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Abstract. The well known dichotomy conjecture of Feder and
Vardi states that for every finite family Γ of constraints CSP(Γ)
is either polynomially solvable or NP-hard. Bulatov and Jeav-
ons reformulated this conjecture in terms of the properties of the
algebra Pol(Γ), where the latter is the collection of those n-ary
operations (n = 1, 2, . . .) that keep all constraints in Γ invariant.
We show that the algebraic condition boils down to whether there
are arbitrarily resilient functions in Pol(Γ). Equivalently, we can
express this in the terms of the PCP theory: CSP(Γ) is NP-hard
iff every long code test created from Γ that passes with zero error
admits only juntas1. Then, using this characterization and a result
of Dinur, Friedgut and Regev, we give an entirely new and trans-
parent proof to the Hell-Nešetřil theorem, which states that for a
simple, connected and undirected graph H, the problem CSP(H)
is NP-hard if and only if H is non-bipartite.

We also introduce another notion of resilience (we call it strong
resilience), and we use it in the investigation of CSP problems that
’do not have the ability to count.’ We show that CSP problems
without the ability to count are exactly the ones with strongly
resilient term operations. This gave already a handier tool to
attack the conjecture that CSP problems without the ability to
count have bounded width, or equivalently, that they can be char-
acterized by existential k-pebble games: Barto and Kozik already
proved this conjecture using a variant of our characterization. This
is considered a major step towards the resolution of the dichotomy
conjecture.

Finally, we show that a yet stronger notion of resilience, when
the term operation is asymptotically constant, holds for the class
of width one CSPs.

What emerges from our research, is that certain important al-
gebraic conditions that are usually expressed via identities have
equivalent analytic definitions that rely on asymptotic properties
of term operations.

1For us “junta” means that a constant number of the variables have constant
influence on the outcome. Also, Γ needs to be a core (See Definition 8).
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1. Introduction

Constraint satisfaction problems (CSP) are the pinnacles in NP not
only because they have multiple interpretations in logic, combinatorics,
and complexity theory, but also for their immense popularity in various
branches of science and engineering, where they are looked at as a
versatile language for phrasing search problems. This said, it is even
more remarkable that some basic complexity questions about them
remain unanswered.

To a finite domain D, variables {x1, x2, . . .} ranging in D, and a set
Γ of finitary relations on D we can associate a problem CSP(Γ), whose
instances consist of a finite set of constraints of the form (xi1 , . . . , xik) ∈
Rj for some Rj ∈ Γ. The size of the instance (usually denoted by n) is
by definition the number of different variables involved in its constrains.

As one might expect, for the tractability of CSP(Γ) the relations
in Γ matter. For instance, general Boolean CSPs are NP-hard, but if
all constraints are Horn clauses (i.e. disjunctions of literals, at most
one of which is negative), then the problem is polynomially solvable.
Other polynomially solvable cases include linear equations over finite
fields and the set of all Boolean constraints that involve at most two
variables.

The central question of the field is how the complexity of CSP(Γ)
depends on Γ. Due to a beautiful result of Schaefer [51] we know, that in
the Boolean case CSP(Γ) is eitherNP -hard or polynomial time solvable
for every Γ. His Dichotomy Theorem also gives a full description of the
polynomial time solvable families.

A fundamental question, raised by Feder and Vardi [26], asks if this
theorem generalizes for arbitrary finite domain. Their Dichotomy Con-
jecture would imply the dichotomy of Monotone Monadic SNP ([26, 38],
see also [39]). This is perhaps the largest natural subclass of NP ex-
pected to have dichotomy. That the entire class NP does not have
dichotomy (unless P=NP) was proved by Ladner [40].

In [26] it is established that it is sufficient to settle the dichotomy
conjecture when Γ contains a single binary relation, i.e. a directed
graph, H. With a slight abuse of notation we denote this problem by
CSP(H). A problem instance now simply becomes a directed graph G
whose vertices we want to map to the vertices of H such that edges
go into edges. This is a graph homomorphism problem. What if G is
undirected? In this case dichotomy holds by a pioneering theorem due
to Hell and Nešetřil (1990):
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Theorem 1 (Hell-Nešetřil). Assume that H is a simple, connected,
undirected graph. Then CSP(H) is polynomial time solvable if and only
if H is bipartite. Otherwise CSP(H) is NP-complete.

Remark 2. The graph homomorphic view can be extended to arbitrary
relational structures. Relational structures have a type, i.e. a list of
relational names with associated arities. A relational structure of type
R is an ordered pair R = 〈D,Γ〉, where D is a non-empty set and Γ
is a family of relations with names and associated arities as required
by R. Any CSP problem can be cast as a homomorphism problem

〈E,Υ〉 ?→ 〈D,Γ〉 between two relational structures of the same type.
We refer the reader interested in the homomorphic view to an excellent
survey written by Hell and Nešetřil, which also puts our current result
into that context [30]. We, for the most part, stick to the language that
is more familiar to computer scientists, which talks about constraints
and assignments.

There is a beautiful algebraic theory due to Jeavons and his coau-
thors [16, 17, 33, 13, 14], that looks at maps from Dm to D (m =
1, 2, . . .), which keep all relations in Γ invariant (said to be compatible
with Γ). The set of these compatible operations is denoted by Pol(Γ).
The theory heavily relies on the fact that a composition f(g1, . . . , gm)
of operators gi that are compatible with Γ, is also compatible with Γ,
hence Pol(Γ) is closed under composition. Finally, to apply the tools
of algebra, Pol(Γ) is often viewed as an algebra (see Section 4).

We can also look at these operations in an entirely different way. For
fixed m the condition that f : Dm → D keeps all relations in Γ can be
interpreted so that f passes the long code test associated with Γ with
zero error.

This dual interpretation of Pol(Γ) allows us to connect the algebraic
theory of CSPs with Fourier analytic techniques that were successfully
used in the theory of probabilistically checkable proofs.

To demonstrate the strong interaction between the theories we re-
prove the theorem of Hell and Nešetřil in a transparent way. We rely
on theorems of Bulatov and Jeavons as well as on the Fourier analytic
results of Dinur, Friedgut and Regev.

Although PCP testing and the algebraic theory of Pol(Γ) are appar-
ently related, to exploit this relation we have to find a third “theory,”
which connects the two. This is our main contribution. We give here
an example to the kind of issues the new study deals with.

Consider the following algebras on universe D2 = {0, 1}, each with
a single trinary operation:
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Aproj = 〈D2, π〉, where π(a, b, c) = a
A⊕ = 〈D2,⊕〉, where ⊕(a, b, c) = a+ b+ c mod 2
Amaj = 〈D2,maj〉, where maj(a, b, c) = majority of a, b and c
Amax = 〈D2,max〉, where max(a, b, c) = a ∨ b ∨ c.

A deep branch of algebra, called Tame Congruence Theory, finds fun-
damental differences between these algebras. (The theory of Bulatov,
Jeavons and Krokhin exploits exactly this classification.)

Here we give a very different aspect in which these algebras differ.
Let cl(A) be the set of all term operations of the algebra A, i.e. of
those that we can obtain from the operations of A by any kind of
compositions and identifying variables.

In the case of Aproj the output of any term operation, no matter
how many variables it has, is always controlled by a single variable.
In contrast, the other algebras are very different. They have term
operations, where any single variable has very little say on the output
statistics: for every ε > 0 there is a term, that if Alice controls a
single variable of her choice, and, independently, Bob sets the remaining
variables randomly and independently (for the sake of simplicity think
only of the uniform distribution on D2 here, but we will eventually
need to consider all distributions), it is nearly impossible to tell from
the output statistics how Alice has set her variable. (ε plays a role in the
notion of “nearly:” the statistical difference of the output distributions
that arise from Alice’s two different settings of her input bit is at most
ε).

Although all A⊕, Amaj and Amax are resilient in the above sense,
there are fine differences between them. Consider, for instance, A⊕,
whose all term operations are parity functions. For a parity function, if
Alice can choose the value of the first bit after looking at the setting of
the other bits (in other words, if we allow dependence between Alice’s
and Bob’s bits), she can set the output anyhow she wants to.

In contrast, in the case of the iterated majority function (which is in
cl(Amaj)), it is easy to see that Alice cannot influence the output even
when she is given the power of dependence from Bob.

Finally, we find an even stronger notion of resilience to Alice’s at-
tempt to change the output in the case of the iterated max operation
(which is in cl(Amax)). This is just a giant OR function, which outputs
almost always one for a random input (the fraction of zero outputs can
be made arbitrarily small by making the iteration large enough).

Our new study tells exactly what properties of algebras give the
various types of asymptotic behavior of term operations we have seen
for the above examples.
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Applying our results to (the special case of) Pol(Γ), we can give
characterizations of three different classes of CSPs. The first class
is known as Block Projective CSPs: This is the class that does not
have “interesting” polymorphisms, provably NP-hard, and contains all
known NP-hard instances. The second class is the set of CSPs to which
some linear equations can be reduced. The class goes under the name
“CSPs with ability to count.” The third class we can characterize in
our framework is the class of width one CSPs. This well studied group
still contains interesting problems, like st-connectivity.

With one leg our characterizations stand on the algebraic theory of
CSPs, and with the other leg they rest on concepts familiar from PCP
theory such as resilience to noise (random or adversarial) and the long
code tests. The table in Figure 1 gives a summary of our results.

Algebraic Condition Analytic Condition on Pol(Γ)
Block Projective ↔ Lacks Asymptotically Resilient Terms
¬ Block Projective ↔ Has Asymptotically Resilient Terms
No Ability to Count ↔ Has Strongly Resilient Terms
Width One → Has Asymptotically Constant Terms

Figure 1. Classes of CSPs with new characterization

Our paper also contributes a little bit to the theory of higher order
dynamical systems: We characterize maps from Dn to D whose high
iterates are resilient to small noise. That is, for any measure on D, if k
is large enough, then no matter how we change a fixed constant number
of inputs before other input bits are set, the distribution of the function
values of the k times iterated map will be decreasingly influenced as k
tends to infinity. Raghavendra [49] already used our ideas in the study
of the linearity of fractional/1-approximate polymorphisms.

Our results shed new light to important classes of CSPs. We demon-
strate this by showing that our new characterization of the Block pro-
jective class gives a new and more modular proof to the Hell-Nešetřil
theorem (Sections 6, 7). Our characterization of the class of CSPs
without the ability to count (Section 9) gives a new tool to tackle the
conjecture of Feder and Vardi [26], Larose and Zádori [41], and Bula-
tov [10] (proved all to be equivalent by Larose, Zádori and Valeriote
[42]) that CSP problems without the ability to count have bounded
width. Barto and Kozik [2] already proved this conjecture using a vari-
ant of our characterization. This is considered a major step towards
the resolution of the dichotomy conjecture.
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1.1. Robust approximation. We have to mention an important con-
nection to approximation of CSP’s. We say that an algorithm robustly
decides a CSP problem if it can distinguish (1− ε)-satisfiable CSP in-
stances from less than 1 − r(ε)-satisfiable instances, where r(ε) → 0
as ε → 0. This class of CSP problems has an algebraic characteriza-
tion. Our paper contributed to the understanding of these classes, too.
Barto and Kozik [3] showed recently that a CSP is robustly decidable in
poly-time if it has bounded width, and robust decision is NP -complete
otherwise. (This was a conjecture of Guruswami and Zhou.) They
have used Semidefinite Programming in the tractable case. O’Donnell,
the first author, Tamaki, Yoshida and Zhou [22] studied CSP prob-
lems robustly decidable by a linear program and showed that width
one CSPs belong to this class. (Dalmau and Krokhin also proved this
independently [19].)

2. A connection between two theories

The theory of Probabilistically Checkable Proofs, or in short PCP
theory, and the algebraic theory of CSPs both use a machinery, that
we describe here from the two different angles.

First we describe the machinery from the PCP point of view. Fix
n, and let F be a family of functions of type f : Dn → D. The most
frequently considered families are:

Linear Functions2: L = {f | f is linear over GF (|D|)},
Long Code: P = {f(x1, . . . xn) = xi | 1 ≤ i ≤ n}.

In PCP theory we want to test for membership in F . Given a
function f : Dn → D, which either belongs to the family F or
is far from F (in the sense that for every g ∈ F the probability
Prx(f(x) 6= g(x)) > ε), the tester needs to decide with high probabil-
ity, using a small number of black box queries to f , if it is in F or far
from it.

It is equally important to tell how we test. In PCP theory each known
test3 is associated with a relation R on D (or with a set of relations, in
which case we run tests associated with each relations, separately). Let
R ⊆ Dk be a k-ary relation on D and let π be a probability distribution
on k tuples (x(1), . . . , x(k)) ∈ (Dn)k that obey the property:

(1) (x
(1)
i , . . . , x

(k)
i ) ∈ R for 1 ≤ i ≤ n.

2in this case |D| is assumed to be a prime power
3Hastad’s test requires a little modification of the framework.
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Then TestR,π is a procedure that takes a function f : Dn → D as its
input, selects a k-tuple (x(1), . . . , x(k)) ∈ (Dn)k according to π, and
accepts if and only if

(2) (f(x(1)), . . . , f(x(k))) ∈ R.

Take Dinur’s test of the Long Code on D = {0, 1} for an example. She
used relations: b = ¬a and a∨ b∨ c. The first relation is automatically
provided to hold everywhere by a technique known as folding. For the
second relation Dinur used a certain non-trivial probability distribu-

tion π on triples satisfying x
(1)
i ∨ x

(2)
i ∨ x

(3)
i = 1 for all i. By Fourier

analytic techniques she verified that the test checks the long code in
the following strong sense: If the acceptance probability is 1−ε then f
must coincide with some word of the long code on 1−O(ε) fraction of
randomly and uniformly chosen elements of Dn. Dinur’s analysis also
gives, that if her test is accepted with probability one, then f is an
element of the long code.

We are now warmed up to a different point of view of the above ma-
chinery. For relation R on D define relation Rn on Dn in the usual way:
(x(1), . . . , x(k)) ∈ Rn if and only if Equation (1) holds. Then Equation
(2) holds for every k-tuple in Rn if and only if f is a homomorphism
from Rn to R.

Term operation

Compatible oper-
ation

Definition 3. Let Γ = {R1, . . . , Rl} be a set of finitary relations on D.
A function f : Dn → D is a term operation of Γ with arity n if f is a
homomorphism from Rn

i to Ri for every 1 ≤ i ≤ l (i.e. satisfies Equa-
tion (1) → Equation (2) for all Ri). Term operations are sometimes
called compatible operations.

Pol(Γ)
Definition 4. The set of all term operations of arbitrary arities asso-
ciated with a constraint family Γ form Pol(Γ).

Example 5. Let D = {0, 1, 2}, and let Γ contain all ternary relations
that express linear equations over GF (3), for instance, x+0y+2z = 1.
Then f(x1, x2, x3) = x1 − x2 + x3 mod 3 is a term operation for Γ.
Indeed, consider a relation ax + by + cz = d mod 3. Assume that
axi + byi + czi = d for 1 ≤ i ≤ 3. Then a(x1 − x2 + x3) + b(y1 − y2 +
y3) + c(z1 − z2 + z3) = d− d+ d = d. One can similarly show that all
functions of the form f(x1, . . . , xn) =

∑n
i=1 αixi,

∑n
i=1 αi = 1 mod 3

are in Pol(Γ). In fact, Pol(Γ) consists exactly of these functions.

Remark 6. It is easy to see that composition of functions in Pol(Γ)
remains in Pol(Γ), and that Pol(Γ) contains all projections (i.e. mem-
bers of P). When we compose we do not have to make the variable



A NEW LINE OF ATTACK ON THE DICHOTOMY CONJECTURE 9

sets of the inner functions disjoint. A consequence of this, and of the
fact that we have all projections in Pol(Γ), is that identifying variables
does not take us out of Pol(Γ). For instance, if f(x, y, z) ∈ Pol(Γ),
then so is f(x, y, x).

Pol(Γ, n)
Definition 7. Pol(Γ, n) is the set of the n-ary members of Pol(Γ).

Pol(Γ, n) is exactly the family that we can analyze with the Fourier
analytic techniques of the PCP theory.

3. More on the algebraic theory

The fact that the algebraic theory of CSPs and long code tests talk
about the same objects, raises a lot of questions. Why this connection
has not been utilized thus far? The answer perhaps is that the testing
theory deals with analytical properties of functions that nearly sat-
isfy the tests, while the algebraic theory of CSPs deals with algebraic
properties of functions that keep all relations. One of our contribu-
tions is that we positively demonstrate, that it is worthwhile to take
an analytic approach to functions that keep all relations. When these
functions are examined both from analytic and algebraic viewpoints,
nontrivial conclusions like the Hell-Nešetřil theorem can be obtained. Identities

The connection has another great benefit, namely it lends more sense
to rewriting algebraic identities into analytic form. Let us explain:
Bulatov, Jeavons and Krokhin essentially conjectured that CSP(Γ) is
tractable iff there is a compatible operation which can be distinguished
from the projections by its identities. E.g a majority operation satisfies
f(y, x, x) = f(x, x, x), f(x, y, x) = f(x, x, x), f(x, x, y) = f(x, x, x), the
ith identity shows that this can not be a projection to the ith coordinate,
since this coordinate is x on one side and y on the other side. The above
is just a special case. Before getting closer to algebra we have to use
two technical assumptions.

Core
Definition 8. We only want to deal with the case when Γ is a core,
i.e. every homomorphism 〈D,Γ〉 → 〈D′,Γ|D′〉 (D′ ⊆ D) is an automor-
phism. Every structure has a unique core (up to isomorphism), and a
structure and its core define the same CSP language. That Γ is a core
is always assumed in the literature to make algebraic methods to work.

Example 9. Let D = S3 (the set of permutations of {1, 2, 3}) and let
Γ consist of a single trinary relation: (x, y, z) ∈ R if and only if z = xy
in S3. What is the complexity of CSP (R)? A closer examination
reveals that this problem is equivalent to the same problem for the two
element cyclic group. Why? Consider an input instance to CSP (R).
We claim that if the instance is satisfiable, then it is also satisfiable
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with an assignment, where all values are from {e, (1, 2)} ⊂ S3. Indeed,
let ϕ be the homomorphism that takes even elements of S3 to e, and
odd elements into (1, 2), and apply ϕ to the value of each variable of
the original assignment to get a new assignment. If (x, y, z) ∈ R, i.e.
z = xy in S3, then (ϕ(x), ϕ(y), ϕ(z)) ∈ R too, since ϕ(z) = ϕ(x)ϕ(y),
because ϕ is a group homomorphism from S3 to Z2.

The core of Γ = {R} is {e}, however, (and not {e, (1, 2)}) which
makes CSP (R) (even more) obvious: all instances can be satisfied just
by assigning e to all variables.

Example 10. Let us add the unary relation S to the previous example
that selects the odd elements of S3 (thus we can say: “variable x takes
an odd permutation”). Now {e, (1, 2)} will be a core for Γ = {R, S},
and so will be {e, (1, 3)} and {e, (2, 3)}. These cores are isomorphic.

Idempotency
Definition 11. f is idempotent if f(x, . . . , x) = x for every x ∈ D.

In Pol(Γ) we only want to consider idempotent operations. The
simple reason is that the complexity of a core CSP problem depends
only on its idempotent operations, and this assumption simplifies the
algebraic theory a lot. A way to make Pol(Γ) idempotent (for a core
Γ, without changing the complexity of CSP (Γ)) is by adding all unary
relations x = c for all c ∈ D.

By a result of McKenzie and Maróti, if there is a compatible opera-WNUs
tion which can be distinguished from the projections by its identities,
then there is also a special type, called weak near-unanimity (WNU)
term. An idempotent operation f is a WNU if for every x, y ∈ X it
satisfies f(y, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y).

The following theorem uses the WNU condition of Maróti and McKen-
zie [43], while condition (1) is stated in the combinatorial terminology
of Nešetřil, Siggers and Zádori [44].

Theorem 12. For any constraint family Γ the following are equivalent.

(1) Γ is not block-projective, i.e. there exist no disjoint subsets
S1, S2 of D such that S1 ∪ S2 is a subalgebra and for every
compatible, idempotent operation f there exists a k such that
if x1, . . . , xn ∈ S1 ∪ S2 then f(x1, . . . , xn) ∈ Si iff xk ∈ Si for
i = 1, 2.

(2) There exists a compatible WNU term operation.

In the next sections we add to the above equivalent conditions a new
one: There exists a compatible WNU term operation iff there exists a
sequence of term operations that are arbitrarily resilient to small noise.
This is part of our larger project of translating algebraic conditions into
analytic ones.
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It may occur that in Pol(Γ) there is no WNU operation, but CSP(Γ)
is not NP -complete, however this cannot happen when Γ is a core. So
we restrict ourselves to cores as promised.

Theorem 13. If Γ is a core and has no compatible WNU operation
then CSP(Γ) is NP -complete.

The Dichotomy Conjecture of Bulatov, Jeavons and Krokhin states
that Theorem 13 can be reversed in the following sense:

Conjecture 14 (Algebraic Dichotomy Conjecture [14]). Let Γ be a
core. If Γ admits compatible WNU operation then CSP(Γ) is tractable,
else it is NP -complete.

Example 15. This gives a remark for Dinur’s test: her test implies
the NP-hardness of CSP(¬a = b, a ∧ b ∧ c) by Theorem 13. While
this is not earth-shattering, the Algebraic Dichotomy Conjecture also
immediately suggests that the ¬a = b folding is essential for the test
to work.

Example 16. Considering Unique games (see Appendix) it is easy to
see that Pol(UGD) contains a lot of WNUs. Our Theorem 113 for
instance immediately implies that

f(x1, . . . , xn) =

 a
if there is a unique a ∈ D such that
|{i | xi = a}| is maximal,

x1 otherwise.

is in Pol(UGD). This is a WNU, and in fact a majority operation.

Bulatov, Jeavons and Krokhin used the term Polymorphism for func-
tions (of arbitrary number of variables) that are compatible with all
relations in Γ, and they denoted this set of functions by Pol(Γ). They
have proved that Pol(Γ) determines the complexity of Γ, i.e. different
problems with the same Pol are inter-reducible in polynomial time.
The approach has been applied in several contexts, in particular, this |D| = 3
is how Bulatov solved the problem for |D| = 3 [7]. Another application
of their theory by Bulatov proves dichotomy, when Γ is a set of list list homomor-

phismshomomorphisms [8]. The original goal of the algebraic theory was to
deal with decision problems, though it proved to be successful in other
cases. Bulatov an Dalmau proved a dichotomy theorem for counting
the solutions of CSPs [12], Bodirsky and Nešetřil [6] managed to extend counting classes
the theory to (omega-categorical) countably infinite target structures,
Chen partly managed for quantified CSPs [15].

The harder part of the algebraic dichotomy conjecture is the tractable
part: how does an algebraic condition lead to tractability? Jeavons,
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Cohen and Gyssens [17] proved that the existence of a semilattice op-
eration implies tractability, Cohen, Cooper and Jeavons [16] proved
it in case of the existence of a so-called near-unanimity operation (anear-unanimity
generalization of majority operations, still stricter than WNUs), Bula-
tov and Dalmau [11] in case of the existence a so-called Maltsev termMaltsev
(what shows that the algebra is ”somewhat grouplike”): the algorithms
are generalizations of the ones solving Horn-formulas, 2-SAT and lin-
ear system of equations, respectively. But to solve a general tractable
CSP problem we need to combine these algorithms (and also, of course,
find new ones). There are very few results that combine algorithms of
different nature: Bulatov’s result for list homomorphisms is one such
example [8], and Dalmau’s result for CSPs that have an operation oncombined
every pair behaving like a group or a majority operation [23] is another.
The latter result was generalized in a ”truly algebraic” manner in [5].

4. Term Operations of Algebras

Perhaps it sounds like we are splitting hairs, but Pol(Γ) is not an
algebra, for its operations are not named. Every algebra has to have a
type F , which is a set of function symbols. Each symbol f ∈ F comes
with an arity nf , which is a non-negative integer.

Definition 17. An algebra A of type F is an ordered pair 〈D,F 〉,
where D is a non-empty set and F is a family of operations indexed by
F such that fA ∈ F is an nf -ary operation on D.

Example 18. Groups have type G = {×, −1, 1}. Function symbols ×,
−1 and 1 have arities 2, 1 and 0, respectively.

In contrast, syntactically Pol(Γ) is just an (unordered) set of finitary
functions of the type Dn → D.

Definition 19. We denote the set of all finitary operations Dn → D
(n = 0, 1, 2, . . .) by Op[D].

The difference between an algebra and a subset of Op[D] is similar
to the difference between codes that are discussed as a collection (set)
of code words, and ones that are discussed together with the encoding
function.

With algebras we do not have such a choice. There are several good
reasons to name the operations of an algebra. First, the notion of
direct product requires that we can identify the “same” operations. For
instance, it is essential that we match multiplication with multiplication
and addition with addition when taking the direct product of two rings.
Second, we also want sub-algebras of an algebra to have the same type
as the original one.
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Definition 20. Let D be a finite universe. A clone on D is a set
C ⊆ Op[D] that satisfies:

(1) For all n ≥ i ≥ 1 all projections pi(x1, . . . xn) = xi are in C.
(2) C is closed under composition: if f(x1 . . . , xn) and g1, . . . , gn are

in C, then so is f(g1, . . . , gn).
(3) If f ∈ C, then identifying some variables of f with each other

does not take out of C.

Our most prominent example for clones is Pol(Γ) for some family Γ.
The clone properties of Pol(Γ) are stated in Remark 6. We now give
another important example for clones:

Term operations
for algebrasDefinition 21. Let A = 〈A,F 〉 be an algebra. A term operation of

A is an element of Op[D] that can be created from projections and
operations in A by compositions and identification of variables.

Lemma 22. The set of all term operations of an algebra A form a
clone.

Example 23. Let G = 〈A,×, −1, 1〉 be a group. Then the set of all
functions that we can create using a finite number of variables, such as
e.g. ((x× y)× (x−1 × z))× y−1, form the clone cl(G).

Definition 24. An algebra A is idempotent if for every f ∈ A we have
f(x, . . . , x) = x.

Lemma 25. All term operations of an idempotent algebra are idempo-
tent.

We would like to stress here that the objects about which we gather
useful information in this article, are clones.
Yet, we will not mention clones in the rest of the article for the following
reasons:

(1) The main applications of our results are for Pol(Γ).
(2) General clones can be conveniently interpreted as term opera-

tions of algebras.

Remark 26. Indeed, when we study Pol(Γ), or any other clone, alge-
bra is an indispensable tool. The way we introduce algebra is that first
we turn the clone into an algebra by indexing all its operations with
themselves. (We may also index only a subset of operations if the rest
can be interpreted as term operations.) In the sequel, we will either
talk about Pol(Γ), and call its elements term operations (or compatible
operations), or we consider an algebra together with the set of its term
operations. The later type of discussion is not only more general, but
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also more convenient, when we use algebraic tools, and this will be our
choice e.g. throughout Section 9.

In Section 9 we will need the notion of subalgebra:

Definition 27. A′ = 〈A′, F ′〉 is a subalgebra of A = 〈A,F 〉 if A′ ⊆ A,
they have the same type F , and for every symbol f ∈ F operation fA′

is the restriction of fA to A′. This assumes that A′ is closed under all
operations of A.

5. An analytic look at term operations

The goal of this article is to create a one to one correspondence
between known classes of CSPs and analytic properties of their set of
compatible operations, or more generally, certain properties of algebras
and the asymptotic behavior of their term operations. In this section
we develop the necessary concepts for these studies.

Let D be a finite domain, f : Dn → D and µ1, . . . , µn be distri-
butions on D. By f(µ1, . . . , µn), or shortly by f(~µ), we denote the
distribution on D that we obtain by plugging independent D-valued
random variables into f such that the ith variable is distributed as µi.

Definition 28 (Resilience).

Resil(f, l, µ) = sup
µ1,...,µn

δ(f(µ, µ, . . . , µ), f(µ1, . . . , µn)),

where δ refers to the statistical difference, δ(µ, ν) = 1
2

∑
x∈D |µ(x) −Resilience

ν(x)|, of distributions and µ1, . . . , µn runs through all sequences of
distributions on D with the properties that at most l of the µis are
different from µ and the support of each µi is contained in the support
of µ. We call Resil(f, l, µ) the resilience of f .

Definition 29 (Influence). Let D be a finite domain and µ be a
measure on D. The influence of the ith variable of f : Dn → D isInfluence
Infi,µ(f) = Probµn+1(f(x) 6= f(x′)), where x, x′ runs through all ran-
dom input-pairs that differ only in the ith coordinate: µn+1 gives a
natural measure on such pairs.

Definition 30. The maximal influence, max infµ(f) is maxi Infi,µ(f).max inf

Definition 31 (Invariance). Let D be a finite domain and µ be aInvariance
measure on D. The invariance, invµ of f : Dn → D, is the smallest
0 ≤ ε ≤ 1 for which there is a c ∈ D for which Probx∈µn(f(x) 6= c) ≤ ε.

We can now study Pol(Γ), or in general, term operations for an
algebra A from an analytic point of view:
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An algebra A with term operations cl(A) is

Asymptotically Resilient: if

∀ε, µ, l ∃f ∈ cl(A) : Resil(f, l, µ) < ε.

Strongly Resilient: if

∀ε, µ∃f ∈ cl(A) : max infµf < ε.

Asymptotically Invariant: if

∀ε, µ∃f ∈ cl(A) : invµf < ε.

It turns out that A has the asymptotically or the strongly resilient
property, respectively, if and only if there is a function in A whose set
of iterates have this property. The iterates of a function f : Dn → D
are f 1 = f , f i+1 = f(f i, . . . , f i) for i > 1. The arity of fk is nk, and
we can visualize it as an n-ary tree of depth k built of fs.

f 3 =

f

f

f

x1 x2

f

x3 x4

f

f

x5 x6

f

x7 x8

Definition 32 (Asymptotic Resilience of a function). We say that a
function f : Dn → D is asymptotically resilient if for every distribution
µ on D and every l, ε > 0 we have Resil(fk, l, µ) < ε for any sufficiently
large k.

Definition 33 (Strong Resilience of a function). A function f : Dn →
D is strongly resilient if for every measure µ on D: max infµ(fk) → 0
when k →∞.

Definition 34 (Asymptotic Invariance of a function). A function f :
Dn → D is asymptotically invariant (or asymptotically constant) if for
every measure µ on D the invariance of fk tends to 0 when k →∞.

6. Asymptotic resilience

Most functions are asymptotically resilient, but e.g. projections are
not. Instead of giving further examples we describe all asymptotically
resilient idempotent functions. (With a little extra effort one can give
a similar characterization without the idempotency condition.)
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f

f

f

µ µ

f

ν µ

f

f

µ µ

f

µ µ

Figure 2. If f is a WNU, as we go up in the tree, the
variable controlled by Alice has less and less effect

Theorem 35. Let f : Dn → D be idempotent. The following are
equivalent:

(1) f is asymptotically resilient.
(2) Resil(fk, 1, µ) goes to zero as k goes to infinite for every fixed

µ.
(3) f generates a WNU (including that itself is a WNU).
(4) There do not exist pairs of disjoint subsets S1, S2 ⊆ D and

1 ≤ k ≤ n with the following property: S1 ∪ S2 is closed under
f and if x1, . . . , xn ∈ S1 ∪S2 then f(x1, . . . , xn) ∈ Si iff xk ∈ Si
for i = 1, 2.

Proof. (1) implies (2) by the definition of asymptotic resilience. For
(2)→ (1) we prove:

Lemma 36. If Resil(fk, 1, µ) goes to zero as k goes to infinite, then
so does Resil(fk, l, µ) for every l ≥ 1.

Proof. We proceed by induction on l. The case l = 1 is trivial. Let
l ≥ 2 and ε > 0, and let k′, k′′ be such that r(fk

′
, 1, µ) < ε/l and

r(fk
′′
, l − 1, µ) < ε (by induction), respectively. Let g = fk

′
and

h = fk
′′
. For k = k′ + k′′ we have:

fk = h(g, . . . , g).

Let L be any subset of l inputs for fk. We will show that fk is ε-resilient
with respect to L. We distinguish between two cases:

Case 1: Each g in h(g, . . . , g) gets at most one input from L. The
output of those that get an input from L is ε/l-close to the distribution

h(µn
k′

) by the choice of k′. We then use Proposition 38.
Case 2: There is a g in h(g, . . . , g) which gets at least two inputs from
L. In that case at most (l − 1) of the g’s involve inputs from L, and
we use that r(h, l − 1, µ) < ε. �
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The equivalence of (3) and (4) was proved by McKenzie and Maróti
[43], and we have discussed it in Section 3. It is easy to see that (1)
implies (4): in fact if (4) does not hold then Resil(fk, 1, µ) = 1 for
every k. In the rest of the section we prove that (3) implies (2).

For the sake of simplicity we assume that f is a WNU itself, of arity n
(if f only generates a WNU, the proof needs only a minor adjustment).

For our argument we fix µ. Let µk = fk(µn
k
) (recall that the arity

of fk is nk). We would like to estimate the statistical difference of µk
and fk(µi−1νµn

k−i) for any 1 ≤ i ≤ nk and any ν, whose support is

contained in the support of µ. Let αk = maxi,ν δ(µk, f
k(µi−1νµn

k−i)).
What we need to show is that αk → 0. By the following propositions
and its corollary it is straightforward that αk is non-increasing:

Proposition 37. The variation distance of two distributions cannot
increase under any map F : X → Y .

Proof. If µ and ν are the two distributions we can write: δ(µ, ν) =
1
2

∑
y∈Y |µ(y)− ν(y)| ≥ 1

2

∑
x∈X

∣∣∣∑y∈F−1(x)(µ(y)− ν(y))
∣∣∣ =

δ(F (µ), F (ν)). �

Corollary 38. Let f : Dn → D be arbitrary and µ1, . . . , µn, ν1, . . . , νn,
be two sequences of distributions on D. Then

δ(f(µ1, . . . , µn), f(ν1, . . . , νn)) ≤
n∑
i=1

δ(µi, νi).

Proof. The corollary follows from δ(
∏n

i=1 µi,
∏n

i=1 νi) ≤ 1 −
∏n

i=1(1 −
δ(µi, νi)) ≤

∑n
i=1 δ(µi, νi). �

We now want to go a step further and to show that αk+1/αk is upper
bounded by a constant (i.e. independent of k) less than 1. It is easy
to see that Proposition 37 can be strengthened if we find an x ∈ X,
y0, y1 ∈ F−1(x) such that µ(y0)− ν(y0) ≥ 0, ν(y1)− µ(y1) ≥ 0:

(3) δ(F (µ), F (ν)) ≤ δ(µ, ν)−min{µ(y0)− ν(y0), ν(y1)− µ(y1)}.

At this point we exploit that f is a WNU, and certain identities
hold for its output. Before describing what we get from this we need a
technical definition:

Definition 39. Let µ and ν be probability distributions on X. We
define

min
µ

ν
= min

x:ν(x)6=0

µ(x)

ν(x)
.
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Lemma 40. For every WNU term f and probability distributions µ
and ν on D:

δ(f(µi−1νµn−i), f(µn)) ≤
(

1− δ(µ, ν)n−1

|D|n
min

µ

ν

)
δ(µ, ν)

for every 1 ≤ i ≤ n.

Proof. (of Lemma 40) There are x, y ∈ D such that

µ(x)− ν(x) ≥ δ(µ, ν)/|D|(4)

ν(y)− µ(y) ≥ δ(µ, ν)/|D|.(5)

Without loss of generality assume that i = 1. Define:

p1 = Probµn(y, x, . . . , x) = µ(y)µ(x)n−1,
q1 = Probνµn−1(y, x, . . . , x) = ν(y)µ(x)n−1,
p2 = Probµn(x, y, x, . . . , x) = µ(x)µ(y)µ(x)n−2,
q2 = Probνµn−1(x, y, x, . . . , x) = ν(x)µ(y)µ(x)n−2.

From (4) and (5) we obtain that

µ(x) ≥ δ(µ, ν)

|D|
,

µ(y) ≥ δ(µ, ν)

|D|
min

µ

ν
,

p1 − q1, q2 − p2 > 0.

Let a = f(y, x, . . . , x) = f(x, y, x . . . , x). From (3):

δ(f(µi−1νµn−i), f(µn)) ≤ δ(µi−1νµn−i, µn)−min{p1 − q1, q2 − p2}

≤ δ(µ, ν)− δ(µ, ν)n

|D|n
min

µ

ν
.

�

Lemma 40 gives that αk+1/αk ≤ 1 − αn−1
k

|D|n minµ̃k min µk
µ̃k

, where µ̃k

ranges among distributions of the form fk(µi−1νµn
k−i). Indeed, use

that fk+1(µi−1νµn
k+1−i) can be written as f on many copies of µk and

one copy of fk(µi
′−1νµn

k−i′). An easy analysis shows that this improve-
ment is sufficient, because minµ̃k min µk

µ̃k
remains bounded from below

by min µ
ν
. This follows from the more general:

min

∏
i µi∏
i νi

=
∏
i

min
µi
νi

; min
F (µ)

F (ν)
≥ min

µ

ν
.

�
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7. The Hell-Nešetřil theorem

Recall that the Hell-Nešetřil theorem [29] states that for a simple,
connected, undirected graph H the complexity of CSP(H) is polyno-
mial if H is bipartite and NP-complete otherwise. The first part of the
theorem is trivial: every bipartite graph with at least one edge has a
retraction to any of its edges. This implies that a graph G has a homo-
morphism into H iff it has a homomorphism into a single edge, i.e. G
is bipartite. The interesting, and combinatorially quite involved part is
the NP-completeness of CSP(H) when H is non-bipartite. This was the
first dichotomy theorem with a really sophisticated proof using gadget
reductions. Later Bulatov [9] streamlined the proof using the algebraic
theory, though his proof still has some ad hoc part. Barto, Kozik and
Niven [4] extended the theorem proving dichotomy for digraphs with
no sink and source.

Here we give a proof based on our notion of asymptotic resilience.
According to Theorem 13 in [14] and using the fact that the core of a
non-bipartite graph is also non-bipartite it is sufficient to prove that:

Lemma 41. Let H be a simple, connected, undirected, non-bipartite
graph. Then Pol(H) has no asymptotically resilient term.

Proof. We explore the analytic properties of Pol(H,n).
Let us denote the vertex set of H by D (faithfully to our prior nota-

tions), and the edge set of H with E. The power set of a set is denoted
by P (). Let

Graph Vertices Edges
Hn Dn (~v, ~w) : (vi, wi) ∈ E for all 1 ≤ i ≤ n;
P (H) P (D) (S, T ): (s, t) ∈ E for all s ∈ S and t ∈ T .

The stationary measure on the vertices, µ, (edges, µE) of H assigns
frequencies to every node (edge), with which that node (edge) is vis-
ited by an infinite random walk. It is well known that the stationary
measure on the edges of a simple, connected, undirected, non-bipartite
graph is uniform. This implies that the stationary measure on the
vertices is proportional to the degree of each node.

It is immediate that the stationary measure on the vertices (edges)
of Hn is µn (µnE), where

µn((v1, . . . , vn)) =
n∏
i=1

µ(vi); µnE((e1, . . . , en)) =
n∏
i=1

µE(ei).

We would like to find analytic properties of Pol(H,n). What we show
is that, independently of n, for any f ∈ Pol(H,n) we find a constant
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number of coordinates that (jointly) have non-negligible influence on
the value of f . This holds when H is connected, non-bipartite.

Lemma 42. Let H = (D,E) be a simple, connected, undirected, non-
bipartite graph, and let µ and µE be the stationary measure on its
vertices and edges. Then for every ε > 0 there exists an integer l =
l(ε,H) such that if f : Dn → D is a homomorphism then there is a
mapping s : Dn → P (D) such that:

(1) Prob(v,w)∈µnE((s(v), s(w)) is not an edge in P (H)) ≤ ε;
(2) Probv∈µn(f(v) 6∈ s(v)) ≤ ε.
(3) The mapping s depends on at most l coordinates, i.e. there is an

s : Dl → P (D) such that s(r, t) = s(r) holds for all r, t, where
r is a partial assignment to the selected l coordinates, and t is
an assignment to the complementary n− l coordinates.

Proof. Since f : Dn → D is a graph homomorphism, the inverse image,
f−1(K), of an independent set K ⊆ D is independent in Hn. We use
a theorem of Dinur, Friedgut and Regev to show that f−1(K) has a
special structure:

Theorem 43. [24] Let H = (D,E) be a simple, undirected, connected,
non-bipartite graph with stationary measures µ and µE on its vertices
and edges. Then for every δ > 0 there exists a positive integer j = j(δ)
such that to every independent set I in Hn we can associate a set of
coordinates LI and an “almost independent” set I∗ that spans less than
δ fraction of the edges (according to measure µnE) and depends only on
coordinates in LI , such that

(6) µn(I \ I∗) ≤ δ.

For an independent set I ⊆ Dn let LI and I∗ as in Theorem 43. We
choose δ later. Let Ind(H) be the system of all independent sets of H,
and define the following set of coordinates:

L =
⋃

K∈Ind(H)

Lf−1(K) l = |L|.

We define s : Dn → P (D) via an “inverse” function S : D → P (Dn)
as:

S(x) =
⋂

K∈Ind(H)

x∈K

f−1(K)∗(7)

s(v) = {x ∈ D| v ∈ S(x)}.(8)

Lemma 44. The mapping s depends only on its coordinates in L.
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Proof. Notice that for any K ∈ Ind(H) membership in f−1(K)∗ de-
pends only on the coordinates in Lf−1(K) ⊆ L. Thus whether w ∈ S(x)
or not depends only on those coordinates of w that are in L. This, in
turn, implies that s(w) depends only on those coordinates of w that
are in L. �

We now set δ = ε/|Ind(H)|.

Lemma 45. Condition (1) of Lemma 42 holds for s.

Proof. If (s(v), s(w)) is not an edge in P (H) then there are x ∈ s(v),
y ∈ s(w) such that {x, y} ∈ Ind(H), which in turn by Definitions (7)
and (8) implies that v, w ∈ f−1({x, y})∗. The total measure of (v, w)
edges contained in f−1({x, y})∗ is at most δ. This multiplied by the
number of {x, y} ∈ Ind(H) is at most ε, as needed for Condition (1). �

Lemma 46. Condition (2) of Lemma 42 holds for f .

Proof. Let us call v ∈ Dn faulty if for some K ∈ Ind(H) it belongs
to f−1(K) \ f−1(K)∗. The probability that v is faulty is then at most
δ|Ind(H)|. It is obvious from our definitions, that when v is not faulty,
then f(v) ∈ s(v). �

�

Lemma 42 provides sufficient information about members of Pol(H)
to show that Pol(H) is not asymptotically resilient:

Assume for a contradiction that we have an asymptotically resilient
f0 ∈ Pol(H). Let l be the integer given by Lemma 42 for the choice
of ε = 1

7
. For large enough k the iterate f = fk0 is a homomor-

phism Hn → H such that the following holds: for any l coordinates
1 ≤ a1 < a2 < · · · < al ≤ n we have, that no matter how Alice sets the
input variables on xa1 , . . . , xal , if Bob gives random (according to the
stationary distribution for H) values to the other variables, the out-
put is 1

14
-indistinguishable, in the statistical difference sense, from the

distribution that arises when Bob gives random values to all variables.
This immediately implies that if r and r′ are any two elements of Dl

then

(9) δ(f(r, µn−l), f(r′, µn−l)) <
1

7
.

Let s : Hn → P (H) be the ”ε-almost homomorphism” that ”ε-
covers f” and depends on l coordinates, provided by Lemma 42. Then
s(r, t) = s(r) for r ∈ Dl, t ∈ Dn−l. (For simplicity of notation we
assumed that the crucial coordinates are the first l ones.)
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Definition 47. We call r ∈ Dl bad if the stationary measure of those
t ∈ Dn−l for which f(r, t) 6∈ s(r) is at least 1

3
.

Lemma 48. The measure of bad vertices in H l is at most 3ε.

Proof. Follows from Markov’s inequality, when applied to

Er∈µl
(
Probt∈µn−l(f(r, t) 6∈ s(r))

)
= Prob(r,t)∈µn(f(r, t) 6∈ s(r)) ≤ ε.

�

Lemma 49. For any two good r, r′ ∈ Dl we have s(r) ∩ s(r′) 6= ∅.

Proof. We assume that s(r) ∩ s(r′) = ∅, and get a contradiction with
Equation (9) by showing that the statistical difference of f(r, µn−l) and
f(r′, µn−l) (both are distributions on D) is too large (≥ 1

3
). Indeed, use

the definition of statistical difference that δ(α, β) = maxA |Probα(A)−
Probβ(A)|, for distributions α = f(r, µn−l), β = f(r′, µn−l), and event
A = s(r). The probability that f(r, µn−l) ∈ s(r) is at least 2/3. Also,
the disjointness assumption implies that

Prob(f(r′, µn−l) ∈ s(r)) ≤ 1− Prob(f(r′, µn−l) ∈ s(r)) ≤ 1− 2

3
=

1

3
,

which leads to the desired contradiction. �

The following is trivial:

Lemma 50. Let G be a simple, connected, undirected, non-bipartite
graph. The stationary measure of a set of edges incident to a set of
vertices with stationary measure h is at most 2h.

We apply this lemma to H l. Since the stationary measure of bad
vertices is ≤ 3ε, the measure of edges not incident to any bad vertex is
at least 1− 6ε. By Lemma 49 the two endpoints of any such edge are
mapped into intersecting sets by s. Since H has no loops, a pair of two
intersecting sets always forms a non-edge in P (H). We have arrived at
a contradiction, since 1− 6ε > ε, contradicting that

Prob(r,r′)∈µlE
((s(r), s(r′)) is not an edge in P (H)) ≤ ε.

�

8. Subclasses of CSPs

One way of attacking the dichotomy conjecture is to first solve it
for algebraically “pure” subclasses of CSPs, and then combine these
methods of solutions for more complex families. This approach is sup-
ported by a deep algebraic theorem that says that Pol(Γ) in a sense
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consists of a limited number of “atomic” components. One such “pure”
component is particularly puzzling.

Feder and Vardi have studied CSP problems that no linear system of
equations (over a finite field) can be reduced to using gadget reductions:
they called these CSP problems without the ability to count. We will
denote this class by Λ.

Unlike in the case of linear equations, one might expect here some
local algorithms to solve the problem.

It has turned out in the work of Larose, Valeriote and Zádori [42],
that Λ can be well understood in algebraic terms. They use a branch
of algebra called Tame Congruence Theory, a localization theory for
finite algebras. The localization process of this theory corresponds to
gadget reductions of CSP problems. In fact this theory has started to
play a role much earlier: the algebraic characterization of CSP prob-
lems reducible to 3-SAT given by this theory has led to the algebraic
dichotomy conjecture (Conjecture 14).

The work of Larose, Zádori and Valeriote is more involved: they
manage to characterize Λ in terms of having locally no algebra that has
only group operations and no algebra with only projections. Luckily,
when we define Λ, we can circumvent the explanation of the Tame
Congruence Theory due to a fairly recent characterization of Λ via its
compatible WNUs. A non-obvious algebraic theorem of Maróti and
McKenzie implies:

Definition of Λ
Theorem 51. [43] CSP(Γ) ∈ Λ if and only if there is an k0 ∈ N such
that for all k ≥ k0 Pol(Γ) contains a WNU of arity k.

In this write-up we take this theorem as a definition of Λ.

8.1. Bounded width classes. A recurring theme in combinatorics
and computer science is whether consistent local solutions can be patched
together into a global solution. The notion of bounded width intends to
capture those CSPs for which local solutions can be made global.

First some definitions: A partial assignment σ with support X ⊆ N
assigns a value from D to each variable xi, i ∈ X. We say that σ with
support on X and σ′ with support on Y are consistent if they assign
the same values to variables in X ∩ Y . A CSP instance is satisfied by
a partial assignment σ with support on X, if σ satisfies all constraints
that take variables only from X.

Definition 52. An instance of CSP(Γ) is (k, l)-consistent (k < l) if
there exist sets Ξ and Ξ′ of partial solutions such that:

(1) Every σ ∈ Ξ has support size k;
(2) Every σ ∈ Ξ′ has support size l;
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Figure 3. Two partial assignments to the two-coloring
problem of an input graph. The assignments are consis-
tent with each other in an intersection of size three

(3) Every σ ∈ Ξ satisfies the instance;
(4) Every σ ∈ Ξ′ satisfies the instance;
(5) For every |X| = k, X ⊆ Y and |Y | = l, and σ ∈ Ξ with support

X, there exists a partial assignment σ′ ∈ Ξ′ with support Y
that is consistent with σ.

(6) For every |X| = k, X ⊆ Y and |Y | = l, and σ′ ∈ Ξ′ with support
Y , there exists a partial assignment σ ∈ Ξ with support X that
is consistent with σ′.

Width k
Definition 53 (Width k). CSP(Γ) has width k if and only if there is
some (fixed) l > k such that any (k, l)-consistent instance is (globally)
satisfiable.

Bounded width
Definition 54 (Bounded width). CSP(Γ) has bounded width (or con-
stant width) if and only if it has width k for some fixed k.

The notion of local consistency emerged independently in graph the-
ory [31], finite model theory [37] and algebra [17]. This was a success-
ful direction of research in the last years: Foniok, Nešetřil and Tardif
[45, 27] studied CSP problems with good characterizations in the cate-
gory of relational structures with homomorphisms (with finitely many
obstructions, these are called finite dualities). Rossman [50] proved
the well-known Homomorphism Preservation Theorem in model the-
ory. Dalmau, Kolaitis and Vardi [20, 36, 37] have found the connection
with logic, Datalog and existential pebble games, see also Atserias [1].
Hell, Nešetřil and Zhu [31] proved that the k-consistency of a given in-
put can be characterized by obstructions of treewidth at most (k + 1).
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Barto and Kozik proved that the only reason for a tractable CSP
having a local, but not having a global solution is that it can solve
linear equations over a finite field:

Theorem 55. [2] Every problem in Λ has bounded width.

9. Strong Resilience

In order to solve Theorem 55 one needed to somehow exploit the
existence of WNUs in Pol(Γ). There are only a few cases known where
complexity results are shown via general WNUs. Considering our proof
of the Hell-Nešetřil theorem via asymptotic resilience, a key idea was
to “boost” the power of a WNU to obtain a term that has statistically
noticeable properties. We want to achieve the same with the condition
in Theorem 51.

We show that the notion of strong resilience (defined in Section 5)
captures Λ at once. This new characterization (eventually a trivially
equivalent one) has been an important part of the proof of Theorem
55.

A concept of “immunity” will be useful.

Definition 56. Let f : Dn → D be a function. A subset D′ ⊆ D is
invariant under f , if f maps D′ × · · · ×D′︸ ︷︷ ︸

n times

into D′.

(f)ג

Definition 57. We denote by (f)ג the collection of D′ ⊆ D that is
invariant under f .

Definition 58 (1-immune). Let f : Dn → D be a function, 1 ≤ i ≤ n,
D′ ∈ .(f)ג We say that f is immune with respect to (i,D′) if there are
constants c1, . . . , cn, c ∈ D′ such that

f(c1, . . . , ci−1, x, ci+1, . . . , cn) = c for every x ∈ D′.

Furthermore, f is 1-immune
w.r.t. D′ ∈ ,(f)ג if ∀i it is 1-immune w.r.t. (i,D′).
w.r.t. i, if ∀D′ ∈ (f)ג it is 1-immune w.r.t. (i,D′).
unconditionally, if ∀i∀D′ ∈ (f)ג it is 1-immune w.r.t. (i,D′).
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Theorem 59. Let A = 〈D,F 〉 be an algebra, |D| <∞. The following
are equivalent:

(I) A has arbitrary arity WNUs from a threshold (as term opera-
tions).

(II) There is a 1-immune WNU term operation in A.
(III) There is a strongly resilient term operation in A.

The proof of these equivalences will occupy the rest of this section.
We will also rely on:

Theorem 60 (McKenzie and Maróti [43]). A has arbitrary arity WNUs
from a threshold (as term operations) if and only if A has a WNU of
arity divisible by |D|!.

9.1. Polynomials. So far we have been dealing with terms. Polyno-
mials arise from terms by setting some variables to constants.

Definition 61 (Unary Polynomial). Let f be an n-ary term operation
in an algebra A = 〈D,F 〉. We say that P is a unary polynomial created
from f if for some 1 ≤ i ≤ n and for some constants c1, . . . , cn ∈ D:

P (x) = f(c1, . . . , ci−1, x, ci+1, . . . , cn).

Unary polynomials are functions from D into D. We compose poly-
nomials just like terms. Here is the composition of a unary polynomial,
f(a, b, x), with itself three times:

P 3(x) =

f

a b f

a b f

a b x

See Figure 9.1 how to express P 3 of the above example.
An important, and fairly obvious lemma about unary polynomials

will occur in later applications:
Lemma 62. Let P be a unary polynomial on D. Then Q = P |D|! is a
polynomial for which Q2 = Q.

Definition 63 (General Polynomial). Let f be an n-ary term of an
algebra A = 〈D,F 〉. We say that P (x1, . . . , xk) is a k-ary polynomial
created from f if for some 1 ≤ i1 ≤ . . . ≤ ik ≤ n and some constants
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f

f

f

a a a

f

a a a

f

a a a

. . . f

f

a a a

f

b b b

f

a b x

Figure 4. For an idempotent algebra an iterated poly-
nomial made from a term can be expressed as a polyno-
mial made from the iteration of the term

f(x, y, z)� g(x, y) =

f

g

x1 x2

g

x3 x4

g

x5 x6

Figure 5. The composition of two functions is defined
on disjoint variables

c1, . . . , cn ∈ D:

P (x1, . . . , xk) = f(c1, . . . , ci1−1, x1, ci1+1, . . . , cik−1, xk, cik+1, . . . , cn).

9.2. Composition. We have used the composition of a term opera-
tion f with itself, and the composition of two term operations, but
we would like to make the notion a little bit more explicit. Let f be
an n-ary, and g be an m-ary term operation. We define f � g as the
composition f(g, . . . , g︸ ︷︷ ︸

n times

). Each inner occurrence of g receive different

variables (Figure 5).
The variables of f � g are naturally ordered in a lexicographic man-

ner. For instance, if f is ternary and g is binary, then the variables of
f � g are ordered (for notational convenience) as

f(g(x1, x2), g(x3, x4), g(x5, x6)).
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w

w’

x2 x3 . . . xm

w’

x1 x3 . . . xm

. . . w’

x1 x2 . . . xm−1

Figure 6. 1-immune expression made from a minority form w and WNU w′

9.3. Proof of (I) → (II). In this section we prove (I) → (II), i.e.
that if A has arbitrary size WNUs (from a threshold) then A has
a 1-immune WNU term operation. Undoubtedly, the best case is
when A has a WNU term operation, w, which is a majority form (i.e.
w(x, y . . . y) = . . . w(y . . . y, x) = y for all x, y ∈ A). Then we do not
have to look further, since w is already 1-immune.

Proposition 64. A majority form is always 1-immune.

This might make us to think that the worst case is when we find only
minority forms, i.e. WNUs for which w(x, y . . . y) = . . . w(y . . . y, x) =
x holds for all x, y ∈ A. Luckily, there is a solution in this case, too,
but, if w is n-ary, we need another (arbitrary) (n− 1)-ary WNU:

Lemma 65. Let w be an n-ary minority WNU and w′ be an arbitrary
(n − 1)-ary WNU term operation of the algebra A. Then A has a
1-immune WNU term operation.

Proof. Consider

w(w′(x2, x3, . . . , xn), w′(x1, x3, . . . , xn), . . . , w′(x1, x2, . . . , xn−1))

with x1, . . . , xn as variables! It is straightforward that this is a majority
term operation, hence 1-immune. �

Comb construc-
tion Definition 66 (Comb construction). The sequence

w′(x2, x3, . . . , xn), w′(x1, x3, . . . , xn), . . . , w′(x1, x2, . . . , xn−1)

of expressions we call the Comb construction.

Lemma 65 proves (I) → (II) whenever there is a minority term
operation in A (since if there is a minority term operation there is
also an arbitrarily large one). We generalize this idea. The general
construction will be more complex, and has the following outline:

(1) Pick a WNU term operation w0 with arity divisible by |D|!, with
the additional property that no other WNU with arity divisible
by |D|! has more invariant subsets.
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(2) Define the algebra A′ = 〈D,w0〉.
(3) Notice that since w0 is (obviously) a term of A′, and has arity

divisible by |D|!, then by Theorem 60 the algebra A′ has WNUs
of arbitrary length from a threshold t0.

(4) Pick a WNU term operation w in A′ with arity n ≥ t0 + 1 and
divisible by |D|!. Note that since the only operation in A′ is
w0, it must hold that w is invariant with respect to all those
sets D′ ⊆ D that are invariant under w0.

(5) Select large enough K and L (to be determined later), and set
M = KL+K − 1.

(6) Pick any WNU term w′ of arity nL− 1 of A′. This w′ will play
the role of w′ in Theorem 65.

(7) Create a term operation from w and w′, by appropriately iden-
tifying the variables of wM �w′ with each other. In the identi-
fication process we use the Comb construction, multiple times.

Items (1)−(4) are self-explanatory, perhaps the only comment we
have to make is that the cumbersome procedure to pick w is only
required to ensure that the final construction will be 1-immune with
respect to all of the invariant subsets of the final construction. If we
just wanted it to be immune with respect to D, an arbitrary (large
enough) WNU term operation for w would do, and the proof could
start at (5).

Next we describe the construction of item (7).
We index the variables of wM with sequences ~a = a1a2 . . . aM , where

ai ∈ {1, . . . , n} for 1 ≤ i ≤M . (Recall that n denotes the arity of w.)
We define an equivalence relation R on the variables of wM : R

Definition 67 (Equivalence relation R). x~a and x~b are equivalent with
each other if and only if ai = bi for all i 6≡ 0 mod K.

Proposition 68. Every equivalence class of R has nL elements.
wK,L ~ w′

Definition 69. We compose wM with w′ in the following way: We
prepare the Comb construction on w′ for every equivalence class of
R separately, and we replace the nL variables of each class with the
expressions of the construction. For each class we use a new set of
variables. Note that the arity restriction of the Comb construction is
satisfied, since the arity of w′ is nL−1. The resulting formula will have
nM variables. We denote this composition by wK,L ~ w′.

Lemma 70. wK,L ~ w′ is a WNU.

Lemma 71. wK,L)ג ~ w′) = (w)ג = (w0)ג ⊆ .(′w)ג
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Proof. Since w, w′ and wK,L ~ w′ are all term operations of A′, they
are generated (in term sense, see Definition 21) by w0 alone. Hence
any D′ ⊆ D, which is invariant under w0, is also invariant under w, w′

and wK,L ~ w′.
We prove that in the case of w and wK,L ~ w′ the converse holds,

too. This follows from the fact that both w and wK,L ~ w′ have nM

variables and |D|! divides n. Among the term operations of A with
arity divisible by |D|!, by its choice, w0 had the greatest number of
invariant subsets. Since w and wK,L ~ w′ are trivially term operations
of A, they can not have more. �

Definition 72. We denote wK,L)ג ~ w′) = (w)ג = (w0)ג by ג.ג

Remark 73. ג can be alternatively defined as the collection of (the
universes of) the subalgebras of A′.

We are left with the last big question: How should we pick K and L
and why will the resulting wK,L~w′ be 1-immune. What we will show
is that:

Lemma 74. There are K and L such that for every D′ ∈ ג the follow-
ing holds: No matter which equivalence class of R we are given, it is
possible to set the variables of wM to constants from D′ in all but the
above equivalence class, so that we get a polynomial W (obviously, with
nL variables) with the following property: there is a unary polynomial
P with constants from D′ such that for every 1 ≤ i ≤ nL:

∀x, y ∈ D′ : W (y, . . . , y, x︸︷︷︸
i

, y, . . . , y) = P (x).

Furthermore, the replacement in the definition of W respects the equiv-
alence classes: two variables that are from the same equivalence class
of R receive the same constants.

Corollary 75. wK,L ~ w′ is 1-immune.

Proof. (of the corollary) LetK and L be as required by Lemma 74. Pick
the class of R under which the variable lies with respect to which we
wish to show immunity, and pick D′ ∈ ,ג too. All constants mentioned
below will be from D′. Consider the expression

W (w′(x2, x3, . . . , xnL), w′(x1, x3, . . . , xnL), . . . , w′(x1, x2, . . . , xnL−1)),

where W is given by the lemma. It is easy to see that there is a
polynomial with coefficients from D′ made from wK,L ~ w′, equivalent
to the above expression, that contains the variable for which we wish
to show immunity. (Here we used the idempotency of A, and that the
replacement hidden in W respects the equivalence classes of R.)
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Thus all we need to show is that the above expression is immune
with respect to all of its variables. Consider any variable, say x1
w.l.g., and set all other variables to some c ∈ D′. Then W will re-
ceive w′(c, . . . , c) = c, and w′(x1, c, . . . , c), the latter (nL − 1) times.
w′(x1, c, . . . , c) ∈ D′ by Lemma 71. By Lemma 74 the value of W will
be P (c), independent of x1. �

We are left to prove Lemma 74. We show that from every WNU
we can construct a polynomial W , which behaves something like a
minority form. Moreover, we can embed this construction into wM .
The embedding must obey certain structural restrictions, related to
the classes of R, that will easily follow from the proof.

We need the notion of symmetric polynomials of a WNU.

Definition 76 (Symmetric polynomials of a WNU). Let w be an n-ary
WNU. We define symmetric polynomials of w recursively:

(1) w itself is a symmetric polynomial of depth 1.
(2) If P and Q are symmetric polynomials of depth k and l, respec-

tively, then P �Q is a symmetric polynomial of depth (k + l).
(3) If P (x1, . . . , xk) and Q are symmetric polynomials of depth k

and l, respectively, and c is a constant, then P (c, . . . , c, Q) is a
symmetric polynomial of depth (k + l).

An example to a symmetric polynomial of depth 3 is

(10) R(x1, x2, x3) = w(w(w(x1, c, c), w(x2, c, c), w(x3, c, c)), d, d).

Lemma 77. Symmetric polynomials of a WNU term behave like WNUs
with respect to their variables.

We are now ready to state the main lemma:

Lemma 78. Let w be an n-ary WNU term operation of an algebra
〈D,F 〉. Then there is a symmetric, unary polynomial P , and a sym-
metric polynomial W , both of w, such that

W (x, y, . . . , y) = P (x) for all x, y ∈ D.

Proof. Consider a symmetric unary polynomial P of w with minimal
range P (D), where P (D) = {P (x) | x ∈ D}. Set r = |P (D)|. Without
loss of generality we can assume that P (P (x)) = P (x), otherwise we
can replace P with P r!. Let W0 = (P � w)r!. We will show that
W = W0� P satisfies the conditions of the lemma. W0 is a symmetric
polynomial and its output values are all from P (D). If we restrict all
input values to P (D) we get a WNU on P (D). We need to show that

W0(x, a, . . . , a) = x for every x, a ∈ P (D).
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Let a be an arbitrary element ofD and consider the unary polynomial
Qa = (P�w)(x, a, . . . , a). Clearly Qa is symmetric, unary, and it maps
P (D) into P (D). Moreover, since the image of P was minimal, Qa maps
P (D) onto P (D) (!). Hence, applying Lemma 62, Qr!

a is the identity
on P (D). On the other hand, the idempotency of w and the fact that
P acts as identity on P (D) imply that

Qr!
a (x) = W0(x, a, . . . , a) for every x, a ∈ P (D).

Thus for any x, a ∈ P (D) we have W0(x, a, . . . , a) = x, as needed. �

To prove Lemma 74 we apply Lemma 78 to the algebra 〈D′, w0〉 and
w. Our choice for K and L will be K = depth(P ) + 1 and L = r!.
These parameters arise in the construction of W in Lemma 78. It
follows easily from the symmetry of P that W = (P �w)r!�P embeds
into wKL+K−1, with all the structural requirements (with respect to
the classes of R), as needed.

Remark 79. The construction allows more flexibility: Denoting the
above values for K and L as K0 and L0, any other K and L would
work, where K0|K and L0|L. Thus, we can pick K and L that works
for all D′ ∈ .ג

Example 80. Suppose that the polynomial R in Expression (10) be-
haves like a minterm with respect to the variables x1, x2 and x3. (Imag-
ine that R is W that Lemma 78 gave us.) R has depth three, so we
want to embed it into w � w � w. Let us index the 27 variables of
w � w � w by elements of [3]3, where a triplet denotes the choices
in the path from the top to the bottom. If we follow how R is con-
structed from w, we notice that the original variables of R map to
x111, x121, x131 in the embedding. We get back R from w�w�w if we
set x112, x113, x122, x123, x132, x133 to c, and all the remaining variables
to d (using the idempotency of w).

The set {x111, x121, x131} represents one equivalence class of R. For
the other classes pick the triplets

{{xα1β, xα2β, xα3β} | α, β ∈ [3]}.
Then we have that: 1. The way we set the constants in R respects
these classes. 2. For any given class we can embed R into w�w�w so
that its variables will embed into that class and the embedding respects
all other classes.

9.4. Proof of (II)→ (III). Let f be a 1-immune n-ary WNU term.
We show that f is strongly resilient. Let µ be a distribution on D. By
Lemma 116 there is an infinite sequence of positive integers l(1), l(2), . . .
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such that ν = liml(i)→∞ f
l(i)(µn

l(i)
) exists, and the support S of ν is f -

invariant.
We need to show that for a sufficiently large M the expression fM

has the property that for any 1 ≤ j ≤ nM if Alice controls xj and Bob
sets the remaining variables randomly and independently according to
µ, then for most choices of Bob, the output is the same, when Alice’s
choice is from the support of µ.

Bob’s choices for the inputs of fM he controls form an event space.
When in this section we talk about events and their probabilities, we
always mean them in this event space. fM can be viewed as a tree,
where every node corresponds to a sub-expression. The sub-expressions
that contain Alice’s input correspond to a path leading from xj to the
top. We refer to the bottom level of the tree as level zero and to the
top level as level M .

Siblings of Alice−controlled expression at level i

level i

level i+1

Alice

Definition 81. An evaluation of Bob’s variables is called immunizing
at level i if the siblings of the (only) node at level i whose subtree
contains xj (i.e. the variable controlled by Alice) are evaluated to
constants from S that make the parent f immune with respect to (j, S).

Lemma 82. There is a threshold i0 such that for every i ≥ i0 the
probability that Bob’s evaluation is immunizing at level l(i) is ≥ δ =
(1
2

mins∈S ν(s))n−1.

Proof. Expressions f l(i)(µn
l(i)

) corresponding to separate nodes at level
l(i) are independent, and when i0 is large enough, and i ≥ i0, their
distribution is 1

2
mins∈S ν(s)-close to ν. 1-immunity of f (over S) means

that siblings of the Alice-influenced expression can be set to magic
constants (from S) that the remaining input, assuming it is from S,
does not have a say in the output at all. The probability that any
given sibling evaluates to its magic constant has probability at least
1
2

mins∈S ν(s), and independence concludes the lemma. �
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level M

level 0

One of them 
is immune w.h.p.

All of them

are good w.h.p.

level l(i)

level l(i+1)

level l(i+k) 

Given any ε > 0, set k large enough that 1 − (1 − δ)k ≥ 1 − ε
2

(δ = (1
2

mins∈S ν(s))n−1) and M ≥ l(i0 + k). We apply the lemma for
every level l(i0 + 1), . . . , l(i0 + k), and use independence to get that

Lemma 83. If i0 is sufficiently large then the probability that Bob’s
assignment for at least one of the levels l(i0), . . . , l(i0+k) is immunizing
is at least 1− ε

2
.

Definition 84. An assignment of Bob is good at level i if for every
choice of Alice the (only) expression at level i dependent on Alice’s
choice, regardless of her choice, evaluates from S.

Lemma 85. For every ε′ > 0 if i is large enough, the probability that
Bob’s assignment is good at the l(i)th level is at least 1− ε′.

Proof. Since f is a WNU it is asymptotically resilient. So, if i is
large enough and 1 ≤ j ≤ nl(i), c ∈ supp(µ) are arbitrarily fixed

then the distribution f(µj−1, c, µn
l(i)−j) is arbitrarily close to f(µn

l(i)
).

This, in turn is arbitrarily close to ν. Therefore the probability, that
f(µj−1, c, µn

l(i)−j) is not in the support of ν, can be made arbitrarily
small by setting i to be larger than a suitable threshold. Select the
threshold large enough that the above probability is not larger than
ε′

|D| . Use the union bound for a fixed j, where c runs through the

elements of supp(µ). �

¿From the the above lemma and the union bound we get:

Lemma 86. For every ε > 0 if i1 is large enough, then the probability
that Bob’s assignment is good for all of the levels l(i1 + 1), . . . , l(i1 + k)
is at least 1− ε/2.

It is straightforward that if Bob’s assignment is both good and im-
munizing at some level, then the top expression takes a value that does
not depend on the choice of Alice. We select M > max{i0, i1}+ k, and
we conclude from Lemmas 83 and 86 using the union bound.
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9.5. Proof of (III)→ (I). The proof of this direction relies on results
in Tame Congruence Theory, a localization theory for finite algebras.
This branch of algebra started with Pálfy [47] and was developed by
Hobby and McKenzie [32], see Kiss [34, 35] for an introduction. We
say that two algebras are term equivalent if they have the same base
set and the same term operations.

Definition 87. A k-ary operation f on the set D is called affine if there
is an Abelian group G = 〈D,+,−, 0〉 and ϕ1, . . . , ϕk ∈ End(G), a ∈ G
such that f(x1, . . . , xk) = a+

∑k
i=1 ϕi(xi). (End(G) denotes the set of

endomorphisms of G, i.e. homomorphisms from G to itself.)

Remark 88. If xi has nonzero influence according to the uniform mea-
sure then ϕi 6= 0, hence the influence of xi is at least 1

2
.

A factor (divisor) of an algebra is a homomorphic image of a subal-
gebra. We combine the results of Maróti, McKenzie [43] and Valeriote
[53] in the following theorem.

Theorem 89. If a finite, idempotent algebra A does not have arbitrary
size WNUs from a threshold (as term operations) then it has a factor
which admits only affine term operations.

Now we can prove (III) → (I). Assume that A has a strongly
resilient term f0, and suppose for a contradiction that it has a subal-
gebra S and a homomorphism ϕ on S such that ϕ(S) has only affine
operations. Consider the uniform probability measure ν on ϕ(S) and a
measure µ on S such that ν(T ) = µ(ϕ−1(T )) for every T ⊆ ϕ(S). Now,
since f0 is strongly resilient, for a large enough k the term f = fk0 is
such that the influence of every variable is less than 1

2
according to µ.

This gives a term on ϕ(S) such that the influence of every variable is
less than 1

2
according to ν. But an affine operation does not have this

property by Remark 88, a contradiction. This completes the proof of
(III)→ (I).

10. Width One, asymptotic invariance and symmetric
functions

The case of width one CSP’s is much better understood than bounded
width CSP’s. We have several characterizations: in terms of local con-
sistency algorithms by Feder and Vardi [26], while Hell, Nešetřil and
Zhu [31] gave one in terms of structure homomorphisms showing that
these are exactly the structures with tree dualities, see also Szabó and
Zádori [52]. Not surprisingly, one characterization is via Pol(Γ).
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Definition 90. If R is a k-ary relation on D, we say that (H1, . . . , Hk)
(Hi ⊆ D for 1 ≤ i ≤ k) has Property RD if for every 1 ≤ i ≤ k and for
every x ∈ Hi there are x1, . . . , xk ∈ D such that xj ∈ Hj for 1 ≤ j ≤ k
and

(x1, . . . , xi−1, x, xi+1, . . . , xk) ∈ R.

Definition 91 (Set function). ϕ : P (D) → D is a set function for Γ
if and only if ϕ keeps all R ∈ Γ in the following sense: Whenever R
is a k-ary relation in Γ and (H1, . . . , Hk) (Hi ⊆ D for 1 ≤ i ≤ k) has
Property RD, then f(ϕ(H1), . . . , ϕ(Hk)) ∈ R.

Definition 92 (Set operation). f : Dn → D is a set operation if and
only if the value of f(x1, . . . , xn) depends only on the set {x1, . . . , xn}.

Remark 93. A set operation is obviously a WNU. A set function ϕ

gives rise to n-ary set operations for arbitrary n by setting f(x1, . . . , xn)
def
=

ϕ({x1, . . . , xn}).

Theorem 94 (Dalmau, Pearson [21]). CSP(Γ) is width 1 if and only
if there is a set function in Pol(Γ).

Corollary 95. If CSP(Γ) is width 1 then Pol(Γ) contains set opera-
tions of arbitrary length.

Example 96. Let H be a directed acyclic graph on vertex set D and
assume that D can be linearly ordered in such a manner that (i) all
edges point forward (if (a, a′) is an edge then a < a′) (ii) there are no
two edges, (a, a′) and (b, b′) of H such that b < a and b′ > a′. Then
the function max(x1, . . . , xn) is a set operation in Pol(H). Indeed,
max is determined only by the set {x1, . . . , xn} (and independent of
the ordering and multiplicities), so all we need to prove is that it is
in Pol(H). Assume that (x1, x

′
1), . . . , (xn, x

′
n) are edges of H, and let

x = max(x1, . . . , xn), x′ = max(x′1, . . . , x
′
n). To show that (x, x′) is an

edge of H, it is sufficient to find an i such that x = xi and x′ = x′i. Let
x = xj and x′ = x′k. Because of the properties of the max we have that
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xk ≤ xj and x′j ≤ x′k. By the properties of H both inequalities cannot
be sharp. If xj = xk, we can set i = k, otherwise we can set i = j.

We conclude that for any H satisfying conditions (i) and (ii) CSP(Γ)
is width one.

Example 97. Consider unique games. Since we have WNUs of arbi-
trary length in Pol(UGD) (see Example 16), we conclude that unique
games are in Λ. Does CSP(UGD) have width one? No! Consider any
f ∈ Pol(UGD). By Theorem 113 it is possible to find α that depends
only on the equality structure of x1, . . . , xn such that f(x1 . . . , xn) =
xα(x1...,xn). In particular, focus on inputs for which x1 = . . . = xn−1 6=
xn. Since these inputs have the same equality structure, there is an i
such that for these inputs f(x1 . . . , xn) = xi. Let a and b be two distinct
elements of D. Then, no matter what i is, f takes different values on
(a, . . . , a, b) and on (b, . . . , b, a), so f cannot be a set operation. (Note
that unique games are in fact width two.)

11. Asymptotic Invariance

In this section we show that asymptotic invariance is somewhere
between width one and the class that contains exactly those CSP’s that
are solvable by the basic linear program (for more about the latter class
see [22]). We can prove strict containment in the first case but not in
the latter. First we show that width one implies asymptotic invariance.

Remark 98. We do not prove that if CSP(Γ) is width one then Pol(Γ)
has an asymptotically invariant term. (A term is asymptotically invari-
ant if the invariance of its iterates goes to zero.) This holds only in
special cases.

Before we show the containment we prove that the reverse is not
true. We give an example to an asymptotically invariant CSP that
does not provide a set operation: 4

Example 99. Let A be the following algebra on the 3-element set
D = {−1, 0,+1}. A has one k-ary operation sk for every positive
integer k: the value of sk depends only on the average of the coordinates
(as real numbers): the value is 0 if the average is in (−1

3
; 1
3
), it equals

to +1 if the average is ≥ 1
3

and equals to −1 if the average is ≤ −1
3
.

4An earlier version of this paper stated the equivalence of the existence of sym-
metric operations, asymptotic invariance and width one. This was proved in [22],
but the proof of this theorem turned out to be wrong as pointed out by Victor
Dalmau.
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Every operation sk is symmetric and idempotent. Consider the ternary
relations R+, R− ⊆ A3:

(x1, x2, x3) ∈ R+ ⇐⇒ x1 + x2 + x3 ≥ 1

(x1, x2, x3) ∈ R− ⇐⇒ x1 + x2 + x3 ≤ −1

It is easy to check that R+ and R− are invariant under sk.
Then CSP(Γ) defined by R+ and R− does not have width one: Sup-
pose for a contradiction that t is a compatible set operation, we might
assume that t is ternary. We know that t(+ + −) = t(+ − +) =
t(− + +) = t(+−−) = t(− +−) = t(−− +), denote this value by c.
The three tuples (+ +−), (+−+), (−+ +) are in R+: if we apply t to
these coordinatewise we get (ccc). On the other hand, we should get
an element of R+, hence c = +1. The same argument with R− shows
that c = −1, a contradiction.

We sketch the proof that CSP(Γ) is asymptotically invariant: If µ
is a measure on {−1, 0, 1} with µ(1)− µ(−1) 6∈ {−1

3
,+1

3
} then by the

law of large numbers for large values of k the operation sk will almost
always take the value −1 if µ(1)− µ(−1) < −1

3
, 1 if µ(1)− µ(−1) > 1

3
and 0 otherwise.

If µ(1) − µ(−1) = 1
3

then consider the output distribution µ′ of

s2(µ, µ). A simple calculation shows that µ′(1)− µ′(−1) = 1
3

+ 1
3
µ(0).

Thus, if µ(0) 6= 0 we can apply the previous construction and the de-
sired asymptotically invariant sequence will be sk(s2, . . . , s2) as k tends
to infinity. If µ(0) = 0 then µ is the 1

3
, 0, 2

3
distribution and s2(µ, µ) is

1
9
, 4
9
, 4
9
. Then we iterate again with s2 and the desired asymptotically

invariant expression will be the composition of sk with s2(s2, s2). The
argument is similar when µ(1)− µ(−1) = −1

3
.

Now we return to proving that if CSP(Γ) is width one then Pol(Γ)
is asymptotically invariant, i.e. for every ε > 0 and measure µ on D,
it has an operation with invariance < ε. Our proof will exploit the
characterization of the width one class in Theorem 94.

Lemma 100. Let µ be a measure on D with support S ⊆ D, and let f
be an n-ary set operation. Then there is c ∈ D such that f takes value
c with probability at least 1− |S|(1−minx∈S µ(x))n.

Proof. For any x ∈ S, when x1, . . . , xn are randomly and indepen-
dently chosen according to µ, the probability that x 6∈ {x1, . . . , xn} is
at most (1−minx∈S µ(x))n. Thus with probability at least 1− |S|(1−
minx∈S µ(x))n all elements of S are present among {x1, . . . , xn}. There-
fore the choice of c that f takes on inputs that do not miss any element
from S satisfies the conditions of the lemma. �
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f

g

x1 x2 x3

g

x1 x3 x2

. . . g

x3 x2 x1

Figure 7. The symmetrizing product, f o g, of f with
arity 6, and g with arity 3.

We now get that “width one → asymptotic invariance” as follows:
By Corollary 95 if the width of CSP(Γ) is one, then Pol(Γ) has set
operations of arbitrary arity. We apply then Lemma 100 and the fact
that 1− |S|(1−minx∈S µ(x))n → 1 as n→∞.

In the rest of the section we prove that asymptotic invariance implies
the existence of symmetric operations of arbitrary arity. The latter is
exactly the class of those CSP’s that are solvable by the basic linear
program [22]. It remains open if the converse of our theorem holds.

Lemma 101. If an idempotent algebra A = 〈D,F 〉 is asymptotically
invariant then it has term operations of arbitrary arity that are sym-
metric.

Proof. The lemma is based on the following construction:

Definition 102. Let f be a term operation of arity n!, and g be a term
operation of arity n. We define the symmetrizing product of f and g
as the n-ary operation that we get by identifying variables of f � g as
follows:

(1) Write down all permutations of {1, . . . , n} in lexicographic order
creating a sequence of length n! × n, whose elements are from
the set {1, . . . , n}.

(2) Match these numbers with the n!×n variables of f�g (in their
natural order).

(3) For 1 ≤ i ≤ n replace a variable with xi if that variable is
matched with number i.

We denote the symmetrizing product of f and g by f o g (see also
Figure 7).

Definition 103. A multi-set is like a set, except that its elements may
have multiple number of occurrences. The number of occurrences of an
element is called its frequency. For instance, {{1, 1, 2}} is a multi-set,
where the frequency of 1 is two. {{1, 2, 1}} denotes the same multi-set.
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Definition 104. We say that an n-ary term f is symmetric with re-
spect to the multi-set {{c1, . . . , cn}} if f(c1, . . . , cn) = f(cπ(1), . . . , cπ(n))
for every permutation π ∈ Sn.

The following is a simple consequence of the idempotency of A.

Lemma 105. Let f be a term operation of arity n!, and g be a term op-
eration of arity n for an idempotent algebra A. Then if g is symmetric
with respect to the multi-set {{c1, . . . , cn}} then so is f o g.

Note that an n-ary term is symmetric if it is symmetric with respect
to all multi-sets of size n. The strategy of our proof is that we start
from an arbitrary n-ary term g0 and use an appropriate sequence (fi)
to create a sequence g1 = f0 o g0; g2 = f1 o g1; e.t.c. such that gi+1 is
symmetric with respect to (at least) one more multi-set than gi (while
not loosing previous symmetries). Next we explain how to construct
the sequence (fi).

Let H = {{c1, . . . , cn}} be a multi-set and g be an n-ary term. Define
the multi-set of size (the sum of frequencies) n!:

Hg = {{g(cπ(1), . . . , cπ(n)) | π ∈ Sn}}

The following is easy to show:

Lemma 106. Let f be a term operation of arity n!, and g be a term
operation of arity n for A. If f is symmetric with respect to Hg then
f o g is symmetric with respect to H.

The above lemma tells how to symmetrize g for a multi-set H :
find a term operation f , which is symmetric w.r.t. Hg, then form the
symmetrizing product. How do we find such an f? We create it from
a sufficiently invariant function using the following lemma:

Lemma 107. Let K be a multi-set of size n (the sum of the frequencies
is n) and let µK be the measure on D, where for every x ∈ D the
measure of {x} is the frequency of x divided by n. Assume that the
operation f0 is 1

n!+1
-invariant with respect to µK. Then there exists an

identification of the variables of f0 that the resulting f is symmetric
with respect to K.

Proof. Let K = {{c1, . . . , cn}}. We create f(x1, . . . , xn) as follows:
replace every variable of f0 randomly, uniformly and independently
by one of the variables x1, . . . , xn. We claim that this randomized
construction works with positive probability.

Consider a permutation π ∈ Sn. The replacement xi → cπ(i) (1 ≤
i ≤ n) of the variables of f(x1, . . . , xn) is exactly a random assignment
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Algorithm 1

(1) Select any g of arity n.
(2) While ∃ multi-set H such that g is not symmetric

with respect to H:

(a) Find an f which is symmetric with respect to Hg

(using Lemma 107).

(b) Construct f o g. This, by Lemma 106 is symmetric

with respect to H, and by Lemma 105 keeps all

symmetries of g.
(c) Replace g by f o g.

(3) Output g.

Figure 8. asymptotic invariance → ∀ n ∃ symmetric
term operation of arity n.

to the variables of f0, where each variable receives values independently
according to µK .

If f0 is 1
n!+1

-invariant, then the probability, that for every permuta-
tion π ∈ Sn the xi → cπ(i) (1 ≤ i ≤ n) replacement results in output
c, is at least 1

n!+1
. This follows from the union bound, when applied

to the n! choices of π. Hence f is symmetric with respect to K with
non-zero probability, so the required f exists. �

Algorithm 1 in Figure 8 recaps how we obtain the symmetric func-
tion. �
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[5] J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote, R. Willard,
Tractability and learnability arising from algebras with few subpowers, Pro-
ceedings of the 22nd IEEE Symposium on Logic in Computer Science (LICS
2007), (2007), 213–224.
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12. Appendix

12.1. Unique Games. For another example we compute Pol(Γ) of
(unrestricted) unique games. Let π be a permutation on D, and let

Rπ = {(x, π(x)) | x ∈ D}.

Unique games with label set D are defined by the set of binary relations

UGD = {Rπ | π : D → D is a permutation}.

What are the term operations that leave Γ = UGD invariant?

Lemma 108. f(x1, . . . , xn) leaves Rπ invariant if and only if

(11) f(π(x1), . . . , π(xn)) = π(f(x1, . . . , xn))

for all x1, . . . , xn ∈ D.

Remark 109. Note that the invariance of f with respect to Rπ only
says that if all of the pairs (x1, π(x1)), . . . , (xn, π(xn)) are in Rπ, then

(f(x1, . . . , xn), f(π(x1), . . . , π(xn))) ∈ Rπ,

But by the 1-1 property of permutations this immediately gives the
lemma.

Corollary 110. f(x1, . . . , xn) ∈ Pol(UGD) iff Equation (11) holds for
every π : D → D.

To explicitly describe the elements of Pol(UGD) we need some defini-
tions. We define an equivalence relation < on Dn: (x1, . . . , xn) belongs
to the same equivalence class as (x′1, . . . , x

′
n) if and only if:

(12) ∀1 ≤ i, j ≤ n : xi = xj ↔ x′i = x′j.

If the above holds, we say that (x1, . . . , xn) and (x′1, . . . , x
′
n) have the

same equality structure.

Lemma 111. (x1, . . . , xn) and (x′1, . . . , x
′
n) have the same equality struc-

ture if and only if there is a permutation π : D → D such that
x′i = π(xi) for 1 ≤ i ≤ n.

We need yet another technical definition. To x1, . . . , xn ∈ D define

x0 =

{
a if D \ {x1, . . . , xn} = {a},
undefined otherwise.

Whether x0 is defined or not depends only on the equality structure of
x1, . . . , xn.
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Lemma 112. If (x1, . . . , xn) and (x′1, . . . , x
′
n) have the same equality

structure, and this equality structure allows for the definition of x0,
then there is a unique permutation π : D → D such that x′i = π(xi) for
0 ≤ i ≤ n.

Theorem 113. f ∈ Pol(UGD, n) if and only if there exists α : Dn →
{0, 1, . . . , n} that is constant on the classes of < such that

(13) f(x1 . . . , xn) = xα(x1...,xn).

Proof. First we show that every f with the structure as in the theorem,
satisfies Equation (11) for all Rπ. Proposition 110 will then imply that
f ∈ Pol(UGD, n). For any π : D → D the tuples (x1 . . . , xn) and
(π(x1) . . . , π(xn)) have the same equality structure. Hence

α(x1 . . . , xn) = α(π(x1) . . . , π(xn))
def
= α.

Then f(x1 . . . , xn) = xα and f(π(x1) . . . , π(xn)) = π(xα), implying
Equation (11). Note that in the α = 0 case we used Lemma 112.

Next we show that if f is an n-ary term operation in Pol(UGD),
then it is necessarily of the form (13).

Lemma 114. If f ∈ Pol(UGD), then for every evaluation f(x1, . . . , xn) ∈
{x0, . . . , xn} (where we omit x0 from the r.h.s. if not defined).

Proof. What we need to prove is that if |{x1, . . . , xn}| ≤ |D| − 2 then
f(x1, . . . , xn) ∈ {x1, . . . , xn}. Consider π that fixes x1, . . . , xn, and
un-fixes the remaining elements of D (e.g. cycles them). Then the
assumption that f(x1, . . . , xn) equals to any of the un-fixed elements,
gives an immediate contradiction via Proposition 110 applied to π. �

Lemma 115. If (x1, . . . , xn) and (x′1, . . . , x
′
n) have the same equality

structure and f(x1, . . . , xn) = xi then f(x′1, . . . , x
′
n) = x′i

Proof. There exists a permutation π on D such that π(xi) = x′i for
1 ≤ i ≤ n (and for i = 0, if applies). Applying Proposition 110 to π
we get the lemma. �

�

12.2. Convergence. In this section we prove a lemma we need in Sec-
tion 9.4.

Let f : Dn → D be a function. If we iterate f , and compute the
output distribution, where the input variables for the expression tree
are independently chosen from a fixed distribution µ on D, the result-
ing distributions do not necessary converge to a fixed distribution, even
when f is idempotent. But we can still say something. Compactness
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of the space of distributions on D (with respect to the statistical differ-
ence, δ, as distance) implies that the set of limiting distributions L(f, µ)

of the sequence µk = fk(µn
k
) is non-empty. Besides the non-emptyness

we need yet another property of L(f, µ):

Lemma 116. Let f : Dn → D be idempotent. There is a ν ∈ L(f, µ)
such that S = supp(ν) is invariant under f .

Proof. We subdivide the simple proof into lemmas.

Lemma 117. If ν is L(f, µ), then so is f(νn).

Proof. Let δ(fk(µn
k
), ν) ≤ ε. Then δ(fk+1(µn

k+1
), f(νn)) ≤ nε by

Corollary 38. Since n is a fixed constant, nε tends to zero when ε
tends to zero. �

Definition 118. Let D be a finite set, f : Dn → D be a function, and
D′ ⊆ D. Define:

f(D′)
def
= {x | ∃x1, . . . , xn ∈ D′ : x = f(x1, . . . , xn)}.

Remark 119. If f is idempotent, then D′ ⊆ f(D′).

Lemma 120. If S ⊆ D occurs as a support of some ν ∈ L(f, µ), then
so does f(S).

Proof. supp(f(νn)) = f(supp(ν)). Use Lemma 117. �

We are now ready to finish the proof of Lemma 116. Select ν ∈
L(f, µ) with maximal support. The idempotency of f implies S ⊆
f(S). Lemma 120 and the maximality of S implies that f(S) = S. �


