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1 Introduction
1.1 De�nitions

A 0-1 matrix is a matrix with just 1's and 0's (blanks) at its entries. Deleting a 1 entry
means replacing it with a 0. We usually call the 'small' matrix we forbid a pattern. The 0-1
matrix A represents the same size pattern P if A = P or P can be obtained by deleting a
few 1 entries in A. If a submatrix of A represents P , then we say A contains P , otherwise
it avoids P . The weight w(P ) of a pattern P is the number of 1 entries in it.

For a pattern P with positive weight and a positive integer n, ex(n, P ) is the maximum
weight of an n by n 0-1 matrix avoiding P . This can be considered as a function on positive
integers, and is called the extremal function of P . Sometimes we refer to a pattern with
linear extremal function as a linear pattern, and similarly we can say that a pattern is
non-linear.

1.2 Relations with other problems
Regard an n by n 0-1 matrix M as an adjacency matrix of a bipartite graph G(n)

between n red and n blue vertices, and there is a linear ordering on the red vertices and on
the blue vertices as well (note that there is no order relation between a red and a blue ver-
tex). Here, a submatrix corresponds to a full colored subgraph of G(n). Avoiding a pattern
means avoiding a certain colored, ordered subgraph. Similarly ex(n, P ) is the maximum
number of edges in an ordered bipartite graph on n + n vertices avoiding the colored,
ordered subgraph corresponding to the pattern P . This problem is an ordered variant of
the classical Turán extremal graph theory for bipartite graphs. P. Brass, Gy. Károlyi and
P. Valtr [3] study a very similar problem, where a cyclic order is given on the vertices.

For the case of permutation matrix patterns P , the Füredi-Hajnal conjecture [6], which
states that ex(n, P ) = O(n), was proved by A. Marcus and G. Tardos [13]. Without going
into details, we mention that the Stanley-Wilf conjecture, as M. Klazar [10] showed, follows
from this conjecture. We will discuss this topic more deeply in section 2.2.

Generalized Davenport-Schinzel sequences (DS sequences) are �nite sequences over an
alphabet with n symbols avoiding a certain subsequence and with no close repetition (for
details see section 2.3). In the classic version the subsequence is an alternating sequence
with 2 symbols. There are many results in this topic (for a survey see [9]), and we will
see that sometimes they have implications for 0-1 matrices too. We will discuss this topic
mainly in section 3.2.

1.3 Results
This thesis can be regarded as a survey on 0-1 matrices with results mainly from

[6],[8],[13] and [15]. We present some new results as well, which are detailed below.
Our main aim is to determine the order of magnitude of ex(n, P ) for certain patterns.

The patterns with weight 4 are systematically considered by Füredi and Hajnal [6]. They
found the extremal function up to a constant factor for almost all such patterns. The
remaining patterns with weight 4 are examined by Tardos [15].
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There are two type of proofs for upper bounds. For some patterns we have straight-
forward proofs and for the rest of the patterns we have reductions. If we can obtain a
pattern with a certain transformation from another, then we can compute bounds for the
new pattern too. In section 3.1 and 3.2 we present two new such transformations.

For lower bound proofs, there are several constructions. One of these comes from the
construction for DS-sequences and the others are mostly the variations of a diagonal con-
struction.

Patterns with linear extremal function are particularly interesting. It is clear that if
a pattern P contains a pattern Q, then ex(n, P ) ≥ ex(n,Q), because if a matrix avoids
Q, then it avoids P too. So if a pattern P has linear extremal function, then every Q,
which is contained by P , is linear as well (with the exception of the trivial pattern all
pattern has at least linear extremal function). So we can de�ne the set of minimal (for
containment) non-linear patterns. So far no minimal non-linear pattern with weight bigger
then 4 was found. In chapter 4 we present a weight 5 pattern with that property. Moreover,
we present in�nite number of candidates for being minimal non-linear patterns too. We
can't prove that these non-linear patterns are minimal, but in section 4.1 we show some
results suggesting that statement.

1.4 Acknowledgements
I would like to thank my supervisor Gábor Tardos for his innumerable advices and

remarks about the Thesis.

3



2 Examples
2.1 Simple bounds

The 1 by 1 pattern with a single 1 entry is called trivial. If a matrix contains a 1 entry,
then it contains the trivial pattern, so ex(n, P ) = 0 for the trivial pattern P . Otherwise,
if the pattern is non-trivial, then ex(n, P ) ≥ n. Indeed, if the pattern contains a 1 entry
outside its �rst row, then an n by n matrix with 1 entries only in its �rst row avoids it.
For other cases use symmetry. Let us begin with a trivial proposition already mentioned
in the introduction:

Proposition 2.1. If a pattern P contains a pattern Q, then ex(n,Q) ≤ ex(n, P ).

Proof. If a matrix avoids Q, then avoids P too and so the proposition follows.

Rotating or re�ecting a pattern P into pattern P ′ does not a�ect its extremal function, as
if a matrix M avoids P , then the matrix M ′ obtained by the same transformation from M ,
avoids P ′, so ex(n, P ) ≤ ex(n, P ′) and considering also the reverse of this transformation
we get the equality. These patterns are called the equivalents of P .

Removing all blank rows and columns is called reducing the pattern.

Theorem 2.2. If P reduces to P ′, then ex(n, P ) ≤ ex(n, P ′) = O(ex(n, P ) + n).

Proof. The �rst inequality is true as P contains P ′. For the second inequality let k be large
enough so that P has no k consecutive blank rows or columns. Take a maximal weight n by
n 0-1 matrix M ′ avoiding P ′. Delete the 1 entries in the �rst and last k rows and columns
of M ′. We obtain the matrix M and lose at most 4kn in the weight. For 0 ≤ a, b < k
let Mab be the matrix obtained from M by deleting all 1 entries except those with row
and column indices i and j satisfying that i mod k = a and j mod k = b. The weights
w(Mab) sum to w(M). It is easy to see that here every matrix Mab avoids P . We have
ex(n, P ′) = w(M ′) ≤ w(M) + 4kn ≤ k2ex(n, P ) + 4kn = O(ex(n, P ) + n), as claimed.

As one could notice, these transformations can not increase the weight of the pattern.
In the following we present some transformations that increase the weight but does not
increase the extremal function too much. The �rst appeared in [6]:

Theorem 2.3. If P ′ can be obtained from P by attaching an extra column or row to the
boundary of P and placing a single 1 entry in the new column or row next to an existing
one in P , then ex(n, P ) ≤ ex(n, P ′) ≤ ex(n, P ) + n.

Proof. The �rst inequality is trivial. For the second we can assume by symmetry that the
extra row or column is a column at the left side of the matrix. Let M ′ be a matrix avoiding
P ′ with maximal weight. Deleting the �rst 1 entry in every row we obtain the matrix M .
Here w(M) ≥ w(M ′) − n. The matrix M avoids P , as a representing submatrix in M
together with the column of the appropriate deleted 1 entry would represent P ′ in M ′. So
ex(n, P ) ≥ w(M) ≥ w(M ′)− n = ex(n, P ′)− n.
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The natural way to apply this theorem is that an upper bound on P gives an upper
bound on P ′. In many cases we even delete the 1 entry next to the new one, which does not
increase the extremal function. For example Theorem 2.7 stating that ex(n, L1) = O(n),
implies that ex(n, L2) = O(n).

With a slight generalization of the result of Tardos in [15] we get a similar theorem for
putting 1 entries in between already exiting ones:

Theorem 2.4. If P ′ is obtained from the pattern P by adding k extra columns between
two columns of P , each containing a single 1 entry and the newly introduced 1 entries has
1 next to them on both sides, then ex(n, P ) ≤ ex(n, P ′) ≤ (k + 1)ex(n, P ).

Proof. The �rst inequality is trivial. For the second let M ′ be a maximum weight matrix
avoiding P ′. In each row number the 1 entries from left to right and delete the 1's whose
number is not equal to 1 modulo (k + 1). Clearly, the obtained M matrix has weight
at least w(M ′)/(k + 1). Moreover M avoids P , because a representation of P with the
columns of the appropriate deleted entries would be a representation of P ′ in M ′. We got
ex(n, P ′) = w(M ′) ≤ (k + 1)w(M) ≤ (k + 1)ex(n, P ).

The following theorem was proved in [14].

Theorem 2.5. For any pattern P super-additivity holds for any positive integers n and
m, that is

ex(n + m,P ) ≥ ex(n, P ) + ex(m,P ).

If the pattern has no blank entries, then the bipartite graph analogon is no further
order-sensitive, so we can transform the results of (non-ordered) extremal graph theory to
0-1 matrices in this case. For example the weight 4 2 by 2 matrix R corresponds to the
four-cycle, and so by classical results in extremal graph theory, we get:

Theorem 2.6. f(n,R) = Θ(n3/2).

2.2 Linear bounds
In this section we present some direct proofs for upper bounds. The �rst we mention

was proved by Tardos in [15]:

Theorem 2.7. ex(n, L1) ≤ 5n

Proof. Let A = (aij) be an n by n 0-1 matrix avoiding the pattern L1. For a column j
containing at least one 1 entry, let l(j) be the index of the row containing the last 1 entry
in column j. For such a column j′ let be j the largest column index with j < j′ and
l(j) ≥ l(j′). We say that column j′ �nds the entry aij, where i is the largest row index
with i < l(j′) and aij = 1. If there is no such index j or i then column j′ does not �nd
any entry, so each column �nds at most one 1 entry. Now delete the last and the second
last 1 entries in each row, the last 1 entry in each column and the 1 entries whose right
neighbour (i.e. the next 1 entry in the same row with larger column index) is the last 1
entry in its column. Clearly, we deleted at most 4n 1 entries. We claim that the remaining
1 entries are found by some column and so the theorem follows.
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To prove the claim �x a remaining entry aij = 1. There exists entries aij1 = aij2 = 1
with j < j1 < j2 (the deleted last two 1 entries in row i). Further, we can choose aij1 to
be the �rst 1 entry in row i after aij. If aij1 would be the last 1 entry in its column then
aij would be deleted earlier, so l(j1) > i. Besides, there is a 1 entry ai1j in column j with
the smallest row index i1 > i otherwise the entry aij would be the last in its column.

Let j′ be the smallest index with j′ > j and l(j′) > i. As j1 is such an index j′ exists
and j′ ≤ j1. Here l(j′) ≤ i1 otherwise the rows i < i1 < l(j′) and the columns j < j′ < j2

would determine a submatrix representing L1. We got j < j′ and l(j) ≥ i1 ≥ l(j′) but no
column index j < j′′ < j′ satis�es l(j′′) ≥ l(j′) by the choice of j′. So column j′ �nds the
last 1 entry in column j before the row l(j′). This entry is aij, as i < l(j′) ≤ i1 and there
are no 1 entries between aij and ai1j in the column j.

Now we turn to the case of permutation matrices and present the proof of the Füredi-
Hajnal conjecture, which appeared in [13] (when proving the theorem we used also the
version in [16], which uses a di�erent terminology):

Theorem 2.8. For all permutation matrices P we have ex(n, P ) = O(n).

Proof. Let P be a k by k permutation pattern. Let A be a maximum weight n by n matrix
avoiding P . Let a be a positive integer constant, its exact value determined later. First
assume that n divides a. Partition the rows and the columns into groups of size a (each
group contains a consecutive rows or columns). Let Bij be an n/a by n/a 0-1 matrix with
bij = 1 if and only if the block Sij of A de�ned by the ith group of rows and the jth group
of columns has at least one 1 entry.

We claim that B avoids P too. Indeed, assume not and take the k 1 entries of a
submatrix of B representing P . For each 1 entry in B there is at least one 1 entry in A in
the corresponding block Sij. Take one for each of the k 1 entries, these represent P in A,
a contradiction.

We say that a block is wide if it contains 1 entries in at least k di�erent columns.
Similarly, a block is tall if it contains 1 entries in at least k di�erent rows. We claim that
for a any i there are at most (k−1)

(
a
k

)
tall blocks in the ith group of rows. Indeed, otherwise

there would be k di�erent blocks with 1 entries in the same set of k rows by the pigeonhole
principle (there are altogether

(
a
k

)
possibilities). Let these rows be c1 < c2 < . . . < ck and

let these blocks be Sid1 , . . . , Sidk
with 1 ≤ d1 < d2 < . . . < dk ≤ n/a. For each 1 entry

prs in P choosing a 1 entry in row cr of Sids we obtain a submatrix of A representing P
which is a contradiction. Similarly, there are at most (k− 1)

(
a
k

)
wide blocks in each group

of columns. Note that the weight of a block is at most (k − 1)2 unless it is tall or wide.
Counting the 1 entries separately in the tall and the wide blocks and for the remaining

blocks using that B avoids P we get:
ex(n, P ) = w(A) ≤ 2 · n/a · a2 · (k − 1)

(
a
k

)
+ ex(n/a, P ) · (k − 1)2

and so
ex(n, P ) ≤ (k − 1)2 · ex(n/a, P ) + 2ak

(
a
k

) · n.
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Now with the above recursion we are able to prove that

ex(n, P ) ≤ 4a2k
(

a
k

)

a− (k − 1)2
· n

for any a greater then (k−1)2 and for any n (note that a is not necessarily divisible by n).
We proceed by induction on n. The cases n ≤ a are trivial as the left side is at most

n2 and the right is at least an. Now assume the hypothesis to be true for all n < n0 and
consider the case n = n0. We let n′ be the largest integer less than or equal to n which is
divisible by a. Then by the previous claim we have:

ex(n, P ) ≤ ex(n′, P ) + 2an ≤ (k − 1)2ex(n′/a, P ) + 2ak
(

a
k

)
n′ + 2an ≤

(k−1)2
h
4a2k(a

k)
n′
a

i
a−(k−1)2

+ 2ak
(

a
k

)
n + 2an ≤ (a−(a−(k−1)2))[4ak(a

k)n]
a−(k−1)2

+ 2ak
(

a
k

)
n + 2an ≤

4a2k(a
k)

a−(k−1)2
n− 4ak

(
a
k

)
n + 2ak

(
a
k

)
n + 2an ≤ 4a2k(a

k)
a−(k−1)2

n.

Now take any a greater then (k − 1)2 and the theorem follows. In [13] Marcus and
Tardos took a = k2.

2.3 Quasi-linear bounds
In this section we present the results of [6] about some patterns with extremal function

Θ(nα(n)), where α(n) denotes the extremely slowly growing inverse Ackermann function.
Following the notation of [8], S(u) is the set of symbols which appear in sequence u.

We denote the length of a sequence u by |u| and the size of S(u) by ‖u‖. Two sequences
u = a1a2 . . . an and v = b1b2 . . . bn of the same length are equivalent if there exists a bijection
f : S(u) → S(v) such that f(ai) = bi for all i = 1, 2, . . . , n. We say that u contains v, if
v is equivalent to a subsequence of u, otherwise it avoids u. We call the occurrences of a
symbol a ∈ S(u) in the sequence u a-occurrences.

Similarly to 0-1 matrices, ex(n, u) is the maximum length of a string on n symbols with
no close repetition (any at most ‖u‖ consecutive elements of the string must be di�erent
from each other) and avoiding the string u. Note that if ‖u‖ = 2 then immediate repetitions
are forbidden.

We will need the following classic result about DS-sequences of Hart and Sharir in [7]
that resolved a long standing open problem:

Theorem 2.9. For the string u = ababa we have ex(n, u) = Θ(nα(n)).

From this theorem we can derive the following upper bound:

Theorem 2.10. For the extremal function of the pattern S1 we have ex(n, S1) = O(nα(n)).

Proof. Let M be a maximum weight n by n matrix avoiding S1. Delete the �rst and last
1 entries in each row. Number the rows from top to bottom with the numbers 1, . . . , n.
For every i change every 1 entry in the ith row to i. Change 0 entries to blanks. Let u
denote the string that we obtain if we read the columns of M from left to right and from
top to bottom in each column. If there are any two neighbouring positions with the same
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letter, then we delete the earlier letter from the pair. We repeat this step until there are
no repetitions. Each repetition corresponds to n entry in M (the earlier (or left) entry of
the pair and n − 1 consequent blank entries after that), and in each step we deleted at
most one letter. Therefore we deleted at most n2/n = n letters. In this way there is no
immediate repetition in the string u and w(M)− 3n ≤ |u| ≤ w(M) and ‖u‖ ≤ n.

Now we can apply Theorem 2.9 and so it is enough to prove that u avoids ababa.
Suppose u contains ababa. Then it must contain a subsequence abab with a > b as well.
Examine the submatrix in M corresponding to this subsequence. Clearly, this must be a
representation of one of the patterns R, S1, Q1 or Q′

1. If it is the pattern S1, then the
theorem follows. In case it is R regard the deleted �rst 1 entry in the bth row and the
deleted last entry in the ath row. These together with the appropriate 1 entries from the
representation of R represent S1 in M . Cases Q1 and Q′

1 are similar.

Following the idea of Tardos we can apply again Theorem 2.9 quite simply to obtain
an upper bound for ex(n, S1).

Theorem 2.11. For the extremal function of the pattern S1 we have ex(n, S1) = Ω(nα(n)).

Proof. For any positive integer n by Theorem 2.9 there is a string u, which has no imme-
diate repetition, avoids ababa. Further, ‖u‖ ≤ n and |u| = Ω(nα(n)). We can assume that
‖u‖ = n holds too. Change the letters of u to numbers from 1 to n in order of their �rst
appearance (the leftmost letter of u will be 1, the second leftmost which is not 1 will be 2

etc.). Partition u into 3n blocks of size
⌊
|u|
3n

⌋
(the last block is possibly bigger). For each

block if it contains the �rst or last appearance of any letter, then we delete this block. We
deleted at most 2n blocks this way. If in a remaining block there are two positions with the
same letter b, then there is one letter a between them (as there is no immediate repetition
in u). Together with the �rst and last appearance of a (which are in other blocks) we
obtain ababa, contradiction. We take n remaining blocks and build the matrix M . In the
jth column the ith entry is 1 if and only if the jth remaining block of u contains the letter
i. This matrix avoids the pattern S1 as otherwise a representation of S1 (with entries in the
ath and bth row, where a < b) would represent ababa in u together with the �rst a entry
of u (a < b and the construction of the matrix implies that this entry precedes the two b
entries). As there are no two positions with the same letter in any block, we can deduce for
the weight of the matrix M that w(M) ≥ n ·

⌊
|u|
3n

⌋
≥ n · |u|−3n

3n
= |u|

3
− n = Ω(nα(n)).

By Theorem 2.3 for the pattern S2 the same upper bound follows from Theorem 2.10:
ex(n, S2) = O(nα(n)). Now we prove a lower bound for this pattern too, but in this
case we cannot prove the lower bound so easily. In [6] there is a construction of n by
n matrices with Θ(nα(n)) 1 entries, avoiding this pattern. This construction is derived
from the construction of sequences proving the lower bound in Theorem 2.9. We present a
modi�ed version of this construction. The construction for matrices uses double recursion.

The matrices we are constructing have two parameters, s and t. We refer to them as
M(s, t). The recursion which gives the construction is for s and inside that is another
recursion for t. Note that these are not square matrices.
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Let us begin with some properties of the matrix M(s, t):
(a) Its size is tC(s, t)× (t + 2)C(s, t)− 2, where the following recursion de�nes C(s, t):

C(1, t) = 1 (t ≥ 1)

C(s, 1) = 2C(s− 1, 2) (s > 1)

C(s, t) = C(s, t− 1)C(s− 1, C(s, t− 1)) (s, t > 1).

(b) There are exactly s 1 entries in each row of M(s, t).

(c) The rows are divided into C(s, t) horizontal blocks, where each block contains t rows.
Let Hi be the ith block.

(d) Inside Hi the �rst 1 entry in each row is in the same column. Let ci be the index of
this column and call these �rst 1 entries the leading 1's.

(e) For the columns containing the leading 1's the following is true: 1 = c1 < c2 < . . . <
cC(s,t). These columns divide the matrix into vertical blocks. Let Vi be the ith block
containing the columns from the cith to the (ci+1−1)th (VC(s,t) contains the columns
from cC(s,t) to the last column).

Finally we can de�ne the matrices. M(1, t) for t ≥ 1 is an t by t matrix with t 1 entries
in its �rst column and no more 1 entries. For s > 1 M(s, 1) is obtained from M(s − 1, 2)
by repeating the following procedure for every horizontal block Hi of M(s − 1, 2). Put
two new columns before the leading column ci. Note that the ith horizontal block has two
rows. Put a 2 by 2 identity matrix into the intersection of these two rows and the two new
columns. In this way we got C(s, 1) = 2C(s− 1, 2) horizontal blocks, each containing one
row with s 1 entries in each row.

In the general case we build M(s, t) using the matrices S = M(s, t − 1) and B =
M(s− 1, C(s, t− 1)). First regard B, which is the 'big' matrix. It has C(s− 1, C(s, t− 1))
vertical blocks, let vi be the number of columns in the ith one. S, the 'small' one has
C(s, t− 1) horizontal blocks (one for each row in a horizontal block of B).

In order to de�ne M(s, t) for s, t > 1 take C(s − 1, C(s, t − 1)) copies of S (one
for each horizontal block of B). We build M in C(s − 1, C(s, t − 1)) steps starting with
the empty matrix. In the ith step we add (t − 1)C(s, t − 1) + C(s, t − 1) new rows and
(t + 1)C(s, t− 1)− 2 + vi new columns to the bottom right of the already built part of the
matrix. The way we do this is the following:
(1) We put (t−1)C(s, t−1) new rows and (t+1)C(s, t−1)−2 columns after the already

existing ones and in the intersection of these new rows and columns we put a copy
of S.

(2) We insert another new row after each horizontal block of this new copy of S and
place one 1 entry into these new rows under the leading column of 1's in S.

(3) We add vi new columns after the existing ones. In the intersection of the new rows
added in all foregoing steps type (2) and of these new columns we put the ith vertical
block of B. Note that we don't have enough rows for this, but the remaining rows of
the ith vertical block of B are empty.
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Simple calculations give that the construction maintains property (a). One can check
that this construction maintains properties (b)-(e) too. Let M ′(s) be the n by n square
matrix obtained from M(s, 1) by adding 2C(s, 1) empty rows and 2 empty columns after
the existing ones. Here n = 3C(s, 1). This matrix has the same weight as M(s, 1), which
has s 1 entries in every row, therefore w(M ′(s)) = s · C(s, 1) = 1

3
s · n. Note that it is

clear now that this weight is higher than linear as s can be appropriate big. Moreover,
for these matrices w(M ′(s)) = Θ(β(n) · n), where β(n) is the inverse function of C(s, 1).
A(s, t) denotes the Ackermann function. Now we prove that C(s, 1) < A(s + 1, s + 1) for
s ≥ 1, which implies β(n) > α(n) − 1 as α(n) is the inverse of A(s, s). For that we need
the de�nition of A(s, t), which uses again a double recursion:

A(0, t) = t + 1 (t ≥ 0)

A(s, 0) = A(s− 1, 1) (s > 0)

A(s, t) = A(s− 1, A(s, t− 1)) (s, t > 1).

From the de�nition of C(s, t) we can deduce that C(3, t) = 2t+1 for t ≥ 1.Moreover

A(4, t) = 22..
.2

− 3 (we take t + 3 2's) for t ≥ 0 follows easily too and it is clear that
A(4, t) > t2C(3, t) for t ≥ 1. It is also clear that these functions are monotone in s and in
t. Now we prove by induction that t2C(s, t) < A(s+1, t) for s ≥ 3 and t ≥ 1. For s = 3 the
claim is true. For t = 1 we have 1·C(s, 1) = 2C(s−1, 2) < A(s, 2)/2 by induction. Moreover
A(s+1, 1) = A(s, A(s+1, 0)) = A(s, A(s, 1)) > A(s, 2) > C(s, 1) where the �rst inequality
follows from A(s, 1) > A(0, 1) = 2 and the monotonicity for t. For the general step s ≥ 4
and t ≥ 2 we have t2C(s, t) = t2C(s, t − 1)C(s − 1, C(s, t − 1)) < t2A(s − 1, C(s, t −
1))/(C(s, t− 1)) by induction. The right side is smaller than A(s− 1, A(s, t− 1)) = A(s, t)
as C(s, t − 1) > t2 trivially for any s ≥ 4, C(s, t − 1) < A(s, t − 1)/(t − 1)2 ≤ A(s, t − 1)
and A is monotone in t.

Finally, for any s ≥ 4 we have C(s, 1) < A(s + 1, 1) < A(s + 1, s + 1) as needed.
Now we need some notations �rst. Ordinary rows and ordinary columns are the rows

and columns introduced in step (1) of the construction. The rows introduced in step (2)
are the extra rows. The columns introduced in step (3) are extra columns. The 1 entries
introduced in step (1) are the ordinary 1 entries, in step (2) we introduced extra 1's and
in step (3) the new 1's. Clearly, for example each extra 1 is in an ordinary column and
in an extra row. We need some more simple observations, which can be proved easily by
induction:

Lemma 2.12. The matrix M(s, t) has the following properties:

1. The cith column contains 1's inside Hi and no other 1's.

2. If l is a new 1 and k has at most as big row index and at least as big column index
as l, then k is new too.

3. If l is an ordinary 1 and k is in the same column or row, then k is ordinary too and
they are in the same copy of S with the exception when l is a leading 1 and k is an
extra 1 in its column.
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4. If l is extra or ordinary and k is ordinary with at most as big row index and at least
as big column index as l, then l and k are in the same copy of S.

Theorem 2.13. The extremal function of the pattern S2 is Θ(nα(n)).

Proof. We've seen that the upper bound follows easily from Theorems 2.3 and 2.10. Now we
prove that the above constructed matrices M(s, t) avoid S2. This implies that the matrices
M ′(s) avoid these patterns too. As these matrices have weight Θ(nβ(n)) ≥ Θ(nα(n)) the
theorem follows.

We need to prove a stronger statement. We prove that M avoids S1, Q′
1 and Q3 also.

We prove this by induction on the parameters s and t.
If s = 1 the matrix M(s, t) avoids trivially all the patterns mentioned. In other cases

we assume that M(s, t) contains the appropriate pattern and we get that S or B contains
this pattern too which contradicts to the induction hypothesis. Take a representation of
the pattern, this means four 1 entries in each case. The �rst row of these entries contains
two 1 entries in each case. Call the left a and the right b. Call the leftmost bottom entry
x and the remaining entry c.

Now suppose the hypothesis is true for all matrices M(s′, t′) with s′ < s or s = s′ and
t′ < t. This implies that the hypothesis is true for the matrices S and B too.

If t = 1 then the matrix M(s, 1) is constructed from M(s−1, 2) = B′. Call the 1 entries
in B′ ordinary, the 1 entries added to B′ new. We can assume that x is new, because it is
clear that otherwise all 1 entries of the pattern are ordinary and so contained in B′, which
is a contradiction. The entries a, b and c must be ordinary by construction. Take x′ the
leftmost ordinary 1 entry in the row of x. This is not right from a again by construction.
So these four 1 entries together form a forbidden pattern in B′.

We can assume that x is an extra entry, because if it is not then take the leftmost 1
entry in its row. It can't be new, if it is extra, then call that x, together with a, b and c they
represent one of the forbidden patterns. If it is ordinary then it is a leading 1, now take
the extra 1 entry below that and call this x. The four 1 entries represent again a forbidden
pattern.

There are several cases depending on the type of a.
The entry a can't be extra because x is extra too and its row index is not smaller

whereas its column index is not bigger than that of a.
Assume now that a is new. Then b is new too and they were added in a step not earlier

then the step when x appeared. This holds for c too as its column is between the column
of a and b and its row is not below the row of x. Therefore c is new too. Now take x′, which
is the leftmost new entry in the row of x. As x′ is a leading 1 in B, it can't be right from
a. Therefore a, b, c and x′ are four 1 entries which represent a forbidden pattern in B, a
contradiction.

Assume now that a is ordinary. Then b is ordinary as well and is in the same copy of
S. Moreover, c is ordinary too and it is in the same copy of S too as its column is between
the column of a and b and it can't be extra because of the position of x. Now take a, b, c
and x′, which is the leading 1 in the column of x exactly above it (so it is in the same copy
of S as the other 1 entries). As x′ is the last ordinary leading 1 in its horizontal block,
its row can't be above the row of c. Therefore these four 1 entries represent a forbidden
pattern in S, a contradiction.
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Another result of Klazar [11] gives:

Theorem 2.14. For the extremal function of any general DS-sequence u the upper bound
ex(n, u) ≤ n · 2O(α(n)|u|−4) holds.

This result implies the following theorem for matrices (mentioned in [12]). Note that
the function 2α(n)O(1) is extremely slowly growing.

Theorem 2.15. For any pattern P with exactly one 1 entry in each column ex(n, P ) ≤
n2α(n)O(1) holds.

Proof. By Theorem 2.2 it is enough to prove the theorem for patterns with no empty
rows. We de�ne the string u corresponding to the pattern P . Suppose P has k rows and
l columns. Number the rows of P from top to bottom with the numbers 1, . . . , k. Now
u12...k = a2

1a
2
2 . . . a2

l , where ai is the row index of the single 1 entry in the ith column of P .
Now repeat this step with all possible numbering of the rows with the numbers 1, . . . , k.
To get u concatenate the obtained k! strings. Therefore, |u| = 2l · k!, which is a constant
depending on P .

Take an n by n matrix M with maximum weight avoiding P . Number its rows from
top to bottom with the numbers 1, . . . , n. For every i change every 1 entry in the ith row
to i. The 0 entries are regarded as blanks. Let v denote the string that we obtain if we read
the columns of M from left to right and from top to bottom in each column. In this way
|v| = w(M) and ‖v‖ ≤ n. Regard the temporary matrix M ′ and the string v′ corresponding
to it (in the beginning they are equal to M and v). If there is any letter with close (length
of ‖u‖ ≤ k) repetition, then we delete all the letters from v′ between the pair of repeating
letters and the earlier letter from the pair. Moreover, we delete from M ′ the n positions
corresponding to the ones starting at the �rst repeating letter (i.e. a column). In this way
we obtain a new M ′ with one less column. We repeat this step until there are no close
repetitions. As M had n columns at the beginning, there were at most n steps and in each
step we deleted at most k letters from v′. We obtained the string v′ which has no close
repetitions and we deleted at most kn letters.

Now we prove that the string v corresponding to the 1 entries in M avoids u. This
implies that v′ avoids u as well and so ex(n, P ) = w(M) ≤ kn+n2O(α(n)|u|−4) =≤ n2α(n)O(1)

by Theorem 2.14, as needed. Indeed, assume that v does not avoid u and consider the
entries in M corresponding to the letters representing u in v. Every second is in a new
column as two entries with the same index can't be in the same column as they are in
the same row. Regard the words obtained from P with the permutations of the numbers
1, . . . , k. Clearly, the even 1 entries corresponding to the part of u that holds one of these
represent the pattern P .

2.4 Patterns with higher extremal function
In this section we present patterns with extremal function O(n log n). These bounds

were proved mainly by Füredi. Later Tardos in [15] found the constant factor also. The
proof we present appeared in [5] parallel with the proof of Bienstock and Gy®ri in [2].
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Theorem 2.16.
ex(n,Q1) = Θ(n log n)

ex(n,Q2) = Θ(n log n)

Proof. We start with the construction proving the lower bounds. Let An = (aij) be the n
by n matrix, where aij = 1 if and only if j − i = 2k for some integer k. The weight of An

is w(An) =
∑blog2 nc

k=0 (n− 2k) ≥ n log2 n− n. Note that the 1 entries in An are arranged in
diagonals (one for every k).

We prove that for i < i′ ≤ i′′ and j > j′ ≥ j′′ we don't have aij = aij′ = ai′j = ai′′j′′ = 1
in Dn. This guarantees that the matrix avoids among others the required patterns (for
example R is also avoided). Assume that aij = aij′ = ai′j = 1 and prove that ai′′j′′ = 1
can't hold in this case. We have j − i = 2k for some integer k. The values j − i′ and
j′ − i are both less then j − i and also powers of 2, so they are at most 2k−1. Finally,
j′′ − i′′ ≤ j′ − i′ = (j′ − i) + (j − i′) − (j − i) ≤ 2k−1 + 2k−1 − 2k = 0 and so ai′′j′′ = 0 as
claimed.

Now we prove the upper bound for Q1. By Theorem 2.3 it gives the desired upper
bound for Q2 too. Let A = (aij) be a maximum weight n by n matrix avoiding the pattern
Q1. It is enough to bound the weight of A.

For any 1 entry we call the 1 entry in the same row left to it with the biggest column
index its left neighbour. In every row i let f(i) be the index of the column containing the
leftmost 1 entry in that row. For each 1 entry aij except the �rst two in each row we can
de�ne two positive integers. If the column index of the left neighbour of aij is j′ (this exists
as the 1 entry is not the �rst two in its row), then the two integer we need is p = j′− f(i)
and q = j − j′. We refer to the 1 entry aij as far if and only if p ≤ q, otherwise we refer to
it as close.

We claim that in each row there are at most log2 n far entries. Indeed, take the far 1
entries in row i with column indices f(i) < ji < . . . < jk. For any 1 < l ≤ k let be j′l
the column index of the left neighbour in A of the 1 entry with column index jl. Then by
de�nition jl−1−f(i) ≤ j′l−f(i) ≤ jl−j′l ≤ jl−jl−1. This implies 2(jl−f(i)) ≤ (jl+1−f(i)),
which guarantees that k ≤ log n as jk − f(i) ≤ n.

Further we claim that in each column there are at most log2 n close entries. Indeed,
take the close 1 entries in column j with row indices i1 < i2 < . . . < ik. As before let
j′l be the column index of the left neighbour in A of the 1 entry with in position (il, j).
We get that j′l ≤ f(il+1) for any 1 ≤ l < k as otherwise the 1 entry in column j with
row index il and its left neighbour together with the 1 entries in position (il+1, j) and
(il+1, f(il+1)) would represent Q1. This implies that j − f(l + 1) ≤ j − j′l ≤ j′l − f(l) and
so n ≥ j − f(l) = (j − j′l) + (j′l − f(l) ≥ 2(j − f(l + 1)), which guarantees that k ≤ log2 n.

Counting the �rst two 1 entries in each row and the close and far 1 entries separately
we have at most 2n + n log2 n + n log2 n.

The lower bound for the following theorem was proved by Tardos in [15], though in [2]
the weaker lower bound Θ(n log n/ log log n) was proved and conjectured to be tight.

Theorem 2.17.
ex(n,Q3) = Θ(n log n)
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Proof. The upper bound follows from the upper bound for Q1 using Theorem 2.3. For the
lower bound we present a construction.

Let i and j be strings of equal length over an ordered set of letters. Let < denote the
lexicographic ordering, i. e., i < j if and only if in the �rst position where the two strings
di�er, i has a smaller letter. Let <∗ denote the anti-lexicographic ordering, i. e., i <∗ j if
and only if in the last position where the two strings di�er, i has a smaller letter. We use
the relations >,≥,≤, >∗,≥∗,≤∗ with their obvious meaning.

We construct the matrix Cn of weight Θ(n log n) avoiding Q3 only for values n = 2m

(m ≥ 1) and for other values simply take the construction for the largest power of 2 below
n and add zero columns and rows.

We index the the rows and the columns of the matrix Cn = (cij) with the 0-1 strings of
length m. Order the rows lexicographically and the columns reverse anti-lexicographically
according to their index. Let cij = 1 if and only if the strings i and j di�er in a single
position u and here iu = 0 and ju = 1.

Now we need to prove that the matrix Cn avoids Q3. Equally, we need prove that
cannot occur for any indices i < i′ < i′′ and j >∗ j′ >∗ j′′ that cij = cij′′ = ci′′j = ci′j′ = 1.
We prove a stronger claim, namely that this cannot occur for indices i < i′ ≤ i′′ and
j >∗ j′ ≥∗ j′′ either. This means that the construction avoids also (among others) the
pattern Q′

1.
Assume on the contrary that for the row indices i < i′ ≤ i′′ and j >∗ j′ ≥∗ j′′ we have

cij = cij′′ = ci′′j = ci′j′ = 1. Let i ≤ u ≤ m be the position where the sequences i and
j di�er. We have iu = 0, ju = 1 and iz = jz for z 6= u. For the position v where i′′ and
j di�er i < i′′ implies u < v. Thus, iz = i′′z for z < u and from i < i′ ≤ i′′ we also have
iz = i′z = i′′z for z < u. Similarly, if the position where i and j′′ di�er is w then j >∗ j′′

implies w < u. Thus, jz = j′′z for z > u and from j >∗ j′ ≥∗ j′′ we have jz = j′z = j′′z
for z > u. Further, ai′j′ = 1 implies i′z ≤ j′z for all z. The inequality i′ > i guarantees the
existence of a position z with i′z > iz. Since we have i′z = iz for z < u and i′z ≤ j′z = jz = iz
for z > u we must have i′u > iu. From j′ <∗ j we get similarly that there must exist a
position z with j′z < jz. Finally, from j′z = jz for z > u and from j′z ≥ i′z = iz = jz for
z < u we get that j′u < ju. Putting these together we get that iu < i′u ≤ j′u < ju which is a
contradiction as all these values are 0 or 1.

We determined the order of magnitude of the extremal function for all patterns with
weight at most 4 except for the pattern P2 which will be determined in the next sec-
tion. There were four types of extremal functions, namely O(n), O(nα(n)), O(n log n) and
O(n

3
2 ).
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3 New types of reductions
3.1 Two matrices in diagonal arrangement

In this section we generate from two patterns one bigger pattern and give a bound on
its extremal function.

Theorem 3.1. Let A and B be two patterns. Assume that pattern A has got a 1 at its
lower right and B at its upper left entry. Let C be a pattern consisting of A at its upper
left part and B at its lower right part with exactly one common entry, which is the 1
entry mentioned. The other entries are blank. Then max(ex(n,A), ex(n,B)) ≤ ex(n,C) ≤
ex(n,A) + ex(n,B).

Proof. The �rst inequality is trivial, for the second it is enough to prove that if a matrix
M has weight more than ex(n,A) + ex(n,B), then it cannot avoid C. Let M be a matrix
with weight w(M) ≥ ex(n,A) + ex(n,B) + 1 , then w(M) ≥ ex(n,A) + 1 also and so it
contains the pattern A. Take one representation and delete the 1 entry corresponding to
the lower right entry of A. We can repeat this step ex(n,B) + 1 times, until the weight
of the matrix goes below ex(n,A) + 1. Now consider only the matrix M ′ which contains
only the deleted 1 entries. Clearly, w(M ′) ≥ ex(n,B) + 1 and there is a representation of
B in M ′ (and so in M too). By construction the upper left entry of this representation is
a lower right entry of a representation of A in M . Putting these representations together
we get a representation of the pattern C in M .

A

B

1

A

B

1 1

Theorem 3.1 Corollary 3.2

Table 1.
Illustrations for Theorem 3.1 and Corollary 3.2

Corollary 3.2. Assume that C is a pattern, which can be decomposed diagonally into two
patterns A and B with exactly one common corner-entry as in Theorem 3.1. Let the pattern
C ′ be the one consisting of A at its upper left part and B at its lower right part with no
common entry and with their corner-entries being next to each other in a common row. In
this case ex(n,C) ≤ ex(n,C ′) ≤ 2ex(n,C) + n.

Proof. The �rst inequality is trivial. For the second it is obvious, that ex(n,A) ≤ ex(n,C)
and ex(n,B) ≤ ex(n,C). Let A′ be the pattern obtained from A by adding an extra
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column at its right side with a single 1 entry in its last row. By Theorem 2.3 we have that
ex(n,A′) ≤ ex(n,A) + n and putting together A′ and B we obtain C ′ and Theorem 3.1
implies that ex(n,C ′) ≤ ex(n,A′)+ex(n,B) ≤ ex(n, A)+n+ex(n,B) ≤ 2ex(n,C)+n.

We can observe that this corollary and Theorem 2.3 and 2.4 mean that doubling a 1
entry in a certain position does not a�ect the order of magnitude of the extremal function.

Some results in [6] can be composed to have a similar look as Theorem 3.1. We start with
a lemma and then we present this theorem. A rectangle R in the matrix M is the intersection
of v(R) consecutive rows and h(R) consecutive columns. Clearly, M is a rectangle itself.

Lemma 3.3. For any M 0-1 matrix there is a system of rectangles {Ri} such that

(1) all 1 entry is covered by an Ri,

(2)
∑

i h(Ri) ≤ 4h(M) and
∑

i v(Ri) ≤ 4v(M),

(3) each Ri has a 1 entry in its upper left or bottom right corner.

Proof. De�ne a partial order between the 1 entries in M = (mij). For two positions with
1 entries we say (i, j) ≤ (k, l), if i ≤ k and j ≤ l. If i < k or j < l then (i, j) < (k, l). For
two incomparable positions with 1 entries we say that (i, j) / (k, l) if j < l (and so i > k).
Let m1 / m2 / . . . / mk be the set of minimal positions of 1 entries for the partial order <.
Let M1 / M2 / . . . / Ml be the set of maximal positions of 1 entries for the partial order
<. We can assume that m1 is in the �rst column, mk is in the �rst row, M1 is in the last
row and Ml is in the last column. Let mi+ 1

2
(for i = 1, . . . , k − 1) be the position in the

intersection of the row of mi and the column of mi+1. Let m 1
2
be the lower left corner of

M and mk+ 1
2
be the upper right corner of M . Similarly let Mj+ 1

2
(for j = 1, . . . , l − 1) be

the position in the intersection of the column of Mj and the row of Mj+1. Let M 1
2

= m 1
2

and Ml+ 1
2

= mk+ 1
2
. Let hi = [mi,mi+ 1

2
] be the horizontal interval of positions in the row

of mi with endpoints mi and mi+ 1
2
. Let vi be the vertical interval [mi− 1

2
,mi]. Similarly,

Vi = [Mi,Mi+ 1
2
] and Hi = [Mi− 1

2
,Mi]. The stair shaped curve de�ned by v1, h1, . . . , vk, hk

is denote by s and the curve de�ned by V1, H1, . . . , Vk, Hk is denoted by S. By de�nition
there are no 1 entries above s and below S.

Now we can begin to construct the covering system of rectangles. We will de�ne two
types of rectangles, Qi's with a 1 entry in their bottom right position and Pi's with a 1
entry in their upper left position.

First, let Q1 be a rectangle with lower left corner at m 1
2
, lower right corner at M1.

Its upper right corner is the lowest position in s above M1. Let hi be the �rst horizontal
interval in s not covered by Q1. Let P1 be a rectangle with its upper left corner at mi. Its
lower left corner is the highest position in the column of mi which is in S too. Its upper
right corner is the leftmost position in the row of mi which is in S too.

Assume that we already de�ned Q1, P1, . . . , Qi, Pi. Let Vj be the �rst vertical interval
in S not covered by Q1 ∪ . . . ∪ Pi. Let Mj be the bottom right corner of Qi+1. Its bottom
left corner is in the same row the rightmost position in s. Its upper right corner is the
lowest position in s in the same column as its lower right corner.

Let hj be the �rst horizontal interval in s which is not covered by Q1 ∪ . . .∪Pi ∪Qi+1.
Let mj be the upper left corner of Pi+1. Its bottom left corner is in the same column the
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highest position in S and its upper right corner is the leftmost position in S in the same
row as its upper left corner.

If there is no more suitable hi (or Vj) then we end the construction.
Now it is enough to prove that these rectangles satisfy the conditions. (3) follows

trivially. Call ei be the rightmost column of a Qi and fj the highest row of a Pj. By
de�nition, ei's are moving to the right and fj's are moving up. For (1) it is easy to see that
the rectangles cover all positions below s and above S and all 1 entries are in such positions.
Indeed, the lower right corner of Qi+1 is on fi or below fi and so Q1∪ . . .∪Pi∪Qi+1 covers
everything left from ei+1 between s and S. Similarly Q1∪ . . .∪Qi+1∪Pi+1 covers everything
below fi+1 and between s and S.

Finally, for (2) by de�nition the highest row of Qi is not above fi. The lower right
corner of Qi+1 is not above fi too, but it is the last maximal 1 entry with that property,
so Qi+2's lower right corner is above fi. This implies that the rows of Qi and Qi+2 are
disjoint. Similarly, this is true for the columns and for the Pi's as well. The required
bounds follow.

C

D

1

A B

D D

1

1

Table 2.
Illustrations for Theorem 3.4

Theorem 3.4. Let C be a pattern containing exactly one 1 entry in its leftmost column, in
its rightmost column, in its �rst row and in its last row as well. These 1 entries are in the
upper left and in the lower right corner positions of C. Let A be the pattern obtained from
C by deleting its last row and column. Respectively, B is obtained from C by deleting its
�rst row and column. In this case max(ex(n,A), ex(n, B)) ≤ ex(n,C) ≤ 16(n+ ex(n,A)+
ex(n,B)).

Proof. The �rst inequality is trivial. For the second let M be a matrix with maximum
weight avoiding the pattern C. Construct the set of covering rectangles guaranteed by
Lemma 3.3. Let {Qi} be the set of rectangles with 1 entry in the lower right corner.
Respectively, {Pj} is the set of rectangles with 1 entry in the upper left corner. For any Qi

let Q′
i be the matrix obtained from it by deleting its last row and column. If Q′

i contains
the pattern A, then together with the corner entry of Qi we get a representing matrix of
C in M , which is a contradiction. Let be Q′′

i the smallest square matrix obtained from
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Q′
i by adding some empty rows or columns before the existing ones. Clearly, Q′′

i avoids A
as well. Now we can deduce that w(Qi) − 2qi ≤ w(Qi) − (2q′i + 1) ≤ w(Q′

i) = w(Q′′
i ) ≤

ex(q′i, A) ≤ ex(qi, A), where q′i = max(h(Q′
i), v(Q′

i)) = max(h(Qi), v(Qi)) − 1 and qi =
h(Qi) + v(Qi) ≥ q′i + 1. A similar statement holds for any Pj: w(Pj) − 2pj ≤ ex(pj, B),
where pj = h(Pj) + v(Pj). Putting these together for the number of 1 entries in M holds:
w(M) ≤ ∑k

i=1 w(Qi) +
∑l

j=1 w(Pj) ≤
∑k

i=1(ex(qi, A) + 2qi) +
∑l

j=1(ex(pj, B) + 2pj) ≤
ex(

∑k
i=1 qi, A) + w(

∑l
j=1 pj, B). The last inequality follows from the repeated application

of Theorem 2.5. Therefore by Lemma 3.3, ex(n,C) = w(M) ≤ 16n + ex(
∑k

i=1 qi, A) +

w(
∑l

j=1 pj, B) ≤ ex(4n,A) + ex(4n,B) ≤ 16(n + ex(n,A) + ex(n,B)). The last inequality
is trivial as by dividing a 4n by 4n matrix into 16 n by n matrices we get the bound.

Using Theorems 3.1 and 3.4 in case both of the matrices A and B are linear, we get
that C is linear as well.

3.2 Adding two 1's between and below other two
In this section we prove a new reduction using a lemma about DS-sequences, which

appeared in [8]. In the original paper (using a rather complicated technical lemma) it is
applied to prove a theorem, which can also be applied to 0-1 matrices. First we present
this theorem and its consequence on 0-1 matrices. Later we present and prove the lemma's
equivalent for 0-1 matrices, which gives upper bounds for a wider range of patterns. As a
corollary, it gives also a simpler proof for the theorem mentioned above.

For de�nitions about DS-sequences check section 2.3.

Theorem 3.5. Suppose a and b are two symbols and u = u1a
2u2a is a sequence such that

b /∈ S(u). Then ex(n, u1abiau2abi) = Θ(ex(n, u)) for any i ≥ 1.

Building up a string with this operation from u = a6
1, which is trivially linear, we get

quite simply the following consequence:

Corollary 3.6. The string u = a2
1a

2
2 . . . a2

k−1a
4
ka

2
k−1 . . . a2

2a
4
1a

2
2 . . . a2

k−1a
2
k, where the symbols

a1, a2, . . . , an are mutually distinct, has linear extremal function for all k ≥ 1.

In the proof of the following theorem we will need the following lemma, known as the
Erd®s-Szekeres Lemma (appeared in [4]):

Lemma 3.7. Any sequence of numbers of length (k − 1)2 + 1 contains a monotone subse-
quence of length k.

Theorem 3.8. Let Pk be a k by 2k pattern with exactly one 1 entry in every column such
that for 1 ≤ i ≤ k the 1 entry in the ith and (2k + 1− i)th columns are in the ith row. For
every k ≥ 1 this pattern has extremal function ex(n, P ) = O(n).

Proof. Take an n by n matrix M with maximum weight avoiding P . Number its rows
from top to bottom with the numbers 1, . . . , n. For every i change every 1 entry in the ith
row to i. The 0 entries are regarded as blanks. Let u denote the string that we obtain if
we read the columns of M from left to right and from top to bottom in each column. In
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this way |u| = w(M) and ‖u‖ ≤ n. Regard the temporary matrix M ′ and the string u′

corresponding to it (in the beginning they are equal to M and u). If there is any letter
with close (length of l, where l is a constant de�ned later) repetition, then we delete all
the letters from u′ between the pair of repeating letters and the earlier letter from the
pair. Moreover, we delete from M ′ the n positions corresponding to the ones starting at
the �rst repeating letter (i.e. a column). In this way we obtain a new M ′ with one less
column. We repeat this step until there are no close repetitions. As M ′ had n columns at
the beginning, there were at most n steps and in each step we deleted at most l letters
from u′. We obtained the string u′ which has no close repetitions and we deleted at most
ln letters.

If we can prove that the obtained string u avoids the string v = a2
1a

2
2 . . . a2

l−1a
4
l a

2
l−1 . . . a2

2a
4
1

a2
2 . . . a2

l−1a
2
l for a constant l, then u′ avoids also and so the theorem follows from Corollary

3.6. A suitable l is (k − 1)2 + 1. Indeed, assume u contains v and let s be a subsequence
of u equivalent to v. Use Lemma 3.7 on the sequence de�ned by the �rst l di�erent let-
ter of s. Assume that we got an increasing sequence of length k. This implies that the
subsequence s contains a shorter subsequence s′ = i21i

2
2 . . . i2k−1i

4
ki

2
k−1 . . . i22i

4
1i

2
2 . . . i2k−1i

2
k,

where the indices i1, i2, . . . , ik are in increasing order. Take in s′ the subsequence s′′ =
i21i

2
2 . . . i2k−1i

4
ki

2
k−1 . . . i22i

2
1. Consider now the 1 entries in M corresponding to these letters.

Every second is in new column because two symbols with the same index can't be in the
same column as they are in the same row. Moreover the order of the indexes guarantees that
taking every other symbol we obtain a representation of P in the matrix M , which is a con-
tradiction. In the second case of the lemma we obtain a decreasing sequence of length k, and
so s contains an s′ as above but now the indices i1, i2, . . . , ik are in decreasing order. Now
consider the 1 entries in M corresponding to the subsequence s′ = i2ki

2
k−1 . . . i22i

4
1i

2
2 . . . i2k−1i

2
k

and the same argument holds.

Following again the notations of [8], suppose u = a1a2 . . . am is a sequence. An interval
I = 〈aj, aj+k〉 in u is any contiguous subsequence ajaj+1 . . . aj+k, k ≥ 1 of length at least 2.
In the case aj and aj+k are both a-occurrences we call I an a-interval. An ordered sequence
(u,<) is a sequence enriched by a linear order on the alphabet (S(u), <). If u is ordered
and ai is an a-occurrence in u then we say ai is covered (in u), if there is an interval I in
u, such that

1. ai ∈ I

2. there are at most 16 a-occurrences in I

3. there are 2 occurrences of a symbol x ∈ S(u), x < a in I.

The following lemma is a simpli�ed version of a Lemma in [8], where the de�nition of
being covered consisted two parameters, and so the lemma was also more general.

Lemma 3.9. Suppose u is an ordered sequence without immediate repetitions. Either |u| ≤
1440 ‖u‖ or there exists at least 1

10
|u| occurrences in u, which are covered.

Proof. We can suppose that S(u) = {1, 2, . . . , n} and that the order on them is the standard
order of integers. We will de�ne by induction sets U0, U1, . . . , Un of disjoint intervals in u.
For each j Uj will contain some k-intervals for k = 1, 2, . . . , j. The set U0 is empty. Suppose
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that Uj−1 is de�ned. Split the j-occurrences in u to 16-tuples T1, T2, . . . , Tm and to T , so
that T1 consists of the 16 leftmost j-occurrences, T2 the next 16 j-occurrences etc. and T
contains the possibly remaining maximum 15 rightmost j-occurrences. De�ne

Sj={ i | at least one j-occurrences of Ti is not covered }.
Group all elements of Ti for all i ∈ Sj into 8 pairs (x, x′) of consecutive elements generating
j-intervals 〈x, x′〉. Put all these intervals into Uj and the intervals of Uj−1 not intersecting
them. By de�nition, some j-occurrences of Sj are not covered and so for any i ∈ Sj

the 8 intervals corresponding to Ti intersect at most 2 intervals of Uj−1. Indeed, more
intersecting intervals would give one pair of symbols in the interval de�ned by the leftmost
and rightmost element of Ti, while in this interval there are just 16 j-occurrences, so every
element of Ti would be covered, contradicting the de�nition. We got that

|Uj| ≥ 8 |Sj|+ |Uj−1| − 2 |Sj| = 6 |Sj|+ |Uj−1|
and so

|Un| ≥ 6
∑n

j=1 |Sj|.
There are no immediate repetitions, so the disjoint k-intervals in Un have length at least
3, and so |u| ≥ 3 |Un| ≥ 18

∑n
j=1 |Sj|, that is

|u|
18

≥
n∑

j=1

|Sj| .

Assume that |u| ≥ 1440n, that is |u|
1440

≥ n. Counting the occurrences in u, which
are not covered, we have at most 16 times the number of Ti with i ∈ Sj and some of the
occurrences in the residual T s for every j. So the number of occurrences, which are covered,
is at least

|u| − 16
∑n

j=1 |Sj| − 15n ≥ |u| − 16
18
|u| − 1

90
|u| = 1

10
|u|.

Now we can turn to the main result of this section.

Theorem 3.10. Let A be a pattern which has two 1 entries in its �rst row in column i
and i + 1 for a given i. Let A′ be the pattern obtained from A by adding two new columns
between the ith and the (i+1)th column and a new row before the �rst row with exactly two
1 entries in the intersection of the new row and columns. Then ex(n,A′) = O(ex(n,A)).

Proof. Suppose M is a maximum weight n by n matrix avoiding A′. As in 3.8 we generate
a sequence with the letters 1, 2, . . . , n from the 1 entries of M . Number the rows of M
from top to bottom with the numbers 1, . . . , n. For every i change every 1 entry in the ith
row to i. The 0 entries are considered blanks. Let u′ denote the string that we obtain if we
read the columns of P from left to right and from top to bottom in each column. Again,
|u′| = w(M) and ‖u′‖ ≤ n. If there is any immediate repetition, then we delete one letter
from it and we repeat this step until there are no repetitions. Again, we deleted at most n
letters. Call the string obtained u.
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Use Lemma 3.9 on this string. If the length of u is at most 1440n, then w(M) ≤
n + 1440n = O(n) = O(ex(n,A)). Otherwise there are at least 1

10
|u| letters in u, which

are covered. Consider the matrix M ′ with the 1 entries of M corresponding to the covered
letters. We claim that M ′ avoids the pattern A′′, which is obtained from A by putting
33 new columns between the ith and the (i + 1)th column with exactly one 1 entry in
the �rst row. This would prove the theorem as by Theorem 2.4 ex(n, A′) = w(M) ≤
n + 10w(M ′) ≤ n + 10ex(n,A′′) ≤ n + 10 · 34ex(n,A) = O(ex(n,A)). Suppose M ′ does
not avoid A′′. Consider one representation of A′′ in M ′ and consider the middle entry of
the 33 new 1 entries in this copy of A′′. The corresponding letter in u is some positive
number a, and is covered, so there exist an interval I with maximum 16 a-occurrences
and with two b-occurrences for some b, where b < a by the de�nition of covering. This
interval must not contain the two letters on the left and the two letters on the right end
of the 35 letters being next to each other in A′′, because then the interval would contain
more than 16 a-occurrences. So between the 2nd and the 34th a-occurrence there are two
b-occurrences. The corresponding 1 entries of these b-s are not in common columns with the
1 entries corresponding to the 1st and the 35th a-occurrences, because there is one more
a-occurrence between them (the 2nd and the 34th). Moreover the 1 entries corresponding
to the b-s are in a row above the row corresponding to a. Now we can deduce that the
representation of A′′ without the middle 33 entries in row a and together with the two 1
entries in row b represent A′, which is a contradiction.

It is clear that this theorem can be similarly applied to the last row or to the �rst or last
column by rotating back and forth the matrix. From the 1 by 2 pattern with two 1 entries
(for which the extremal function is trivially linear) we can build up using this theorem on
Pk, proving Theorem 3.8. For example the pattern P2 has linear extremal function, which
was proved with a direct method too in [6]. Another example where we can make use of this
theorem is to prove that ex(n, L3) = O(n). It follows from the fact that L3 can be obtained
from L1 using this theorem on the �rst column and after that deleting the appropriate 1
entry. Using Theorem 2.3 on L3 we can �nd some more linear matrices with weight 5.
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4 On minimum non-linear matrices
4.1 Patterns avoided by the diagonal construction

First we de�ne the patterns Hk = (hij) for k ≥ 0. The pattern Hk for k ≥ 0 has m
rows and m columns for m = (3k + 4) and it is symmetrical to the line going from its top
right corner to the bottom left corner. All entries are blank except the following ones:

h41 = h12 = h13 = h(m−1)m = h(m−2)m = 1,

h(3l+4)(3l+1) = h(3l−1)(3l+3) = h(3l)(3l+2) = 1 (1 ≤ l ≤ k).

See the Appendix for H0 and H1.
First we prove that the weight 5 pattern H0 has extremal function Θ(n log n). It is

easy to see that by deleting any 1 entry from it we obtain a weight 4 pattern with linear
extremal function. We call these type of patterns minimal non-linear patterns. So far, this
is the only pattern with weight more than 4, known to be the member of this class of
patterns. We conjecture that the patterns Hk for k ≥ 1 are minimal non-linear patterns as
well.

Theorem 4.1. For the pattern H0 we have ex(n,H0) = Θ(n log n).

Proof. The upper bound follows from applying Theorem 3.10 for the last column of pattern
Q2 and after that deleting the 4th row.

For the lower bound we use the construction in the proof of Theorem 2.16. Let An =
(aij) be the n by n matrix, where aij = 1 if and only if j − i = 2k for some integer k. The
weight of An is w(An) =

∑blog2 nc
k=0 (n− 2k) ≥ n log2 n− n. Note that the 1 entries in A are

arranged in diagonals (one for every k).
We need that the matrix An avoids H0 for any n. We prove that for i1 < i2 < i3 < i4

and j1 < j2 < j3 < j4 we don't have ai4j1 = ai1j2 = ai1j3 = ai2j4 = ai3j4 = 1 in Dn. This
guarantees that the matrix avoids H0.

Assume on contrary that ai4j1 = ai1j2 = ai1j3 = ai2j4 = ai3j4 = 1. Therefore we have
j1 − i4 > 0 and j3 − i1 = 2k3 , j2 − i1 = 2k2 for some integers k3 > k2 (as j3 > j2). Thus
i3 − i2 < i4 − i1 < j2 − i1 + i4 − j1 < j2 − i1 = 2k2 ≤ (j3 − i1 − (j2 − i1)) = j3 − j2.
Symmetrical argument shows that j3 − j2 < i3 − i2, which is a contradiction.

The above de�ned An contains H2 and so for the general case we need a little modi�ed
version of the construction in Theorem 4.1. From now on let An = (aij) be the n by n
matrix, where aij = 1 if and only if j − i = 3k for some integer k. The weight of An is
w(An) =

∑blog3 nc
k=0 (n − 3k) ≥ n log3 n − n. Note that the 1 entries in A are arranged in

diagonals (one for every k).

Lemma 4.2. If for the row indices i1 ≤ i2 < i3 < i4 < i5 and column indices j1 < j2 <
j3 < j4 ≤ j5 in An we have ai1j3 = ai2j2 = ai3j5 = ai4j4 = ai5j1 = 1 and j3 − j2 > i2 − i1,
then j5 − j4 > i4 − i3.

Proof. Assume that ai1j3 = ai2j2 = ai3j5 = ai4j4 = ai5j1 = 1. Therefore by the de�nition
of An we have j3 − i1 = 3k1 and j2 − i2 = 3k2 for some positive integers k1 > k2 (as
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j3− i1 > j2− i2). Similarly j5− i3 = 3l1 and j4− i4 = 3l2 for some positive integers l1 > l2
(as j5− i3 > j4− i4). Finally, j1− i5 = 3k3 ≥ 1 for some positive integer k3 which is smaller
then k2 and l2 (as j2 − i2 > j1 − i5 and j4 − i4 > j1 − i5).

As (j5− j4)+ (i4− i3) = (j5− i3)− (j4− i4) = 3l1 − 3l2 ≥ 2 · 3l2 and j3− j2 < (j4− j1)+
(i5− i4) = (j4− i4)− (j1− i5) = 3l2 − 3k3 < 3l2 we have (j5− j4) + (i4− i3) > 2(j3− j2) >
(j3− j2) + (i2− i1). Similarly (j3− j2) + (i2− i1) = (j3− i1)− (j2− i2) = 3k1 − 3k2 ≥ 2 · 3k2

and i4 − i3 < (i5 − i2) + (j2 − j1) = (j2 − i2) − (j1 − i5) = 3k2 − 3k3 < 3k2 implies that
(j3 − j2) + (i2 − i1) > 2(i4 − i3). Putting these together we have (j5 − j4) + (i4 − i3) >
(j3 − j2) + (i2 − i1) > 2(i4 − i3) and so j5 − j4 > i4 − i3 as claimed.

Theorem 4.3. For any k ≥ 0 for the pattern Hk we have ex(Hk, n) = Ω(n log n).

Proof. It is enough to prove that An avoids Hk for k ≥ 0. Suppose on contrary that An

contains Hk. Take a submatrix of An representing Hk. Its row and column indices are
i1 < i2 < . . . < im and j1 < j2 < . . . < jm. Using Lemma 4.2 for the 1 entries in the �rst
4 rows we got that j3 − j2 > i1 − i1 = 0 implies j6 − j5 > i3 − i2. Now we repeat this
lemma for all of the diagonal pairs of ones in Hk. In each step we take the two 1 entries
in the positions de�ned by the last inequality we got and take three 1 entries de�ned in
the next step of Hk. We use the lemma for these �ve 1 entries. For example the second
step uses the lemma for the 1 entries in positions (i2, j6), (i3, j5), (i7, j4), (i5, j9), (i6, j8) and
implies that j9 − j8 > i6 − i5. In this way we got that j3l+3 − j3l+2 > i3l − i3l−1 for
1 ≤ l ≤ k. In the last step we use the lemma for the 1 entries in the last 5 columns.
Therefore j3k+3 − j3k+2 > i3k − i3k−1 implies that 0 = j3k+4 − j3k+4 > i3k+3 − i3k+2 > 0,
which is a contradiction.

As mentioned earlier, we conjecture that these patterns are minimal non-linear patterns.
The above theorems guarantee that these patterns are non-linear. Thus, to prove the
conjecture we need that by deleting any 1 entry from Hk for any k we get a linear pattern.
We call a pattern quasilinear if its extremal function is O(n2α(n)O(1)

). Clearly, Hk is not
quasilinear for any k by the above theorem. A pattern with no empty rows and columns
is minimal non-quasilinear if it is not quasilinear and by deleting any 1 entry from it we
obtain a quasilinear pattern. A weaker conjecture claims that the patterns Hk are minimal
non-quasilinear patterns. To prove this conjecture we need that by deleting any 1 entry
from Hk for any k we get a quasilinear pattern. We cannot prove this either, though we
are able to prove this for some of the 1 entries in Hk:

Lemma 4.4. There are at least k + 5 1 entries in Hk from which deleting any one gives
a quasilinear pattern.

Proof. The matrix obtained from Hk by deleting the �rst two column has at most 1 entry
in every row, so by Theorem 2.15 and Theorem 2.2 it is quasilinear. If we delete the 1 entry
in the �rst column, we obtain the matrix H0

k . By Theorem 2.3 and from the quasilinearity
of the above matrix its quasilinearity follows. Deleting the 1 entry in the second or in the
third column gives a quasilinear matrix by Theorem 2.15. Symmetrical argument gives the
quasilinearity of the matrices obtained by deleting one of the 1 entries in the last three
rows. Note that for k = 0 two of these six 1 entries coincide, giving the quasilinearity for
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every matrix obtained by deleting 1 entry. As earlier mentioned, in this case linearity holds
as well.

Now we continue the proof with the 1 entries in position ((3l + 4), (3l + 1)) for 1 ≤
l ≤ k − 1 (if k ≥ 2). Denote by H l

k the matrix obtained from Hk by deleting the entry
in position ((3l + 4), (3l + 1)). It can be decomposed into two smaller matrices A′ and B′

in diagonal arrangement with no 1 entries out of these matrices. Indeed, A′ is the matrix
which is in the intersection of the �rst 3l + 1 rows and 3l + 3 columns of H l

k and B′ is the
matrix in the intersection of the remaining rows and columns, i.e. the last 3(k− l)+3 rows
and 3(k − l) + 1 columns. Let us obtain A from A′ by adding one row after the last row
and one column after the last column of A′ with exactly one 1 entry in their intersection.
In each column of A there is at most one 1 entry and so by Theorem 2.15 for its extremal
function we have ex(n,A) = O(n2α(n)O(1)

). Similarly, B is obtained from B′ by adding one
row before the �rst row and one column before the �rst column of B′ with exactly one
1 entry in their intersection. Again, each row of B contains at most one 1 entry and so
ex(n,B) = O(n2α(n)O(1)

).
Applying Theorem 3.1 on the matrices A and B we get that for the pattern C de�ned

in the theorem we have ex(n,C) ≤ ex(n,A)+ ex(n,B) = O(n2α(n)O(1)
). Clearly, H l

k can be
obtained from C by deleting the row and the column containing the common 1 entry of A
and B. This implies that ex(n,H l

k) ≤ ex(n,C) = O(n2α(n)O(1)
), that is H l

k is quasilinear.
We showed for k + 5 1 entries that by deleting any of them we obtain a quasilinear

pattern.

Theorem 4.5. There exist in�nitely many H ′
k pairwise di�erent minimal non-quasilinear

patterns.

Proof. By deleting 1 entries (and empty rows and columns) we can obtain a minimal non-
quasilinear pattern H ′

k from Hk. By Lemma 4.4 this algorithm gives patterns for which
3k + 5 = w(Hk) ≥ w(H ′

k) ≥ k + 5. These bounds on the weight guarantee that there are
in�nite many di�erent matrices among H ′

k.

4.2 Conjectures
If we want to use the proof in Theorem 4.5 to obtain in�nite many minimal non-linear

patterns, then we need that the patterns A and B in Lemma 4.4 have linear extremal
function. Note that the shape of A and B is symmetrical, thus it is enough to prove this
for A. To make it more precise, let Gk be the matrix obtained from Hk by deleting the
column containing the 1 entry in the last row, the last column and the last three rows.
Clearly, any A which can appear in the above proof is contained in a Gk for some k. Thus,
if ex(n, Gk) = O(n) would be true for every k then the proof would give that the patterns
Hk reduce to in�nite many pairwise di�erent minimal non-linear patterns.

At the end of section 2.4 we mentioned that the patterns with weight at most 4 are
classi�ed. Though, there are some patterns with weight 5 whose extremal function is not
determined yet. At the end of section 3.2 we proved that L3 is linear. In the previous
section we proved that H0 has extremal function Θ(n log n). For the weight 5 pattern G1

the extremal function is not determined yet.
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Conjecture 4.6.

1. For the pattern G1 we have ex(n,G1) = O(n).

2. For the pattern Gk obtained from Hk by deleting the last three rows and the last
column we have ex(n,Gk) = O(n) (k ≥ 1).

As already mentioned in section 4.1, the patterns Hk are not only prime candidates
for containing in�nite many non-linear patterns, but the patterns Hk can be minimal non-
linear patterns themselves:

Conjecture 4.7.

1. There are in�nite many minimal non-linear patterns.

2. The patterns Hk are minimal non-linear patterns.

Note that Conjecture 4.6 would prove the �rst statement of this conjecture.

Notice that the patterns Hk can be obtained from a permutation pattern by doubling
the column containing the 1 entry in its �rst row. Permutation patterns have linear extremal
function by Theorem 2.8. It may be true that by doubling one of its columns the extremal
function remains linear. A weaker claim would be enough, namely that by doubling the
column containing the 1 entry in its �rst row the extremal function remains linear. Note
that these are not true for arbitrary patterns, as H0 can be obtained from a linear pattern
by doubling the column containing the 1 entry in its �rst row, yet its extremal function
is Θ(n log n). Besides, it is also necessary to put the new column next to the one which
was doubled. Indeed, S2 can be obtained from a permutation pattern by adding the copy
of the column containing the 1 entry in the �rst row after the existing columns, though
ex(S2, n) = Θ(nα(n)). For permutation patterns even the stronger claim, that we can
double all columns without increasing the order of magnitude, may be true.

Conjecture 4.8.

1. For any permutation pattern by doubling the column containing the 1 entry in its
�rst row we obtain a pattern with linear extremal function.

2. By doubling one column of a permutation pattern we obtain a pattern with linear
extremal function.

3. By doubling every column of a permutation pattern we obtain a pattern with linear
extremal function.
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5 Appendix
5.1 The patterns considered

In the table we use dots for the 1 entries and blank spaces for the 0 entries.

R =

( • •
• •

)
P2 =

( • •
• •

)

L1 =



• •
•
•


 L2 =




• •
•

•




L3 =




• •
•
•

•


 Q1 =

( • •
• •

)

Q2 =




• •
•

•


 Q3 =



• •
•

•




Q′
1 =

( • •
• •

)
H0 =




• •
•
•

•




S1 =

( • •
• •

)
S2 =




• •
•

•




H1 =




• •
•

•
•

•
•

•




G1 =




• •
•

•
•



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