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Cross tabulations (also known as cross tabs, or contingency 
tables) often arise in data analysis, whenever data can be 
placed into two distinct sets of categories. In market research, 
for example, we might categorize purchases of a range of 
products made at selected locations; or in medical testing, we 
might record adverse drug reactions according to symptoms and 
whether the patient received the standard or placebo treatment.

The statistical technique presented in this article, 
correspondence analysis, provides a means of graphically 
representing the structure of cross tabulations so as to shed light 
on the underlying mechanisms. The article provides a practical 
introduction to correspondence analysis in the form of a “five-
finger exercise” in textual analysis~identifying the author of a 
text given samples of the works of likely candidates. 

‡ 1. Introduction
Correspondence analysis is a statistical technique that provides a graphical representation
of  cross  tabulations  (which  are  also  known  as  cross  tabs,  or  contingency  tables).  Cross
tabulations arise whenever it is possible to place events into two or more different sets of
categories, such as product and location for purchases in market research or symptom and
treatment  in  medical  testing.  This  article  provides  a  brief  introduction to  correspondence
analysis  in  the  form  of  an  exercise  in  textual  analysis~identifying  the  author  of  a  text
based on examination of its characteristics. The exercise is carried out using Mathematica
(Version 5.2).

Perhaps  the  most  illustrious  exponent  of  textual  analysis  is  the  self-styled  “literary
detective” Donald Foster, whose 2001 book [1] describes how he identified the authors of
several  anonymous  works,  including  the  best-selling  roman-à-clef  Primary  Colors  [2],
which satirized the 1992 Clinton presidential campaign. Foster’s methodology examines a
broad  spectrum  of  text  characteristics,  including  word  choice,  punctuation,  grammatical
structure, and the like. The aim of the exercise in this article is to emulate Foster, though
naturally the literary aspects of the approach taken are much more basic~the intent is not
to  describe  a  realistic  method  of  textual  analysis,  but  rather  to  use  it  to  illustrate  corre-
spondence analysis. The Mathematica Journal 12 © 2010 Wolfram Media, Inc.
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Consider the following list of seventeenth- and eighteenth-century writers.

authors  "Charles Darwin", "Rene Descartes",
"Thomas Hobbes", "Mary Shelley", "Mark Twain";

Imagine  that  we  are  given  two fragments  of  text  written  by  one  or  two of  these  writers,
and charged with identifying the true author(s).  To make things interesting, imagine also
that  the  only  information  we are  given  about  an  unidentified  fragment  of  text  is  the  fre-
quency with which certain letters appear in it. Accordingly, I have taken three distinct sam-
ples of about 1000 characters each from the writings of each these authors, and added up
the  number  of  times  each  of  the  following  characters  appears  in  each  of  the  samples
(restricting ourselves to less  than the complete alphabet  prevents  the tables in the rest  of
the discussion from becoming unwieldy; the characters chosen happen to occur with mid-
dling frequency in all the texts as a whole).

chars  "B", "C", "D", "F", "G", "H", "I", "L", "M",
"N", "P", "R", "S", "U", "W", "Y";

This is the cross tabulation.

2 Phillip M. Yelland

The Mathematica Journal 12 © 2010 Wolfram Media, Inc.



sampleCrosstab 
34, 37, 44, 27, 19, 39, 74, 44, 27, 61, 12, 65, 69,

22, 14, 21, 18, 33, 47, 24, 14, 38, 66, 41, 36,
72, 15, 62, 63, 31, 12, 18,

32, 43, 36, 12, 21, 51, 75, 33, 23, 60, 24, 68, 85,
18, 13, 14, 13, 31, 55, 29, 15, 62, 74, 43, 28,
73, 8, 59, 54, 32, 19, 20,

8, 28, 34, 24, 17, 68, 75, 34, 25, 70, 16, 56, 72,
31, 14, 11, 9, 34, 43, 25, 18, 68, 84, 25, 32, 76,
14, 69, 64, 27, 11, 18,

15, 20, 28, 18, 19, 65, 82, 34, 29, 89, 11, 47, 74,
18, 22, 17, 18, 14, 40, 25, 21, 60, 70, 15, 37,
80, 15, 65, 68, 21, 25, 9,

19, 18, 41, 26, 19, 58, 64, 18, 38, 78, 15, 65, 72,
20, 20, 11, 13, 29, 49, 31, 16, 61, 73, 36, 29,
69, 13, 63, 58, 18, 20, 25,

17, 34, 43, 29, 14, 62, 64, 26, 26, 71, 26, 78, 64,
21, 18, 12, 13, 22, 43, 16, 11, 70, 68, 46, 35,
57, 30, 71, 57, 19, 22, 20,

16, 18, 56, 13, 27, 67, 61, 43, 20, 63, 14, 43, 67,
34, 41, 23, 15, 21, 66, 21, 19, 50, 62, 50, 24,
68, 14, 40, 58, 31, 36, 26,

19, 17, 70, 12, 28, 53, 72, 39, 22, 71, 11, 40, 67,
25, 41, 17;

TableFormsampleCrosstab,
TableHeadings 
FlattenTable  ": "  ToStringi, i, 3 &  authors,
chars, TableSpacing  .5

B C D F G H I L M N P R S U W Y
Charles Darwin: 1 34 37 44 27 19 39 74 44 27 61 12 65 69 22 14 21
Charles Darwin: 2 18 33 47 24 14 38 66 41 36 72 15 62 63 31 12 18
Charles Darwin: 3 32 43 36 12 21 51 75 33 23 60 24 68 85 18 13 14
Rene Descartes: 1 13 31 55 29 15 62 74 43 28 73 8 59 54 32 19 20
Rene Descartes: 2 8 28 34 24 17 68 75 34 25 70 16 56 72 31 14 11
Rene Descartes: 3 9 34 43 25 18 68 84 25 32 76 14 69 64 27 11 18
Thomas Hobbes: 1 15 20 28 18 19 65 82 34 29 89 11 47 74 18 22 17
Thomas Hobbes: 2 18 14 40 25 21 60 70 15 37 80 15 65 68 21 25 9
Thomas Hobbes: 3 19 18 41 26 19 58 64 18 38 78 15 65 72 20 20 11
Mary Shelley: 1 13 29 49 31 16 61 73 36 29 69 13 63 58 18 20 25
Mary Shelley: 2 17 34 43 29 14 62 64 26 26 71 26 78 64 21 18 12
Mary Shelley: 3 13 22 43 16 11 70 68 46 35 57 30 71 57 19 22 20
Mark Twain: 1 16 18 56 13 27 67 61 43 20 63 14 43 67 34 41 23
Mark Twain: 2 15 21 66 21 19 50 62 50 24 68 14 40 58 31 36 26
Mark Twain: 3 19 17 70 12 28 53 72 39 22 71 11 40 67 25 41 17
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‡ 2. c2 Calculations

Is it possible to say with reasonable certainty that the distribution of letters differs signifi-
cantly from sample to sample (i.e., from row to row in the cross tab)? The usual means of
answering  such  questions  is  Pearson’s  c2  test  for  independence;  it  tests  whether  a  cross
tab  deviates  significantly  from  one  in  which  rows  and  columns  are  independent.  In  our
case,  independence  would  imply  that  the  letters  occur  with  the  same  frequency  in  all  of
the text samples.

Assume  that  the  cross  tab  under  examination  is  described  formally  by  the  I µ J  matrix
F = A fi jE.  We derive the correspondence matrix  P  from F  by dividing its entries by their
grand total:

(1)P = Api jE = B
fi j
n
F, where n = ‚

i=1

I

‚
j=1

J

fi j.

Next, define row and column totals:

(2)

pi+ = ‚
j=1

J

pi j

p+ j = ‚
i=1

I

pi j,

The c2  statistic, X2 , is calculated:

(3)X2 = n ‚
i=1

I

‚
j=1

J Ipi j - mi jM
2

mi j
.

Here mi j is an estimate of an entry’s value assuming independence:

(4)mi j = pi+ p+ j.

For our example, the calculations may be expressed in Mathematica as follows.
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grandTotal  TotalsampleCrosstab, 2;
correspondenceMatrix  sampleCrosstab  grandTotal;

rowTotals  Total  correspondenceMatrix;
columnTotals  Total  TransposecorrespondenceMatrix;

independenceModel  OuterTimes, rowTotals, columnTotals;

chiSquaredStatistic 
grandTotal 
TotalcorrespondenceMatrix  independenceModel^2 

independenceModel, 2;
NchiSquaredStatistic

448.497

If rows and columns really are independent (i.e.,  “under the null hypothesis”), X2  should
follow a c2 distribution with HI - 1L µ HJ - 1L degrees of freedom. We can compare the ac-
tual value computed for the example cross tab with its distribution under the null hypothe-
sis as follows.

nullDistribution  ChiSquareDistribution
ApplyTimes, DimensionssampleCrosstab  1;

1  NCDFnullDistribution, chiSquaredStatistic
QuantilenullDistribution, .99
0.

260.595

Thus there is (almost) no probability under the null hypothesis of observing a statistic as
large  as  the  one  actually  observed,  and  indeed  only  a  1%  probability  of  seeing  a  value
about  half  as  large.  According to  the  c2  test,  therefore,  there  is  a  statistically  significant
difference in the distribution of letters across the samples.

Unfortunately,  the  c2  test  by  itself  does  not  provide  a  solution  to  the  problem of  distin-
guishing the works of  the different  authors.  Though it  establishes that  the distribution of
letters  differs  significantly  from  one  sample  to  another,  it  does  not  tell  us  whether  the
samples of one author differ from those of other authors more than they differ from each
other, nor does it allow us to characterize the authors in terms of the distribution of letters
in their works. Answers to these questions are provided by correspondence analysis.
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‡ 3. c2 Distances

For the purposes of correspondence analysis,  the differences between the distributions of
letters in the text samples~which you will recall are given in the rows of the cross tab~
are measured by so-called c2  distances, which are weighted Euclidean distances between
normalized  rows  (calculated  by  dividing  row  entries  by  their  respective  row  total),  with
weights inversely proportional to the square roots of the column totals. In symbols, the c2

distance between row i and row k is given by the expression:

(5)dik = ‚
j=1

J Ipi j ë pi+ - pk j ë pk+M
2

p+ j
.

This computes the c2 distances between the text samples using the correspondence matrix
and displays them in a reasonably compact table (after scaling up by 100 and rounding).

chisqdrow1_, row2_ :
SqrtSumrow1j  Totalrow1  row2j  Totalrow2^2 

columnTotalsj,
j, LengthcolumnTotals

UpperDiagonalMatrixf_, n_Integer?NonNegative :
ArrayIf  2, f, 0 &, n, n

chiSquaredDistances  UpperDiagonalMatrix
Function

i, k,
chisqdcorrespondenceMatrixi,
correspondenceMatrixk,

LengthcorrespondenceMatrix;

abbreviatedAuthors 
StringReplace, RegularExpression":lower:\\s" 

"" &  authors;
abbreviatedSampleTitles 

FlattenTable  ToStringi, i, 3 & 
abbreviatedAuthors;

distanceTableuddistances_ : TableForm
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Map
NumberForm, 2, 0, NumberPoint  "" &,
uddistances  Transposeuddistances,
2,

TableHeadings  abbreviatedSampleTitles,
abbreviatedSampleTitles, TableSpacing  .6

distanceTable100. chiSquaredDistances
CD1 CD2 CD3 RD1 RD2 RD3 TH1 TH2 TH3 MS1 MS2 MS3 MT1 MT2 MT3

CD1 0 21 24 29 35 33 36 39 34 27 31 38 43 38 42
CD2 21 0 32 20 26 24 32 33 28 23 26 31 40 33 41
CD3 24 32 0 40 34 35 37 39 35 37 29 37 46 48 47
RD1 29 20 40 0 22 21 29 33 30 15 29 32 32 26 35
RD2 35 26 34 22 0 16 23 28 26 24 24 30 37 38 41
RD3 33 24 35 21 16 0 26 27 24 19 22 31 42 41 43
TH1 36 32 37 29 23 26 0 25 24 26 33 34 35 37 36
TH2 39 33 39 33 28 27 25 0 8 29 26 35 39 41 37
TH3 34 28 35 30 26 24 24 8 0 26 23 33 40 41 39
MS1 27 23 37 15 24 19 26 29 26 0 23 27 35 29 36
MS2 31 26 29 29 24 22 33 26 23 23 0 26 43 42 45
MS3 38 31 37 32 30 31 34 35 33 27 26 0 38 36 42
MT1 43 40 46 32 37 42 35 39 40 35 43 38 0 18 17
MT2 38 33 48 26 38 41 37 41 41 29 42 36 18 0 20
MT3 42 41 47 35 41 43 36 37 39 36 45 42 17 20 0

Certain characteristics of the samples can be detected in the table above. For example, it
appears  that  the  Mark  Twain  (MT)  texts  form  a  relatively  isolated  group,  in  that  the
distances from the MT samples to each other are considerably smaller than from the MT
samples  to  those  of  other  authors.  By  itself,  however,  the  table  does  little  to  make
apparent the overall pattern of the distances~something done in the next section. Before
that, however, here is a little more on the nature of c2 distances.

As their name suggests, c2  distances are closely related to the c2  statistic of the previous
section. To show how they are related,  consider the “average” row~termed the centroid
or barycenter in correspondence analysis~whose entries are simply the column totals:

(6)z = Ap+1, …, p+ j, …, p+JE.

From equation (5), since the row total for the centroid is 1 (by the definition of P), the c2

distance of row i to the centroid is:

(7)diz = ‚
j=1

J Ipi j ë pi+ - p+ jM
2

p+ j
.

Now with mi j as defined in (4):

(8)diz2 =
1

pi+
‚
j=1

J Ipi j - pi+ p+ jM
2

pi+ p+ j
=

1

pi+
‚
j=1

J Ipi j - mi jM
2

mi j
.

Drawing an analogy with the physical concept of angular inertia, correspondence analysis
defines  the  inertia  of  a  row  as  the  product  of  the  row  total  (which  is  referred  to  as  the
row’s mass) and the square of its distance to the centroid, pi+ diz2 .  Comparing the expres-

sion for diz2  in (5) with definition of the c2 statistic in (3), it follows that the total inertia of

all  the  rows  in  a  contingency  matrix  is  equal  to  the  c2  statistic  divided  by  n,  a  quantity
known as Pearson’s mean-square contingency, denoted f2:
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(9)‚
i=1

I

pi+ diz2 =
X2

n
= f2.

The total inertia of a table is used to assess the quality of its graphical representation in cor-
respondence analysis. For future reference, we can calculate f2 for our dataset.

phiSquared  Sum
rowTotalsi chisqdcorrespondenceMatrixi, columnTotals^

2,
i, LengthcorrespondenceMatrix;

NphiSquared

0.0498662

‡ 4. Calculating Row Scores

Correspondence  analysis  provides  a  means  of  representing  a  table  of  c2  distances  in  a
graphical form, with rows represented by points, so that the distances between points ap-
proximate the c2 distances between the rows they represent.

To  compute  such  a  representation,  we  begin  with  a  matrix  of  standardized  residuals,
which are the square roots of the terms comprising the c2 statistic in (3):

(10)W = B
pi j - mi j

mi j

F.

Next, we compute the singular value decomposition of W, which is to say that we find or-
thogonal matrices V  and W, together with a diagonal matrix L, such that (with the trans-
pose of matrix M  denoted MT, and writing I for the identity matrix):

(11)W = V L WT,
V VT = W WT = I.

The  scores  of  the  rows~whose  interpretation  we  discuss  later~are  given  by  the
expression:

(12)R = dr V L.

Here  dr  is  the  diagonal  matrix  comprising  the  reciprocals  of  the  square  roots  of  the  row
totals:
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Here  dr  is  the  diagonal  matrix  comprising  the  reciprocals  of  the  square  roots  of  the  row
totals:

(13)dr =

1

p1+
0 0

0  0

0 0 1

pI+

.

The scores of the rows in our sample cross tab are computed in the following (left multipli-
cation by dr being more conveniently carried out in Mathematica by row-wise division).

standardizedResiduals 
correspondenceMatrix  independenceModel 
SqrtindependenceModel;

leftSingularMatrix, singularValuesMatrix,
rightSingularMatrix 

SingularValueDecompositionNstandardizedResiduals;
rowScores  leftSingularMatrix.singularValuesMatrix 

SqrtrowTotals;

The  row  scores  may  be  thought  of  as  the  coordinates  of  points  in  a  high-dimensional
space (14-dimensional, as it turns out in this case).

MatrixRankrowScores

14

These  points  are  arranged  so  that  the  Euclidean  distance  between  two  points  is  equal  to
the c2  distance between the two rows to which they correspond. To show how the c2  dis-
tances between the rows are reflected in their scores, the following reconstitutes the c2 dis-
tances  in  the  previous  section  from  Euclidean  distances  between  the  scores  computed
above. As you can see, the c2 distances are recovered perfectly.
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scoreDistances  UpperDiagonalMatrix
Function

i, k,
NormrowScoresi  rowScoresk,

LengthrowScores;
distanceTable100 scoreDistances
distanceTable100 ChopchiSquaredDistances  scoreDistances

CD1 CD2 CD3 RD1 RD2 RD3 TH1 TH2 TH3 MS1 MS2 MS3 MT1 MT2 MT3
CD1 0 21 24 29 35 33 36 39 34 27 31 38 43 38 42
CD2 21 0 32 20 26 24 32 33 28 23 26 31 40 33 41
CD3 24 32 0 40 34 35 37 39 35 37 29 37 46 48 47
RD1 29 20 40 0 22 21 29 33 30 15 29 32 32 26 35
RD2 35 26 34 22 0 16 23 28 26 24 24 30 37 38 41
RD3 33 24 35 21 16 0 26 27 24 19 22 31 42 41 43
TH1 36 32 37 29 23 26 0 25 24 26 33 34 35 37 36
TH2 39 33 39 33 28 27 25 0 8 29 26 35 39 41 37
TH3 34 28 35 30 26 24 24 8 0 26 23 33 40 41 39
MS1 27 23 37 15 24 19 26 29 26 0 23 27 35 29 36
MS2 31 26 29 29 24 22 33 26 23 23 0 26 43 42 45
MS3 38 31 37 32 30 31 34 35 33 27 26 0 38 36 42
MT1 43 40 46 32 37 42 35 39 40 35 43 38 0 18 17
MT2 38 33 48 26 38 41 37 41 41 29 42 36 18 0 20
MT3 42 41 47 35 41 43 36 37 39 36 45 42 17 20 0

CD1 CD2 CD3 RD1 RD2 RD3 TH1 TH2 TH3 MS1 MS2 MS3 MT1 MT2 MT3
CD1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CD2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CD3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RD1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RD2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RD3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TH1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TH2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TH3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MT1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MT3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

‡ 5. Plotting Rows

Although  the  row  scores  faithfully  reproduce  the  c2  distances  between  rows  in  the
original table, as coordinates their dimensionality is far too high for them to be presented
graphically. Thanks to the properties of the singular value decomposition, however, taking
just the first two components of each row’s score usually produces a reasonable approxi-
mation  to  the  c2  distances,  and  yields  coordinates  that  can  be  placed  on  a  two-dimen-
sional plot. (Below we have labeled the components “X” and “Y” to highlight their role as
2D coordinates.)
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rowCoordinates  TakerowScores, All, 2;
TableFormrowCoordinates,
TableHeadings  abbreviatedSampleTitles, "X", "Y"

X Y
CD1 0.0709773 0.20062
CD2 0.0621094 0.0945122
CD3 0.148509 0.158889
RD1 0.0306974 0.0190283
RD2 0.0695518 0.0683818
RD3 0.115119 0.0638048
TH1 0.0068896 0.103594
TH2 0.0533825 0.170423
TH3 0.0838222 0.121758
MS1 0.016408 0.00138313
MS2 0.143838 0.0108755
MS3 0.0298193 0.00545408
MT1 0.256214 0.00919409
MT2 0.243356 0.0597298
MT3 0.265072 0.00617881

The following displays each row’s (abbreviated) label at the position given by its coordi-
nates and returns a key to the abbreviations.
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ShowGraphics
ThreadTextabbreviatedSampleTitles, rowCoordinates,
Axes  True, Ticks  None, PlotRange  All,
AspectRatio  Automatic

ThreadabbreviatedAuthors, authors  TableForm
CD1

CD2

CD3

RD1

RD2RD3

TH1

TH2

TH3

MS1
MS2

MS3
MT1

MT2

MT3

CD Charles Darwin
RD Rene Descartes
TH Thomas Hobbes
MS Mary Shelley
MT Mark Twain

Ú Figure 1. Row plot for text samples.

The plot gives a much clearer picture of the way in which the letters are distributed across
the text samples. For example, it is quite evident that~as we concluded from the original
cross tab~the Mark Twain samples differ significantly as a group from those of the other
writers. The text samples of Darwin and Hobbes also appear to be sui generis, though the
Descartes and Shelly samples appear less distinct. The plot suggests that it may be possi-
ble, therefore, to distinguish between the works of at least some of the authors using corre-
spondence analysis of their letter distributions.
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· Diagnostics

Since it uses only the first two components of the row scores, the plot above only approx-
imates  the  true  configuration  of  the  rows  in  the  cross  tab.  Before  using  it  to  make  firm
inferences,  we  might  try  to  gauge  the  quality  of  the  representation  it  provides.  One
indicator  is  derived  from  the  inertia  of  the  rows  defined  in  (9).  Recall  that  f2,  the  total
inertia  of  the rows,  is  calculated from the row totals  and the c2  distances of  the rows to
the centroid:

(14)f2 = ‚
i=1

I

pi+ diz2 .

It may be shown that for any contingency matrix, the procedure of the previous section al-
ways places the centroid at the origin of the plot. Therefore, since Euclidean distances on
the  plot  are  supposed  to  approximate  c2  distances,  replacing  each  c2  distance  diz  in  the
right-hand  side  of  (14)  by  the  distance  of  the  corresponding  row  point  to  origin  should
yield an approximation to f2. The following derives this quantity and computes its ratio to
the true value of f2.

plotInertia  TotalrowTotals rowCoordinates^2, 2
plotInertia  phiSquared
0.0280082

0.561666

Thus our  two-dimensional  plot  captures  about  56% of  the  total  inertia  of  the  table  rows.
While this seems hardly an impressive fraction, Murtagh ([3], p. 39) points out that ratios
like this are not uncommon in correspondence analysis, and do not necessarily point to a
bad representation. Nonetheless, we might want to exercise a modicum of caution before
drawing categorical conclusions from our analysis.

As  an  aside,  it  turns  out  that  the  total  inertia  of  the  contingency  matrix  P~which  was
calculated “longhand” in (9)~is equal to the sum of the squares of the diagonal elements
of  the  matrix  L  in  (11).  The  latter  comprise  the  singular  values  of  the  matrix  W.
Furthermore,  the  inertia  retained  in  the  two-dimensional  plot  is  simply  the  sum  of  the
squares  of  the  first  two  singular  values  in  L.  Thus  the  following  is  an  equivalent
expression of the plot’s inertia.
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phiSquared1  TrsingularValuesMatrix^2
plotInertia1 
TotalTakeTrsingularValuesMatrix^2, List, 2

plotInertia1  phiSquared1
0.0498662

0.0280082

0.561666

‡ 6. Plotting Columns
We have seen how correspondence analysis can be used to derive a visual representation
of the relationships between the rows of a contingency matrix. We can also use correspon-
dence analysis to illustrate the relationship between the rows and the columns of a corre-
spondence matrix~between the texts and letters in our example.  Since our primary con-
cern is with the text samples, the rows of the cross tab, it might seem a digression to look
at the cross tab columns (the characters appearing in the texts), but we will see in the next
section  that  the  geometry  of  the  columns  is  central  to  the  identification  of  the  mystery
texts.

As with the rows, we begin by deriving scores for the columns from the singular value de-
composition  in  (11).  With  reference  to  (11),  the  matrix  C,  whose  rows  are  the  column
scores, is calculated as follows:

(15)C = Dc W,

where

(16)dc =

1

p+1
0 0

0  0

0 0 1

p+J

.

Again, left multiplication by the diagonal matrix dc is more conveniently expressed as ele-
ment-wise division in Mathematica.

columnScores  rightSingularMatrix  SqrtcolumnTotals;

As before,  the  two-dimensional  column coordinates  are  simply  the  first  two components
of the scores.
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columnCoordinates  TakecolumnScores, All, 2;
TableFormcolumnCoordinates,
TableHeadings  chars, "X", "Y"
X Y

B 0.497367 2.59439
C 1.37018 2.12847
D 1.38702 0.471271
F 0.975604 0.482018
G 1.04217 0.294257
H 0.0303792 1.27463
I 0.273091 0.181811
L 1.10116 1.80015
M 0.743416 0.891027
N 0.104025 0.937001
P 1.10752 0.365288
R 1.25913 0.0127804
S 0.278963 0.060832
U 0.82417 0.108349
W 2.96486 0.903185
Y 1.14266 1.30959

We can display both columns and rows on the same plot with a slight elaboration of the
method used to plot the rows alone. The column coordinates are scaled so that the column
points occupy roughly the same region of the plot as the row points.

columnPlotScale  .1;
gr  Graphics

ThreadTextabbreviatedSampleTitles, rowCoordinates,
Red,
ThreadTextchars, columnPlotScale columnCoordinates,

Axes  True, Ticks  None, PlotRange  All,
AspectRatio  Automatic

ThreadabbreviatedAuthors, authors  TableForm
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Ú Figure 2. Row and column plot for text samples.

Interpreting the relationships between rows and columns from a plot such as this is not as
straightforward as it  was for  the previous plot  with the rows only.  For example,  it  is  not
true in general that the closer a column appears to a row, the greater the prevalence of the
corresponding letter in the corresponding text sample.

To show how such relationships are actually represented, consider the text sample “MT2”
(a row) and characters “P” and “Y” (columns).

isample  PositionabbreviatedSampleTitles, "MT2";
ichar1, ichar2  Positionchars, "P" "Y";

Possibly  the  simplest  way  to  determine  the  relationship  between  a  text  sample  and  a
character is  to draw lines from their  corresponding points in the plot  to the origin.  If  the
angle between the two lines is  acute,  then the character  occurs more often in the sample
than  it  does  on  average  in  the  texts  as  a  whole.  Conversely,  if  the  angle  is  obtuse,  the
character occurs less often than overall. The following draws the appropriate lines for our
chosen  text  sample  and  characters;  it  appears  the  character  “Y”  occurs  more  often  than
average in “MT2”, while “P” occurs less often.
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With
pr  rowCoordinatesisample,
pc1  columnPlotScale columnCoordinatesichar1,
pc2  columnPlotScale columnCoordinatesichar2,

Show
gr,
Graphics

AbsoluteDashing2, 4,
Line  pr, 0, 0, pc1, 0, 0, pc2, 0, 0,

Green, Circle0, 0, .2 Normpr, ArcTan  pr, pc1,
Blue, Circle0, 0, .3 Normpr, ArcTan  pr, pc2

CD1

CD2

CD3

RD1

RD2RD3

TH1

TH2

TH3

MS1
MS2

MS3
MT1

MT2

MT3

B

C

D

F
G

H

I

L

M N

P

R S
U

W

Y

Ú Figure 3. Simple analysis of row/column plot.

Unfortunately,  the  method  described  above  only  tells  us  if  a  character  appears  more  or
less  often  than  average  in  a  text  sample,  not  whether  one  character  appears  more  often
than another in a sample. In particular, an angle that is more acute does not signify a char-
acter that is more prevalent in a text.

A rather more complicated method that does illustrate the relative frequencies of charac-
ters in a text sample entails first drawing a line on the plot through the origin and the point
corresponding to the text sample in question. Perpendiculars to this line are dropped from
each character’s position on the plot. The following draws such a construction for the se-
lected text sample “MT2”.
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rowPoint  rowCoordinatesisample;
rowUnit  rowPoint  NormrowPoint;
columnProjections 

Functionc, rowUnit rowUnit.c, c 
columnPlotScale columnCoordinates;

projectionPoints 
SortAppendcolumnProjections, rowPoint, rowPoint;

zp  0, 0;
lineSegments 

PartitionSortAppendprojectionPoints1, 1, 1, zp,
2, 1;

segmentColors  IfrowPoint1  0, Green, Blue,
Blue, Green;

Show
Graphics

AbsoluteDashing1, 5, Line  projectionPoints,
Green, Linezp, rowPoint,
AbsoluteDashing3, 3,
MapThread1, Line2 &,
segmentColors, lineSegments,

Axes  True, Ticks  None, PlotRange  All,
AspectRatio  Automatic,

gr
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Ú Figure 4. Comprehensive analysis of row/column plot.

The relative frequencies of the characters in the text sample can be read off by traversing
the line through the text sample (colored blue and green on the plot above), looking at the
positions at which the perpendiculars from the characters intersect it. A character with an
intersection on the green line segment (i.e., on the same side of the origin as the text sam-
ple) occurs more often in the sample than the average in the texts overall, whereas one on
the blue line segment (on the other side of the origin) occurs less frequently than the aver-
age. In addition, the further from the origin on the green line segment such an intersection
occurs,  the  greater  the  frequency  of  the  character  in  the  sample.  Conversely,  the  further
out on the blue segment an intersection falls, the less frequent the character in the sample.
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The relative frequencies of the characters in the text sample can be read off by traversing
the line through the text sample (colored blue and green on the plot above), looking at the
positions at which the perpendiculars from the characters intersect it. A character with an
intersection on the green line segment (i.e., on the same side of the origin as the text sam-
ple) occurs more often in the sample than the average in the texts overall, whereas one on
the blue line segment (on the other side of the origin) occurs less frequently than the aver-
age. In addition, the further from the origin on the green line segment such an intersection
occurs,  the  greater  the  frequency  of  the  character  in  the  sample.  Conversely,  the  further
out on the blue segment an intersection falls, the less frequent the character in the sample.

So from the plot above, it appears that the character “W” occurs most often in the sample
text, and that characters “L”, “D”, “Y”, “G”, “U”, “B”, “S”, “I”, “N”, “H”, “C”, “M”, “P”,
“F”, and “R” occur successively less often; characters “W” through “B” in the ranking ap-
pear more often than average, while “S” through “R” appear less often than average.

‡ 7. Supplementary Points: Identifying the Mystery Texts
Finally, we return to the problem we faced at the outset: identifying the author or authors
of the unidentified text fragments. We have seen how the application of simple correspon-
dence analysis to the text samples allows us to view them graphically in terms of their let-
ter distributions. In Section 5 we saw that it was generally possible to distinguish the au-
thors of the text samples based upon the locations of the corresponding row points~with
a few exceptions, samples of work by the same writer tended to occupy the same area of
the plot. One might logically surmise that if we were to plot the mystery texts on the same
correspondence  plot  as  the  samples,  we  would  be  able  to  determine  their  authorship  by
looking at the authors of the nearest samples. To begin, we need to calculate an additional
cross tab containing the distribution of the selected characters in the mystery texts.

mysteryTextTab 
24, 26, 80, 17, 32, 91, 86, 54, 32, 91, 19, 58, 93,

50, 58, 30, 19, 33, 35, 22, 40, 96, 116, 39, 40,
129, 17, 72, 104, 30, 25, 24;

mysteryTextXTitles  "TextX1", "TextX2";
TableFormmysteryTextTab,
TableHeadings  mysteryTextXTitles, chars,
TableSpacing  .5, TableAlignments  Center

B C D F G H I L M N P R S U W Y
TextX1 24 26 80 17 32 91 86 54 32 91 19 58 93 50 58 30
TextX2 19 33 35 22 40 96 116 39 40 129 17 72 104 30 25 24

We could proceed by simply appending these frequencies as new rows to the original text
samples  cross  tab  given in  Section 1  and recalculating the  scores  and coordinates  for  all
the rows (that is, both the original samples and the mystery texts) in the resulting table. In
principle, however, it is possible that the unidentified texts overlap one or more of the text
samples, and if this were the case, appending the new rows to the cross tab would distort
the analysis by “double-counting” some of the samples.
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We could proceed by simply appending these frequencies as new rows to the original text
samples  cross  tab  given in  Section 1  and recalculating the  scores  and coordinates  for  all
the rows (that is, both the original samples and the mystery texts) in the resulting table. In
principle, however, it is possible that the unidentified texts overlap one or more of the text
samples, and if this were the case, appending the new rows to the cross tab would distort
the analysis by “double-counting” some of the samples.

A more satisfactory approach derives from the fact that the row scores computed in Sec-
tion 4 are actually weighted sums of the column scores calculated in Section 6. In matrix
terms, recalling that P is the correspondence matrix and C is the matrix of column scores,
it can be shown that: 

(17)R = dr
2 P C,

where

(18)dr
2 = dr dr =

1
p1+

0 0

0  0

0 0 1
pI+

.

If we replace the original correspondence matrix P in (17) with a new correspondence ma-
trix formed from the cross tab of the unidentified texts, we derive a set of row scores for
the unidentified texts according to the transformation determined by the text samples only
(since  they  alone  produced  the  row  scores  C),  eliminating  the  risk  of  double-counting.
Treated in this way, the unidentified texts comprise supplementary points in the terminol-
ogy of correspondence analysis.

The  following  calculates  row  scores  for  the  mystery  texts  as  supplementary  points
(straightforward algebra vindicates the direct use of the new cross tab without the need to
derive a new correspondence matrix).

mysteryTextScores 
mysteryTextTab.columnScores  Total  mysteryTextTab

0.246795, 0.0192125, 0.0430524, 0.0376722,
0.0229245, 0.0444126, 0.0215733, 0.027965,
0.0342692, 0.026139, 0.0318141, 0.0105992,
0.0261775, 0.0248936, 0.758437, 0.651876,

0.0391549, 0.122718, 0.073196, 0.0548724,
0.147596, 0.0509551, 0.00784333, 0.011904,
0.00672404, 0.044779, 0.0238026, 0.0271661,
0.0294296, 0.0392927, 0.72211, 0.693047

Lastly, as with the rows and columns, we take the first two elements of the scores above
to  produce  the  coordinates  of  the  supplementary  points.  In  the  following,  they  are  dis-
played on the same plot as the original rows.

20 Phillip M. Yelland

The Mathematica Journal 12 © 2010 Wolfram Media, Inc.



Graphics
Join
MapThreadText, abbreviatedSampleTitles,

rowCoordinates,
Orange,
Text"TextX1", mysteryTextScores1, 1, 2,
Purple,
Text"TextX2", mysteryTextScores2, 1, 2,

Axes  True, Ticks  None, PlotRange  All,
AspectRatio  Automatic

ThreadabbreviatedAuthors, authors  TableForm
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Ú Figure 5. Plot of the mystery texts as supplementary points.

All points on this plot represent texts, or rows, and distances between points can be inter-
preted directly as degrees of similarity, just as with the row plot in Section 5. On this ba-
sis, judging by their closeness to the authors’ other works, it appears that mystery texts 1
and 2 belong to Mark Twain and Thomas Hobbes respectively. While the manifest isola-
tion of the Mark Twain texts on the plot leaves little doubt as to the provenance of the first
unidentified  text,  the  author  of  the  second  is  a  little  less  clearly  defined~particularly
given  the  middling  diagnostic  ratio  calculated  in  Section  5.  Nonetheless,  I  am  sure  you
will agree that considering the rather scant literary information on which the analysis was
based  (amounting  to  no  more  than  a  table  of  letter  frequencies),  the  results  are
encouraging.
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All points on this plot represent texts, or rows, and distances between points can be inter-
preted directly as degrees of similarity, just as with the row plot in Section 5. On this ba-

and 2 belong to Mark Twain and Thomas Hobbes respectively. While the manifest isola-
tion of the Mark Twain texts on the plot leaves little doubt as to the provenance of the first
unidentified  text,  the  author  of  the  second  is  a  little  less  clearly  defined~particularly
given  the  middling  diagnostic  ratio  calculated  in  Section  5.  Nonetheless,  I  am  sure  you
will agree that considering the rather scant literary information on which the analysis was
based  (amounting  to  no  more  than  a  table  of  letter  frequencies),  the  results  are
encouraging.

‡ 8. Conclusion
Correspondence  analysis  has  a  long and storied  history  that  can  be  traced as  far  back as
the  1930s.  We  have  only  scratched  the  surface  of  the  subject  in  this  brief  introductory
article.  Of  course,  I  have  omitted  proofs  of  the  various  assertions  I  have  made  in  the
course  of  the  presentation.  Furthermore,  I  have  glossed  over  an  important  choice
concerning  the  scaling  of  row and  column scores  and  coordinates;  I  have  used  so-called
row principal scoring (which preserves c2  distances between rows, but not columns), but
there are other approaches that are equally valid. 

A  number  of  extensions  exist  to  the  so-called  simple  correspondence  analysis  presented
here.  Most  important  are  multiple  and  joint  correspondence  analysis,  which  apply  to
contingency  tables  involving  three  or  more  variables  or  sets  of  categories  (see  [4]  for
details).  For  a  comprehensive  examination  of  correspondence  analysis  and  related  tech-
niques, Greenacre’s early book [5] remains among the best texts (in the English language,
at  least),  though  it  is  unfortunately  currently  out  of  print.  Later  books  by  Greenacre  [6]
and coeditor Blasius [7] explore applications of correspondence analysis and extensions to
the basic methodology. Benzécri’s treatise [8] is notable in that its author championed the
use of correspondence analysis for many years, developing many of the geometric under-
pinnings  that  inform  modern  practice  and  establishing  a  seminal  school  of  statistical
analysis  in  France;  unfortunately,  translation  from  the  original  French  and  a  prodigious
price  detract  from  the  appeal  of  the  text  itself.  Most  recently,  Murtagh  [3]  gives  a
thorough  (if  somewhat  telegraphic)  treatment  of  the  subject,  with  an  emphasis  on  the
coding of data for analysis. Sections devoted to correspondence analysis also appear in the
books by Agresti [9], Borg and Groenen [10], and Legendre and Legendre [11].

In his  forward to [3],  Benzécri  writes  of  the immense opportunities  afforded statisticians
by “inexpensive means of computation that could not be dreamed of just thirty years ago”
(indeed,  correspondence  analysis  of  realistically  sized  datasets  is  all  but  impossible
without a computer). I hope that this article has demonstrated that Mathematica can play a
valuable  role  in  allowing  all  of  us~statistician  and  non-statistician  alike~to  take
advantage of these opportunities.
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