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Abstract. We study factor of i.i.d. processes on the d-regular tree for d ≥ 3. We show
that if such a process is restricted to two distant connected subgraphs of the tree, then the
two parts are basically uncorrelated. More precisely, any functions of the two parts have
correlation at most k(d − 1)/(

√
d− 1)k, where k denotes the distance of the subgraphs.

This result can be considered as a quantitative version of the fact that factor of i.i.d.
processes have trivial 1-ended tails.

1. Introduction

This paper deals with factor of i.i.d. processes on the d-regular tree Td for d ≥ 3. Loosely
speaking, we first put independent and identically distributed (say [0, 1] uniform) random
labels on the vertices of Td; then each vertex gets a new label that depends on the labelled
rooted graph as seen from that vertex, all vertices “using the same rule”.

For a formal definition, let V (Td) denote the vertex set and Aut(Td) the automorphism
group of Td. Suppose that M is a measurable space and F : [0, 1]V (Td) →MV (Td) is a mea-
surable function. Then F is said to be an Aut(Td)-factor (or factor in short) if it is Aut(Td)-
equivariant, that is, it commutes with the natural Aut(Td)-actions. (In most applications
M is either a discrete set or R.) Let π : MV (Td) → M denote the coordinate projection
corresponding to a distinguished vertex. Then the function f = π ◦ F : [0, 1]V (Td) → M
(often called the rule) will be invariant under the stabilizer of the distinguished vertex. It
is easy to see that F is determined by f .

If we have an i.i.d. process Z = (Zv)v∈V (Td) on [0, 1]V (Td), then applying F yields a factor

of i.i.d. process X = F (Z), which can be viewed as a collection X = (Xv)v∈V (Td) of M -
valued random variables. It follows immediately from the definition that the distribution of
X is invariant under the action of Aut(Td); in particular, each Xv has the same distribution.

A natural question is “how independent” the random variables Xv are. It is fairly easy
to see that for any factor the correlation of Xu and Xv converges to 0 as the distance of u
and v goes to infinity. In [4] the following sharp bound was found for the correlation:

(1) |corr(Xu, Xv)| ≤
(
k + 1− 2k

d

)(
1√
d− 1

)k
, where k = dist(u, v),
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that is, the rate of the correlation decay is essentially 1/(
√
d− 1)k. (Here it is assumed

that M = R and varXv <∞.)

1.1. Results. The main result of this paper basically says that if two connected subsets
V1, V2 ⊂ V (Td) have large distance, then they are “almost independent” in the following
sense: for an arbitrary factor X, any function of (Xv)v∈V1 and any function of (Xv)v∈V2
have small correlation, essentially of (the optimal) order 1/(

√
d− 1)k.

Theorem 1.1. Let X = (Xv)v∈V (Td) be a factor of i.i.d. process on MV (Td) for some

measurable space M , and let V1, V2 ⊂ V (Td) be arbitrary (possibly infinite) subsets of the
vertex set. Suppose that hi : M

Vi → R is a measurable function, i = 1, 2. For hi
(
(Xv)v∈Vi

)
we simply write hi(X). If h1(X) and h2(X) have finite variances, then we have

(2) |corr(h1(X), h2(X))| ≤ k(d− 1)

(
1√
d− 1

)k
,

where k denotes the distance of the convex hulls of V1 and V2, which we assume to be
positive. (The convex hull of Vi is the smallest connected subgraph of Td containing Vi.)

One might wonder if a similar bound could exist if k denoted the distance of V1 and V2

instead of the distance of the convex hulls. The simplest case where this would make a
difference is when V1 consists of the two endpoints of a path of length 2k and V2 is the
one-element set containing the midpoint of this path. Then the distance of V1 and V2 is k,
while the distance of the convex hulls is 0. In this case the above theorem would be of no
use. Can we still have a good bound for the correlation? The answer is negative, as the
correlation might actually be 1 in this case for any k. This will be shown by Example 2.3,
where we will construct a factor of i.i.d. process X on [0, 1]V (Td) with the property that Xu

and Xv determine the values of X along the whole path connecting u and v. In fact, this
process will show that (2) is essentially sharp: for any V1, V2 there exist h1, h2 such that
the correlation in question is of order 1/(

√
d− 1)k where k is the distance of the convex

hulls.
Given an invariant process (Xv)v∈V (Td), an event is in the tail of the process if it is, for

each r ∈ N, contained by the σ-algebra generated by the random variables Xv for vertices
v outside the r-ball around a fixed root. It is open whether any invariant process with a
trivial tail can be obtained as some factor of an i.i.d. process. As for the other direction,
there are examples for factor of i.i.d. processes whose tail is not trivial. In fact, they can
even have full tails. (See [24, Proposition 2.4] or Example 2.3 of the current paper.) Our
result is related to another kind of tails called the 1-ended tails : given an infinite path
starting at the root, consider those events that are, for each r ∈ N, contained by the σ-
algebra generated by Xv’s for vertices v of Td that are separated from the root by the rth
vertex of the path.

Let us consider Theorem 1.1 in the special case when h1, h2 are indicator functions of
two events with one event being fixed and the other running through a sequence of events
in such a way that the distance k goes to infinity. Then we obtain that the sequence
is “asymptotically independent” from the fixed event. This is actually equivalent to the
triviality of the 1-ended tails, see Remark 2.6. Therefore the following is an immediate
consequence of Theorem 1.1.

Corollary 1.2. The 1-ended tail σ-algebras are trivial for any factor of i.i.d. process on
MV (Td) for d ≥ 3.
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As pointed out by Russell Lyons [24, Section 2], this corollary was known more generally:
Pemantle showed that basically every ergodic invariant process on Td has trivial 1-ended
tails [27, Theorem 1]. See [27, Corollary 7] for an equivalent formulation (using asymptotic
independence as described above). Our main theorem provides a quantitative version of
this formulation in the case of factor of i.i.d. processes: we obtain a universal bound for
an arbitary factor and for arbitrary events (only depending on the distance k). It is also
worth mentioning that the triviality of 1-ended tails implies mixing and a weak law of large
numbers [27, Corollary 8-10].

Corollary 1.2 will be complemented by Example 2.3, where we construct a factor of i.i.d.
process for which, loosely speaking, “any tail broader than a 1-ended tail” is non-trivial.
This means that Corollary 1.2 is, in some sense, the best we can hope for.

Note that Corollary 1.2 is also true for d = 2 (that is, on Z) by a result of Rokhlin and
Sinai [31].

We finish this section with a brief outline of the proof of Theorem 1.1. Let T̃d−1 denote
the rooted (d− 1)-ary tree. It is easy to see that we might assume that V1 and V2 are both
isomorphic to T̃d−1 and their roots have distance k. Let ei be the directed edge starting
at the root of Vi and “pointing away” from Vi. We will show that |corr(h1(X), h2(X))| is
maximized by functions h1 and h2 that are invariant under the automorphism group of
T̃d−1. In fact, they should “come from” the same Aut(T̃d−1)-invariant measurable function

f : MV (T̃d−1) → R. Given such a function f , an Aut(Td)-invariant process on the vertices
of Td can be turned into an Aut(Td)-invariant process on the directed edges of Td: for any
directed edge e of Td, apply f to the (labelled) subgraph “behind” e and write its value on
e. The process we obtain on the directed edge set E(Td) will be a factor of i.i.d. process (see
Section 2 for precise definitions) whose value on ei is hi(X), i = 1, 2. Therefore to complete
the proof we need to prove a correlation decay result similar to (1) but for directed edges
instead of vertices (see Theorem 4.1). To this end we will need to estimate the norms of
the powers of the non-backtracking operator (see Section 4.1).

1.2. Related work. Factor of i.i.d. processes can be viewed from an ergodic theoretic
point of view, namely, as factors of the Bernoulli shift. Z-factors (as part of classical
ergodic theory) have the largest literature and the most complete theory. For amenable
group actions entropy serves as a complete invariant (for isomorphism of i.i.d. processes).
A classical example of Ornstein and Weiss [26] expresses the 4-shift as a factor of the 2-shift
over free groups of rank at least 2, showing that no notion of entropy can exist in the non-
amenable case that would exhibit all the nice properties of the classical Kolmogorov-Sinai
entropy. Nevertheless, various definitions of entropy have been introduced and examined
in relation to factor maps, see e.g. [9, 10, 22, 32].

One of the reasons why factor of i.i.d. processes have attracted a growing attention in
recent years is that they give rise to some sort of randomized local algorithms that can be
carried out on arbitrary regular graphs with “large essential girth”, e.g. random regular
graphs. Such factor of i.i.d. constructions include perfect matchings [14, 25], independent
sets [12, 13, 18, 19], 4-regular spanning forests [16, 23], colorings [11]. Using this connection
to random regular graphs in the reverse direction, one can prove entropy inequalities [3, 9]
yielding necessary conditions for a process to be factor of i.i.d.; this new tool has several
applications already [17, 29, 30]. Correlation bounds provide further necessary conditions
[4]; this is the main tool in the current paper as well. In [5] the possible “correlation
structures” were described for factor of i.i.d. processes by understanding their spectral
measures. See [24] for futher references and for many open problems in the topic.
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Outline of the paper. The rest of the paper is structured as follows. In Section 2 we
go through basic definitions, present some examples, and show how Corollary 1.2 follows
from Theorem 1.1, the proof of which is given in Section 3. Finally, in Section 4 we prove
our correlation decay result for directed edges via bounding the norms of the powers of the
non-backtracking operator.

2. Preliminaries

2.1. Factors of i.i.d. Suppose that a group Γ acts on a countable set S. Then Γ also acts
on the space MS for a set M : for any function f defined on S and for any γ ∈ Γ let

(3) (γ · f)(s) ..= f(γ−1 · s) ∀s ∈ S.

In our setting M is always equipped with a σ-algebra (that is, M is a measurable space). As
usual, the product space MS is equipped with the smallest σ-algebra such that all MS →M
coordinate projections are measurable. This way a · → MS function is measurable if and
only if each coordinate function is measurable. First we define the notion of factor maps.

Definition 2.1. Let M1,M2 be measurable spaces and S1, S2 countable sets with a group
Γ acting on both. A measurable mapping F : MS1

1 → MS2
2 is said to be a Γ-factor if it is

Γ-equivariant, that is, it commutes with the Γ-actions.
Whenever Γ acts transitively on S2, F is determined by the function f = πo ◦F : MS1

1 →
M2, where πo : MS2

2 → M2 is the projection corresponding to some distinguished element
o ∈ S2. There is a one-to-one correspondence between measurable Γ-equivariant mappings
F : MS1

1 → MS2
2 and measurable functions f : MS1

1 → M2 that are invariant under the
stabilizer of o.

Next we explain what we mean by processes on MS.

Definition 2.2. A probability measure on MS that is invariant under the Γ-action is
called an invariant process. The simplest examples are i.i.d. processes : take a probability
measure µ on M and consider the product measure ν = µS on MS. (The Γ-action on
(MS, µS) is often called the generalized Bernoulli shift.) Given an i.i.d. process ν on MS1

1

and a Γ-factor F : MS1
1 → MS2

2 , the push-forward measure F∗ν is also Γ-invariant. Such
processes are called factors of the i.i.d. process ν.

Sometimes we will think of an invariant process ν on MS as an MS-valued random
variable (whose distribution is ν), or as a collection of M -valued random variables (whose
joint distribution is ν). For example, if Zs, s ∈ S1 are independent, M1-valued random
variables with some common distribution µ, then Z = (Zs)s∈S1

is an i.i.d. process on MS1
1 .

Given a Γ-factor F : MS1
1 → MS2

2 , X ..= F (Z) is a factor of the i.i.d. process Z. Then X
is a collection (Xs)s∈S2

of M2-valued random variables. They can be expressed using the
corresponding f as well: clearly Xo = f(Z), and it is also easy to see that Xs = f(γ · Z),
where γ ∈ Γ is an arbitrary group element taking o to s.

2.2. Factors on Td. In this paper we mainly consider the case when Γ is the automorphism
group Aut(Td) of the d-regular infinite tree Td (d ≥ 3) and S is either the vertex set V (Td)
or the directed edge set E(Td). The latter consists of the ordered pairs (u, v), where
u, v ∈ V (Td) are neighbors. For a directed edge e = (u, v), the inverse of e is the directed
edge e−1 = (v, u).



CORRELATION BOUND FOR DISTANT PARTS OF FIID PROCESSES 5

In this setting, when we say factor of i.i.d. process, we do not need to specify which i.i.d.
process we have in mind. The reason for this is that i.i.d. processes are factors of each
other in this case. The most natural i.i.d. processes to consider would be:

ν1 : S = V (Td);M = [0, 1];µ is the Lebesgue measure,

ν2 : S = V (Td);M = {0, 1, . . . ,m− 1} for some m ≥ 2;µ is the uniform measure on M ,

ν3 : S = E(Td);M = [0, 1];µ is the Lebesgue measure,

ν4 : S = E(Td);M = {0, 1, . . . ,m− 1} for some m ≥ 2;µ is the uniform measure on M .

It is trivial that ν2 is a factor of ν1 and that ν4 is a factor of ν3. Extending the classical
example of Ornstein and Weiss [26], it was shown in [6] that ν1 is an Aut(Td)-factor of ν2.
(In [6] the author considers the case m = 2 but the same argument works for arbitrary
m ≥ 2.) Furthermore, it can be seen easily that ν2 is a factor of ν4. (Let the label of a
vertex v ∈ V (Td) be the sum of the labels of the directed edges starting at v, modulo m.)
Finally, it is possible to obtain ν3 as a factor of ν1. (We can think of the [0, 1]-label of a
vertex as d+1 independent [0, 1]-labels. For each vertex v, we order its neighbors according
to their (d+ 1)th labels. The directed edge going from v to its ith largest neighbor will get
the ith label of v.) These constructions show that the above i.i.d. processes are all factors
of each other. We will usually work with ν1.

Block factors are Aut(Td)-factors obtained using a rule f that depends only on some
finite-radius ball around the distinguished vertex o ∈ V (Td). If this radius is 0, then we
simply have Xv = ϕ(Zv), ∀v ∈ V (Td) for some measurable ϕ : M1 → M2. If this is the
case, then we say that X is a pointwise factor of Z. If Z is an i.i.d. process, then so is any
pointwise factor of Z. However, as the next example shows, there exists a factor of i.i.d.
process X that is “universal” in the sense that any factor of i.i.d. process can be obtained
as a pointwise factor of X.

Example 2.3. Let Z denote the i.i.d. process on [0, 1]V (Td) (of distibution ν1). We claim
that there exists a factor X of Z on [0, 1]V (Td) with the following properties.

(a) With probability 1 for any u, v ∈ V (Td) the values of Xu, Xv determine (in a measurable
way) the values of X along the whole path connecting u and v. In other words, for
any V ⊂ V (Td), Xv, v ∈ V determine X on the convex hull of V .

(b) Any factor X ′ of Z on some MV (Td) can be obtained as the pointwise factor of X, that
is, X ′v = ϕ(Xv),∀v ∈ V (Td) for some measurable ϕ : [0, 1]→M .

Proof. The idea is to encode the whole labelled tree in Xv. To do this with an Aut(Td)-
factor we need to do the encoding in a way that it only contains the isomorphism type of
the labelled tree rooted at v. With probability 1 the values Zv are pairwise distinct. Then
for a given configuration ω = (ωu)u∈V (Td) of pairwise disjoint labels we assign the following
sequence to any given vertex v:

( ωv︸︷︷︸
label of v

, ωv1 < . . . < ωvd︸ ︷︷ ︸
labels of the

neighbors of v
in increasing order

, ωv1,1 < . . . < ωv1,d−1︸ ︷︷ ︸
labels of the
remaining d− 1

neighbors of v1

, ωv2,1 < . . . < ωv2,d−1︸ ︷︷ ︸
labels of the
remaining d− 1

neighbors of v2

, . . .).

Finally, we apply a fixed injective measurable [0, 1]N → [0, 1] mapping (whose inverse is
also measurable) to any such sequence to get the new label αv of v.

By knowing the labels αu and αv of the vertices u and v, we know the isomorphism
type of the ω-labelled tree, and also the original labels ωu, ωv of u and v. Then to find out
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the α-label of any other vertex, it suffices to know its original ω-label. Now let n denote
the distance of u and v. Then for any integer 0 < k < n, the k-ball around u and the
(n − k)-ball around v have exactly one common vertex (the kth vertex on the u-v path).
Therefore there is one common value among the ω-labels of these two balls, the label of
the common vertex. Thus αu and αv indeed determine the ω-label and hence the α-label
of any vertex on the u-v path, which proves (a).

To see (b), recall that any factor X ′ of Z comes from a rule f : [0, 1]V (Td) → M that is
measurable and invariant under the stabilizer of o. Clearly, such an f can be obtained as
a measurable function ϕ of the α-label at o. �

We claim that Theorem 1.1 is essentially sharp for any V1, V2 ⊂ V (Td). Let X be a
process satisfying the properties (a) and (b) above, and let us pick v1 and v2 in the convex
hulls of V1 and V2 with the smallest possible distance: dist(v1, v2) = k. It follows from
(a) that Xvi is a measurable function of Xu, u ∈ Vi, and by (b) we can obtain X ′vi as a
measurable function of Xvi for any factor X ′ of Z. Thus we can choose measurable hi in
a way that corr(h1(X), h2(X)) = corr(X ′v1 , X

′
v2

) for any given factor of i.i.d. process X ′

on RV (Td). Therefore the fact that the vertex-correlation bound (1) is sharp means that
(2) is also essentially sharp. (In [4] the authors give a very simple example for which the
correlation of two vertices of distance k is of order 1/(

√
d− 1)k, which already shows that

(1) is essentially sharp, but it is clear from their proof of the bound that it actually has to
be sharp.)

2.3. Tail σ-algebras. For v ∈ V (Td) let πv : MV (Td) → M denote the natural coordinate
projection. For V ⊆ V (Td) let σ(V ) be the σ-algebra generated by the maps πv, v ∈ V .

Definition 2.4. The tail σ-algebra is defined as
⋂
r σ(V (Td)\Br), where Br stands for the

r-ball around some fixed vertex o. Clearly, the tail does not depend on the choice of o.
A σ-algebra is said to be trivial w.r.t. a probability measure if it contains only sets of

measure 0 or 1.
We say that a process has full tail if its tail is the whole σ-algebra σ(V (Td)).

It is open whether trivial tail implies factor of i.i.d. As for the reverse direction, it follows
easily from the Kolmogorov 0-1 Law that block factors have trivial tail. This is not true for
arbitrary factors, though. In [24, Proposition 2.4] it was shown that “the uniform random
perfect matching on Td” has full tail since knowing the matching outside a ball determines
it inside as well. (It had been known earlier by Lyons and Nazarov [25] that this process
is factor of i.i.d.)

In Example 2.3 we presented a factor of i.i.d. process on [0, 1]V (Td) for which σ(V ) coin-
cides with the σ of the convex hull of V for any V ⊂ V (Td). Such a process clearly has a
full tail. One could consider some other sequence of shrinking subsets of V (Td) with empty
intersection: V (Td) ⊃ V1 ⊃ V2 ⊃ . . . with

⋂
n Vn = ∅, and define another notion of tail by

considering the σ-algebra
⋂
n σ(Vn). The only case for which such a tail could be trivial for

Example 2.3 is when the convex hulls of Vn “converge to infinity”. The only such tails are
the 1-ended tails introduced in [27] under the name “one-sided tails”, see also [24, Section
2].

Definition 2.5. The 1-ended tail σ-algebra corresponding to an infinite simple path
(v0, v1, v2, . . .) is

⋂
n σ(Dn), where Dn is the set of vertices closer to vn than to vn−1.

It is easy to see that for an Aut(Td)-invariant measure on MV (Td) the 1-ended tails are
all trivial or none are trivial.
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The group Aut+(Td) of “parity-preserving” automorphisms is a subgroup of Aut(Td) of
index 2. (The vertices of Td can be partitioned into two classes based on the parity of
their distance to a fixed vertex, and an automorphism either takes each class into itself, i.e.
preserves parity, or swaps the two classes.) In [27] Pemantle showed that any Aut+(Td)-
invariant process that is ergodic has trivial 1-ended tails, which in turn implies mixing, a
weak law of large numbers, and a version of the Birkhoff Ergodic Theorem on Td.

Next we show how the 1-ended tail triviality (for the case of factor of i.i.d. processes)
follows from Theorem 1.1.

Proof of Corollary 1.2. Let A1 be an arbitrary event in the 1-ended tail and A2 ∈ σ(V2)
for some finite set V2 ⊂ V (Td). We claim that A1 and A2 are independent. To see this,
it suffices to show that the indicator functions hi ..= 1Ai

, i = 1, 2 have zero correlation.
However, for any fixed n we can apply Theorem 1.1 for V1 = Dn since h1 = 1A1 can be
considered as a measurable MDn → R function for any n. As n → ∞ the distance of Dn

and the convex hull of V2 gets arbitrarily large, so we obtain that the correlation must be
0.

Therefore A1 is independent from the σ-algebra σ(V2) for any finite subset V2 of the
vertex set. The Dynkin π-λ lemma implies that A1 is independent from the whole σ-
algebra σ(V (Td)). In particular, A1 is independent from itself, so its probability is either
0 or 1. This holds for any event in the 1-ended tail meaning that it is trivial. �

Remark 2.6. The following are equivalent for any Aut(Td)-invariant process µ on MV (Td).

(a) The 1-ended tails are trivial w.r.t. µ.
(b) Let A denote an event on MV (Td) depending only on the coordinates U ⊂ V (Td) (that

is, A = A′ ×MV (Td)\U for some measurable subset A′ of MU). Furthermore, let the
events Bn depend on the coordinates Vn. Then Bn is asymptotically independent from
A (i.e. µ(A ∩ Bn) − µ(A)µ(Bn) → 0) whenever the distance of the convex hulls of U
and Vn goes to infinity as n→∞.

The proof above essentially shows that (b) implies (a), while the proof of [27, Corollary 7]
yields the other implication.

3. Proof of the main result

Recall that T̃d−1 denotes the rooted (d−1)-ary tree: the degree of each vertex of T̃d−1 is d
except for one vertex (the root) of degree d−1 (that is, every vertex has d−1 “offsprings”).
If we delete an edge of Td, both connected components will be isomorphic to T̃d−1.

Step 1. Let V1 and V2 be subsets of V (Td) and let k denote the distance of their convex
hulls as in Theorem 1.1. This means that there exist unique vertices v1, v2 such that vi is
in the convex hull of Vi and there is a (unique) path of length k connecting v1 and v2 (we
assume k ≥ 1). If we delete the edges of this path, then Vi is contained in the connected
component of vi, which is isomorphic to T̃d−1, i = 1, 2, see Figure 1. Let us replace Vi
with its component. This way V1 and V2 get larger while k remains the same, therefore it
suffices to prove Theorem 1.1 in this case.

Step 2. So from this point on we will assume that V1 and V2 are disjoint copies of T̃d−1 in
Td, with their roots at distance k. This means that (Xv)v∈V1 and (Xv)v∈V2 can be viewed as

processes on V (T̃d−1). More precisely, we define MV (T̃d−1)-valued random variables X1, X2

by fixing graph isomorphisms Φi : V (T̃d−1) → Vi for i = 1, 2, and setting (Xi)u ..= XΦi(u)

for i = 1, 2, u ∈ V (T̃d−1). Using the Aut(Td)-invariance of X the following properties of
X1 and X2 follow easily.
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Figure 1. Step 1: we might assume that V1 and V2 are (d−1)-ary subtrees
of distance k

Claim 3.1. Both X1 and X2 are invariant under Γ̃ ..= Aut(T̃d−1). In fact, (γ1 ·X1, γ2 ·X2)
and (X1, X2) have the same joint distribution for any γ1, γ2 ∈ Γ̃. Furthermore, (X1, X2)
and (X2, X1) also have the same joint distribution.

Now let h1, h2 be as in Theorem 1.1. Then there clearly exist measurable functions

f1, f2 : MV (T̃d−1) → R such that fi(Xi) = hi(X) (i = 1, 2). According to the following
lemma we might assume that f1 and f2 are actually the same function.

Lemma 3.2. Let (A,F) be an arbitrary measurable space. Suppose that the (A,F)-valued
random variables X1, X2 are exchangeable (that is, (X1, X2) and (X2, X1) have the same
joint distribution), and that there exists a constant α ≥ 0 with the property that for any
measurable f : A→ R we have

(4)
∣∣corr

(
f(X1), f(X2)

)∣∣ ≤ α provided that f(X1) has finite variance.

Then for any measurable functions f1, f2 : A→ R

(5)
∣∣corr

(
f1(X1), f2(X2)

)∣∣ ≤ α provided that f1(X1) and f2(X2) have finite variances.

Proof. We might assume that var(f1(X1)) = var(f2(X2)) = 1. (If one of the variances is
0, then the correlation is 0 by definition and the statement of the lemma holds trivially.
Otherwise we can rescale f1 and f2 to make the variances equal to 1 without changing the
correlation.)

Since X1 and X2 are exchangeable we have cov(f1(X1), f2(X2)) = cov(f1(X2), f2(X1)).
It follows that

corr
(
f1(X1), f2(X2)

)
= cov

(
f1(X1), f2(X2)

)
=

1

4

(
cov

(
(f1 + f2)(X1), (f1 + f2)(X2)

)
− cov

(
(f1 − f2)(X1), (f1 − f2)(X2)

))
.

Using the triangle inequality and applying (4) to the function f = f1+f2 and to f = f1−f2

we obtain that∣∣corr
(
f1(X1), f2(X2)

)∣∣ ≤ α

4

(
var
(
(f1 + f2)(X1)

)
+ var

(
(f1 − f2)(X1)

))
=
α

4

(
2 var

(
f1(X1)

)
+ 2 var

(
f2(X1)

))
= α.

�
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Step 3. It remains to bound corr(f(X1), f(X2)) for any given measurable function

f : MV (T̃d−1) → R. We claim that it suffices to do this in the case when f is Γ̃ = Aut(T̃d−1)-
invariant. The idea is to “average f over the orbits of the Γ̃-action”, that is, take the
function f̄(ω) =

∫
Γ̃
f(γ · ω) dγ instead.

To make this more precise, let us consider the natural topology and the Haar measure
on Γ̃. (For u, v ∈ V (T̃d−1) let Γ̃u,v denote the set of those γ ∈ Γ̃ that take u to v. Then

the sets Γ̃u,v form a base of the topology. Furthermore, Γ̃u,v is non-empty if and only if

u and v have the same distance n from the root of T̃d−1, in which case the measure of
Γ̃u,v is 1/(d − 1)n.) By µ we will denote the common distribition of X1 and X2, so µ is a

probability measure on MV (T̃d−1). It can be seen easily that the following Γ̃×MV (T̃d−1) → R
function is measurable:

ϕ(γ, ω) ..= f(γ · ω) γ ∈ Γ̃, ω ∈MV (T̃d−1),

and that |ϕ| has finite integral. Therefore

f̄(ω) ..=

∫
Γ̃

ϕ(γ, ω) dγ =

∫
Γ̃

f(γ · ω) dγ

is defined for µ-a.e. ω ∈ MV (T̃d−1) and it is measurable. Furthermore, f̄ : MV (T̃d−1) → R is

clearly Γ̃-invariant. (To be more precise, there exists a measurable, Γ̃-invariant MV (T̃d−1) →
R function that is equal to f̄ µ-a.e.)

Although we will not need this, we mention that there is another way to define f̄ : take

the σ-algebra of Γ̃-invariant measurable sets in MV (T̃d−1) and let f̄ be the conditional
expectation of f w.r.t. this σ-algebra.

Proposition 3.3. The function f̄ has the following properties.

(a) Ef̄(Xi) = Ef(Xi),
(b) E(f̄)2(Xi) ≤ Ef 2(Xi),
(c) Ef̄(X1)f̄(X2) = Ef(X1)f(X2).

Proof. If ω is µ-random element of MV (T̃d−1), then the distribution of γ ·ω is also µ for any
fixed γ ∈ Γ̃. Using this fact and Fubini’s theorem (a) easily follows:

Ef̄(Xi) =

∫
f̄ dµ =

∫ ∫
Γ̃

f(γ · ω) dγdµ =

∫
Γ̃

∫
f(γ · ω) dµ︸ ︷︷ ︸
Ef(Xi)

dγ = Ef(Xi).

To see (b) we need to first use the Cauchy-Schwarz inequality before applying Fubini’s
theorem to ϕ2:

E(f̄)2(Xi) =

∫
(f̄)2 dµ =

∫ (∫
Γ̃

f(γ · ω) dγ

)2

dµ ≤
∫ ∫

Γ̃

f 2(γ · ω) dγdµ

=

∫
Γ̃

∫
f 2(γ · ω) dµ︸ ︷︷ ︸
Ef2(Xi)

dγ = Ef 2(Xi).

Finally, to prove (c) we use that (γ1 ·X1, γ2 ·X2) and (X1, X2) have the same joint distri-
bution for any fixed γ1, γ2 ∈ Γ̃. It follows that

Ef(γ1 ·X1)f(γ2 ·X2) = Ef(X1)f(X2).
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Integrating this equality w.r.t. dγ1dγ2 and using Fubini’s theorem once again we conclude
that Ef̄(X1)f̄(X2) = Ef(X1)f(X2). (Each time we used it, the conditions of Fubini’s
theorem were satisfied as |ϕ| and ϕ2 are measurable and have finite integrals.) �

It follows from (a) and (c) that f̄(X1) and f̄(X2) have the same covariance as f(X1) and
f(X2), while (a) and (b) imply that var f̄(Xi) ≤ var f(Xi). Consequently,∣∣corr

(
f(X1), f(X2)

)∣∣ ≤ ∣∣corr
(
f̄(X1), f̄(X2)

)∣∣ .
Therefore it suffices to bound the correlation for f̄ , that is, we might assume that f was
Γ̃-invariant in the first place.

Step 4. Whenever we have a factor of i.i.d. process Xv on MV (Td) and a measurable

Γ̃-invariant function f : MV (T̃d−1) → R, we can combine them to create a factor of i.i.d.
process Ye on RE(Td). To get Ye for a directed edge e = (u,w) we take the subtree Te
“behind” e (that is, V (Te) consists of those vertices of Td that are closer to u than to w),
and apply f to (Xv)v∈V (Te), see Figure 2. We can do this because Te is isomorphic to T̃d−1,

and Ye will be well defined since f is Γ̃-invariant. It is also easy to see that (Ye)e∈E(Td) will
be a factor of i.i.d. process.

Furthermore, Yei = f(Xi), i = 1, 2, where e1 is the directed edge starting at v1 and
“pointing towards” v2, and e2 is the directed edge starting at v2 and “pointing towards”
v1. So it remains to show that the correlation of Ye1 and Ye2 is small if the distance of e1

and e2 is large. This final step will be done in the next section, see Theorem 4.1 below.
The bound (6) clearly implies Theorem 1.1. (Note that dist(e1, e2) = k − 1 in our case.)

Figure 2. Step 4: obtaining Ye from (Xv)v∈V (Te)

4. Correlation decay for directed edges

In [4] Backhausz, Szegedy and Virág bounded the correlation of a pair of vertices for
factor of i.i.d. processes on RV (Td), see (1). The goal of this section is to prove a similar
bound but for directed edges instead of vertices, that is, for factor of i.i.d. processes on
RE(Td).

By the distance of two undirected edges e1, e2 we mean the smallest integer k for which
there exists a path containing k + 1 edges including e1 and e2, see Figure 3. As for the
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distance of directed edges, we simply forget the directions of the edges and take the distance
of the corresponding undirected edges. Equivalently,

dist ((u1, u2); (v1, v2)) ..=

{
0, if u1 = v1;u2 = v2 or u1 = v2;u2 = v1,

1 + mini,j∈{1,2} dist(ui, vj), otherwise.

Figure 3. The distance of the edges e1 and e2 in the figure is 3

Theorem 4.1. Let Y = (Ye)e∈E(Td) be a factor of i.i.d. process on RE(Td). Then

(6) |corr(Ye1 , Ye2)| ≤ (k + 1)

(
1√
d− 1

)k−1

, where k = dist(e1, e2),

provided that varYe <∞.

It would be possible to start with the vertex-correlation bound (1) and deduce a some-
what weaker version of (6) from that. This would involve some tedious calculations, how-
ever. Instead, we will apply similar ideas as in [4], where the norms of certain polynomials
of the adjacency operator were determined to obtain the bound (1). Here we will need to
work with the non-backtracking operator instead of the adjacency operator.

The key observation is that EYe1Ye2 can be expressed as an inner product on the L2

space over [0, 1]V (Td). Some kind of a non-backtracking operator can be defined on this
space, and to bound the inner product in question one needs to determine the norm of the
k-th power of this operator. This, however, can be traced back to the case of the ordinary
non-backtracking operator B on Td.

4.1. The non-backtracking operator on Td. For an undirected simple graph G let
V (G) and E(G) be the vertex set and the directed edge set of G, respectively. (We assume
that G is locally finite.) For e, e′ ∈ E(G) we write e → e′ if e = (u, v) and e′ = (v, w)
for some u, v, w ∈ V (G) with u 6= w, that is, if the head of e coincides with the tail of e′

and e′ 6= e−1. If this is the case, then we say that e is the predecessor of e′, and e′ is the
successor of e, see Figure 4.

Figure 4. e = (u, v) is the predecessor of e′ = (v, w)

By a non-backtracking walk of length k we mean a sequence of directed edges e0, e1, . . . , ek
such that ei → ei+1, i = 0, . . . , k − 1. If there exists a non-backtracking walk of length k
from e to e′, we write e→k e

′.
There is a corresponding operator on `2(E(G)) called the non-backtracking operator. It

is usually denoted by B = BG, and is defined by

(7) (Bf)(e) ..=
∑
e′→e

f(e′), f ∈ `2(E(G)), e ∈ E(G).
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For regular graphs its spectrum is closely related to that of the adjacency operator, but
the non-backtracking operator often proves to be a more efficient tool, for example in
understanding the spectral gap and expansion properties of random regular graphs [8, 15,
28]. In [1], and more recently, in [7, 21], the mixing time and the cutoff phenomenon were
examined for non-backtracking random walks.

Here we will need an estimate for the norm of the k-th power of the non-backtracking
operator in the special case of G = Td. It is known that the spectral radius of B is

√
d− 1

in this case. (See [2] for results on the non-backtracking spectrum for the universal cover
of any finite graph.) It immediately follows that

‖Bk‖ =
(√

d− 1 + o(1)
)k
,

which implies a bound
(

1+o(1)√
d−1

)k
for the correlation in Theorem 4.1. We want to prove,

however, a more explicit bound in order to get a good quantitative result in Theorem 1.1.
To this end we need to more carefully estimate the norm of Bk.

Theorem 4.2. Let B be the non-backtracking operator of Td. Then for any positive integer
k we have

‖Bk‖ ≤ (k + 1)(
√
d− 1)k+1.

We postpone the proof until Section 4.5.

4.2. Decomposition of the Koopman representation. In this section we briefly ex-
plain how the Γ-action on L2(MS, µS) can be decomposed into the sum of quasi-regular
representations of Γ. (This can be found in [20, Section 3]. See also [25, Theorem 2.1,
Corollary 2.2] and [18, Section 3.2] for the special case when S is the vertex set of a Cayley
graph.) This will help us to understand the behavior of the non-backtracking operator on
L2(MS, µS) in the next section.

A group Γ acts naturally on the left cosets of a subgroup ∆ ≤ Γ. The corresponding Γ-
action on `2(Γ/∆) is called quasi-regular representation. If ∆ is the trivial subgroup, we get
the regular representation of Γ on `2(Γ). It is easy to see that if ∆ is finite (which will always
be the case in our setting), then the quasi-regular representation is a subrepresentation of
the regular representation, see [20, Lemma 3.3].

Now let M be a measurable space and µ a probability measure on M . Suppose that the
Hilbert space L2(M,µ) has a countable orthonormal basis: g0, g1, g2, . . ., where g0 will be
assumed to be the constant 1 function. (The same would work for atomic measures µ but
with a finite orthonormal basis.) For a countable set S let ν be the product measure µS

on MS. First we construct an orthonormal basis for L2(MS, ν). By I we denote the set
of finitely supported S → {0, 1, 2, . . .} functions. For each q ∈ I we define an MS → R
function:

Wq(ω) ..=
∏
s∈S

gq(s) (ωs) for any ω = (ωs)s∈S .

Note that this is actually a finite product, since all but finitely many terms are equal to
g0 ≡ 1. According to [20, Lemma 3.1] the functions Wq, q ∈ I form an orthonormal basis
of L2(MS, ν).

Suppose that a countable group Γ acts on S. Recall that (3) defines a Γ-action on MS,
which, in turn, induces a Γ-action on L2(MS, ν):

(γ · f) (ω) ..= f
(
γ−1 · ω

)
, f ∈ L2(MS, ν), ω ∈MS, γ ∈ Γ.
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(In representation theory the Γ-action on L2(MS, ν) is called the Koopman representation.)
One can define a Γ-action on I along the same lines:

(γ · q) (s) ..= q
(
γ−1 · s

)
, q ∈ I, s ∈ S, γ ∈ Γ.

The Γ-actions on I and L2(MS, ν) are compatible in the sense that

(8) Wγ·q = γ ·Wq for any γ ∈ Γ and q ∈ I.
It follows that the Koopman representation is equivalent to the Γ-action on `2(I). Given
any q ∈ I, the subspace in `2(I) corresponding to the orbit Γ · q = {γ · q : γ ∈ Γ}
will be invariant under the Γ-action, and the restriction of the action to this subspace is
equivalent to the quasi-regular representation on `2(Γ/Γq), where Γq denotes the stabilizer
of q. It follows that the Γ-action on `2(I) is equivalent to a direct sum of quasi-regular
representations [20, Proposition 3.2].

4.3. Generalized non-backtracking operator. We will use the above observations for
the case when Γ somehow corresponds to the directed edge set E(Td) of the d-regular tree.
We claim that there exists a subgroup Γ ≤ Aut(Td) that acts sharply transitively on the
directed edges: for any pair e1, e2 of directed edges, Γ has a unique element γ taking e1

to e2. For a simple proof, draw Td in the plane and consider all graph automorphisms Φ
of Td that preserve the order and the orientation of neighbors (that is, if v ∈ V (Td) has
neighbors v1, . . . , vd in a clockwise order, then Φ(v1), . . . ,Φ(vd) should be the neighbors of
Φ(v) also in a clockwise order). Such automorphisms clearly form a subgroup of Aut(Td).
It is also easy to see that prescribing the image of a directed edge uniquely determines Φ.

In this section Γ will be a fixed subgroup with the above properties. There is a one-to-
one correspondence between Γ and E(Td): pick a fixed distinguished directed edge ē, and
for any e ∈ E(Td) let γe ∈ Γ be the unique element that takes e to ē. The next claim
describes the group elements corresponding to the predecessors and successors of e.

Claim 4.3. Let ē1, . . . , ēd−1 denote the d−1 successors of ē, that is, ē→ ēi, i = 1, . . . , d−1.
Then for any directed edge e:

(a) γēiγe, i = 1, . . . , d− 1 correspond to the successors of e;
(b) γ−1

ēi
γe, i = 1, . . . , d− 1 correspond to the predecessors of e.

Proof. Since γe is a graph automorphism taking e to ē, it follows that γe takes the successors
of e to the successors ē1, . . . , ēd−1 of ē, and by definition γēi takes ēi to ē, see Figure 5.
This proves (a). Similarly, γe takes the predecessors of e to the predecessors of ē (in some
order), and it is easy to see that for any predecessor of ē there is a unique i for which γ−1

ēi

takes that predecessor to ē, which clearly proves (b). �

Using the automorphisms γēi we can define some kind of a non-backtracking operator
B = BΩ on L2(Ω, ν) for any Ω with a Γ-action:

(9) Bf ..=
d−1∑
i=1

γēi · f.

If Ω is Γ itself (with the natural action and ν being the counting measure), then
L2(Ω, ν) = `2(Γ), and using (b) in the above claim we get

(Bf)(γe) =
d−1∑
i=1

f(γ−1
ēi
γe) =

∑
e′→e

f(γe′),
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Figure 5. Successors and predecessors of e

which means that in this case B is unitarily equivalent to the ordinary non-backtracking
operator B on `2(E(Td)), recall (7).

As for the case when Ω is Γ/∆ for some finite subgroup ∆ ≤ Γ, we saw in the previous sec-
tion that the Γ-action on `2(Γ/∆) will be a subrepresentation of the regular representation
on `2(Γ), therefore B will be unitarily equivalent to B|H , where B is the non-backtracking
operator of Td and H is some invariant subspace of `2(E(Td)).

Now let Ω be MS with ν being some product measure µS for a countable set S with a
Γ-action. The only additional assumption we will need is that the stabilizer of any s ∈ S
is finite.

Let I be as in the previous section. We have seen that there is an isometry between
L2(MS, ν) and `2(I) that preserves the Γ-action. For 0 ≡ q0 ∈ I, the orbit of q0 has only
one element (hence the stabilizer Γq0 is the whole group Γ). The corresponding invariant
subspace in L2(MS, ν) is the space of constant functions. Let us focus on the restriction B0

of the non-backtracking operator B to the orthogonal complement of the constant functions:

L2
0(MS, ν) ..=

{
f ∈ L2(MS, ν) :

∫
f dν = 0

}
.

For any other q0 6= q ∈ I the stabilizer Γq is finite. It follows from the previous discussion
that B0 is unitarily equivalent to the direct sum of restrictions of B to various invariant
subspaces. Therefore we have the same bound for ‖Bk0‖ as we had for ‖Bk‖ in Theorem
4.2.

We will also need the following formula for Bk which is an immediate consequence of
part (a) of Claim 4.3 and the definition (9) of B:

(10) Bkf =
∑
ē→ke

γe · f.

4.4. Edge correlations. Now we turn to the proof of Theorem 4.1. Let Γ still denote
a subgroup of Aut(Td) that acts sharply transitively on the directed edge set E(Td). Set
M = [0, 1] with µ being the Lebesgue measure, and S = V (Td). (In fact, we can work
with arbitrary M,µ, and any S with an Aut(Td)-action on it such that the stabilizer of
any element intersected with Γ is finite.)
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Let F : MS → RE(Td) be an Aut(Td)-factor. Then for an i.i.d. process Z on MS, F (Z) =
Y = (Ye)e∈E(Td) will be a factor of i.i.d. process on RE(Td).

Let πe : RE(Td) → R denote the coordinate projection corresponding to e ∈ E(Td). Recall
that ē is a fixed distinguished directed edge and that γe ∈ Γ takes e to ē. As we saw in
Section 2, the rule f ..= πē ◦ F determines F . Straightforward calculation shows that

γe · f = πe ◦ F implying that Ye = (γe · f)(Z).

Combining this with (10) we get that(
Bkf

)
(Z) =

∑
ē→ke

Ye.

The assumption in Theorem 4.1 that the variance of Ye is finite is equivalent to f being in
L2(M s, ν). Then varYe = ‖f‖2

2 for each e ∈ E(Td). Also, since adding a constant does not
change the correlation, we might assume that EYe = 0, which means that f ∈ L2

0(M s, ν).
Then 〈

f,Bkf
〉

= Ef(Z)(Bkf)(Z) = EYē

(∑
ē→ke

Ye

)
=
∑
ē→ke

EYēYe.

Since Y is Aut(Td)-invariant, EYe1Ye2 is the same for any edges e1 →k e2 (that is, any
edges e1, e2 of distance k and “pointing to the same direction”). Therefore the sum on the
right-hand side is actually equal to (d− 1)kEYe1Ye2 = (d− 1)k cov(Ye1 , Ye2). Using this and
the fact that ‖Bk0‖ ≤ ‖Bk‖ (see the previous section), as well as the bound for ‖Bk‖ in
Theorem 4.2 we obtain that

(d− 1)k |cov (Ye1 , Ye2)| =
∣∣〈f,Bkf〉∣∣ ≤ ‖f‖2 · ‖Bkf‖2 ≤ ‖Bk0‖2 · ‖f‖2

2

≤ (k + 1)(
√
d− 1)k+1

√
var(Ye1) var(Ye2).

Therefore Theorem 4.1 follows for the case when e1 and e2 point to the same direction. As
for the case when they point away from or towards each other, we need to do the same for
the scalar product

〈
γ · f,Bkf

〉
and

〈
f,Bk(γ · f)

〉
, respectively, where γ ∈ Γ is the unique

element that flips ē (that is, takes ē to its inverse). Since f 7→ γ · f is a unitary operator
for any fixed γ, we get the same bound for these scalar products as well.

4.5. The norms of the powers of the non-backtracking operator. In this section we
give a proof for Theorem 4.2. We will follow the arguments presented in [2, Theorem 4.2]
where they bounded the spectral radius of the non-backtracking operator on an arbitrary
tree without leaves.

The norm ‖Bk‖ can be computed as

‖Bk‖ = sup
‖f‖=‖g‖=1

〈Bkf, g〉,

where ‖.‖ and 〈., .〉 denote the standard norm and inner product on `2(E(G)). Let us
expand this inner product using the definition of B.

〈Bkf, g〉 =
∑
e

(Bkf)(e)g(e) =
∑
e′→ke

f(e′)g(e) ≤
∑
e′→ke

|f(e′)g(e)|

≤
∑
e′→ke

1

2

(
1

αe,e′
f 2(e′) + αe,e′g

2(e)

)
.



16 BACKHAUSZ, GERENCSÉR, HARANGI, AND VIZER

The last bound is based on the inequality of arithmetic and geometric means. Note that
there is freedom in choosing the positive constants αe,e′ individually for every pair e′→ke,
which we will discuss later. We may collect the terms f 2(e′) and g2(e) together:

(11)

〈Bkf, g〉 ≤ 1

2

∑
e′

(∑
e′→ke

1

αe,e′

)
f 2(e′) +

1

2

∑
e

(∑
e′→ke

αe,e′

)
g2(e)

≤ 1

2
sup
e′

(∑
e′→ke

1

αe,e′

)
‖f‖2 +

1

2
sup
e

(∑
e′→ke

αe,e′

)
‖g‖2.

Our goal now is to choose αe,e′ in a way that the above suprema are as small as possible.
To this end we fix a root o in Td and define the “spheres” around this root as

Vi ..= {v ∈ V | d(v, o) = i} .

Similarly, we can partition the edges based on their distance from the root:

Hi
..= {e = (u, v) | u ∈ Vi−1, v ∈ Vi} ∪ {e = (u, v) | u ∈ Vi, v ∈ Vi−1} .

This allows us to define the height of an edge as

h(e) ..= i, if e ∈ Hi.

Finally, we set

αe,e′ ..=

(
1√
d− 1

)h(e′)−h(e)

.

Next we compute what bounds we get for the suprema above.

Claim 4.4. For any e′ ∈ E(G) we have∑
e′→ke

1

αe,e′
< (k + 1)

√
d− 1

k+1

Proof. We need to browse through all the different configurations of e and e′.
If e′ is directed away from the root, then all the edges e reached in k steps will be k

levels above e′. Indeed, there is no possibility to turn back as these are non-backtracking
paths. This way we reach (d− 1)k different edges, and we get∑

e′→ke

1

αe,e′
= (d− 1)k

(
1√
d− 1

)k
=
√
d− 1

k
.

Let us now check an edge e′ which is pointing towards the root. First we assume that
h(e′) > k. The edges e reached can be either found going all the way down, or taking
l = 0, 1, . . . , k − 1 steps down and then turning up for another k − l steps.

When going simply downwards, there is one such e to reach, with a height decrease of
k, thus contributing to the sum by

√
d− 1

k

When turning back after l steps, we reach (d−2)(d−1)k−l−1 edges, and the height increase
is −l + (k − l − 1) = k − 1− 2l. The overall contribution for this l is

(d− 2)(d− 1)k−l−1

(
1√
d− 1

)k−1−2l

= (d− 2)
√
d− 1

k−1
<
√
d− 1

k+1
.
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This bound is valid for all l separately, therefore combining the contributions of all the
cases (going all the way down or turning back after l = 0, 1, . . . , k − 1 steps) we get∑

e′→ke

1

αe,e′
< (k + 1)

√
d− 1

k+1
.

The only case remaining is when e′ is pointing towards the root, but h(e′) ≤ k. It is easy
to verify that the above method works again, but some values of l are excluded, and once
the intermediate (d − 2) factor increases to (d − 1). Nevertheless, the same final bound
holds.

We checked all the cases for e, e′ and confirmed the stated bound for every possibility. �

Claim 4.5. For any e′ ∈ E(G) we have∑
e′→ke

αe,e′ < (k + 1)
√
d− 1

k+1

Proof. Basically the same proof works as in Claim 4.4, only a small adjustment needs to
be made due to the change of orientations. �

Plugging the bounds from Claim 4.4 and 4.5 into (11) we get

〈Bkf, g〉 ≤ 1

2
(k + 1)

√
d− 1

k+1‖f‖2 +
1

2
(k + 1)

√
d− 1

k+1‖g‖2

= (k + 1)
√
d− 1

k+1
,

and this is exactly the bound we were aiming for.
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