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Abstract

In this paper we study the extremal problem of finding how many 1
entries an n by n 0-1 matrix can have if it does not contain certain for-
bidden patterns as submatrices. We call the number of 1 entries of a 0-1
matrix its weight. The extremal function of a pattern is the maximum
weight of an n by n 0-1 matrix that does not contain this pattern as a
submatrix. We call a pattern (a 0-1 matrix) linear if its extremal function
is O(n). Our main results are modest steps towards the elusive goal of
characterizing linear patterns. We find novel ways to generate new linear
patterns from known ones and use this to prove the linearity of some pat-
terns. We also find the first minimal non-linear pattern of weight above
4. We also propose an infinite sequence of patterns that we conjecture to
be minimal non-linear but have Ω(n log n) as their extremal function. We
prove a weaker statement only, namely that there are infinitely many min-
imal not quasi-linear patterns among the submatrices of these matrices.
For the definition of these terms see below.

1 Introduction

The extremal theory of 0-1 matrices with respect to forbidden submatrices was
initiated by the papers [3, 1] more than 15 years ago. It has since attracted a lot
of research. Applications to combinatorial geometry were present since the first
papers, later in [7, 10] this theory was applied to solve the noted Stanley-Wilf
conjecture of enumerative combinatorics. This extremal theory of matrices can
be considered as a Turán type extremal theory of bipartite graphs with a linear
order on the vertices. See more on this connection in [11] and see [2] on the
related notion of convex geometric graphs.

1.1 Definitions

We start with the basic definitions. In this paper we consider 0-1 matrices. We
consider 1 entries as representing “present” while 0 entries represent “missing”.
In keeping with this we call replacing a 1 entry by 0 in a matrix deleting that
entry. We say that the 0-1 matrix A represents the same size matrix B if B = A
or B is obtained from A by deleting several 1’s. We say that a 0-1 matrix A
contains another 0-1 matrix B if a submatrix of A represents B. Notice that
we do not allow the rows or columns to be permuted and therefore containment
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crucially depends on the order of the rows/columns. We say A avoids B if A
does not contain B.

The weight of a 0-1 matrix P is the number of its 1 entries, denoted by
w(P ). To avoid the trivial case of an all 0 matrix (contained in every matrix
of appropriate size) we define a pattern to be a 0-1 matrix of weight at least
1. Our main interest is to find the extremal function ex(n, P ) of the pattern P
for specific patterns, where ex(n, P ) is defined to be the maximal weight of an
n by n 0-1 matrix avoiding P .

1.2 Linearity

We call a pattern P linear if ex(n, P ) = O(n), otherwise P is non-linear. Char-
acterizing linear patterns is of special interest but very little is known about
them. Proving a conjecture of Füredi and Hajnal [4] Marcus and Tardos [10]
show that permutation matrices are linear. By a result of Klazar and Valtr [9]
on Davenport-Schinzel sequences certain bitonic patterns are also linear (see def-
inition in Section 2 before Theorem 2.6). Beyond this only a few small patterns
were shown to be linear and there were a few simple reduction rules in [4, 12]
that implied the linearity of certain patterns if suitable submatrices were linear.
In Section 2 we establish two new reductions and use them to prove linearity of
certain patterns.

We call a pattern P minimal non-linear if it is non-linear but all patterns
Q 6= P contained by P are linear. Clearly, a pattern is linear if and only if it
avoids all minimal non-linear patterns.

The order of magnitude of all patterns of weight at most four was established
in [4, 12], so all linear and minimal non-linear patterns are known of weight at
most four. However no minimal non-linear pattern has been known of larger
weight and in fact finding such was raised in [12] as an open problem. In
Section 3 we present a minimal non-linear pattern H0 of weight 5. We establish
that ex(n,H0) = Θ(n log n). In fact, we give an infinite sequence of patterns
Hi and we conjecture that each of them is minimal non-linear. We show that
they are non-linear, moreover ex(n,Hi) = Ω(n log n) but we could not prove
minimality or even that they contain infinitely many distinct minimal non-
linear patterns. Instead we introduce quasi-linearity, a relaxation of linearity,
see below, and prove a similar statement for that notion.

1.3 Quasi-linearity

We call a pattern light if it contains exactly one 1 entry in every column.
The close connection between the extremal function of light matrices and

the Davenport-Schinzel theory of sequences was first noted in a special case by
Füredi and Hajnal [4] and was developed later by Klazar. For us, the most
important consequence of the connection is the following result of Klazar [7, 8].

Theorem 1.1. (Klazar [7, 8]) For any light 0-1 matrix A there exists a constant
c such that

ex(n,A) ≤ n · 2(α(n))c

.
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Here α is the extremely slowly growing but unbounded inverse of Acker-
mann’s function. As [8] is not easily accessible we include the simple deduction
of this result from a fundamental result of [6] in Section 2.

The above result motivates that we call quasi-linear a function f if f(n) ≤
n ·2(α(n))c

for some c. We call a pattern P quasi-linear if ex(n, P ) is quasi-linear.
With this terminology Theorem 1.1 states that light patterns are quasi-linear.
We call P minimal not quasi-linear if P is not quasi-linear but every pattern
Q 6= P that P contains is quasi-linear.

Our bounds on ex(n,Hi) show that the patterns Hi are not quasi-linear. Still
short of proving that they are minimal not quasi-linear patterns in Section 3
we show that they contain infinitely many distinct minimal not quasi-linear
patterns.

The results in this paper appeared in the Master’s thesis of the author [5].

2 Reductions and connection to Davenport-Schinzel

theory

In the paper [4] the systematic study of the extremal functions ex(n, P ) was
largely based on reductions: rules that determined the order of the magnitude
of the extremal function ex(n, P ) of a pattern P from that of a simpler pattern
P ′. In Lemma 2.3 of [12] these reductions and some new ones are collected.
Here we state a a simple reduction from [12] and go on to state and prove two
novel reductions. We also give an example of how the linearity of a pattern can
be established using them.

Lemma 2.1. ([12]) Let A = (ai,j) be a k by l pattern and assume that for some
indices 1 ≤ i0 ≤ k and 1 ≤ j0 ≤ l we have ai0,j0 = ai0,j0+1 = 1 and let m ≥ 1
be an integer. Consider the k by l + m pattern A′ obtained from A by adding m
new columns between the columns j0 and j0 + 1 of A. The new columns have a
single 1 entry at row i0. We have

ex(n,A′) = Θ(ex(n,A)).

Proof. The result follows from the repeated application of the m = 1 special
case which is stated as Lemma 2.3/g of [12].

Our first new reduction is very simple.

Theorem 2.2. Assume the k1 by l1 pattern A = (ai,j) has a 1 entry in its lower
right corner (i.e., ak1,l1 = 1) and the k2 by l2 pattern B = (bi,j) has a 1 entry
in its upper left corner (i.e., b1,1 = 1). Let C be the pattern obtained by merging
A and B at their mentioned corners, i.e., let C = (ci,j) be the k1 + k2 − 1 by
l1 + l2 − 1 pattern defined by ci,j = 1 if and only if either i ≤ k1, j ≤ l1, and
ai,j = 1 or i ≥ k1, j ≥ l1, and bi−k1+1,j−l1+1 = 1. See Figure 1(a). We have

max(ex(n,A), ex(n,B)) ≤ ex(n,C) ≤ ex(n,A) + ex(n,B).
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(a) Construction of the ma-
trix C in Theorem 2.2

1 1

1 1

(b) Construction of the ma-
trix B from A (shaded) in
Theorem 2.3

Figure 1: The two new reductions

Proof. The first inequality is trivial as both A and B are contained in C. For
the second consider an n by n 0-1 matrix M avoiding C. We need to prove
w(M) ≤ ex(n,A) + ex(n,B).

We say that a 1 entry in M is of type A if it is the lower right corner of a
submatrix of M representing A. Consider the matrix M ′ obtained from M by
deleting all 1 entries of type A, this matrix avoids A and therefore w(M ′) ≤
ex(n,A). Similarly, we say that a 1 entry of M is of type B if it is the upper left
corner of a submatrix representing B and notice that the matrix M ′′ obtained
from M by deleting these entries avoids B and therefore w(M ′′) ≤ ex(n,B).
Finally notice that no 1 entry of M is both of type A and of type B as the
submatrices proving these statements together would prove that M contains C.
Therefore w(M) ≤ w(M ′) + w(M ′′) ≤ ex(n,A) + ex(n,B) as needed.

Our second reduction is as follows:

Theorem 2.3. Let A = (ai,j) be a k by l pattern with a1,m = a1,m+1 = 1. We
let B be the pattern obtained from A by adding a new first row containing two
1 entries between columns m and m + 1 of A. See Figure 1(b). More precisely,
B = (bi,j) is a k + 1 by l + 2 pattern with bi,j = 1 for i > 1 if and only if either
j ≤ m and ai−1,j = 1 or j ≥ m + 3 and ai−1,j−2 = 1 and b1,j = 1 if and only if
j = m + 1 or m + 2. We have

ex(n,B) = Θ(ex(n,A)).

The proof of this reduction is much more involved. It is based on the con-
nection between the extremal functions studied here and Davenport-Schinzel
theory. We start with a few definitions and results from this theory and give
a short overview of the connection to the extremal function of light patterns.
In the proof of this result we extend this connection to matrices that are not
necessarily light.

For k ≥ 1 we use the term k-sequence for a sequence of positive integers
not exceeding k. The length |s| of a sequence s is the number of its elements.
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We call two appearances of the same value sj = sk in the sequence s = (si) an
l-repetition if 1 ≤ |k − j| < l. We call a 2-repetition an immediate repetition.
A k-sequence c = (ci) represents an l-sequence d = (di) of the same length if
ci = f(di) for some injective function f and all i. We say that a sequence c
contains another sequence d if a subsequence of c represents d.

Davenport-Schinzel theory estimates the maximum length ex(k, c) of a k-
sequence without l-repetitions that does not contain the l-sequence c.

For an n by m 0-1 matrix A = (ai,j) we define the sequence of A to be the
n-sequence s(A) obtained as the concatenation of m blocks such that the jth
block consists of the integers i with ai,j = 1 in increasing order.

Clearly, |s(A)| = w(A) for any pattern A. Although for an n by m 0-1
matrix A the sequence s(A) may contain immediate repetitions it is clear that
we can get rid of all l-repetitions by deleting at most (m − 1)(l − 1) entries (at
most l − 1 from each block, none from the first block).

It is easy to see that if the 0-1 matrix A contains the pattern B, then
s(A) contains s(B). Unfortunately, the converse is not true in general. But
it is “almost” true for light patterns. In fact, two previously mentioned state-
ments are proved using this connection. They use the following two results on
Davenport-Schinzel sequences:

Theorem 2.4. (Klazar [6]) For any l-sequence u we have

ex(n, u) = n · 2O((α(n))|u|−4).

Theorem 2.5. (Klazar, Valtr [9]) If the l-sequence u consists of an increasing
sequence followed by a decreasing sequence followed by yet another increasing
sequence, then

ex(n, u) = O(n).

The sequence u = 11..122..2...ll..l(l−1)(l−1)...(l−1)...22...211...122...2...ll...l
is a typical example for which Theorem 2.5 can be applied. We recall the proof
of Theorem 1.1 using Theorem 2.4 (see [8]).

Proof of Theorem 1.1. Let k and l be positive integers and consider the l-
sequence s obtained by repeating the sequence 1, 2, . . . , l 2k times. It is easy
to see that if s(A) contains s for a 0-1 matrix A, then A contains all light l by
k patterns P . Therefore considering the maximal weight n by n 0-1 matrix A
that does not contain such a pattern P the n-sequence s(A) does not contain s.
After removing at most (n− 1)(l − 1) elements from s(A) it will be l-repetition
free and will still not contain s. By Theorem 2.4 we have

ex(n, P ) = w(A) = |s(A)| ≤ ex(n, s) + nl = n · 2O((α(n))2kl−4).

We call a light pattern P bitonic if s(P ) consists of an increasing segment
followed by a decreasing segment. As we mentioned in the Introduction bitonic
patterns are linear. This was known as a consequence of Theorem 2.5. Now we
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can say this is also a consequence of our Theorem 2.3 combined with Lemma 2.1
and the trivial observation that patterns contained in linear patterns are also
linear.

Our proof of Theorem 2.3 can be considered as an adaptation of the proof
of Theorem 2.5 to matrices. In particular we use the following definition and
lemma from [9] (where it appears in a more general form).

Let a = (ai) be an l-sequence of length m. We call the index i0 covered in a
if there are indices 1 ≤ j1 ≤ i0 ≤ j2 ≤ m such that the subsequence (interval)
(aj1 , aj1+1, . . . , aj2) of a contains at most 16 occurrences of the value ai0 and
contains at least two occurrences of some integer b < ai0 .

Lemma 2.6. ([9]) Let s be an l-sequence without immediate repetitions. If
|s| > 1440l then there exist at least |s|/10 indices 1 ≤ i ≤ |s| that are covered in
s.

Proof of Theorem 2.3. Clearly ex(n,A) ≤ ex(n,B) as B contains A. We need
to give an upper bound of ex(n,B).

Let M = (mi,j) be an n by n 0-1 matrix of maximal weight avoiding B.
Let s = (si) be obtained from the n-sequence s(M) by removing immediate
repetitions. We have

|s| > |s(M)| − n = w(M) − n = ex(n,B) − n.

If |s| ≤ 1440n, then ex(n,B) < 1441n = O(ex(n,A)) since ex(n,A) ≥ n.
Therefore we can and will assume that |s| > 1440n and Lemma 2.6 applies. Let
s′ be the subsequence of s consisting of the elements si for which i is covered in
s. By Lemma 2.6

|s′| ≥ |s|/10.

Each element of the sequence s(M) corresponds to a 1 entry in M . Using
this correspondence the subsequence s′ determines a subset of the 1 entries in
M . Let M ′ be the matrix obtained from M by deleting all other 1 entries,
keeping only the ones corresponding to the subsequence s′.

Let A′ be the pattern obtained from A by adding 33 new columns between
columns m and m + 1 of A such that these columns have a single 1 entry in the
first row. Recall that a1,m = a1,m+1 = 1. We call the 1 entries in the inserted
columns the new 1 entries. By Lemma 2.1 we have

ex(n,A′) = O(ex(n,A)).

The main observation is that M ′ does not contain A′. Assume for contra-
diction that a submatrix M1 of M ′ represents A′. If we delete the columns
of the 1 entries of M1 corresponding to the new 1 entries in A′ we obtain a
submatrix M2 of M representing A. Each 1 entry in A′ corresponds to a 1
entry in M1 and therefore in M . In particular, the middle one of the 33 new
1 entries corresponds to some 1 entry in some row c of M . This 1 entry of M
corresponds to a c in the sequence s(M) that made it to the subsequences s and
s′. Therefore the index corresponding to this element in s is covered in s. This
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means the existence of an interval of s containing this value c and at most 15
other occurrences of c and at least 2 appearances of a value b < c. These two
appearances of b in s correspond to two 1 entries in M again. If we now add the
row and the columns of these two 1 entries in M to the submatrix M2 we obtain
another submatrix M3. We claim that M3 represents B. Indeed, the row of the
two extra 1 entries is the first row of M3 as b < c and the columns of these 1
entries must be between the columns of the 1 entries corresponding to the first
and last new 1 entries in A′ (inclusive) as otherwise the interval of s containing
the two b entries would contain at least 17 of the c entries corresponding to the
new 1 entries in A′. We obtain a contradiction here since M was supposed to
avoid B. The contradiction proves that M ′ indeed avoids A′, therefore

|s′| = w(M ′) ≤ ex(n,A′).

Combining the four displayed inequalities in this proof one gets ex(n,B) =
O(ex(n,A) + n). This finishes the proof of Theorem 2.3 since ex(n,A) ≥ n.

We remark that by Lemma 2.1 we can add any constant number of new
columns between columns m and m + 1 of A and Theorem 2.3 still holds.

We use Theorem 2.3 or its generalization above to prove the linearity of
certain patterns. We can start from the 1 by k all-1 pattern that is trivially
linear. By repeated application of the above result we conclude that all bitonic
patterns are linear. As we mentioned this has been known. It leads to new
results however if we apply Theorem 2.3 to patterns that are not light (for the
patterns mentioned below see the Appendix):

Corollary 2.7. The patterns L2 and L3 are linear.

Proof. For the linearity of pattern L3 it is enough by Theorem 2.3 to prove the
linearity of L1. This is done in [12]. The pattern L2 is contained in L3 and so
its linearity follows.

3 On minimal non-linear and not quasi-linear

patterns

First we define the infinite sequence of patterns Hk for k ≥ 0 that we conjecture
to be minimal non-linear. For k ≥ 0 let Hk = (hi,j) be the m by m pattern
with m = 3k + 4 and with all entries zero except for the following ones:

h4,1 = h1,2 = h1,3 = hm−1,m = hm−2,m = 1,

h3l+4,3l+1 = h3l−1,3l+3 = h3l,3l+2 = 1 (1 ≤ l ≤ k).

Note that w(Hk) = 3k + 5 and Hk is symmetric around the diagonal from
h1,m to hm,1. See the Appendix for H0 and H1.

Unfortunately we can verify minimal non-linearity only for the first pattern
in this sequence. H0 is the only pattern of weight above 4 that is known to be
minimal non-linear.
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Theorem 3.1. The pattern H0 is minimal non-linear and we have ex(n,H0) =
Θ(n log n).

Proof. Recall that the order of magnitude of the extremal function of all patterns
with weight at most 4 was found in [4, 12]. In particular, for all patterns P 6= H0

contained in H0 we have ex(n, P ) = O(n). So the minimal non-linear property
follows from the claimed result on ex(n,H0).

For the lower bound we use the n by n 0-1 matrices An = (ai,j) defined
by ai,j = 1 if and only if j − i = 2k for some integer k. We remark that An is
symmetric around the diagonal from h1,n to hn,1 and in [12] it is shown that

An avoids Q1 and Q2 and its weight w(An) =
∑⌊log

2
n⌋

k=0 (n − 2k) ≥ n log2 n − n
is within O(n) to the maximal weight of any n by n 0-1 matrix avoiding either
of those patterns. Here we need to prove that the matrix An avoids H0. We
prove that for 1 ≤ i1 ≤ i2 < i3 ≤ i4 ≤ m and 1 ≤ j1 ≤ j2 < j3 ≤ j4 ≤ m we
don’t have ai4,j1 = ai1,j2 = ai1,j3 = ai2,j4 = ai3,j4 = 1. This guarantees that An

avoids a few patterns including Q1, Q2 and more importantly H0.
Assume for contradiction that we have 1 in all the five positions mentioned

above. Therefore we have j1 − i4 > 0 and j3 − i1 = 2k3 , j2 − i1 = 2k2 for some
integers k3 > k2 (as j3 > j2). Thus i3 − i2 ≤ i4 − i1 ≤ j2 − i1 + i4 − j1 <
j2 − i1 = 2k2 ≤ (j3 − i1) − (j2 − i1) = j3 − j2. Symmetrical argument shows
that j3 − j2 < i3 − i2. The contradiction proves our claim and with it the lower
bound ex(n,H0) ≥ n log n − n.

For the upper bound we apply Theorem 2.3 for the pattern Q2. We obtain
a 4 by 5 weight 6 pattern Q′

2 with ex(n,Q′
2) = Θ(ex(n,Q2)) = Θ(n log n)

(we used that ex(n,Q2)) = Θ(n log n) [12]). As Q′
2 contains H0 we also have

ex(n,H0) ≤ ex(n,Q′
2) = Θ(n log n).

We can generalize the above lower bound on ex(n,H0) as follows:

Theorem 3.2. For any k ≥ 0 for the pattern Hk we have ex(Hk, n) = Ω(n log n).

It is tempting to use the same matrices An for this more general lower bound.
For H1 this approach works as a similar reasoning gives that An avoids it for
any n. Unfortunately H2 is contained in An for n ≥ 74 and in fact for any
k ≥ 2 and large enough n the matrix An contains Hk. This is why we introduce
a modified construction.

Let Bn = (bi,j) be the n by n 0-1 matrix where bi,j = 1 if and only if

j − i = 3k for some integer k. The weight of Bn is w(Bn) =
∑⌊log

3
n⌋

k=0 (n− 3k) ≥
n log3 n−n. Note that the 1 entries in B (just as in A) are arranged in diagonals
(one for every k).

Lemma 3.3. Assume that for the row indices 1 ≤ i1 ≤ i2 < i3 < i4 < i5 ≤ n
and column indices 1 ≤ j1 < j2 < j3 < j4 ≤ j5 ≤ n in Bn we have bi1,j3 =
bi2,j2 = bi3,j5 = bi4,j4 = bi5,j1 = 1. We have j3 − j2 − i2 + i1 < j5 − j4 − i4 + i3.

Proof. By the assumption and the definition of Bn we have j3 − i1 = 3k1 and
j2 − i2 = 3k2 for some positive integers k1 > k2 (as j3 − i1 > j2 − i2). Similarly
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j5 − i3 = 3l1 and j4 − i4 = 3l2 for some positive integers l1 > l2 (as j5 − i3 >
j4 − i4). Finally, j1 − i5 = 3k3 ≥ 1 for some positive integer k3.

As (j5 − j4) + (i4 − i3) = (j5 − i3) − (j4 − i4) = 3l1 − 3l2 ≥ 2 · 3l2 and
j3−j2 < (j4−j1)+(i5−i4) = (j4−i4)−(j1−i5) < 3l2 we have (j5−j4)+(i4−i3) >
2(j3 − j2).

By symmetry we also have (j3 − j2) + (i2 − i1) > 2(i4 − i3). Summing these
two inequalities yields the claim.

Proof of Theorem 3.2. It is enough to prove that Bn avoids Hk for any n > 0
and k ≥ 0 as we have seen that w(B(n)) = Θ(n log n). Assume for contradiction
that Bn contains Hk. Take a submatrix of Bn representing Hk. Let its row
and column indices be i1 < i2 < . . . < im and j1 < j2 < . . . < jm where
m = 3k + 4. We set i−1 = i0 = i1 and jm+2 = jm+1 = jm. For 0 ≤ l ≤ k + 1
let xl = j3l+3 − j3l+2 − i3l + i3l−1. Let 0 ≤ l ≤ k and let us use Lemma 3.3
for the row indices i3l−1 ≤ i3l < i3l+2 < i3l+3 < i3l+4 and the column indices
j3l+1 < j3l+2 < j3l+3 < j3l+5 ≤ j3l+6. As the submatrix represents Hk the 1
entries needed for the lemma to apply are present in Bn and we obtain xl < xl+1.
This contradicts the fact that x0 = j3 − j2 > 0 and xk+1 = im−2 − im−1 < 0.
the contradiction proves that Bn does not contain Hk and finishes the proof of
the theorem.

As mentioned earlier, we conjecture that the patterns Hk are minimal non-
linear patterns. The above theorem guarantees that these patterns are non-
linear. As a consequence each contains a minimal non-linear pattern. Unfor-
tunately we cannot rule out that all Hk for k ≥ 1 contain the same minimal
non-linear pattern. The pattern G1 (see Appendix) is contained in each of them
and although it seems to be linear this remains an open problem. But surely
G1 is quasi-linear by Theorem 1.1, while Hk is not quasi-linear by Theorem 3.2.
A weaker conjecture claims that the patterns Hk are minimal not quasi-linear
patterns. To prove this conjecture we would need to prove that by deleting
any 1 entry from Hk for any k we get a quasi-linear pattern. We cannot prove
this either, but we can prove this for enough of the 1 entries in Hk to conclude
that the patterns Hk contain infinitely many distinct minimal not quasi-linear
patterns.

We call a 1 entry of a pattern important if deleting that entry yields a quasi-
linear pattern.

Lemma 3.4. For any k ≥ 0 there are at least k + 5 important 1 entries in Hk.

Proof. Deleting either of the two 1 entries in the last column of Hk yields a
light matrix. Therefore by Theorem 1.1 these two entries are important. By
symmetry the two 1 entries in the first row are also important.

We claim that the 1 entries in position ((3l + 4), (3l + 1)) for 0 ≤ l ≤ k are
also important. This gives up a total of k + 5 important entries as claimed.

To see the claim let us fix 0 ≤ l ≤ k and let P be the pattern obtained
from Hk by deleting the entry in position ((3l + 4), (3l + 1)). We need to prove
that P is quasi-linear. Let A′ be the submatrix formed by the first 3l + 1 rows
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and the first 3l + 3 columns of P . Let B′ be the submatrix of P formed by
the remaining rows and the remaining columns. Notice that P has no 1 entry
outside these two submatrices, so P can be obtained from A′ and B′ arranging
them diagonally.

Notice that diagonally arranging two linear patterns can yield a pattern with
extremal function θ(n log n) as (a rotated copy of) Q2 shows. But Theorem 2.2
shows that such an increase in the extremal function does not happen in certain
cases.

Let us obtain A by adding a new last row and a new last column to A′ and
inserting a single new 1 entry in their intersection (in other words A is obtained
by diagonally arranging A′ and the trivial 1 by 1 pattern of a single 1 entry).
Similarly, let us obtain B by adding a new first row and a new first column to B′

with a single new 1 entry in their intersection. We can now apply Theorem 2.2 to
A and B to obtain a pattern C. C is actually obtained by diagonally arranging
A′, the trivial pattern, and B′. As P is contained in C we have ex(n, P ) ≤
ex(n,C). By the theorem we have ex(n,C) ≤ ex(n,A) + ex(n,B). To prove
that P is quasi-linear it is therefore enough to prove that both A and B are
quasi-linear.

We prove the quasi-linearity of A. The quasi-linearity of B follows by sym-
metry. The quasi-linearity of A follows from Theorem 1.1. Column 3l + 1 of
A contains no 1 entry, all other columns contain a single 1 entry. Therefore A
is contained in a light matrix A1 (simply add a 1 entry in column 3l + 1) and
therefore ex(n,A) ≤ ex(n,A1) and the latter is quasi-linear by Theorem 1.1.
Alternatively one can argue that the pattern obtained by deleting the empty
column in A is quasi-linear and deleting empty columns does not alter the order
of the magnitude of any pattern of weight at least 2. This finishes the proof of
the lemma.

Theorem 3.5. There exist infinitely many pairwise distinct minimal not quasi-
linear patterns contained in the patterns Hk.

Proof. Theorem 3.2 states that Hk is not quasi-linear. Therefore Hk must
contain a minimal not quasi-linear pattern. We obtain such a pattern H ′

k by
deleting 1 entries and empty rows and columns from Hk in a way that does not
cause the remaining pattern to be quasi-linear. Clearly, important 1 entries of
Hk cannot be deleted, so by Lemma 3.4 we have w(H ′

k) ≥ k + 5. Thus the
weight of H ′

k is unbounded, so there must be infinitely many distinct patterns
among them.

We remark that a similar argument to the one in the proof of Lemma 3.4
shows that deleting the two 1 entries in Hk at positions (3l − 1, 3l + 2) and
(3l, 3l + 1) for some 1 ≤ l ≤ k also yields a quasi-linear pattern. This can be
used to prove w(H ′

k) ≥ 2k + 5. One can also show that all the patterns H ′
k are

pairwise distinct but showing that deleting just one of these two 1 entries also
yields to (quasi-)linear patterns seems to be harder.
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4 Conjectures

If we want to use the proof of Theorem 3.5 to obtain infinitely many minimal
non-linear patterns, then we need that the patterns A and B in Lemma 3.4 have
linear extremal function. Note that the shape of A and B is symmetrical, thus
it is enough to prove this for A. To make it more precise, let Gk be the matrix
obtained from Hk by deleting the column containing the 1 entry in the last row,
the last column and the last three rows (see the Appendix for G1). Clearly, any
A which can appear in the above proof is contained in a Gk for some k. Thus,
if ex(n,Gk) = O(n) would be true for every k then the proof would give that
the patterns Hk reduce to infinitely many pairwise different minimal non-linear
patterns.

In section 1.2 we mentioned that the patterns with weight at most 4 are clas-
sified. Though, there are some patterns with weight 5 whose extremal function
is not determined yet. At the end of section 2 we proved that L2 is linear. In
the previous section we proved that H0 has extremal function Θ(n log n). For
the weight 5 pattern G1 the extremal function is not determined yet.

Conjecture 4.1.

1. For the pattern G1 we have ex(n,G1) = O(n).

2. For the pattern Gk we have ex(n,Gk) = O(n) (k ≥ 1).

As already mentioned in the beginning of Section 3, the patterns Hk are not
only prime candidates for containing infinitely many non-linear patterns, but
the patterns Hk can be minimal non-linear patterns themselves:

Conjecture 4.2.

1. There are infinitely many minimal non-linear patterns.

2. The patterns Hk are minimal non-linear patterns.

Note that Conjecture 4.1 would prove the first statement of this conjecture.

Notice that the patterns Gk can be obtained from a permutation pattern by
doubling the column containing the 1 entry in its first row. As already mentioned
in Section 1.2 permutation patterns have linear extremal function [10]. It may be
true that by doubling one of its columns the extremal function remains linear. A
weaker claim would be enough, namely that by doubling the column containing
the 1 entry in its first row the extremal function remains linear. Note that these
are not true for arbitrary patterns, as H0 can be obtained from a linear pattern
by doubling the column containing the 1 entry in its first row (the linearity
of the pattern obtained from H0 by deleting its second column follows easily
from the linearity of L1 using the reductions presented in [12]), yet its extremal
function is Θ(n log n). Besides, it is also necessary to put the new column next
to the one which was doubled. Indeed, the matrix S2 can be obtained from a
permutation pattern by adding the copy of the column containing the 1 entry in
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the first row after the existing columns, though ex(S2, n) = Θ(nα(n)) [4]. For
permutation patterns even the stronger claim, that we can double all columns
without increasing the order of magnitude, may be true.

Conjecture 4.3.

1. For any permutation pattern by doubling the column containing the 1 entry
in its first row we obtain a pattern with linear extremal function.

2. By doubling one column of a permutation pattern we obtain a pattern with
linear extremal function.

3. By doubling every column of a permutation pattern we obtain a pattern
with linear extremal function.

Acknowledgment. The author is grateful to Gábor Tardos for his many re-
marks about the content and realization of this paper.
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5 Appendix

List of patterns

In the table we use dots for the 1 entries and blank spaces for the 0 entries.

Q1 =

(

• •
• •

)

Q2 =





• •
•

•





S2 =





• •
•

•



 L1 =





• •
•

•





L2 =









• •
•

•
•









L3 =









• •
• •

•
•









H0 =









• •
•
•

•









H1 =





















• •
•

•
•

•
•

•





















G1 =









• •
•

•
•
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[3] Z. Füredi, The maximum number of unit distances in a convex n-gon, J. Combinatorial

Theory Ser. A 55 (1990), 316–320.

[4] Z. Füredi, P. Hajnal, Davenport-Schinzel theory of matrices, Discrete Mathematics

103 (1992), 233–251.

[5] B. Keszegh, Forbidden submatrices in 0-1 matrices, Master’s Thesis, Eötvös Loránd
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