REPLICA FORMULAS FOR THE INDEPENDENCE RATIO

VIKTOR HARANGI

1. Formulas

For any fixed degree $d \geq 3$, the independence ratio of the random d-regular graph $\mathbb{G}(N,d)$ is known to converge to some constant α_d^* as $N \to \infty$. There exist r-step replica symmetry breaking formulas that are known to bound α_d^* from above [LO18].

The 1-RSB bound: for any $\lambda_0 > 1$ and any $q \in [0, 1]$:

$$\alpha_d^* \log(\lambda_0) \le \log(1 + (\lambda_0 - 1)(1 - q)^d) - \frac{d}{2}\log(1 - (1 - 1/\lambda_0)q^2).$$

Choosing λ_0 and q optimally leads to an (implicit) formula for α_d^* . This 1-RSB bound is conjectured to be sharp for any $d \geq 20$ [BKZZ13] and known to be sharp for sufficiently large d [DSS16]. For $d \leq 19$ the 1-RSB bound is not tight and we want to find improved upper bounds via numerical optimization of the formulas below.

The 2-RSB bound: for any $\lambda_0 > 1$, 0 < m < 1, and any $p_1, \ldots, p_n, q_1, \ldots, q_n \in [0, 1]$ with $p_1 + \cdots + p_n = 1$ we have

$$\alpha_d^* m \log(\lambda_0) \le \log \sum_{i_1=1}^n \cdots \sum_{i_d=1}^n \left(\prod_{\ell=1}^d p_{i_\ell} \right) \left(1 + (\lambda_0 - 1) \prod_{\ell=1}^d (1 - q_{i_\ell}) \right)^m - \frac{d}{2} \log \sum_{i_1=1}^n \sum_{i_2=1}^n p_{i_1} p_{i_2} \left(1 - (1 - 1/\lambda_0) q_{i_1} q_{i_2} \right)^m.$$

The 3-RSB bound: for any $\lambda_0 > 1$, $0 < m_1, m_2 < 1$, $p_i \ge 0$ with $\sum p_i = 1$, $p_{i,j} \ge 0$ with $\sum_j p_{i,j} = 1$ for every fixed i, and $q_{i,j} \in [0,1]$ we have

$$\alpha_d^* \, m_1 m_2 \log(\lambda_0) \le \log R^{\text{star}} - \frac{d}{2} \log R^{\text{edge}}, \text{ where}$$

$$R^{\text{star}} = \sum_{i_1} \cdots \sum_{i_d} \left(\prod_{\ell=1}^d p_{i_\ell} \right) \left(\sum_{j_1} \cdots \sum_{j_d} \left(\prod_{\ell=1}^d p_{i_\ell, j_\ell} \right) \left(1 + (\lambda_0 - 1) \prod_{\ell=1}^d (1 - q_{i_\ell, j_\ell}) \right)^{m_1} \right)^{m_2};$$

$$R^{\text{edge}} = \sum_{i_1} \sum_{i_2} p_{i_1} p_{i_2} \left(\sum_{j_1} \sum_{j_2} p_{i_1, j_1} p_{i_2, j_2} \left(1 - (1 - 1/\lambda_0) q_{i_1, j_1} q_{i_2, j_2} \right)^{m_1} \right)^{m_2}.$$

For general $r \ge 1$: we will index our parameters p_s, q_s with sequences $s = (s^{(1)}, \ldots, s^{(k)})$ of length $|s| = k \le r - 1$. We denote the empty sequence (of length 0) by \emptyset . Furthermore, we write $s' \succ s$ if s' is obtained by adding an element to the end of s, that is, |s'| = |s| + 1 and the first |s| elements coincide.

Now let $\emptyset \in S$ be some set of sequences of length at most r-1. We partition S into two parts $S_{\leq r-2} \cup S_{r-1}$ based on whether the length of the sequence is at most r-2 or exactly r-1, respectively.

The discrete version of the r-RSB bound has the following parameters:

- $\lambda_0 > 1$;
- $0 < m_1, \ldots, m_{r-1} < 1$;
- $p_s \ge 0$, $s \in S$, satisfying

$$\sum_{s' \succ s} p_{s'} = 1 \text{ for each } s \in S_{\leq r-2};$$

• $q_s \in [0,1], s \in S_{r-1}$.

For any d-tuple s_1, \ldots, s_d of sequences of length r-2, set

$$R_{s_1,\ldots,s_d}^{\text{star}} := \sum_{s_1' \succ s_1} \cdots \sum_{s_d' \succ s_d} p_{s_1'} \cdots p_{s_d'} \left(1 + (\lambda_0 - 1)(1 - q_{s_1'}) \cdots (1 - q_{s_d'}) \right)^{m_1},$$

and then, recursively for $k = r - 3, r - 4, \dots, 0$, for any d-tuple s_1, \dots, s_d of sequences of length k let

$$R_{s_1,\dots,s_d}^{\text{star}} := \sum_{s'_1 \succ s_1} \dots \sum_{s'_d \succ s_d} p_{s'_1} \dots p_{s'_d} (R_{s'_1,\dots,s'_d}^{\text{star}})^{m_{r-1-k}}.$$

Similarly, for any pair s_1, s_2 of sequences of length r-2, set

$$R_{s_1,s_2}^{\text{edge}} := \sum_{s_1' \succ s_1} \sum_{s_2' \succ s_2} p_{s_1'} p_{s_2'} \big(1 - (1 - 1/\lambda_0) q_{s_1'} q_{s_2'} \big)^{m_1},$$

and then, recursively for $k = r - 3, r - 4, \dots, 0$. for any pair s_1, s_2 of sequences of length k, let

$$R_{s_1,s_2}^{\text{edge}} := \sum_{s_1' \succ s_1} \sum_{s_2' \succ s_2} p_{s_1'} p_{s_2'} \left(R_{s_1',s_2'}^{\text{edge}} \right)^{m_{r-1-k}}.$$

Then the bound is

$$\alpha_d^* m_1 \dots m_{r-1} \log(\lambda_0) \le \log R_{\emptyset,\dots,\emptyset}^{\text{star}} - \frac{d}{2} \log R_{\emptyset,\emptyset}^{\text{edge}}.$$

Remark 1.1. Normally we fix integers $n_1, \ldots, n_{r-1} \geq 2$ and assume that the k-th elements of our sequences come from the set $\{1, \ldots, n_k\}$. This way the number of free parameters (after taking the sum restrictions on the parameters p_s into account) is

$$(r-1)+2n_1n_2\cdots n_{r-1}.$$

In the tables we will refer to such a parameter space as $[n_{r-1}, \dots, n_1]$.

2. Program codes

GitHub repository with our program codes: https://github.com/harangi/rsb

Website with examples: https://www.renyi.hu/~harangi/rsb.htm

Our codes use the following variables:

$$\deg \longleftrightarrow d$$

$$\operatorname{depth} \longleftrightarrow r-1$$

$$\operatorname{nrs} \longleftrightarrow [n_{r-1},\ldots,n_1]$$

$$\operatorname{la} \longleftrightarrow \lambda_0$$

$$\operatorname{ms} \longleftrightarrow [m_{r-1},\ldots,m_1]$$

$$\operatorname{prs}[k] \longleftrightarrow \operatorname{numpy\ array\ consisting\ of\ all\ } p_s \text{ with } |s|=k+1 \quad (k=0,\ldots,r-2)$$

$$\operatorname{prs}[r-1] \longleftrightarrow \operatorname{numpy\ array\ consisting\ of\ all\ } 1-q_s \text{ with } |s|=r-1$$

Appendix

Below we list our best r-RSB bounds of α_d^* for each degree $3 \le d \le 19$ in the following format: $r = [n_{r-1}, \dots, n_1]$ bound (see Remark 1.1 for the definition of n_k).

For comparison, we included r=1, that is, the 1-RSB bound from [LO18] that we improve on.

$\operatorname{degree} : 3$				
1		0.450859654	m degree:~10	
2	[32]	0.450789936	1 [] 0.281128003	
3	[8, 4]	0.450786018	2 [5] 0.281105186	
4	[8, 2, 2]	$\begin{array}{c} 0.450786018 \\ 0.450785346 \end{array}$	$\begin{bmatrix} 3 & [2,2] & 0.281104953 \end{bmatrix}$	
5	[4, 2, 2, 2]	0.450785210	degree: 11	
degree: 4			1 [] 0.268324856	
1		0.411194564	2 [7] 0.268310124	
2	[18]	$\begin{array}{c} 0.411194564 \\ 0.411100755 \end{array}$	degree: 12	
3	[6, 4]	0.411095101	1 [] 0.256864221	
4	[4, 3, 2]	0.411094131	$\begin{bmatrix} 2 & [5] & 0.256855205 \end{bmatrix}$	
degree: 5		ree: 5	degree: 13	
1		0.379268170	1 [] 0.246529415	
2	[8]	0.379268170 0.379176250	$\begin{bmatrix} 2 & [6] & 0.246524236 \end{bmatrix}$	
3	[3, 3]	0.379170372	degree: 14	
4	[2, 2, 3]	0.379170310	1 [] 0.237149865	
degree: 6			$\begin{bmatrix} 2 & [4] & 0.237147193 \end{bmatrix}$	
1		$\begin{array}{c} 0.352984549 \\ 0.352905514 \end{array}$	degree: 15	
2	[7]	0.352905514	1 [] 0.228589175	
3	[4, 2]	0.352900232	2 [4] 0.228587914	
4	[3, 2, 2]	0.352899485	degree: 16	
	deg	ree: 7	1 [] 0.220736776	
1		0.330884354	2 [4] 0.220736278	
2	[5]	0.330821477	degree: 17	
3		0.330817014	1 [] 0.213501935208	
	deg	ree: 8	1+ 0.213501905193	
1		0.311972567	degree: 18	
2	[6]	0.311925387	1 [] 0.20680939479	
3	[3, 2]	0.311922227	2 [2] 0.20680939005	
		ree: 9	degree: 19	
1		0.295553902	1 [] 0.2005961242697	
2	[5]	0.295520273	1+ 0.2005961242567	
3	[2, 2]	0.295519497		

References

[BKZZ13] Jean Barbier, Florent Krzakala, Lenka Zdeborová, and Pan Zhang. The hard-core model on random graphs revisited. *Journal of Physics: Conference Series*, 473:012021, dec 2013.

[DSS16] Jian Ding, Allan Sly, and Nike Sun. Maximum independent sets on random regular graphs. $Acta\ Math.,\ 217(2):263-340,\ 2016.$

[LO18] Marc Lelarge and Mendes Oulamara. Replica bounds by combinatorial interpolation for diluted spin systems. *Journal of Statistical Physics*, 173(3):917–940, Nov 2018.

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, BUDAPEST, HUNGARY *Email address*: harangi@renyi.hu