
Z. Wahrscheinlichkcitstheorie verw. Geb. 14, 323- 330 (1970) 

A Characterization of Limiting Distributions 
of Regular Estimates 

JAROSLAV HAJEK 

Summary. We consider a sequence of estimates in a sequence of general estimation problems with 
a k-dimensional parameter. Under certain very general conditions we prove that the limiting distribu- 
tion of the estimates, if properly normed, is a convolution of a certain normal distribution, which 
depends only of the underlying distributions, and of a further distribution, which depends on the choice 
of the estimate. As corollaries we obtain inequalities for asymptotic variances and for asymptotic 
probabilities of certain sets, generalizing so some results of J. Wolfowitz (1965), S. Kaufman (1966), 
L. Schmetterer (1966) and G. G. Roussas (1968). 

1. Introduction 

In several papers there were established asymptotic lower bounds for variances 
and for probabilities of some sets provided the estimates are regular enough to 
avoid superefficiency. See Rao (1963), Bahadur (1964), Wolfowitz (1965), Kauf- 
man (1966), Schmetterer (1966), Roussas (1968), for example. In the present paper 
we obtain some of their results as corollaries of a representation theorem describing 
the class of all possible limiting laws. The present result refers to a general sequence 
of experiments with general norming matrices K~. Our condition (2) below is 
implied by conditions imposed on the families of distributions in the above 
mentioned papers. The same is true about regularity condition (3) concerning 
the limiting distribution of estimates. A comparison with Kaufman (1966) is 
given in Remark 1 below, and the same comparison could be made with Wolfowitz 
(1965). Schmetterer's (1966) condition, namely that the distribution law of normed 
estimates converges continuously in 0, also entails (3). See also Remark 2 for 
Bahadur's (1964) condition, which is weaker than (3). 

Roughly speaking, condition (2) means that the likelihood functions may be 
locally asymptotically approximed by a family of normal densities differing in 
location only. Similarly, condition (3) expresses that the family of distributions 
of an estimate T~ may be approximated, in a local asymptotic sense, by a family 
of distributions differing again in location only. 

The idea of the proof is based on considering the parameter as a random 
vector that has uniform distribution over certain cubes. In this respect the spirit 
of the proof is Bayesian, similarly as in Weiss and Wolfowitz (1967). The math- 
ematical technique of the present paper is borrowed from LeCam (1960). 

2. The Theorem 

Consider a sequence of statistical problems (5~,, d , ,  P,(', 0)), n >  1, where 0 
runs through an open subset O of R k. The nature of sets 2~, may be completely 
arbitrary, and the only connection between individual statistical problems will 
22* 
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be given by conditions (2) and (3). In particular, the n-th problem may deal with n 
observations which may be independent, or may form a Markov chain, or 
whatsoever. A point from Y'. will be denoted by x,, and X, will denote the abstract 
random variable defined by the identity function X, (x , )=x , ,  x,  eY(,. The norm 
of a point h = (hD... ,  hk) from R k will be defined by [hi = m~klhil ; h_-< v will mean 

that h i ____ vi, 1 _<_ i_<__ k, and h' v will denote the scalar product of two vectors h, v E R k. 

Take a point t e O  and assume it is the true value of the parameter 0. We shall 
abbreviate P, = P.(., t) and P,h = P,(', t + K~ -1 h) where K21 are inverses of some 
norming regular (k x k)-matrices. Most  usually the theorem below is applicable 
with K, diagonal and having n ~ for its diagonal elements; then simply K21 h=  
n -~ h. We shall need that {K21} be a sequence of contracting transforms in the 
sense that for every e > 0  and a > 0  there exists an no such that [h]<a entails 
[K2 t hi <~ for all n>  no. This property will be insured by 

lim (the minimal eigenvalue of K', K,) = oo, (1) 
n . - .  oo 

where K', denotes the transpose of K, .  Since O is open, (1) ensures that for all 
hER k the points t + K 2 ~ h  belong to O if n is sufficiently large. If O = R  k, the 
theorem below makes sense and is true without condition (1). 

Given two probability measures P and Q, denote by dQ/dP the Radon- 
Nikodym derivative of the absolutely continuous part of Q with respect to P. 
Thus, generally, we do not obtain ~ (dQ/dP) dP = Q (A), but only ___ Q (A). Introduce 

A 

the familiy of likelihood ratios 

. dPn h 
r , ( h , x . ) = ~ - ( x , ) ,  h~R k, n>=nh, xneXn, 

where n h denotes the smallest n o such that n > n  o entails t + K 2  ~ heO.  In what 
follows the argument x, will be usually omitted in order to stress the other argu- 
ments. 

The distribution law of a random vector I1, = Y,(x,) under P, will be denoted 
by ~(Y,  IP,) and its weak convergence to L b y ~ ( Y ,  IP,)~L. The k-dimensional 
normal distribution with zero expectation vector and covariance matrix F will 
be denoted by ~b(. IF), and the corresponding law by ~4r(0, F). The expectation with 
respect P, will be denoted by E,, i.e. E , ( . )=~( ' )  dP,. 

Let T,= T, (x,) be a sequence of estimates of 0, i.e. for every n T, is a measurable 
transform from ~r to R k. (We shall say that the estimates T, are regular, if they 
satisfy condition (3) below.) Now we are prepared to formulate the following 

Theorem. In the above notations, let us assume that (1) holds and that 

r,(h)= exp { h ' A , - � 8 9  he R  k, n>n  h, (2) 

where ~ (A.[P.) ~ J ( O ,  F) and Z.(h) ~ 0 in P.-probability for every h e R  k. Further 
consider a sequence of estimates satisfying 

P , h ( K , ( T , - t ) - h < v ) ~ L ( v ) ,  for every h~R k, (3) 

in continuity points of some distribution function L(v), v e R  k. 
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Then, if  the matrix F is regular, we have 

L(v) = ~ ~ ( v -  u lF - 1) dG (u), (4) 

where G(u) is a certain distribution function in R k. 

Remark. The dependence of A., F and Zn(h ) on t, and of A n and Zn(h ) on x., 
is suppressed in our notation. 

Proof By Lemma 1 below we may also write 

r,(h) = exp {h' A* - �89 h' F h + Z* (h)} (5) 

where the properties 5Y(A*[ P . )~Y(O , F)  and Z*(h) - ,O in P.-probability are 
preserved, and, in addition 

satisfies 
Bnh=-[En exp (h A n - g h  Fh)] -1 (6) 

(7) i s u ~ l B . h - l l ~ 0  for every j > 0 ,  as n ~ o e .  

Put 
r* (h) = Bnh exp (h' A* - �89 h' F h). (8) 

From our assumptions and from (7) it follows that N ( - � 8 9  h 'Fh)  is a limit 
for ~ ( l o g  rn(h ) [P.) as well as for 5r r*(h) lP.). Let g be a random variable such 
that 2 ' ( Y ) = X ( - � 8 9  h'Fh).  Then E e r = l .  Further, by (8) and (6), 

E.  r~(h) = 1. 

On the other hand, since rn(h ) is a the Radon-Nikodym derivative of the absolutely 
continuous part of P.h relative to P., 

l imsup E n rn(h)< 1. 

Since rn(h ) is nonnegative and convergent in distribution to e y, we also have 

lira inf E rn(h ) >_ e Y = 1. 
n 

Consequently, 
lira E n r.(h) = 1. 

n ~ o o  

Since, furthermore, [rn(h)-r*(h)] ~ 0 in P.-probability, Lemma 2 below may be 
applied to the effect that 

Irn(h)-r*(h)[ dP. -~ O, h~R  k. (9) 
Put 

Qnh(A)= ~ r*(h)dP., A e d  n. (10) 
A 

Then (3) and (9) entail that 

Qnh(K.(T. -- t) -- h < v) --, L(v). (11) 

From (8) it follows that Q n h ( K n ( T . - t ) - h N v )  is a measurable function of h for 
every v E R e. 
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Let 2j(dh) be the uniform distribution over the cube Ihl<j. It is easy to see 
that (11) entails for every natural j 

- D f  

L.j(v) = ~ Q.h(K.(T.--  t) - h <= v) d2~(h) ~ L(v). (12) 

By a LeCam's lemma (LeCam, 1960 or Hfijek-Sidfik, 1967, VI.1.4) we deduce 

&f (F-1 A*IQ,h) ~ JV(h, F -  1). (13) 

Put a ~ = ( - j ,  . . . , - j ) ,  bj=(j ,  . . . , j )  and cj=(1/], . . . ,V~). Let U be some random 
k-vector possessing normal distribution with zero expectation and covariance 
matrix F -1, i.e. 5e(U)=Y(0,  F-i).  Then, by (13), 

< - 1  , ~Q,h (a j+c i=F  A, <_bj-ci)d2j(h ) 

-~ ~ P(a~+cj<= c +  h<=bj-c~) d2~(h) 
> ~ P ( a j + 2 c j < h < b j - 2 e j )  d2j(h)-P(lU] > I f  j )  (14) 

= (1 - 2/1/~) k -  P(I U[ > V~)" 

For  every natural j denote by rnj some integer such that 

1 
sup rB, h-- 1/<__, n>m~, (15) 
Ihl<J J 

1 
p ( L , j , L ) < _ _ ,  n>mj  (16) 

J 

(where L. j  is given by (12) and p denotes the L6vy distance), and such that 

Q,h(aj + cj < F -  1 A* < b j -  c j) d2j(h) (17) 

> (1 -- 2/]//]) k -  P(I UI > l /J)  - 1~/, n > m i. 

All this may be satisfied in view of (7), (12) and (14). We may assume that 
m 1 < m 2 < .... Let j(n) be defined by 

and set 
mj(n) <= rt ~ mj(n)+ l , 

L, = L,j(.), C), = j" Q,~ d21(,)(h ). (18) 

From (16) it follows that 
L, ~ L. (19) 

On the other hand L,(v) may also be interpreted as the probability of {K,(T.  - t ) -  
h < v}, if the joint distribution of (X,, h) is given by the prior distribution 2j(.) 
and by the family Q,h of conditional distributions of X, given h. Denoting the 
posterior distribution function of h by D.(yLX,), we may therefore write 

L,(v) = S [1 - D.(K.(T,  - t) - v - 0 IX,)] d(~,. (20) 
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Now, in view of (8), for aj(.)<y<bj(.), 

y 

D.(ylX.)=c(X.) ~ B.hex p ' * 1 , (h A. -gh  Fh)dh 
aj (n) 

r (21) 
= c'(X.) ~ B.h exp {(h-  r - 1  A*.)' r (h  - r - 1  A.*)} dh 

aj(n) 

where c(Xn) and c'(Xn) are some constants depending on X,  only. Now, in view of 
(15), 

sup FB.h-- 1F -~ 1, (22) 
Ihl < j(n) 

and in view of (17), 

- 1  , - 1  , ~  -oo~-aj(n)-F A n <=h-F An =bj(~)-F-1A*~oo (23) 

where - oo = ( -  o% ... ,  - oo), 0o = (oo . . . . .  oo) and the convergence is in ~) :p roba-  
bility. Consequent ly  

D.(y IX.) -~ ~ ( y -  r - '  A.* I F - ' )  (24) 

in (~.-probability, and, in turn 

ILn(v) - $ ~(v-Kn(Tn-t)+F -1A*I r - l )  d0 .  I ~ 0. (25) 
Denot ing  

Gn(u) = t2n(Kn( T n-  t ) -  F -1 A* < u) (26) 

we may also write 

tLn(V)- ~ ~(v - u l r  -1) dG.(u) I --, o. (27) 

Taking a subsequence {m} c {n} such that  Gm~G, we obtain from (19) and (27) 

L(v )  ~ Lm(v)  -~ ~ ~ (v - u IF -1) dG (u). 

Since L(v) is a distr ibution function, G(u) has to be a distr ibution function, too. 
This completes the proof. 

L e m m a  1. Let 5r JV (O, F) hold. Then there exists a truncated version 
A* of A. such that (A.-A*)--. 0 in P.-probability and 

suplE, exp(h 'A*-!h 'Ch)- l l  ~ 0 , ~ .  2,~ - j > 0 .  (28) 
Ihl<j 

Proof For  every natural  i let us put  

A.i=A., if IA,I=i ,  

= 0, otherwise.  

Let  Y be some r andom vector  such that  & a ( Y ) = X ( 0 ,  F) and let Y/= Y, if t YI < i ,  
and 0 otherwise. Let  m i be an integer such that  

E , 1 t 1 sup] ,exp(h A,i-~h Fh)-Eexp(h' 1:  Y~-~h Fh)l <__, 
Ihl<=i t 

rl > m i. 
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Such an mi exists, s ince~e(A,i[P,)~(Yi) and the distributions are concentrated 
on a compact subset on which the system of functions exp (h ' y -  �89 F h) is compact 
in the supremum metric. Note that further 

lira sup [E exp (h' 1 , Y~-gh r h ) -  11 =0 .  

Assume that ml<m2<. . . ,  define i(n) by mi(,)<=n<mi(,)+l, and put A*=A,i~n ). 
Then the conclusion easily follows. 

Lemma 2. Let {(U,, V~), n=> 1} be a sequence of pairs of nonnegative random 
variables such that 

(a) U~ converges in distribution to U, EU < ~ .  

(b) (U~ - ~) -~ 0 in probability. 

(c) E, U, ~ E U, E~ V~ ~ E U, where E, and E denote expectations. 

Then 
E. IU. -  V.I -~ 0 as n~oo .  (29) 

Proof. The proof follows from Lo6ve (1963), Theorem 11.4.A. 

3. Corollaries 

Corollary 1. Let C be a convex symmetric set in R k, and let Y be a random 
variable such thatS~(Y)= X(0 ,  F-l).  Then, if the assumptions of the above theorem 
are satisfied for some t~ O, we have for T, from the same theorem 

lira sup P~ [K, (T~ - t) s CI t] = P ( r e  C). (30) 
n - - +  oo  

Proof Since the boundary of C has zero Lebesgue measure and since the 
limiting law of K , ( T , - t )  is absolutely continuous, in view of (4), we have 

lira P~ [Kn(T . -  t)s CI t3 = P(Z~ C), 

where A ~ (Z)= L. Furthermore, (4) with the well-known lemma of Anderson (1955) 
entail 

P(Ze C)<__P(Ye C). 

Remark 1. Corollary 1 provides the essence of the main result by Kaufman 
(1966). His conditions, namely that the distribution of K,(T, -O)  converges 
uniformly in R k x C where C is any compact subset of O, and his Lemma 5.1 
entail our assumption (3). His regularity conditions for densities entail assump- 
tion (2). Contrary to Kaufman, we do not claim that the maximum likelihood 
estimate is after norming asymptotically normal #/ (0 ,F-I) .  For this conclusion 
we would need some global conditions concerning the distributions. 

Under LeCam's DN conditions in [4], there is an estimate, not necessarily 
the maximum likelihood one, which is after norming asymptotically normal 
X (0, F -  1). 

Remark 2. The theorem also entails 

lira inf E, (h' K , ( T , -  t)) 2 >__ h' F -1 h. (31) 
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If we assume that K,  (T, -0)  is asymptotically normal with zero variance, then by 
Bahadur (1964), we could derive (31) from weaker asumptions than (3). Actually, 
then (3) may be replaced by 

P,h(h'K,(T,-t)<=h'h)--+�89 h~R k. (32) 

Remark 3. We have introduced K,  instead of n}I in order to cover such 
instances as 

pAo)= x i -  (33) 
i= l  j = l  

where we may put K , =  Cni j Cni j, Alternatively, we may take for K,  a 
i j , j ' = l "  

diagonal matrix coinciding on the diagonal with the previous one. Instances of 
this character occur in asymptotic theory of linear regression. 

Corollary 2. Put Av= {y: a' y<__v} where a~R k and veR. Assume that 

dL(y)= ~ d~(ylr-~). (34) 
Av Av* 

Then, under the assumptions of the above theorem 

dL(y)<= ~ dr seR,  (35) 
Av+s+Av Av*+s+Av* 

where + denotes the symmetric difference. 

Proof Consider two distributions of the pair (Y,, U)sR k x R k, namely 

~O('IF-1)xG and r  2>0 .  

Then (34) entails that the tests rejecting ~(" IF -1) • G ifa'  Y=< v* and a'(Y+ U)< v, 
respectively, have the same significance level, and (35) simply means that the 
former test has for 2 a'F- * a = s > 0 a larger power than the latter test, which easily 
follows from the Neyman-Pearson lemma. For s < 0 we proceed similarly. 

Remark 4. Corollary 2 generalizes a result by Wolfowitz (1965) and Roussas 
(1968), if we note that 

P~(a'K.(T.-t)<__v)~ S dL(v), 
Av 

which follows again from the fact the A v has zero boundary. 

Remark 5. If the loss incurred by T. if 0 is true equals I(K.(T.-O)), where l(.) 
may be represented as a mixture of indicators of complements of convex sym- 
metric sets, then Corollary 1 entails that 

lim inf E. I.[K.(T.-t)]>=EI(Y), 

where ~ (Y)=JV(0 ,  F-1). In this sense Jf'(0, F -1) may be regarded as a best 
possible limiting distribution. From (26) it is apparent that LP(K,(T,-t)lP,)~ 
.Az(0, F -1) if and only if [K,(T, - t)--_F-IA*l_,j ~ 0 in (~,-probability. 
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