; — X)%. It
follows from Example 2.8 in Shao (2003) that

() ()] e (o(7 1))

where v = E(X1 — p)® and v = E(X; — p)* — o*. Let g(z,y) = z/\/y.
Then dg/0x = 1/,/y and 0g/0y = —z/(2y>/?). By the é-method,

X
Vn ( - > —a N (0,1 + p°k/(40°) = py/o?) .
Let
1 )3
n
=1
and
1@ -
L1 X, — X) -5t
i ni:1( )

By the law of large numbers, ¥ —, v and & —, . Let W = 1+X2k/(465)—
X4/6%. By Slutsky’s theorem,

\/\/% (?—9) —4 N(0,1)

and, hence, a 1 — a asymptotically correct confidence interval for 6 is

lX VW X \/W]

gfza/Q\/ﬁv & +Z(x/2

vn
where z, is the (1 — a)th quantile of N(0,1). &
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Exercise 41. Consider the linear model X = Z + ¢, where Z is an n X p
matrix of full rank, 8 € R?, ¢ = (e1, ..., &,) with independent and identically
distributed ¢;’s, E(g;) = 0, and Var(g;) = o2. Let Z; be the ith row of
Z. Assume that lim, maxi<;<, Z](Z7Z)Z; = 0. Find an asymptotically
pivotal quantity and construct a 1 — a asymptotically correct confidence
set for 3. . R
Solution. Let 8 be the LSE of 8. Note that Var(3) = 0%(Z72)~!. By
Theorem 3.12 in Shao (2003),

o N ZTZ) V(B — B) —a Np(0,1,).
Let 62 = | X — Z3||?/n. Since

Xi—Z]B=X,-Z]B+Z](5-P)

= aZ] (8- 1),

we obtain that

o 1 P
ot = _Z(Xi ~ Z7p)?
725+ ZZTH B)] —fZeZZTﬁ B).

—p 02. By the Cauchy-Schwartz

By the law of large numbers, n=1 >°"
inequality,

zlz

nz[zr@ E) ZZT Z72) 227 2)(B - B),

i=1

which is bounded by [(Z7Z)(3 — B))? maxi<;<n Z7(Z7Z)"1Z; —, 0. By
the Cauchy-Schwartz inequality again,

[ Zgzzw 51 s( Zs>{ ;ZT(ﬁ ﬁ)]}

Hence, 62 —, % and 6’1(ZTZ)1/2(3 — () is asymptotically pivotal. A
1 — a asymptotically correct confidence set for 3 is then

{8:0-87 @ 2)8-8) <™}
where X7 ,, is the (1 — a)th quantile of the chi-square distribution .

Exercise 42 (#7.81). Let (X;1,..., Xin,), ¢ = 1,2, be two independent
random samples from N (u;,0?), i = 1,2, respectively, where all parameters
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are unknown.

(i) Find 1—« asymptotically correct confidence sets for (u1, u2) by inverting
acceptance regions of LR tests, Wald’s tests, and Rao’s score tests.

(ii) Repeat (i) for the parameter (ul,ug,al,az)

(iii) Repeat (i) under the assumption that 0% = 03 = 2.

(iv) Repeat (iii) for the parameter (1, pa,o?).

Solution. (i) The likelihood function is proportional to

11 GRS L
—r—r exp = Y =5 Y (X — )’
oyt oy? P i=1 207 j:1( 4~ )
Hence, the score function is

("1(X1—M1) niot(pn)  m na(Xa — pa) neo3(pe) n2>

2 J 1 27 2 ) 1
o 207 207 o5 205 203

where X; is the sample mean of the ith sample and

uz

n; =1
and the Fisher information is the 4 x 4 diagonal matrix whose diago-
nal elements are ny/o7, n1/(201), na/o3, and ny/(203). The MLE of
(ul,af,ug,ag) is (Xl,&l,X2,6§), where 62 = ¢2(X;). When y; is known,
the MLE of 02 is 02(p;), i = 1,2. Thus, the 1 — « asymptotically correct
confidence set for (ul, o) by inverting acceptance regions of LR tests is

~MN1 AN 2
{1, 1) 3 )" o3 (o)) < 7 o2l

where x7 , is the (1—«)th quantile of the chi-square distribution xZ. The 1—
« asymptotically correct confidence set for (u1, o) by inverting acceptance
regions of Wald’s tests is

n X1—M12 n2X2—M22
{(/1‘17#2): 1( 6'2 ) + ( ~2 ) SX%,O&
1

and the 1 —« asymptotically correct confidence set for (u1, 12) by inverting
acceptance regions of Rao’s score tests is

ni(Xy —p1)? | no(Xo—p2)? }
2 + 2 — 5 :
01 (p1) 02(H2)

{(Ml,lm)f

(i) The 1 — « asymptotically correct confidence set for 6 = (uy, 2, 0%,03)
by inverting acceptance regions of LR tests is

{9 U"lgnzenlﬂl(#1)/(201)+n202(#2)/(202) < gMone (n1+n2+x4a)/2}
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The 1—a asymptotically correct confidence set for 8 by inverting acceptance
regions of Wald’s tests is

nz i Ul (5'12 - 01'2)2

The 1—a asymptotically correct confidence set for 6 by inverting acceptance
regions of Rao’s score tests is

2 2
. 2 (X /%) 20? nicr? (i) U2 2
{9 . Z l o7 + n; 20 207 = Xio -

i=1 i @

(iii) The MLE of (u1, p2,0?) is (X1, X2,62), where

:mmzz - X

=1j5=1

When g1 and s are known, the MLE of o2
o?(p, p2) = . z;; ij — 1)

The 1 — « asymptotically correct confidence set for (u1, p2) by inverting
acceptance regions of LR tests is

{(Mla/@) L 02 (s pa) < e_Xg"’/[Q(nl+n2)]&2}'
The score function in this case is

<n1()_(1 — 1) n2(Xo— p2) (n1 +mn2)o?(pr, po) ot n2>

o2 o2 ’ 204 202

The Fisher information is the 3 x 3 diagonal matrix whose diagonal elements
are ni/o?, ny/o? and (ny + n2)/(20*). Hence, the 1 — o asymptotically
correct confidence set for (11, u2) by inverting acceptance regions of Wald’s
tests is

{(,Uly,u2)3n1(Xl_ 1)? 4 na(Xo — p2)? &2X§,a}'

The 1 — « asymptotically correct confidence set for (u1, p2) by inverting
acceptance regions of Rao’s score tests is

{1, p2) 20 (Xy = pn)? + no(Xo — p2)® <0 (pa, p2)X30 ) -
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(iv) The 1 — o asymptotically correct confidence set for @ = (u1, 2, 0?) by
inverting acceptance regions of LR tests is

{9 . 0_26020!1,#2)/03 < &261+x§)0/(n1+n2)} )

The 1—a asymptotically correct confidence set for 8 by inverting acceptance
regions of Wald’s tests is

_ ni (X —pi)?  (ny+n2)(6% -0 5
{G.Z 52 + 951 < X3,a (-

i=1

The 1—a asymptotically correct confidence set for 8 by inverting acceptance
regions of Rao’s score tests is

2 o 2
e (X = a)? g [0P(pa, p2) 2
{9. E 5 + 5 3 -1 <X3,¢ -1

: g (e
=1

Exercise 43 (#7.83). Let X be a vector of n observations having distri-
bution N,,(Z3,021,,), where Z is a known n x p matrix of rank 7 < p < n, 8
is an unknown p-vector, and ¢ > 0 is unknown. Find 1 — a asymptotically
correct confidence sets for § = L by inverting acceptance regions of LR
tests, Wald’s tests, and Rao’s score tests, where L is an s X p matrix of
rank s and all rows of L are in R(Z).

Solution. Since the rows of L are in R(Z), L = AZ for an s x n matrix
A with rank s. Since Z is of rank r, there is an n x r matrix Z, of rank
r such that Z8 = Z,.Qp, where Q is r x p. Then, L8 = AZS = AZ.[3.
with 8, = QB € R". Hence, without loss of generality, in the following we
assume that » = p. The likelihood function is

2 L\ 1 2
1.0 = (3z) e {~gmallX - 2012},

Then,
dlogl(B3,0?) ZT(X - Zp)

083 o2 ’

dlogl(B,0%) _IX=ZBI> n
Oo2 o 204 202’

and the Fisher information matrix is

YA
In(5702) = < Cg 77(:') )
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The MLE of § is the LSE § = (27Z)~'Z7X and the MLE of 02 is 62 =
| X — Z3||*/n. Hence, the 1 —a asymptotic correct confidence set obtained
by inverting acceptance regions of Wald’s tests is

{0:(WB=0yIL(Z72) ) (LB - 0) <653, )

and the 1 — v asymptotic correct confidence set obtained by inverting ac-
ceptance regions of Rao’s score tests is

{0:n1X = ZB(0)) 2(272) 271X = ZB9)] < |IX — ZBO)|*2a }
where 3(6) is defined as

_ 2 2: : _ 2
X = ZBO)I* = min [1X - 2B,

Following the discussion in Example 6.20 of Shao (2003), the likelihood
ratio for testing Hy : L3 = 0 versus Hy : L3 # 0 is

n—r

A(0) = {SW(W . 1] e

where W (X, 0) is given in Exercise 30. Hence, the 1 — o asymptotic correct
confidence set obtained by inverting acceptance regions of LR tests is

{a L sW(X,0) < (n — r)(eXialn — 1)} o

Exercise 44 (#7.85, #7.86). Let (Xi,...,X,) be a random sample
from a continuous cumulative distribution function F' on R that is twice
differentiable at @ = F~1(p), 0 < p < 1, with F’(8) > 0.

(i) Let {k,} be a sequence of integers satisfying k,, /n = p+cn='/240(n=1/?)
with a constant c. Show that

V(X —0) = ¢/F'(0) + o(1) as.,

where X; is the jth order statistic and 6 is the sample pth quantile.
(ii) Show that /n(X, ) — 0)F'(8) —a N(c,p(1 —p)).
(iii) Let {k1,} and {k2,} be two sequences of integers satisfying 1 < ky,, <
k2n S n,
kln/n =pP- Za/? p(l _p)/n + 0(71_1/2)7
and
kon/n = p+ 2as27/p(1 —p)/n+ o(n™/?),
where z, is the (1 — a)th quantile of N(0,1). Let C(X) = [X(x,,.), X(ks)]-
Show that lim,, P(# € C(X)) =1 — «, using the result in part (ii).
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(iv) Construct a consistent estimator of the asymptotic variance of the
sample median, using the interval C'(X).
Solution. (i) By the Bahadur representation (e.g., Theorem 7.8 in Shao,

2003),
(kn/n) — Fn(0) o 1 as
o) <ﬁ> =

where F,, is the empirical distribution. For the pth sample quantile, the
Bahadur representation is

éz@—&—W—i—o(\}ﬁ) a.s.

The result follows by taking the difference of the two previous equations.
(ii) Note that

V(X () — O)F'(0) = Vn(Xk,) — 0)F'(0) + V(6 — 0)F'(9).

By (i),

X(kn,) =60+

m v/ (X g,y — 0p)F'(0) = ¢ as.

By Theorem 5.10 in Shao (2003),

V0 = 0)F'(9) =4 N(0,p(1 - p)).
Then, by Slusky’s Theorem,
VX, = OF'(6) >a N(e.p(1 = p)).
(i) By (i),
V(X (i) = O (0) = N (=2a/07/p(1 = p),p(1 - )

and
V(X (gy,) — O F'(0) =a N (za/z p(1 —p),p(1 — p)) ~

Let ® be the cumulative distribution function of N(0,1). Then
P(X(k,,) >0) = P(\/E(X(kln) —0)F'(0) >0) —1— P(24/2) = /2
and
P(X(k,,) < 0) = P(V/n(X(g,,) — O)F'(0) <0) = ®(—24/2) = /2.
The result follows from

PO C(X))=1-P(X,,) >0) = P(Xk,,) <0).
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(iv) Let p = % If F’ exists and is positive at 6, the median of I, then the
asymptotic variance of the sample median is {4n[F’(0)]?}~!. The length
of the interval C(X) is X(x,,) — X(k,,)- By the result in (i), this length is
equal to

Za/2 + 1
— o\ — a.s.
var@ T\ m)
Xho) = Xe)* 1 1
122, “mEepE 0\n)

Therefore, [X(1,,) —X(kln)]Q/(élzi/z) is a consistent estimator of the asymp-
totic variance of the sample median. I

i.e.,

Exercise 45 (#7.102). Let C, (X) be a confidence interval for 6, with
confidence coefficient 1 — o, t =1, ..., k. Suppose that Cy o(X), ..., Ck,o(X)
are independent for any «. Show how to construct simultaneous confidence
intervals for 6y, t = 1, ..., k, with confidence coefficient 1 — a.

Solution. Let ay = 1 — (1 — a)'/*. By the independence of C;,, (X),
t=1,..k

=

P(Gt € Ct,ak (X), t= 1, ,k) = P((gt S Ct,ak(X))

1

~
I

(1—a)l/k

Il I

—_ o
Il >
Hz

— Q.

Hence, Cyq,(X), t = 1,..., k, are simultaneous confidence intervals for 6;,
t =1,...,k, with confidence coefficient 1 — cv.

Exercise 46 (#7.105). Let z € R* and A be a k x k positive definite
matrix. Show that )
"A7lz = max 'z)

yeRk y#0 YT Ay
Solution. If z = 0, then the equality holds. Assume that z # 0. By the
Cauchy-Schwarz inequality,

(y72)? = (y A2 AT 22)? < (y7 Ay) (2" A7 ).

Hence,

x

zTA7 x> max ) .
yeRk y#£0 YT Ay

Let y. = A~ 'z. Then
(y1z)* (a7 A'w)?
yTAy, aTA"LAA- 1

=aTA .
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Hence,

.
2TA 'z < max (v'z)
yeRF y#£0 YT Ay

and, thus, the equality holds. 1

Exercise 47 (#7.106). Let z € R* and A be a k x k positive definite
matrix.
(i) Suppose that ™A='z = 0, where y € R¥. Show that

2
_ c’xr
2TAT = max (c72) .

cERF c£0,c7y=0 T Ac

(ii) Let X be a vector of n observations having distribution N, (Z3,021,),
where Z is a known n X p matrix of rank p < n, 8 is an unknown p-vector,
and 0% > 0 is unknown. Using the result in (i), construct simultaneous
confidence intervals (with confidence coefficient 1 — ) for ¢" 3, ¢ € RP,
c# 0, c"y =0, where y € R? satisfies Z7Zy = 0.

Solution. (i) If z = 0, then the equality holds. Assume that x # 0. Let D
be the k& x (k — 1) matrix which spans the linear subspace

y:{c:ceRk,cTyzo}.

For any c € ) (¢ # 0), ¢ = Dt for some t € R*~1, ¢ # 0. Since y" A~ 'z = 0,
A~lz € Y and, hence, A~'z = Dl or & = ADI for some | € RF¥~1, 1 # 0.
Then

(cTa)? (cTx)?
max = max
cERF,c#£0,c7y=0 c"Ac ceEV,c£0 cTAc
(t" DT ADI)?

teRr{'lfal),(t;éo tTDTADt

= (D"ADI)" (D" AD)~Y(D" ADI)

={"(D"AD)l

=a2TA 1z,
where the third equality follows from the previous exercise.
(ii) Let B be the LSE of 8 and 6% = || X — Zf||?/(n — p). Note that
(B—B)" (2" Z)(B—p)/(p6?) has the F-distribution F}, ,,_,. Since Z7Zy = 0,
by the result in (i),

[ B-BP _ (B=8)(Z72)(B - 5)

max - = ~ )
CcERP,c#£0,c7y=0 U'QCT(ZTZ)flc 62

Thus, the 1 — « simultaneous confidence intervals for ¢" 3, ¢ € RP, ¢ # 0,
c"y =0, are

I, = [CTB — &\/pF epaC(Z7Z) e, B+ a—\/pF n—paC(Z7Z) 1|,
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for ce R?, ¢ #0, ¢"y = 0, where F),,,_p, o is the (1 — a)th quantile of the
F-distribution F}, ,,—,. This is because

P(cTﬂ €L, ceRP c#£0,c7y= O)

_ ( - M ; F)

cERP,c#0,cTy=0 p(3'2CT(ZTZ)_

_ ((B B2 2)B-5) _ F,,,np,a>

p&?

=1—a. 1

Exercise 48 (#7.111). Let (X1, ..., X,,) be independently distributed as
N(Bo + Brzi,0%), i = 1,...,n, where By, 31, and o2 are unknown and z;’s
are known constants satisfying S, = > i (2i —2)> >0, z=n"' 3" 2.
Show that

IZ:[BoH%z—a- 2F2,nz,aD<z>,Bo+Blz+a\/2F2,nz,aD(z)], z€R,

are simultaneous confidence intervals for Sy + 1z, z € R, with confidence
coefficient 1 — o, where (g, 41) is the LSE of (8o, 81), D(z) = (z—2)2/S. +

n_l, and 5’2 = (n — 2)_1 Z?:l(Xi — ﬁo — ﬁlzi)2.
Solution. Let 8 = (5, 41) and B = (/3’0,31). Scheffé’s 1 — a simultaneous
confidence intervals for 73, t € R? are

[t78 — 63/2F2 n_2.at At, 73+ 6/2Fo n_2at™ At], te€R?
(e.g., Theorem 7.10 in Shao, 2003), where

a_( " nz - 1 Nz —nz
S\ nz YA -~ nS, —nz n '

From the solution to Exercise 46, (t™(3 — 7 (3)2/t” At is maximized at t, =
A~Y(3 — ). Note that t,/c still maximizes ("3 — t73)?/t” At as long as
c # 0, where c¢ is the first component of t,. Since the first component of
A=Y (B = B) is n(Bo — Bo) +n(Br — p1)Z and

P(”(Bo — Bo) +n(B1 — 1)z # 0) =1,

the quantity (tTB —t73)2/t7 At is maximized at

i ATl _ ( ﬁ:o —Bo )
n(Bo — Bo) +n(B1 —B1)z \ P — b
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whose first component is 1. Note that ¢” At = D(z) when t = (1, z). There-
fore,

oy PotBrz— o —Br2)* (A1)
ZER D(2) tER2,t£0 tm At '
Consequently,
Bo + Brz — Bo — B12)?
P(Bo+piz€T, ze€R) =P (?ﬁ% (Bo 5;62[)’;2) hr2) < F27n_27a>

(t73 —t7B)>
f P m B —— < F n—
(tER%:);(éO 262HT At~ EmTEe

=1-aq,
where the last equality follows from

tB-17B)? (B—B)TAYB-P)

max =
teERt£0 202t At 262

by Exercise 46 and the fact that the right hand side of the previous equation
has the F-distribution F3 ,, 5. I

Exercise 49 (#7.117). Let Xo; (j = 1,...,n0) and X;; (¢ = 1,...,m,
j = 1,...,n0) represent independent measurements on a standard and m
competing new treatments. Suppose that X;; is distributed as N(pi,0?)
with unknown p; and o2 >0, =1,....,n9,i=0,1,...,m. Fori =0,1,....,m,
let X;. be the sample mean based on X;j, j = 1,..,ng. Define 62 =
[(m + (g — 1720 0 (X — Ko,

(i) Show that the distribution of

Ry = max |(X; — i) — (Xo. — po)l/6
i=1,....,m

does not depend on any unknown parameter.

(ii) Show that Dunnett’s intervals

m B m m B m
DX —aab Y leils Y eiXi+da6 ) |l
=0 i=1 =0 i=1

for all cg, ¢1, ..., ¢, satisfying ZZO ¢; = 0 are simultaneous confidence inter-
vals for -1, ¢;p1; with confidence coefficient 1—a, where g, is the (1—a)th
quantile of Rg;.

Solution. (i) The distributions of 6 /0 and (X;. — p;)/0, i = 0,1,...,m, do
not depend on any unknown parameter. The result follows from the fact
that these random variables are independent so that their joint distribution
does not depend on any unknown parameter and Rg; is a function of these
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random Variabl_es.
(ii) Let ¥; = (X;. — p14)/6. Then Ry = max;—1,..m |Y; — Yo|. Note that

m m
P (Z c;u; are in Dunnett’s intervals for all ¢;’s with Z = O)

=0 i=0
( < qaoz lei], all ¢;’s with ch = 0)
( <%Z|ci|, all ¢;’s with Zci()) .
1= 1=1 i=0

Hence, the result follows if we can show that

max sz - YO| < qa
O

i=1
is equivalent to

Z ciY;

i=0

m

m
< Ga Z le;|  for all ¢, ¢y, ..., ¢y satisfying Zci =0.
i=1 i=0

Suppose that |Z clY| < go >oiry |l for all ¢, cq, ..., ¢, satisfying
Py Ocl = 0. For any ﬁxed i,let co =1,¢;=—1,and ¢c; =0, j # 4. Then
these ¢;’s satisfy

m

ZQ‘:O, i\cﬂzl, and zn:cin
i=0 i=1 i=0

Hence, |Y; — Yy| < gq for ¢ = 1,...,m. Thus, max;—1,..m |Y; — Yo| < ¢a.
Assume now that max;—1 . m |¥; — Yo| < qo. For all ¢y, c1, ..., ¢y, satis-
fying > ¢; =0,

— Y; - Yol.

zm:ciyi = zm:ciyz +coYp
i=0 i=1
= Z Y — Z ;Yo
i=1 i=1
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Exercise 50 (#7.118). Let (Xi,...,X,) be a random sample from the
uniform distribution on (0, §), where 6 > 0 is unknown. Construct simulta-
neous confidence intervals for Fy(¢), t > 0, with confidence coefficient 1 — «,
where Fy(t) is the cumulative distribution function of Xj.

Solution. The cumulative distribution function of X is

0 t<0
Fy(t) =< % 0<t<®
1 t>0,

which is nonincreasing in 0 for any fixed ¢t. Note that Fp, (t) > Fy,(t) for
all t > 0 if and only if §; < #5. From Exercise 26(iii), a 1 — a confidence
interval for 6 is [X (), ¢, X ()], where X(;,) is the largest order statistic and
¢n = a~ Y™ Hence,

=1-aq,

ie.,
[Fch(") (t); FX(,,L) (t)] , t> 07

are simultaneous confidence intervals for Fy(t), ¢t > 0, with confidence co-
efficient 1 — . I
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Index

0-1 loss, 73, 83
x? goodness-of-fit test, 301-302

o-field, xv, 1

Absolute error loss, 80, 155, 161

Admissibility, xv, 73-75, 155-160, 169-174, 187-188
Ancillary statistic, xv, 68-70

Approximate unbiasedness, 80

Asymptotic bias, xv, 88

Asymptotic correctness of confidence sets, xvi, 333, 335-343
Asymptotic distribution, see limiting distribution
Asymptotic efficiency, 193-194, 238, 240
Asymptotic level, xv, 93-94, 306-308

Asymptotic mean squared error, xv, 88, 91, 134
Asymptotic pivotal quantity, 333-335, 339

Asymptotic relative efficiency, xv, 89-91, 132, 135-136, 140, 187-189, 196-
197, 236-238, 240-242

Bayes action, xvi, 145-150, 152

Bayes estimator, xvi, 153-154, 156-160, 168-170
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Bayes factor, 304

Bayes risk, xvi, 81, 154, 156

Bayes rule, xvi, 80-84

Bayes test, 304

Best linear unbiased estimator (BLUE), 127-129, 132
Bootstrap, 247-249

Borel function, xvi, 2-4

Bounded completeness, xvi, 65-67

Bounded in probability, 39-40
C

Characteristic function, xvi, 19, 21, 23-25
Cochran’s theorem, 16

Completeness, xvi, 64-70

Conditional distribution, 32

Conditional expectation, xvi, 26-34

Confidence interval, xvi, 85

Confidence region or set, xvi, 85-86

Conjugate prior, 141-142

Consistency of estimator, xvii, 86-88, 158-160, 189-191, 222, 344-345
Consistency of test, xvii, 92-93, 306-308
Contingency table, 299-301

Convergence almost surely, 35-36, 49

Convergence in distribution, 36-37, 42-45, 47-48
Convergence in moments, 35-37, 49

Convergence in probability, 36-37, 40-41, 46-47, 49

Correlation, 18
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Correlation coeflicient, 56-58, 93-94, 279-280, 292
Cramér-Rao low bound, 116

Credible set, 320-321

Density estimation, 216-221

Dunnett’s interval, 348-349
E
Empirical Bayes, xvii, 150-151, 153

Empirical distribution, xvii, 212, 216, 222, 228, 232-234, 243, 245, 305-306,
321, 343

Estimability, xvii, 120-123, 132-133
Expectation, 17
Expected length, 85, 324

Exponential family, xvii, 51-53, 59-60

F
Fieller’s interval, 309
Fisher information, 112-115, 124
Fisher-scoring, 180-181, 206-208

G

Gateaux differentiability, 222-223, 232
Generalized Bayes, xvii, 147-153, 157-158, 169
Goodness of fit test, see x? goodness-of-fit test
Good sets principle, 1

H
Highest posterior density credible set, 320-321

Hodges-Lehmann estimator, 236
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Huber’s estimator, 241-242, 245

1
Independence, xvii, 14-16, 18, 53, 68-69
Influence function, 223-227, 230-232, 243
Integration, xviii, 5-8

Inverting acceptance regions, 317-319, 327, 334-338, 340-343

J
Jackknife, 246-247

K
Kaplan-Meier estimator, 214

L

L-functional, 224-225, 227-228, 243

Least squares estimator (LSE), 119-120, 122, 125-132
Lebesgue density, 13-15, 19-20, 24

Length of a confidence interval, 322-324, 334

Liapounov’s condition, 50

Likelihood equation, xviii, 176-187

Likelihood ratio (LR) test, 283-297, 299-300, 335-337, 340-343

Limiting distribution, 54, 56-59, 136-138, 189-190, 193-198, 200, 202-205,
235, 290-293, 299

Lindeberg’s condition, 48-49, 249-250

Location-scale family, xviii, 52

Mallows’ distance, 209-211

Maximum likelihood estimator (MLE), 175-182, 184-191, 193-197, 202-
204, 212, 214, 221

Maximum profile likelihood estimator, 221
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Mean, see expectation

Measure, xix, 1-2

Median, 8, 37-38, 80, 238-239

Minimal sufficiency, 60-69

Minimax estimator, xix, 165-171, 174

Minimax rule, xix, 81-84

Minimum risk invariant estimator (MRIE), 160-164
Missing data, 222

Moment estimator, 134-138, 150-151, 153, 196-197
Moment generating function, xix, 20-22, 26

Monotone likelihood ratio, xx, 256-264, 268-269, 272, 282, 313-316, 327,
329-331

N
Newton-Raphson method, 180-181, 206-207
Noncentral chi-square distribution, 16, 19-20, 258, 315
Noncentral F-distribution, 22, 315-316, 328

Noncentral t-distribution, 271-272, 319

0)
One-sample t-test, 271, 306-307
One-step MLE, 206-208
Optimal rule, xx, 75-78

P

p-value, 84-85

Pairwise independence, 15

Pivotal quantity, xx, 309-313, 321-322
Posterior distribution, xx, 141-143, 156-158

Posterior expected loss, 153-154
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Posterior mean, 142, 144, 146
Posterior variance, 142, 144
Power function, xx, 276
Power series distribution, 52
Prediction, 321

Probability density, 12
Product measure, 10-11

Profile likelihood, 221

Quantile, 231-236

Radon-Nikodym derivative, 9-10

Randomized confidence set, 330

Randomized estimator, xx, 71

Rao’s score test, 296-298, 300-303, 334-338, 340-343
Risk, xx, 71-74, 81-82, 174-175

Root of the likelihood equation (RLE), 195, 197-198, 200

S

Sample median, 237-238, 241, 344-345

Sample quantile, 343

Scheffé’s intervals, 347

Shortest-length confidence interval, 323-327
Simultaneous confidence intervals, xxi, 345-350
Size, xxi, 92

Sufficiency, xxi, 59-61, 114-115

Sup-norm distance, 211
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Superefficiency, 192

T
Test, 73, 84
Testing independence, 301
Trimmed sample mean, 229, 240
Type II error probability, 251

0)

U-statistic, 116-119, 140, 244-245
Unbiased confidence set, xxii, 324, 328
Unbiased estimator, xxii, 77-80, 222
Uniform integrability, 38-39

Uniformly minimum variance unbiased estimator (UMVUE), xxii, 95-112,
115-116, 123-124, 132-133, 157-158, 187-188, 196

Uniformly most accurate (UMA) confidence set, xxi, 327-331

Uniformly most accurate unbiased (UMAU) confidence set, xxi, 324, 326-
327, 332-333

Uniformly most powerful (UMP) test, xxi, 251-254, 259-269, 281-282

Uniformly most powerful unbiased (UMPU) test, xxi, 269-270, 273-283,
289-292, 294-295, 332

\Y
Variance estimator, 243-249, 344-345
W

Wald’s test, 296-298, 300, 302-303, 334-337, 340-343

Weak law of large numbers, 45-46
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