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Abstract

Consider arbitrary nonzero real numbers a1, . . . , ak. An (a1, . . . , ak)-decomposition
of a function f : R→ R is a sum f1 + · · ·+ fk = f where fi : R→ R is an ai-periodic
function. Such a decomposition is not unique because there are several solutions of
the equation h1 + · · ·+ hk = 0 (hi : R→ R is ai-periodic). We will give solutions of
this equation with a certain simple structure (trivial solutions) and study whether
there exist other solutions or not. If not, we say that the (a1, . . . , ak)-decomposition
is essentially unique. We characterize those periods for which essentially uniqueness
holds.
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1 Introduction

We study finite sums of periodic functions. We fix some periods a1, . . . , ak ∈ R \ {0}, and
consider sums f1 + · · · + fk = f where fi is an ai-periodic R → R function. Such a sum
is called an (a1, . . . , ak)-decomposition of f . We say that a decomposition has a certain
property (e.g. bounded/measurable/integer-valued) if each function in the decomposition
has that property.

One of the natural questions is that which functions have an (a1, . . . , ak)-decomposition.
In [1] a necessary and sufficient condition was given. Another natural question is: how
unique is such a decomposition? One of our goals in this paper is to answer that question.
If a function f : R→ R has two periodic decompositions

f = f1 + · · ·+ fk = f̃1 + · · ·+ f̃k (fi and f̃i are ai-periodic),
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1



then the difference of these decompositions (hi := fi − f̃i) is a solution of the following
homogeneous equation:

h1 + h2 + · · ·+ hk = 0 (hi is ai-periodic). (1)

On the other hand, the sum of an (a1, . . . , ak)-decomposition and a solution of the homo-
geneous equation is another (a1, . . . , ak)-decomposition. Consequently, the homogeneous
solutions tell us how unique the (a1, . . . , ak)-decomposition is. To determine the homoge-
neous solutions we do not really need to consider functions over R. Instead, it suffices to
solve the homogeneous equation (1) for functions over the additive subgroup generated by
the periods: A = a1Z + · · ·+ akZ. Translating these solutions by some real number t give
us the solutions on the coset A + t. Now by choosing a solution separately on each coset
of A we can get any solution over R. (Note that A is always isomoporhic to Zd for some
positive integer d.)

In the case of two periods (k = 2), the homogeneous equation is simply h1 = −h2. So
h1 and h2 are both a1- and a2-periodic and they are the negative of each other. In the
case of three or more periods one can get a solution by setting all the functions but two
to constant 0 and choosing the two remaining functions to be the negative of each other
and periodic with respect to both periods. If a solution can be written as the sum of such
solutions, we say that it is trivial. More precisely:

Definition 1.1. A solution of the homogeneous equation (1) is trivial if it can be written
in the form below:

hi =
k∑

j=1

hi,j (hi,i = 0 ; hi,j = −hj,i ; hi,j is ai- and aj-periodic). (2)

Again, the notion of trivial solutions can be defined for functions over some coset of A.
Clearly, a solution over R is trivial if and only if it is trivial on each coset.

Definition 1.2. If every solution of the homogeneous equation is trivial for some periods
a1, . . . , ak, then the (a1, . . . , ak)-decomposition is unique in the sense that any two decom-
positions differ in a trivial homogeneous solution. If that is the case, we say that the
decomposition is essentially unique.

Our main goal is to characterize those periods for which essentially uniqueness holds.
First we show that this is not always the case, in other words, there exist non-trivial
homogeneous solutions. Let us consider periods a, b, c where a and b are independent over
Q and c = a + b. It suffices to show a non-trivial solution over the additive subgroup A
spanned by these periods: aZ + bZ = {ax + by : x, y ∈ Z} ' Z × Z. The corresponding
periods in Z× Z are (1, 0); (0, 1) and (1, 1). A (1, 0)-periodic function f(x, y) over Z× Z
does not depend on x so we simply write f(y). Similarly, we put g(x) for a (0, 1)-periodic
function and h(x − y) for a (1, 1)-periodic function. Now the homogeneous equation is
f(y) + g(x) + h(x − y) = 0. The functions in a trivial solution are constant because a
function that is periodic w.r.t. at least two of these periods must be constant on the whole
Z × Z. Thus setting f(y) = y; g(x) = −x and h(x − y) = x − y gives us a non-trivial
solution of the homogeneous equation. Now suppose that the periods a, b, c are as in the
next definition.
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Definition 1.3. A triple a, b, c of real numbers is a planar triple if they are not linearly
independent over Q but any two of them are linearly independent.

Then c = r1a + r2b for some nonzero rational numbers r1, r2. It is not hard to modify
the above example to obtain a homogeneous solution on A = aZ + bZ + cZ. This time a
function in a trivial solution is not necessarily constant on A but rather has a finite image
on it which still implies that our solution cannot be trivial.

We will show that essentially uniqueness stands if and only if there is no planar triple
among the periods. The forward direction, that if there is no planar triple then all solutions
are trivial, will be proved in Section 3. We sketch the proof for the simplest case here.
Suppose that we have three linearly independent periods a, b, c. Due to the above observa-
tions, we can regard the problem over Z3 with periods (1, 0, 0); (0, 1, 0); (0, 0, 1). Then the
homogeneous equation is basically f(y, z)+g(x, z)+h(x, y) = 0, and a solution being trivial
means that there exist functions p(x), q(y), r(z) such that f(y, z) = q(y)− r(z) ; g(x, z) =
r(z)− p(x) and h(x, y) = p(x)− q(y). (It clearly suffices to prove two of these equalities.)
Now taking an arbitrary solution of the homogeneous equation above, we evaluate the equa-
tion at z and z+1 and compare: we obtain that f(y, z+1)−f(y, z) = g(x, z)−g(x, z+1).
The left-hand side does not depend on x while the right-hand side does not depend on y,
thus we get that they are both equal to some function s(z) depending only on z. It follows
that f(y, z) = f(y, 0) + s(0) + · · · + s(z − 1) and g(x, z) = g(x, 0) − s(0) − · · · − s(z − 1)
which yields that the solution is indeed trivial. When we have more periods (but any three
of them are still linearly independent), then we can modify the above argument to get
an inductive proof (see Lemma 3.2). The general case (when we can have periods with
rational ratio) is more complicated and will be proved in Theorem 3.3.

As for the backward direction, we have already seen non-trivial solutions in the case
when the periods form a planar triple. If we add more periods, we can extend the solution
by adding constant zero functions. However, it might happen that because of these extra
periods a non-trivial solution becomes trivial. In certain cases, it is not hard to see that the
solution is still non-trivial, but in general it gets more complicated. A relatively simple way
of proving the existence of a non-trivial solution in the general case is going via another
problem.

The starting point of this other problem is the following question that was posed in [5]:
does the existence of a real-valued periodic decomposition of an integer-valued function f
imply the existence of an integer-valued periodic decomposition of f with the same periods?
In [1] the question was answered in the affirmative.

However, the integer-valued decomposition is not necessarily as nice as the real-valued
one. There exists a function f : R→ {0, 1} that can be written as the sum of three periodic
bounded functions but it does not have a bounded integer-valued decomposition with the
same periods ([5]). The goal of Section 4 is to determine those periods for which this
cannot happen, for which the existence of a bounded real-valued periodic decomposition
of an integer-valued function f implies the existence of a bounded integer-valued periodic
decomposition of f with the same periods. (This problem was posed by T. Keleti [6,
Problem 3.6].) It turns out that the above implication holds for any integer-valued f if
and only if essentially uniqueness stands for the periods.

Theorem 1.4 (Main theorem). For nonzero periods a1, . . . , ak the following assertions are
equivalent.
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(i) There is no planar triple among a1, . . . , ak. (That is, any three pairwise linearly
independent periods must be linearly independent over Q.)

(ii) The (a1, . . . , ak)-decomposition is essentially unique. (That is, every solution of the
homogeneous equation (1) is of the form (2).)

(iii) For any function f : R → Z the following implication holds: if f decomposes into
the sum of bounded real-valued ai-periodic functions, then it also decomposes into the
sum of bounded integer-valued ai-periodic functions.

We will prove this theorem by showing (i)⇒ (ii) (Theorem 3.3), (ii)⇒ (iii) (Theorem
4.1) and (iii) ⇒ (i) (Theorem 4.4). In Section 5 we give a fourth equivalent assertion
(Proposition 5.2).

As a corollary, we answer another problem of T. Keleti [6, Problem 3.5]. He studied the
measurable version of (iii) and asked the following: for which periods does the existence
of a bounded measurable real-valued (a1, . . . , ak)-decomposition of a function f : R → Z
imply the existence of a bounded measurable integer-valued (a1, . . . , ak)-decomposition of
f . In Theorem 5.4 we give a characterization.

Our motivation to investigate the solutions of the homogeneous equation (beside that
we think that it is a natural and interesting question) was that it can be very helpful in this
kind of problems when one has a periodic decomposition and wants an other decomposition
with a certain given property.

2 Preliminary lemmas

Recall that two nonzero real numbers are said to be commensurable if their ratio is rational.
They are incommensurable if their ratio is irrational, that is, they are linearly independent
over Q. (Linear independence will always be meant over the field of rational numbers
throughout this paper.) Real numbers a1, . . . , ak are commensurable if any two of them
are commensurable. Equivalently, a1, . . . , ak are commensurable if they have a common
multiple: a nonzero real number m for which m

ai
∈ Z (i = 1, . . . , k). The common multiple

with the smallest absolute value is the least common multiple. The sign of the least
common multiple is not determined. If we do not say otherwise, it does not matter which
one to use. One can define the greatest common divisor in a similar manner.

We will use two classes of linear operators that act on the set of R→ R functions.

Definition 2.1. For a real number a the difference operator ∆a is defined as

(∆af)(x) = f(x+ a)− f(x) (x ∈ R)

where f is an arbitrary R→ R function.

Definition 2.2. Let a,m be real numbers with m
a
∈ Z+. The operator Mm

a takes the
average of certain translates of the input function. For a function f : R→ R let

(Mm
a f)(x) =

(m
a

)−1

·
m
a
−1∑

j=0

f(x+ ja) (x ∈ R).
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Proposition 2.3. The operators ∆a and Mm
a clearly have the following properties.

• A function f is a-periodic if and only if ∆af = 0.

• Both ∆a and Mm
a are linear operators.

• Both ∆a and Mm
a commute with ∆b for any b ∈ R. Consequently, ∆a and Mm

a map
a b-periodic function into a b-periodic function.

• Mm
a maps an m-periodic function into an a-periodic function.

• Mm
a maps an a-periodic function into itself.

Suppose that f̂ = ∆af for some functions f, f̂ and a period a. We call f the lift-up
of f̂ with respect to a. It is obvious that two lift-ups of the same function differ in an
a-periodic function. It is also clear that adding an a-periodic function to a lift-up gives
another lift-up.

Given periods a, b and a b-periodic function, we would like to know whether we can lift
up this function w.r.t. a in such a way that the lift-up is also b-periodic. As we will see,
this can always be done provided that a and b are incommensurable (Lemma 2.6). For
commensurable periods, we give a necessary and sufficient condition (Lemma 2.4), and we
also show what can be said if this condition fails (Lemma 2.8).

The next lemma is a special case of [2, Lemma 10] (see also [1, Lemma 3.3]).

Lemma 2.4. Let a, b ∈ R \ {0} be commensurable periods and f̂ : R → R be a b-periodic
function. There exists a function f such that ∆af = f̂ and ∆bf = 0 if and only if
f̂(x) + f̂(x+ a) + f̂(x+ 2a) + · · ·+ f̂(x+m− a) = 0 (∀x ∈ R) holds for any real number
m with m

a
∈ Z+; m

b
∈ Z.

In other words, f̂ has a b-periodic lift-up w.r.t. a if and only if Mm
a f̂ = 0 for any m

with m
a
∈ Z+; m

b
∈ Z.

Remark 2.5. Since f̂ is b-periodic, functions Mm
a f̂ are clearly the same for any common

multiple m of a and b, so it suffices to check the above condition for one single m.

Lemma 2.6. Let a, b1, . . . , br be linearly independent periods (over Q). Suppose that f̂ is
a function for which ∆bi

f̂ = 0 (i = 1, . . . , r). Then there exists a function f such that

∆af = f̂ and ∆bi
f = 0 (i = 1, . . . , r).

Proof. Take a point x0 ∈ R and define f(x0) arbitrarily. From x0 f can be extended
uniquely over the set aZ + x0 with ∆af = f̂ . After that we extend f periodically with all
periods b1, . . . , br. In this manner we get a uniquely defined function over the set A + x0

where A = aZ+ b1Z+ · · ·+ brZ is an additive subgroup of R. Uniqueness is implied by the
fact that the points of A can be written uniquely as the linear combination of a, b1, . . . , br
with integer coefficients because of the linear independence of a, b1, . . . , br. In consequence
of the bi-periodicity of f̂ (i = 1, . . . , r), the equation ∆af = f̂ holds not only on aZ + x0

but also on A+ x0.
We have now defined the lift-up with the desired properties on a coset of A. However,

we can do this independently on each coset of A.
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Note that for commensurable periods a and b, a function f is a- and b-periodic if and
only if it is (a, b)-periodic, where (a, b) stands for the greatest common divisor of a and b.

Definition 2.7. Let a ∈ R. A function L : R→ R is a-linear if ∆2
aL = ∆a∆aL = 0. (The

name comes from the fact that L is a-linear if and only if L |aZ+x0 is a linear function for
any x0 ∈ R.)

Lemma 2.8. Let a, b be commensurable periods and f̂ : R → R be a b-periodic function.
There exists a lift-up of f̂ w.r.t. a in the form f+L, where f is b-periodic and L is a-linear.

Suppose that f̂ is also c-periodic with a real number c that is incommensurable with a
and b. Then f can be chosen to be b- and c-periodic.

Proof. Let m be the least common multiple of a and b (the one which has the same sign
as a). We decompose f̂ into the sum of two functions:

f̂ =
(
f̂ −Mm

a f̂
)

+Mm
a f̂ .

Now we use the properties of Mm
a stated in Proposition 2.3. Since f̂ is b-periodic (thus

m-periodic), we get that Mm
a f̂ is a-periodic. Hence Mm

a maps it into itself: Mm
a (Mm

a f̂) =
Mm

a f̂ . Consequently, Mm
a takes the first term of the above sum into 0. So it has a b-

periodic lift-up f w.r.t. a by Lemma 2.4. The second term is a-periodic, so its every lift-up
L is a-linear.

If f̂ is b- and c-periodic, then so is (f̂ −Mm
a f̂). We have shown that it has a b-periodic

lift-up f w.r.t. a. We need to prove that it has a lift-up g which is both b- and c-periodic.
First we define g on the subgroup A = (a, b)Z + cZ where (a, b) is the greatest common
divisor of a, b. Because of the incommensurability of (a, b) and c,

A =
⋃
j∈Z

(a, b)Z + jc

is a disjoint union. Consider f
∣∣
(a,b)Z and let g

∣∣
(a,b)Z+jc be the translate of this function by

jc for each j ∈ Z. Obviously, g |A is c-periodic. It is also b-periodic because f is b-periodic.
Finally,

(∆ag) (i(a, b) + jc) = (∆af) (i(a, b)) = (∆af) (i(a, b) + jc) (i, j ∈ Z),

since ∆af = (f̂ −Mm
a f̂) is c-periodic. It means that g is also a lift-up.

So we have defined g on A with the desired properties. Of course, we can do the same
on every coset of A.

We mention a stronger version of the previous lemma without proof.

Proposition 2.9 ([4]). Suppose that a, b are commensurable and f satisfies ∆a∆bf = 0.
It follows that f can be written as

f = L+ fa + fb (L is (a, b)-linear; ∆afa = ∆bfb = 0).
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The theorems of this paper concern functions on R. One could study these problems
for functions on an Abelian group. This is not our goal now. Still, we will need a few
simple lemmas about functions on Abelian groups. Let A be an Abelian group. For an
element a of the group and a function f : A → R, (∆af)(x) := f(x + a) − f(x) (x ∈ A).
We say that f is a-periodic if ∆af = 0, a-linear if ∆2

af = 0. Commensurability can also be
defined in an Abelian group. Two elements a, b are commensurable if they have a common
multiple (that is, there exist nonzero integers na, nb such that naa = nbb).

Lemma 2.10. Suppose that a, b are commensurable elements of an Abelian group A and L
is an a-linear function on A. If L is b-periodic or bounded, then it is necessarily a-periodic
too.

Proof. Let m = na for some positive integer n. The a-linearity of f means that f(x +
2a) − f(x + a) = f(x + a) − f(x) for all x. For a fixed x let c = f(x + a) − f(x) =
f(x+ (i+ 1)a)− f(x+ ia) for any integer i. It entails that

f(x+m)− f(x) =
n−1∑
i=0

(f (x+ (i+ 1)a)− f(x+ ia)) = nc.

If L is b-periodic, we choose m to be a common multiple of a and b. Because of the
b-periodicity f(x+m)− f(x) = 0, thus c = 0, so f(x+ a) = f(x) indeed.

If L is bounded with some bound K ∈ R+, then |f(x+m)− f(x)| ≤ 2K, hence
|c| ≤ 2K

n
for any n, so c must be zero again.

The following corollary is a simple special case of a theorem stating that the class of
bounded A → R functions has the decomposition property, that is, for a bounded function
f : A → R the equation ∆a1 . . .∆ak

f = 0 implies that f has a decomposition into the sum
of bounded ai-periodic functions. (This theorem was first proved by M. Laczkovich and
Sz. Gy. Révész [7], for an alternative proof see [3].) The case a1 = . . . = ak = a entails the
following corollary for which we give a short proof for the sake of completeness.

Corollary 2.11. Suppose that ∆k
af = 0 holds for an element a of an Abelian group A, a

bounded function f : A → R and a positive integer k. Then f is a-periodic.

Proof. For k = 1 it is obvious. For k ≥ 2, consider the function L = ∆k−2
a f . This is

bounded and a-linear, thus it is a-periodic by Lemma 2.10. Consequently

0 = ∆aL = ∆a∆k−2
a f = ∆k−1

a f.

We can repeat this argument until the exponent reaches 1, so ∆af = 0.

Lemma 2.12. Let A be an Abelian group, a, b ∈ A. If f is an a-periodic function, then
∆bf = ∆b+kaf for an arbitrary integer k .

Proof.

(∆bf)(x) = f(x+ b)− f(x) = f(x+ b+ ka)− f(x) = (∆b+kaf)(x).
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3 Homogeneous solutions

In this section we study the following problem: for which periods does it hold that every
solution of the homogeneous equation (1) is trivial. If that is the case, we say that the
(a1, . . . , ak)-decomposition is essentially unique. (A solution is trivial if it can be written
in the form (2).) First we prove two special cases (Proposition 3.1 and Lemma 3.2) that
we will use to prove the general case (Theorem 3.3).

Proposition 3.1. If a1, a2, . . . , ak are commensurable periods, then every solution of the
homogeneous equation is trivial.

Proof. Our proof is by induction on the number k of periods. The case k = 1 is obvious.
Consider a homogeneous solution h1 + · · · + hk = 0 (∆ai

hi = 0), and apply the operator
∆a1 on this equation. We get

ĥ2 + ĥ3 + · · ·+ ĥk = 0 (ĥi = ∆a1hi).

This is a homogeneous solution with respect to the periods a2, a3, . . . , ak. It must be a
trivial solution by induction, which means that there exist functions ĥi,j (2 ≤ i, j ≤ k)

such that ĥi,j is ai- and aj-periodic, ĥi,j = −ĥj,i and ĥi =
∑k

j=2 ĥi,j (2 ≤ i ≤ k). Since the
periods are commensurable, being ai- and aj-periodic is the same as being (ai, aj)-periodic
where (ai, aj) is the greatest common divisor of ai and aj.

Let us lift up functions ĥi,j w.r.t. a1. Lemma 2.8 implies that these lift-ups can be
written in the form hi,j + Li,j, where hi,j is (ai, aj)-periodic, Li,j is a1-linear.

Functions ĥi,j and ĥj,i are the negative of each other. It is clear that they can be lifted
up in such a way that hi,j and hj,i are the negative of each other, too.

Moreover, we will show that functions Li,j can be chosen such that

hi =
k∑

j=2

hi,j + Li,j (i = 2, 3, . . . , k) (3)

holds. Since hi and
∑k

j=2 hi,j + Li,j are both the lift-ups of ĥi w.r.t. a1, they differ in an
a1-periodic function. Add this function to Li,j for some index j. It still stands that Li,j is

a1-linear and hi,j + Li,j is a lift-up of ĥi,j, but now even (3) holds.

Consider
∑k

j=2 Li,j. It is clearly a1-linear, and (3) yields that it is also ai-periodic.

Hence by Lemma 2.10 it is a1-periodic. So let hi,1 =
∑k

j=2 Li,j and h1,i = −hi,1. We have
defined all hi,js. They are periodic w.r.t. the corresponding periods, hi,j = −hj,i and hi,1

was chosen such that hi =
∑k

j=1 hi,j holds for i = 2, 3, . . . , k. Then this holds for i = 1
automatically. Indeed,

h1 = −h2 − · · · − hk = −
k∑

i=2

k∑
j=1

hi,j
∗
= −

k∑
i=2

hi,1 =
k∑

i=2

h1,i.

The equation labelled with ∗ holds because

k∑
i=2

k∑
j=2

hi,j = 0,
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which follows from hi,j = −hj,i (2 ≤ i, j ≤ k).
We have shown that solution hi (1 ≤ i ≤ k) is of the form (2), so it is trivial.

Lemma 3.2. Suppose that a1 6∈ 〈ai, aj〉Q for every pair of indices 2 ≤ i, j ≤ k (in other
words, either ai, aj are commensurable with each other but not with a1, or a1, ai, aj are
linearly independent). If every homogeneous solution is trivial for the periods a2, . . . , ak,
then this also holds for the periods a1, a2, . . . , ak.

Proof. We take an arbitrary homogeneous solution ( {hi}ki=1 ). Then functions ĥi = ∆a1hi

(i = 2, . . . , k) give a homogeneous solution w.r.t. the periods a2, . . . , ak. This must be a
trivial solution, so there exist the corresponding functions ĥi,j : R→ R (2 ≤ i, j ≤ k).

We claim that ĥi,j has a lift-up hi,j w.r.t. a1 such that ∆ai
hi,j = ∆aj

hi,j = 0. If ai and
aj are commensurable, then we need (ai, aj)-periodicity. Since a1 is incommensurable with
(ai, aj), we can apply Lemma 2.6 with a = a1; b1 = (ai, aj). If a1, ai and aj are linearly
independent, then Lemma 2.6 can be applied again, this time with a = a1; b1 = ai; b2 = aj.

We can assume that hj,i = −hi,j. (Let us lift up functions ĥi,j (i < j) first. Clearly,

−hi,j will be a lift-up of ĥj,i = −ĥi,j.) Let

hi,1 = hi − hi,2 − hi,3 − · · · − hi,k.

We claim that hi,1 is a1- and ai-periodic. Indeed,

∆a1hi,1 = ĥi − ĥi,2 − · · · − ĥi,k = 0,

∆ai
hi,1 = ∆ai

hi −∆ai
hi,2 − · · · −∆ai

hi,k = 0− 0− · · · − 0 = 0.

Finally, let h1,i be the negative of hi,1. One can easily check (the same way as in Proposition
3.1) that functions hi,j (1 ≤ i, j ≤ k) satisfy (2).

We are now in the position to prove the implication (i)⇒ (ii) of Theorem 1.4.

Theorem 3.3. If there is no planar triple among the nonzero periods a1, a2, . . . , ak, then
the (a1, . . . , ak)-decomposition is essentially unique. (That is, if any three pairwise incom-
mensurable periods of a1, . . . , ak are linearly independent over Q, then every solution of the
homogeneous equation (1) is of the form (2).)

Proof. The proof goes by induction on k, the case k = 1 is obvious. Without loss of
generality we can assume that the periods that are commensurable with a1 are exactly
a1, . . . , al for some integer 1 ≤ l ≤ k.
Case 1: l = 1
In this case there is no period that is commensurable with a1. Consequently, if ai and aj

are incommensurable for some indices i, j ≥ 2, then a1, ai, aj must be linearly independent.
(Otherwise they would be a planar triple.) Thus Lemma 3.2 can be applied, and we are
done.
Case 2: l ≥ 2
Take an arbitrary homogeneous solution hi (i = 1, . . . , k). Functions ĥi = ∆a1hi form a
(necessarily trivial) homogeneous solution w.r.t. a2, . . . , ak. We consider the corresponding
functions ĥi,j (2 ≤ i, j ≤ k) and we lift them up w.r.t. a1.
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If l+ 1 ≤ i ≤ k ; l+ 1 ≤ j ≤ k, then a1 6∈ 〈ai, aj〉Q. In this case there exists an ai- and
aj-periodic lift-up hi,j as we have seen it in the proof of Lemma 3.2.

If l + 1 ≤ i ≤ k ; 2 ≤ j ≤ l, then ĥi,j is ai- and aj-periodic where a1 is commensurable
with aj but not with ai. By Lemma 2.8 there is a lift-up in the form hi,j + Li,j, where hi,j

is ai- and aj-periodic, Li,j is a1-linear. As we have seen it in the proof of Proposition 3.1,
we can assume that

hi =
k∑

j=2

hi,j +
l∑

j=2

Li,j = Li +
k∑

j=2

hi,j (l + 1 ≤ i ≤ k)

where Li =
∑l

j=2 Li,j is an a1-linear and (in consequence of the above equation) ai-periodic
function.

Using
∑k

i=l+1

∑k
j=l+1 hi,j = 0 (∗), we get that:

−
l∑

i=1

hi =
k∑

i=l+1

hi =
k∑

i=l+1

k∑
j=2

hi,j +
k∑

i=l+1

Li
∗
=

k∑
i=l+1

l∑
j=2

hi,j +
k∑

i=l+1

Li.

Let L1 =
∑l

i=1 hi +
∑k

i=l+1

∑l
j=2 hi,j. Each summand is aj-periodic for some 1 ≤ j ≤ l, so

L1 is m-periodic where m denotes the least common multiple of a1, . . . , al. On the other
hand,

L1 + Ll+1 + Ll+2 + · · ·+ Lk = 0,

thus L1 is a1-linear (all the other summands are a1-linear). Consequently, L1 is a1-periodic
by Lemma 2.10. It means that the functions Li (i = 1, l + 1, . . . , k) form a solution of
the homogeneous equation w.r.t. the periods a1, al+1, al+2, . . . , ak. The number of these
periods is at most k− 1 because l ≥ 2 by our assumption. So it must be a trivial solution.
Consequently there exist functions h′i,j (i, j ∈ {1, l+ 1, . . . , k}) such that h′i,j = −h′j,i is ai-
and aj-periodic,

Li = h′i,1 +
k∑

j=l+1

h′i,j (i = 1, l + 1, . . . , k).

For i = l + 1, . . . , k we set

h′′i,j =


h′i,1 (j = 1)
hi,j (2 ≤ j ≤ l)
hi,j + h′i,j (l + 1 ≤ j ≤ k),

and h′′i,j := −h′′j,i, if i ≤ l and j ≥ l + 1.
Now we define h′′i,j in the case when both indices are at most l.

l∑
i=1

hi = −
k∑

i=l+1

hi = −
k∑

i=l+1

k∑
j=1

h′′i,j =
k∑

i=1

k∑
j=l+1

h′′i,j =
l∑

i=1

k∑
j=l+1

h′′i,j,

so ai-periodic functions gi :=
(
hi −

∑k
j=l+1 h

′′
i,j

)
(i = 1, . . . , l) form a homogeneous solution

w.r.t. the periods a1, . . . , al. These periods are commensurable, so this must be a trivial
solution by Proposition 3.1. Let us take the corresponding functions h′′i,j (1 ≤ i, j ≤ l) and
complement the already defined h′′i,js with these functions. They show that h1, . . . , hk is a
trivial solution.
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4 Decomposition into bounded functions

In this section we determine those periods for which the implication below holds for any
function f : R→ Z.

∃f1, . . . , fk : R→ R f = f1 + · · ·+ fk ; ∆ai
fi = 0 ; fi bounded

?
=⇒

∃f̃1, . . . , f̃k : R→ Z f = f̃1 + · · ·+ f̃k ; ∆ai
f̃i = 0 ; f̃i bounded.

(4)

4.1 Connection with the homogeneous equation

Using a theorem of B. Farkas, T. Keleti, Sz. Gy. Révész and the author [1, Corollary 4.2],
the implication (ii)⇒ (iii) of Theorem 1.4 can be proved easily.

Theorem 4.1. If every solution of the homogeneous equation (1) is trivial for some periods
a1, a2, . . . , ak, then implication (4) holds for any function f : R→ Z.

Proof. Suppose that f : R → Z has a real-valued bounded periodic decomposition with
periods a1, a2, . . . , ak. We mentioned in the introduction that it holds for any periods that
the existence of a real-valued periodic decomposition of an integer-valued function on R
implies the existence of an integer-valued periodic decomposition with the same periods
[1, Corollary 4.2]. So there exist decompositions

f = f1 + f2 + · · ·+ fk = g1 + g2 + · · ·+ gk,

where fi : R → R is a bounded, gi : R → Z is a not necessarily bounded function with
∆ai

fi = ∆ai
gi = 0. Functions hi := fi−gi (i = 1, . . . , k) form a homogeneous solution which

must be trivial by our assumption. Consider the corresponding functions hi,j : R → R.
Now we define integer-valued functions h̃i,j close to hi,j. Let

h̃i,j(x) =


[hi,j(x)] i < j
dhi,j(x)e = −[−hi,j(x)] = −[hj,i(x)] i > j
0 i = j.

Obviously, |h̃i,j(x) − hi,j(x)| < 1 for all i, j, x. It is also clear that conditions ∆ai
h̃i,j =

∆aj
h̃i,j = 0 and h̃i,j = −h̃j,i still stand. Set

h̃i =
k∑

j=1

h̃i,j (i = 1, . . . , k).

These are integer-valued functions that form a homogeneous solution (h̃1 + · · · + h̃k = 0,
∆ai

h̃i = 0). They are also close to functions hi:

|h̃i(x)− hi(x)| ≤
∑

1≤j≤k ; j 6=i

|h̃i,j(x)− hi,j(x)| < k − 1.

We claim that functions f̃i := gi + h̃i (i = 1, . . . , k) form an integer-valued bounded
decomposition of f . It is clearly an integer-valued decomposition of f , since it is the sum
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of an integer-valued decomposition and an integer-valued homogeneous solution. And it is
bounded because f̃i − fi is bounded:

|f̃i(x)− fi(x)| = |(gi(x) + h̃i(x))− (gi(x) + hi(x))| = |h̃i(x)− hi(x)| < k − 1.

According to Theorem 3.3 every homogeneous solution is trivial for periods with no
planar triple among them, so in this case implication (4) holds. Now we show that it does
not hold in other cases.

4.2 Negative results

A counter-example for (4) was given in [5] where the authors showed a function that is the
sum of three bounded periodic functions but it does not have a bounded integer-valued
decomposition with the same periods. We generalize this example.

Given three periods a1, a2, a3 forming a planar triple we take the two-dimensional Q-
linear subspace spanned by a1, a2, a3. We will define functions on this subspace: fi (ai-
periodic, bounded, real-valued); gi (ai-periodic, integer-valued) for i = 1, 2, 3 in such a way
that f1 + f2 + f3 = g1 + g2 + g3 = f . Then we extend all these functions over R with zeros.
What we will basically prove is that no matter how we add new periods a4, . . . , ak, this
extended function f will never have a bounded integer-valued (a1, . . . , ak)-decomposition.
We will do that in two steps: first we consider the case when all periods are contained
in the subspace spanned by a1, a2, a3 (Proposition 4.2), then we deal with periods outside
that subspace (Lemma 4.3).

Proposition 4.2. Suppose that there are three pairwise incommensurable periods among
a1, a2, . . . , ak ∈ Q × Q \ {(0, 0)}. Then there exists a Q × Q → Z function which has a
bounded real-valued decomposition but does not have a bounded integer-valued decomposition
w.r.t. a1, . . . , ak.

Proof. We can assume that a1, a2, a3 are pairwise incommensurable. It follows that any
two of them give a basis of Q×Q, so we can also assume that a1 = (1, 0) and a2 = (0, 1).
Denote the coordinates of ai by pi, qi ∈ Q. We also know that p3, q3 6= 0 since a3 is not
commensurable with a1, a2.

Note that for any rational number r, functions in the form (x, y) 7→ f(y) are (r, 0)-
periodic, functions in the form (x, y) 7→ f(x) are (0, r)-periodic, and functions in the form
(x, y) 7→ f(−q3x+ p3y) are (rp3, rq3)-periodic.

Fix an arbitrary irrational number t and consider the functions below. (We use the
notations [·], {·} for the integer part and fractional part, respectively.)

f1(x, y) = −{tp3y} ; g1(x, y) = [tp3y]

f2(x, y) = {tq3x} ; g2(x, y) = −[tq3x]

f3(x, y) = {t(−q3x+ p3y)} ; g3(x, y) = − [t(−q3x+ p3y)]

By our remarks ∆ai
fi = ∆ai

gi = 0 for i = 1, 2, 3. Using

(−tp3y) + tq3x+ t(−q3x+ p3y) = 0,
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we get that f1 + f2 + f3 = g1 + g2 + g3. Denote this sum by f : Q × Q → Z. Functions
f1, f2, f3 form a bounded real-valued (a1, a2, a3)-decomposition of f . Then f also has a
bounded real-valued (a1, . . . , ak)-decomposition because the remaining functions in the
decomposition (fi, i ≥ 4) can be chosen to be constant 0.

We claim that f does not have a bounded integer-valued (a1, . . . , ak)-decomposition.
We prove this by contradiction. Assume that there exist functions g̃i such that

f = g̃1 + g̃2 + · · ·+ g̃k (g̃i : Q×Q→ Z is bounded and ai-periodic).

For the sake of simplicity, first we assume that every period is incommensurable with a1,
that is, qi 6= 0 (i ≥ 2).

Let M be a common multiple of q2 = 1, q3, . . . , qk. Thus M
qi
∈ Z for i = 2, . . . , k. We

choose a positive integer N in such a way that Npi ∈ Z holds for i ≥ 2. Setting ni = MN
qi

,

niai = (nipi, niqi) =

(
M

qi
(Npi),MN

)
∈ Z× {MN} (i = 2, 3, . . . , k).

Applying the operator S = ∆n2a2 . . .∆nkak
on f , we get that

Sf = Sg1 = S g̃1.

(Because S takes ai-periodic functions into 0 for i ≥ 2.) So S takes h1 := g1 − g̃1 into 0.
We claim that

Sh1 = ∆n2a2 . . .∆nk−1ak−1
∆nkak

h1 = ∆n2a2 . . .∆nk−1ak−1
∆(MN

pk
qk

,MN)h1 =

= ∆n2a2 . . .∆nk−1ak−1
∆(0,MN)h1 = · · · = ∆(0,MN) . . .∆(0,MN)∆(0,MN)h1.

Using that h1 is a1 = (1, 0)-periodic and (MN pk

qk
) ∈ Z, Lemma 2.12 entails that

∆nkak
h1 = ∆(MN

pk
qk

,MN)h1 = ∆(0,MN)h1.

Thus ∆nkak
can be substituted with ∆(0,MN). Since ∆(0,MN)h1 is also (1, 0)-periodic, we

can repeat the same argument, and we get that ∆nk−1ak−1
can be also substituted with

∆(0,MN) and so on.
Finally we get that

∆k−1
(0,MN)h1 = 0.

Now let us consider the function

L1(x, y) = h1(x, y)− tp3y = (h1(x, y)− [tp3y])− {tp3y} = −g̃1(x, y)− {tp3y}.

It is bounded because both g̃1 and the function (x, y) 7→ {tp3y} is bounded. On the other
hand, ∆k−1

(0,MN)L1 = 0 since this holds for both h1 and (x, y) 7→ tp3y. (The latter is (0, r)-

linear for any r ∈ Q, and k− 1 ≥ 2.) Corollary 2.11 implies the (0,MN)-periodicity of L1.
Hence

h1(0,MN)− h1(0, 0) = L1(0,MN)− L1(0, 0) + tp3MN = tp3MN /∈ Q,

though h1 is an integer-valued function, contradiction.
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Now we turn to the case when at least one of a4, . . . , ak is commensurable with a1.
First we change our notations a little. Let a2, . . . , ak now denote those periods that are not
commensurable with a1. Those periods that are commensurable with a1 are a1 = (r1, 0) =
(1, 0); (r2, 0); . . . ; (rl, 0). (By this, the meaning of k changes as well.) Let m be the least
common multiple of r1 = 1, r2, . . . , rl. Our original argument needs to be changed at only
one point. After the indirect assumption, we add up the functions corresponding to the
periods a1 = (r1, 0) = (1, 0); (r2, 0); . . . ; (rl, 0). We get an (m, 0)-periodic function G̃1.
(The function corresponding to the period ai is still denoted by g̃i, i ≥ 2.) This time we
choose N in such a way that Npi ∈ mZ holds. Since H1 := g1 − G̃1 is m-periodic, we get
a contradiction the same way.

The next lemma deals with periods outside Q×Q.

Lemma 4.3. Let d < D be positive integers, a1, . . . , al ∈ Qd ⊂ QD and al+1, . . . , ak ∈
QD \ Qd. Suppose that there exists a function f : Qd → Z which has a bounded real-
valued (a1, . . . , al)-decomposition, but it does not have a bounded integer-valued (a1, . . . , al)-
decomposition. Let F : QD → Z be the function we obtain by extending f with zeros. Then
F has a bounded real-valued (a1, . . . , al)-decomposition, but it does not have a bounded
integer-valued (a1, . . . , al)-decomposition.

Proof. By our assumption f has a bounded real-valued (a1, . . . , al)-decomposition: fi (i =
1, . . . , l). By definition,

F (x) =

{
f(x) x ∈ Qd

0 x ∈ QD \Qd.

We can extend fi to Fi the same way (1 ≤ i ≤ l). Since ai ∈ Qd, Fi is ai-periodic
(1 ≤ i ≤ l). So F1 + · · · + Fl is a bounded real-valued (a1, . . . , al)-decomposition of F .
Setting Fi = 0 (l < i ≤ k), we also get a bounded real-valued (a1, . . . , ak)-decomposition
of F .

We still need to show that F does not have a bounded integer-valued (a1, . . . , ak)-
decomposition. We prove by contradiction. Assume that

F = G1 +G2 + · · ·+Gk (Gi : QD → Z is bounded and ai-periodic).

Consider the operator
S := ∆nl+1al+1

∆nl+2al+2
. . .∆nkak

where nl+1, nl+2, . . . , nk are positive integers. Clearly, S takes an ai-periodic function into
0 for l + 1 ≤ i ≤ k, thus

SF = SG1 + SG2 + · · ·+ SGl,

where SGi : QD → Z is a bounded, ai-periodic function (1 ≤ i ≤ l). Consequently, SF has
a bounded integer-valued (a1, . . . , al)-decomposition. Our goal is to choose nl+1, nl+2, . . . , nk

in such a way that the restriction of SF to Qd is (−1)k−lf . This would be a contradic-
tion since, by our assumption, f does not have a bounded integer-valued (a1, . . . , al)-
decomposition.

We define nk, nk−1, . . . , nl+1 one by one, first let nk be an arbitrary positive integer. Let
us consider the function (∆nkak

F )(x) = F (x + nkak) − F (x). This function maps x ∈ Qd
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to −f(x), since ak /∈ Qd. On the other hand, it is supported by a band parallel to Qd.
That is to say, it vanishes outside the set

Qd × ([−Kd+1, Kd+1] ∩Q)× . . .× ([−KD, KD] ∩Q) ⊂ QD

for some rational numbers Kd+1, . . . , KD ≥ 0. (In this case Kj can be chosen as |(nkak)j|,
the absolute value of the jth coordinate of the point nkak.) Now we choose nk−1 such that
nk−1ak−1 lies outside this band. (This is possible because ak−1 /∈ Qd, so there must be an
index j > d for which the jth coordinate of ak−1 is not equal to 0, thus (nk−1ak−1)j > Kj if
nk−1 is large enough.) Then the restriction of (∆nk−1ak−1

∆nkak
F )(x) to Qd equals to f and

there still exists a band that supports this function. (The new Kj can be chosen as the

sum of the old Kj and
∣∣∣(nk−1ak−1)j

∣∣∣.) Now we choose nk−2 such that nk−2ak−2 lies outside

this new band and so on. Finally we get an operator S for which SF |Qd = (−1)k−lf .

Now we complete the proof of Theorem 1.4 by showing the remaining implication
(iii)⇒ (i).

Theorem 4.4. Let a1, . . . , ak ∈ R \ {0}. Suppose that there is a planar triple (three
pairwise incommensurable but linearly dependent real numbers) among them. Then there
is an R→ Z function that has a bounded real-valued (a1, . . . , ak)-decomposition, but it does
not have a bounded integer-valued (a1, . . . , ak)-decomposition.

Proof. We can assume that {a1, a2, a3} is a planar triple. These three periods span a two
dimensional Q-linear subspace of R. We can also assume that the periods lying in this sub-
space 〈a1, a2, a3〉Q ∼= Q×Q are exactly a1, . . . , al for some integer 3 ≤ l ≤ k. Let D denote

the dimension of the Q-linear subspace spanned by all the periods: 〈a1, a2, . . . , ak〉Q ∼= QD.
Obviously, D ≥ 2.

By Proposition 4.2 there exists a function f over this Q×Q which has a bounded real-
valued (a1, . . . , al)-decomposition without having a bounded integer-valued (a1, . . . , al)-
decomposition. It follows by Lemma 4.3 that there also exists a function F : QD → Z with
a bounded real-valued (a1, . . . , ak)-decomposition but without a bounded integer-valued
(a1, . . . , ak)-decomposition. Extending F with zeros over R, we get a function with the
desired properties.

5 Corollaries and questions

We start this section with the following observation. Suppose that we have some periods
a1, . . . , al and a non-trivial homogeneous solution h1 + · · · + hl = 0. Then this solution
can be viewed as a solution with respect to the periods a1, . . . , ak for arbitraty extra
periods al+1, . . . , ak (we just complement the solution with zero functions, that is, we set
hi ≡ 0, i = l + 1, . . . , k. ) It can happen that the solution becomes trivial because of the
extra periods. However, the following is true.

Proposition 5.1. For any planar triple a1, a2, a3 there exists a non-trivial homogeneous
solution h1 + h2 + h3 = 0 that remains non-trivial even if we add arbitrary extra periods.
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Proof. The proof of Theorem 4.1 tells us how we can obtain a non-trivial homogeneous
solution: take a bounded decomposition and an integer-valued decomposition of the same
function and take their difference; it will be non-trivial provided that the function does
not have a bounded integer-valued decomposition.

We have also seen (see the second paragraph of Subsection 4.2) that for any planar
triple a1, a2, a3 there exists a bounded function f : R → Z with a bounded (a1, a2, a3)-
decomposition f1+f2+f3 = f and an integer-valued (a1, a2, a3)-decomposition g1+g2+g3 =
f ; furthermore, f does not have a bounded integer-valued (a1, . . . , ak)-decomposition for
any extra periods a4, . . . , ak.

Consequently, for arbitrary extra periods a4, . . . , ak, f has a bounded decomposition
(f1+f2+f3+0+· · ·+0 = f) and an integer-valued decomposition (g1+g2+g3+0+· · ·+0 = f)
but it does not have an (a1, . . . , ak)-decomposition that is both bounded and integer-valued.
It follows, in view of the first paragraph, that the homogeneous solution

(f1 − g1) + (f2 − g2) + (f3 − g3) + 0 + · · ·+ 0 = 0

is non-trivial. Since this holds for arbitrary choice of added periods, we are done.

Next, we add one more statement to the list of equivalent assertions in Theorem 1.4.
Recall the already mentioned theorem that the class of bounded R→ R functions has the
decomposition property [7, 3]. It means that a function f : R → R has a bounded real-
valued (a1, . . . , ak)-decomposition if and only if f is bounded and satisfies ∆a1 . . .∆ak

f = 0.
Using this, we can rephrase (iii) equivalently as follows.

Proposition 5.2. The following is also equivalent with (i), (ii), (iii) of Theorem 1.4.

(iii′) If f : R → Z is bounded and ∆a1 . . .∆ak
f = 0, then f has a bounded integer-valued

(a1, . . . , ak)-decomposition.

As a corollary of Theorem 1.4 we answer another problem of T. Keleti who studied
measurable periodic decompositions of integer-valued measurable functions in [6]. (By
measurable we mean Lebesgue measurable.) In [6, Theorem 2.5] he proved the equivalence
of seven assertions. We will need the equivalence of two of them.

Theorem 5.3 ([6]). Let a1, . . . , ak ∈ R\{0}. Let B1, . . . , Bn denote the equivalence classes
of {a1, . . . , ak} with respect to the relation a ∼ b ⇔ a

b
∈ Q and bj be the least common

multiple of the numbers in Bj. (In fact, bj can be any element that is commensurable with
the elements in Bj.) The following two statements are equivalent.

(a) If an (everywhere) integer-valued function f on R has a bounded measurable real-
valued (a1, . . . , ak)-decomposition, then it also has an almost everywhere integer-valued
bounded measurable (a1, . . . , ak)-decomposition.

(b) Real numbers 1
b1
, . . . , 1

bn
are linearly independent over Q.

If we want (everywhere) integer-valued bounded measurable decomposition, we have
to fix the decomposition on an exceptional null set. To do this, as it was pointed out in
[6], we need to use the original (non-measurable) version of this problem. Since we have
solved it, we are able to answer the measurable version too.
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Theorem 5.4. Let a1, . . . , ak nonzero real numbers; b1, . . . , bn are defined as in the previous
theorem. The implication

f has a bounded measurable real-valued (a1, . . . , ak)-decomposition ⇒
f has a bounded measurable integer-valued (a1, . . . , ak)-decomposition

holds for any function f : R → Z if and only if the periods satisfy the following two
conditions:

• 1
b1
, . . . , 1

bn
are linearly independent over Q,

• any three of b1, . . . , bn are linearly independent over Q.

(Note that the second condition holds if and only if there is no planar triple among a1, . . . , ak.)

Proof. If the first condition fails to hold then by Theorem 5.3 there exists an integer-valued
function that has a bounded measurable real-valued (a1, . . . , ak)-decomposition, but it does
not even have a decomposition in which the functions are bounded, measurable and almost
everywhere integer-valued.

If the second condition fails, then according to Theorem 4.4 there exists an integer-
valued function f that has a bounded real-valued (a1, . . . , ak)-decomposition, but it does
not have a bounded integer-valued (a1, . . . , ak)-decomposition. Moreover, f and the func-
tions of its real-valued decomposition were all supported by a finite dimensional Q-linear
subspace. Such a subspace is countable, so it has measure zero. However, every function
supported by a null set is measurable. Consequently, f shows that the implication does
not hold.

Now we suppose that both conditions are satisfied by a1, . . . , ak. Let us take an integer-
valued function f with a decomposition f = f1 + · · ·+ fk where fi is bounded, measurable
and ai-periodic. Theorem 5.3 entails that it has a decomposition f = g1 + · · · + gk where
gi is bounded, measurable, almost everywhere integer-valued and ai-periodic.

From this point the proof goes the same way as in [6, Proposition 3.3].

Ej := {x ∈ R : gj(x) /∈ Z} ;E =

(
k⋃

j=1

Ej

)
+ a1Z + · · ·+ akZ.

Clearly, E has measure zero. Consider the integer-valued function F = fχE which has
a bounded real-valued decomposition g1χE + · · · + gkχE. By Theorem 1.4 it also has a
bounded integer-valued decomposition F = G1 + · · ·+Gk. Then the functions

g̃j(x) = gjχR\E +GjχE

give us a bounded, measurable, everywhere integer-valued periodic decomposition.

Finally, we mention a few open problems. We have seen that if there is no planar
triple among the periods, then we can get every solution of the homogeneous equation
(1) by adding up solutions of a certain simple type (namely, solutions that contain only
two nonzero functions). It would be nice to have a similar theorem in general (when we
have no restriction on the periods). Let a solution be a basic solution if the periods that
correspond to nonzero functions are in a plane (by which we mean that they span a one- or
two-dimensional Q-linear subspace). Our conjecture is that every homogeneous solution is
the sum of basic solutions.
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Problem 5.5. Is it true that every solution of the homogeneous equation can be written
as the sum of such solutions where the periods corresponding to the nonzero functions of
the decomposition span a Q-linear subspace with dimension at most 2?

A positive answer to this question could be a first step towards describing all homoge-
neous solutions. In that case it would be enough to determine the basic solutions. It is
easy to see that it suffices to do that on Z× Z.

Problem 5.6. Let a1, . . . , ak be nonzero elements of Z × Z. Determine the solutions of
the homogeneous equation on Z× Z: h1 + · · ·+ hk = 0 (hi : Z× Z→ R; ∆ai

hi = 0).

The case of three periods is solved [4].

Acknowledgement: The author is grateful to the referee for the detailed and insightful
review and for the numerous suggestions on how to make the paper more comprehensible
for the reader.
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