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Abstract. This paper is concerned with factor of i.i.d. processes on the d-regular tree for
d > 2. We study the mutual information of the values on two given vertices. If the vertices
are neighbors (i.e., their distance is 1), then a known inequality between the entropy of a
vertex and the entropy of an edge provides an upper bound for the (normalized) mutual
information. In this paper we obtain upper bounds for vertices at an arbitrary distance k,
of order (d− 1)−k/2. Although these bounds are sharp, we also show that an interesting
phenomenon occurs here: for any fixed process the rate of decay of the mutual information
is much faster, essentially of order (d− 1)−k.

1. Introduction

For an integer d > 2 let Td denote the d-regular tree: the (infinite) connected graph with
no cycles and with each vertex having exactly d neighbors.

This paper deals with factor of i.i.d. processes on Td. Loosely speaking, independent
and identically distributed (say [0, 1] uniform) random labels are assigned to the vertices
of Td, then each vertex gets a new label that depends on the labeled rooted graph as seen
from that vertex, all vertices “using the same rule”.

For a formal definition, let V (Td) denote the vertex set and Aut(Td) the automorphism
group of Td. Suppose that M is a measurable space. (In most cases M will be either
a discrete set or R.) A measurable function F : [0, 1]V (Td) → MV (Td) is said to be an
Aut(Td)-factor (or factor in short) if it is Aut(Td)-equivariant, that is, it commutes with
the natural Aut(Td)-actions. Given an i.i.d. process Z = (Zv)v∈V (Td) on [0, 1]V (Td), applying

F yields a factor of i.i.d. process X = F (Z), which can be viewed as a collection X =
(Xv)v∈V (Td) of M -valued random variables. It follows immediately from the definition that

the distribution of X is invariant under the action of Aut(Td); in particular, each Xv has
the same distribution.

One of the reasons why factor of i.i.d. processes have attracted a growing attention in
recent years is that they give rise to some sort of randomized local algorithms that can be
carried out on arbitrary regular graphs with “large essential girth”, e.g. random regular
graphs. (See [9, 10, 11, 12] how factors of i.i.d./local algorithms can be used to obtain
large independent sets on large-girth graphs.) Factors of i.i.d. are also studied by ergodic
theory (under the name of factors of Bernoulli shifts), see Section 2 for details.

The starting point of our investigations is the following entropy inequality which holds
for any factor of i.i.d. process with a finite state space M :

(1) H( ) ≥ 2(d− 1)

d
H( ).
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Here represents a vertex, andH( ) is the (Shannon) entropy of the discrete random variable
Xv for any vertex v. Similarly, represents an edge, and H( ) stands for the entropy of
the joint distribution (Xu, Xv) for any edge uv. (Because of the Aut(Td)-invariance the
distribution of every edge/vertex is the same.) Entropy inequalities played a central role in
a couple of remarkable results recently: the Rahman-Virág result [15] about the maximal
size of a factor of i.i.d. independent set on Td and the Backhausz-Szegedy result [3] on
eigenvectors of random regular graphs.

The inequality (1) can also be expressed as an upper bound for the mutual information
of two neighboring vertices u and v:

(2)
I(Xu, Xv)

H(Xv)
≤ 2

d
.

Recall that the mutual information I(Xu, Xv) is defined as H(Xu) + H(Xv)−H(Xu, Xv)
and can be viewed as (the expected value of) the information gained about one of the
random variables knowing the other one. In our case the random variables are identically
distributed, therefore they have the same entropy H(Xu) = H(Xv). Dividing the mutual
information by this entropy gives some sort of normalized mutual information which mea-
sures the amount of shared information proportional to the total amount of information.
This ratio is always between 0 and 1, and being close to 0 intuitively means that the ran-
dom variables are “almost independent”. (It is actually natural to normalize the mutual
information this way: if we take a tuple of independent copies of a factor of i.i.d. process,
which is also a factor of i.i.d., then both the entropy of a vertex and the mutual information
get multiplied by the same number.)

A natural question arises: what can be said about the mutual information of two vertices
u and v at distance k? One expects that the mutual information tends to 0 as the distance
grows. But what is the rate of decay? We get very different answers depending on how
the question is posed exactly.

First let us consider the problem for a fixed k ≥ 1, that is, we look for a “universal”
upper bound for the normalized mutual information I(Xu, Xv)/H(Xv) that holds for any
factor of i.i.d. process with a finite state space M . The following bounds are obtained.

Theorem 1. Let d > 2 be an even integer and M a finite state space. For any u, v ∈ V (Td)
at distance k and for any factor of i.i.d. process X on MV (Td) we have

(3)
I(Xu, Xv)

H(Xv)
≤

{
2

d(d−1)l
if k = 2l + 1 is odd,

1
(d−1)l

if k = 2l is even,

These bounds are the best possible in the sense that for any fixed k there exist factor of
i.i.d. processes for which the normalized mutual information tends to the bound above.

The assumption of d being even is only technical. The statement is true for odd d as
well but for the sake of simplicity we only prove it for even d in this paper; see Remark
3.2.

According to the above theorem, the normalized mutual information for distance k is
(at most) of order (1/

√
d− 1)k, and this is sharp. However, it turns out that there does

not exist a single factor of i.i.d. process that would show the sharpness of the bound for all
k at once. In fact, for any fixed process the mutual information decays at a much faster
rate, basically of order 1/(d− 1)k.
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Theorem 2. Let d > 2 be any integer and M a finite state space. If X = (Xv)v∈V (Td) is a

factor of i.i.d. process on MV (Td), then

(4) I(Xu, Xv) ≤
|M |(k + 1)2

(d− 1)k
.

where |M | denotes the cardinality of M (number of states).

This bound is essentially sharp, see Example 5.4.

Motivation. Our motivation to study this problem is multi-fold. On the one hand, many
aspects of independence in factors of i.i.d. have been studied earlier (e.g. correlation for
real-valued processes or triviality of various tail σ-algebras). Our goal was to get a quan-
titative result about how much independence these processes exhibit when M is finite.
Mutual information has the advantage over correlation that the latter only detects linear
dependence. On the other hand, we aimed to obtain new entropy inequalities. The edge-
vertex inequality (and its “blow-ups”) have a number of applications already. Theorem 1
is a generalization of this inequality, and as such we hope it proves to be a useful tool.

Proof methods. For even d the d-regular tree Td can be considered as the Cayley graph
of the free group Fr of rank r = d/2. The free group Fr acts on its Cayley graph Td
via automorphisms. Loosely speaking, Fr is a subgroup of Aut(Td). There is a version
of the edge-vertex entropy inequality (1) for Fr-factors of i.i.d. processes (see Section 2
for details). This (more general) version follows from the work of Lewis Bowen on the f -
invariant [7]. The idea is to use this version for certain subgroups of Fr. To prove Theorem
1 for a given k we will need to find a subgroup (of maximal rank) with the property that
it can be generated freely by elements of length k.

Theorem 2 will be deduced from the correlation decay result of Backhausz, Szegedy and
Virág [4], which says that for a real-valued factor of i.i.d. process (M = R) the correlation
of two vertices u and v at distance k is (at most) of order 1/(

√
d− 1)k. In the case of a finite

state space M , by assigning a real number to each state we can replace our original process
with a real-valued one. Consequently, for any assignment M → R the correlation bound
tells us something about the joint distribution of Xu and Xv (for the original process).
The idea is to try to find suitable assignments that yield a good bound on the mutual
information of Xu and Xv.

Outline of the paper. The rest of the paper is structured as follows. In Section 2 we go
through basic definitions and explain the more general entropy inequality we will need to
prove the universal bound. The proofs of Theorem 1 and 2 are given in Section 3 and 4,
respectively. Finally, in Section 5 we present examples showing that the above theorems
are (essentially) sharp.

Acknowledgments. We are grateful to Ágnes Backhausz, Balázs Szegedy, Bálint Virág
and Máté Vizer for fruitful discussions on the topic.

2. Preliminaries

2.1. Factors of i.i.d. Although the results of this paper concern Aut(Td)-factors, we will
need to use the notion of factors in a more general setting. Suppose that a group Γ acts
on a countable set S. Then Γ also acts on the space MS for a set M : for any function
f : S →M and for any γ ∈ Γ let

(5) (γ · f)(s) ..= f(γ−1 · s) ∀s ∈ S.
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First we define the notion of factor maps.

Definition 2.1. Let M1,M2 be measurable spaces and S1, S2 countable sets with a group
Γ acting on both. A measurable mapping F : MS1

1 → MS2
2 is said to be a Γ-factor if it is

Γ-equivariant, that is, it commutes with the Γ-actions.

By an invariant process on MS we mean an MS-valued random variable (or a collection
of M -valued random variables) whose (joint) distribution is invariant under the Γ-action.
For example, if Zs, s ∈ S1, are independent and identically distributed M1-valued random
variables, then we say that Z = (Zs)s∈S1

is an i.i.d. process on MS1
1 . Given a Γ-factor

F : MS1
1 → MS2

2 , X ..= F (Z) is a factor of the i.i.d. process Z. It can be regarded as a
collection of M2-valued random variables: X = (Xs)s∈S2

.
In fact, all this can be viewed in the context of ergodic theory. An invariant process in

the above sense gives rise to a dynamical system over Γ: the group Γ acts by measure-
preserving transformations on the measurable space MS equipped with a probability mea-
sure (the distribution of the invariant process). An i.i.d. process simply corresponds to a
(generalized) Bernoulli shift. Therefore factor of i.i.d. processes are essentially factors of
Bernoulli shifts. Classical ergodic theory (Z-factors) have the largest literature and the
most complete theory but Γ-factors have also been thoroughly investigated for general Γ.

For amenable group actions (the Kolmogorov-Sinai) entropy serves as a complete in-
variant (for isomorphism of Bernoulli shifts). As for the nonamenable case, Ornstein and
Weiss asked whether all Bernoulli shifts are isomorphic over a nonamenable group [13].
This remained open until the breakthrough results of Lewis Bowen: he answered the ques-
tion negatively by introducing the f -invariant for free group actions [6] and the Σ-entropy
for actions of sofic groups [8]. In another paper he showed that the f -invariant is essen-
tially a special case of the Σ-entropy which has the consequence that the f -invariant is
non-negative for factors of the Bernoulli shift [7, Corollary 1.8]. We will need this fact in
the form of an entropy inequality, see (6) below.

2.2. Factors on Td. The main results of this paper (Theorem 1 and 2) are concerned with
factor of i.i.d. processes on Td. This corresponds to the case when Γ is the automorphism
group Aut(Td) of the d-regular infinite tree Td and S is the vertex set V (Td).

When we say factor of i.i.d. process, we should also specify which i.i.d. process we have
in mind (that is, specify M1 and a probability distribution on it). By default we will work
with the uniform [0, 1] measure (i.e., the Lebesgue measure on [0, 1]). In fact, as far as
the class of factor processes is concerned, it does not really matter which i.i.d. process we
consider. For example, for {0, 1} with the uniform distribution we get the same class of
factors as for the uniform [0, 1] measure. This follows from the fact that these two i.i.d.
processes are Aut(Td)-factors of each other [5].

Note that a factor of i.i.d. process X on Td is Aut(Td)-invariant. Therefore each Xv has
the same distribution. Moreover, the joint distribution of Xu and Xv (and hence their
correlation or mutual information) depends only on the distance between u and v.

As we mentioned in the introduction, factor of i.i.d. processes satisfy the edge-vertex
entropy inequality (1). As we will see later, this inequality can be found implicitly in
Lewis Bowen’s work from 2009. Rahman and Virág proved it in a special setting for
their result on factor of i.i.d. independent sets [15]. A full and concise proof was given by
Backhausz and Szegedy in [2]; see also [14].

The proof in [2] actually works for a broader class of Aut(Td)-invariant processes that
the authors coined typical processes. Loosely speaking, typical processes arise as limits of
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labelings of random d-regular graphs. Their significance lies in the fact that many questions
about random regular graphs can be studied through typical processes.

2.3. Fr-factors. The other case that will be of particular interest for us is when Γ = Fr.
We can set S = Γ = Fr and consider the natural action of Fr on itself. Similarly as
for Aut(Td)-factors, we use the uniform [0, 1] measure for the i.i.d. process. Using other
measures would result in the same class of factor processes.

This is actually a broader class than the class of Aut(Td)-factors (for d = 2r). If d = 2r,
we can think of Td as the Cayley graph of Fr with respect to a symmetric generating set
{a±1

1 , . . . , a±1
r }. That is, V (Td) = Fr and a vertex g is incident to vertices of the form

ga±1
i . Then Fr acts on V (Td) = Fr (from the left) via automorphisms of this Cayley graph.

So, loosely speaking, Fr ≤ Aut(Td), and being Aut(Td)-equivariant is a stronger condition
than being Fr-equivariant. In other words, every Aut(Td)-factor is an Fr-factor as well.

For a general Fr-factor of i.i.d. we only have Fr-invariance (but not necessarily Aut(Td)-
invariance). It is still true that each Xg has the same distribution. As for the distribution
of edges, however, (Xg, Xga±1

i
) might have different distributions for different a±1

i .

The following entropy inequality, which plays a central role in our proof of Theorem
1, easily follows from the fact that the f -invariant of a factor of a Bernoulli shift is non-
negative [7].

Theorem 2.2. Let Γ = 〈a1, . . . , ar〉 be a free group of rank r ≥ 2. If X = (Xg)g∈Γ is a

Γ-factor of the i.i.d. process on [0, 1]Γ, then for a fixed g ∈ Γ we have

(6)
1

r

r∑
i=1

H(Xg, Xgai) ≥
2r − 1

r
H(Xg),

or equivalently:

(7)
1

r

r∑
i=1

I(Xg, Xgai)

H(Xg)
≤ 1

r
.

Remark 2.3. This is more general than the edge-vertex entropy inequality (1) for Aut(Td)-
factors. Indeed, given an Aut(Td)-factor, it is also an Fr-factor, but with the extra property
that the distributions of edges are the same.

3. The universal bound

Our goal is to apply the entropy inequality (6–7) for subgroups of Fr (which are them-
selves free groups). To obtain a result about vertices at distance k in Td we need a subgroup
that is generated by elements of length k. The higher the rank of our subgroup, the better
inequality we get. Therefore we need to find as many elements of length k as possible such
that they freely generate a subgroup. (When we have the maximal possible number of
elements, the generated subgroup will have finite index.)

Lemma 3.1. Let Fr be the free group of rank r. Fix r generating elements a1, . . . , ar and
the corresponding word metric. Then for any positive integer k there exists a subgroup
H ≤ Fr with the following properties:

• H is generated freely by elements of length k (in the word metric);
• the rank of H is (2r − 1)l for even k = 2l and r(2r − 1)l for odd k = 2l + 1;
• H has finite index.

Before we prove this lemma, let us show how Theorem 1 follows.
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Proof of Theorem 1. Let M be a finite set and F be any Aut(Td)-factor [0, 1]V (Td) →
MV (Td). For d = 2r we can think of Td as the Cayley graph of Fr with respect to a
symmetric generating set {a±1

1 , . . . , a±1
r }. That is, V (Td) = Fr and a vertex g is incident

to vertices of the form ga±1
i .

Now let H be a subgroup of Fr, and πH denote the projection MFr → MH . We have
the following situation:

(8) [0, 1]H −→ [0, 1]Fr F−→MFr
πH−→MH ,

where the first mapping is as in the next claim.

Claim. Let us equip the spaces [0, 1]H and [0, 1]Fr with the product of uniform [0, 1] mea-
sures. Then there exists a [0, 1]H → [0, 1]Fr mapping that is measure-preserving and H-
equivariant.

Proof. Fix a set T that contains exactly one element of each right H-coset. Let us start
with independent uniform [0, 1] labels associated to the elements of H. For any h ∈ H the
label of h can be “decomposed” into countably many independent random bits (uniform
0-1). We can partition these bits into |T | classes, each class containing countably many
bits. (Note that this can be done even if |T | is (countably) infinite so H does not need to
have finite index.) This way each vertex ht, t ∈ T inherits countably many bits from h.
These bits can be “pieced together” into a real number between 0 and 1. Hence we get
independent uniform [0, 1] labels for all elements in Fr.

The above procedure describes a measure-preserving [0, 1]H → [0, 1]Fr mapping. This
mapping will commute with the H-action provided that we use the same partitioning of
the bits for each h. �

It follows that all three mappings in (8) are H-equivariant meaning that their composi-
tion is actually an H-factor mapping.

Now let X = (Xv)v∈V (Td) be a factor of i.i.d. process on Td. In light of the above, if we
“restrict” X to the vertices corresponding to the subgroup H, then we get an H-factor of
i.i.d. process: (Xh)h∈H . Now let k be a positive integer and choose H as in Lemma 3.1. The
rank r′ of H is (2r− 1)l for even k = 2l and r(2r− 1)l for odd k = 2l+ 1. The lemma says
that H has a free generating set containing elements of length k (w.r.t. the word metric of
Fr). Let us apply (7) to H and this generating set. Then for any h ∈ H and any generator
s, the vertices h and hs have distance k (in the graph metric of Td). Then, because of
the Aut(Td)-invariance of X, the normalized mutual information I(Xh, Xhs)/H(Xh) is the
same for all h and s. Therefore in our case the average on the left-hand side of (7) is
simply equal to I(Xu, Xv)/H(Xv) for any u, v ∈ V (Td) with dist(u, v) = k, and Theorem
1 follows. (The sharpness will be shown in Section 5.) �

Remark 3.2. To obtain Theorem 1 for an arbitrary integer d > 2 one could prove a version
of the entropy inequality (6) for the free product Z2 ∗ · · · ∗ Z2︸ ︷︷ ︸

d

instead of Fr = Z ∗ · · · ∗ Z︸ ︷︷ ︸
r

.

Finally, we prove Lemma 3.1.

Proof of Lemma 3.1. Let A denote the set {a±1
1 , . . . , a±1

r }. We will refer to the elements
of A as letters. Every element of Fr can be written as a product of these letters. If we
perform all possible cancellations in such a “word”, then we end up with the reduced form
of the word. The norm of a group element w.r.t. the word metric is defined as the length
of this reduced form.
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We start with the odd case k = 2l + 1. A word is called a palindrome if it reads the
same backward as forward. Let us consider the following set of generators:

S ..= {s ∈ Fr : the reduced form of s is a palindrome and has length 2l + 1} .
That is, elements of S are in the form b1 · · · blbl+1bl · · · b1, where bi ∈ A and bi+1 6= b−1

i .
The number of such elements is clearly 2r(2r − 1)l.

Note that S = S−1. Therefore there exists S0 ⊂ S such that S = S0 ∪ S−1
0 and

|S0| = |S|/2 = r(2r−1)l. We will see that S0 is a free generating set of a subgroup H ≤ Fr
that has all the required properties.

The following is obvious by induction.

Claim. Let s1, . . . , sn ∈ S such that si+1 6= s−1
i for each i. Then the reduced form of the

product s1 · · · sn has length at least 2l+ n and its last l+ 1 letters are the same as those of
sn.

In particular, the product s1 · · · sn cannot be the unit element of Fr. Therefore S0 freely
generates some subgroup H ≤ Fr, the rank of which is, obviously, |S0| = r(2r − 1)l.

In fact, H has finite index. (We do not need this property in this paper.) This follows
from the following observation. Let T ⊂ Fr denote the set of elements of length at most
l. Then it is easy to see that every element of Fr can be (uniquely) written in the form
s1 · · · snt, where t ∈ T , si ∈ S and si+1 6= s−1

i .
The even case k = 2l is slightly more complicated. We give a sketch of the proof. It is

an easy exercise that for l = 1 the set

B ..=
{
a2

1

}
∪ {a1ai : 2 ≤ i ≤ r} ∪ {aia1 : 2 ≤ i ≤ r}

is a free generating set (of size 2r − 1) of the subgroup consisting of all elements of even
length. This subgroup has index 2.

For l ≥ 2 we will need to “nest” the 2r − 1 elements of B in palindrome-like words of
length 2l. First we define the mappings ϕj : A → A: for j ∈ {0, 1, . . . , r − 1} let ϕj shift
the indices by j, that is, ϕ(a±1

i ) ..= a±1
i+j. (The addition in the index is meant modulo r.)

We will consider words of the following form:

b1b2 · · · blϕj(bl) · · ·ϕj(b2)ϕj(b1), where bi ∈ A; bi+1 6= b−1
i ; j ∈ {0, 1, . . . , r − 1}.

All these words have length 2l but we will need only those for which at least one of the
two letters in the middle is a1 (i.e., blϕj(bl) ∈ B). To compute the number of such words
first we choose the two letters in the middle (|B| = 2r − 1 possibilities), then we choose
bl−1, . . . , b2, b1 one by one (2r−1 possibilities for each). In total, (2r−1)l possibilities. We
claim that the set S0 of these (2r − 1)l words of length 2l freely generates a finite-index
subgroup.

The rigorous proof requires a straightforward but somewhat meticulous analysis that we
omit here. The point is that given a product of elements from S ..= S0 ∪ S−1

0 , the length
of the reduced form never decreases if an element is added to the end of the product. �

4. The rate of decay for a fixed process

We will need three ingredients to prove Theorem 2. The first one is a bound for the
correlation of a pair of vertices for factor of i.i.d. processes on RV (Td), which was proved by
Backhausz, Szegedy and Virág in [4]:

(9) |corr(Xu, Xv)| ≤
(
k + 1− 2k

d

)(
1√
d− 1

)k
, where k = dist(u, v),
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that is, the rate of the correlation decay is essentially 1/(
√
d− 1)k. (Here it is assumed

that varXv <∞.)
Now suppose we have a finite state space M and a factor of i.i.d. process on MV (Td).

How can we make use of the above result in this case? Taking any function f : M → R
we can replace each Xv with f(Xv) to get a factor of i.i.d. on RV (Td) so that (9) can be
applied. The second ingredient is the next lemma from [1] which tells us that the same
bound holds if we take different real-valued functions of Xu and Xv.

Lemma 4.1. Let (A,F) be an arbitrary measurable space. Suppose that the (A,F)-valued
random variables X1, X2 are exchangeable (that is, (X1, X2) and (X2, X1) have the same
joint distribution), and that there exists a constant α ≥ 0 with the property that for any
measurable f : A→ R we have

(10)
∣∣corr

(
f(X1), f(X2)

)∣∣ ≤ α provided that f(X1) has finite variance.

Then for any measurable functions f1, f2 : A→ R

(11)
∣∣corr

(
f1(X1), f2(X2)

)∣∣ ≤ α provided that f1(X1) and f2(X2) have finite variances.

Proof. The complete proof can be found in [1, Lemma 3.2] but we include a sketch
here for the sake of completeness. After rescaling we might assume that var(f1(X1)) =
var(f2(X2)) = 1. If we apply (10) to the function f = f1 + f2 and also to f = f1 − f2, we
reach (11) after a short and simple calculation. Note that the exchangeability of X1 and
X2 implies cov(f1(X1), f2(X2)) = cov(f1(X2), f2(X1)). �

The final ingredient is the following lemma linking correlation to mutual information.

Lemma 4.2. Let X, Y be discrete random variables. Suppose that there exists a real
number α ≥ 0 such that for any (real-valued) functions f(X) and g(Y ) of X and Y it
holds that

∣∣corr
(
f(X), g(Y )

)∣∣ ≤ α. Then we have

I(X, Y ) = H(X)−H(X|Y ) ≤ (m− 1)α2,

where m denotes the number of values X can take.

Note that in some cases the conditional entropy H(X|Y ) can be defined even when Y
is not discrete. The proof below works in those cases as well.

Proof. Let A be an event that depends on X, that is, 1A = f(X) for some function f . We
denote the probability P(A) by p and we set

gA(y) ..= P(A|Y = y)− P(A) = P(A|Y = y)− p.

Clearly, EgA(Y ) = 0, and it is also easy to see that

corr
(
f(X), gA(Y )

)
=

√
EgA(Y )2√
p(1− p)

.

It follows that

(12) EgA(Y )2 ≤ α2p(1− p).

Now let us assume that X takes the value xi with probability pi for 1 ≤ i ≤ m. We will
need to use the above inequality for each event Ai = 1{X=xi}, 1 ≤ i ≤ m. We write gi for
the corresponding function gAi

.
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The mutual information of X conditioned on Y can be expressed as follows:

−H(X|Y ) = E
m∑
i=1

(pi + gi(Y )) log(pi + gi(Y ))︸ ︷︷ ︸
log(pi)+log

(
1+

gi(Y )

pi

) .

Now by using the inequality log(1 + x) ≤ x we get that

−H(X|Y ) ≤
m∑
i=1

pi log(pi)︸ ︷︷ ︸
−H(X)

+
m∑
i=1

Egi(Y ) log(pi) +
m∑
i=1

E
((

pi + gi(Y )
)gi(Y )

pi

)
.

Using that Egi(Y ) = 0 we conclude that

I(X, Y ) = H(X)−H(X|Y ) ≤
m∑
i=1

E
gi(Y )2

pi

(12)

≤ α2

m∑
i=1

(1− pi) = (m− 1)α2.

�

Putting together the above ingredients we get Theorem 2.

Remark 4.3. Theorem 2 is actually true for the broader class of typical processes. This
is simply because the correlation bound (9) holds for this class as well.

5. Examples

In this section we construct factor of i.i.d. processes showing that our bounds are (es-
sentially) sharp.

5.1. Sharpness of Theorem 1. Let k be a fixed positive integer and u, v ∈ V (Td) vertices
at distance k. We claim that there exist factor of i.i.d. processes X on Td such that the
normalized mutual information I(Xu, Xv)/H(Xv) can be arbitrarily close to the upper
bound

(13) βk ..=

{
2

d(d−1)l
if k = 2l + 1 is odd,

1
(d−1)l

if k = 2l is even.

The idea is the following: given i.i.d. labels at each vertex, let the factor process “list” all
the labels within some large distance R at any given vertex. When we look at the joint
distribution of Xu and Xv we get a collection of i.i.d. labels with some labels listed twice.
Hence the normalized mutual information is |BR(u)∩BR(v)|/|BR(v)|, where BR(v) denotes
the ball of radius R around v. It is easy to see that this converges to βk as R→∞.

For a rigorous argument we need to be more careful since listing the labels should be done
in an Aut(Td)-invariant way. We first introduce two auxiliary lemmas and then precisely
define our example.

Lemma 5.1. For any positive integer L there exists a factor of i.i.d. 0-1 labeling of the
vertices of Td such that any ball of radius L contains a vertex with label 1 but any two
vertices of label 1 have distance greater than L.

Lemma 5.2. For any positive integer L there exists a factor of i.i.d. coloring of the vertices
of Td such that finitely many colors are used and vertices of the same color have distance
greater than L.
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Example 5.3. Given k and R, let C = (Cw)w∈V (Td) be a factor of i.i.d. coloring provided

by Lemma 5.2 for L = 2R + k. Given a positive integer N let Zw, w ∈ V (Td) be i.i.d.
uniform labels on {1, 2, . . . , N}. We set

Xv = {(Cw, Zw) | w ∈ BR(v)}.
Then for vertices u, v at distance k we have

(14)
I(Xu, Xv)

H(Xv)
=
|BR(u) ∩BR(v)|
|BR(v)|

+ oN(1).

Indeed, Xv can be viewed as the list of variables (Cw, Zw), w ∈ BR(v) ordered by Cw
(which are all different). This is now an Aut(Td)-invariant description. Conditioned on the
coloring process C, the entropies are easy to compute:

H(Xv|C) = |BR(v)| logN and H(Xu, Xv|C) = |BR(u) ∪BR(v)| logN.

Since the contribution of the coloring to the entropies does not depend on N , it gets
negligible when N is large enough, and (14) follows.

Finally, we prove the two lemmas we used.

Proof of Lemma 5.1. We describe the labeling as the output of a randomized local algo-
rithm, which is easy to interpret as a factor of i.i.d. process.

In the beginning all labels are undefined. At every odd step every vertex with undefined
label proposes to get a label 1 with probability 1/2. If there is no other proposition within
distance L, the label is fixed, otherwise withdrawn. (Note that any undefined label gets
fixed with probability at least some positive constant ε depending on L.) At even steps,
undefined vertices check if a label 1 has appeared within distance L and set their own label
0 if this is the case.

It is easy to verify that the obtained process has all the required properties. �

Proof of Lemma 5.2. Lemma 5.1 is used to find vertices with color 1. A similar algorithm
is applied for color 2, but now some vertices already have defined labels when launching
the algorithm. We continue by adding more colors the same way.

After having added n colors this way, every ball of radius L around an uncolored vertex
must contain vertices of each color 1, 2, . . . , n. When n becomes equal to the number of
vertices in a ball of radius L, this is not possible any longer, therefore we cannot have any
more uncolored vertices at that point, meaning that we have colored all vertices in the
required manner using at most n colors. �

5.2. Sharpness of Theorem 2. The next example shows that the bound obtained in
Theorem 2 is essentially sharp. The idea is that we first take a linear factor of a standard
normal i.i.d. process for which the correlation decay is close to the bound (9). Then we
take the sign of the value of the process at every vertex. For this {±1}-valued process
the correlation decays at roughly the same rate. However, for symmetric binary variables
the mutual information is essentially the square of the correlation. More precisely, for
any ε > 0 we construct a factor of i.i.d. process (with two states) such that the mutual
information for distance k is Ω

(
k2−ε(d− 1)−k

)
.

Example 5.4. Fix a parameter ε > 0. Let Zw, w ∈ V (Td) be i.i.d. standard normal
random variables. We first take a (linear) factor of the i.i.d. process Z:

Yv ..=
∑

w∈V (Td)

αdist(v,w)Zw, where α0 = 0 and αk =
k−

1
2
−ε

√
d− 1

k
for k ≥ 1;
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then apply the sign function at each vertex:

Xv
..= sign(Yv).

Note that Yv is well defined since the sum of the squares of the coefficients is finite.
Therefore Yv is a normal random variable with mean 0 and some positive and finite variance
γ = γ(ε). From this point on γ will denote a positive constant that depends only on ε
(possibly a different constant at each occurrence).

Suppose that u and v have distance k. We denote the unique path connecting them
by u0 = u, u1, . . . , uk−1, uk = v. If we are at vertex uj, 1 ≤ j ≤ k − 1, and move
distance n away from the path, then we get to a vertex w for which dist(u,w) = j+n and
dist(v, w) = k − j + n. The number of such vertices is clearly (d− 2)(d− 1)n−1. Thus

cov(Yu, Yv) =
∑

w∈V (Td)

αdist(u,w)αdist(v,w) ≥
γ

√
d− 1

k

k−1∑
j=1

∞∑
n=1

(j + n)−
1
2
−ε(k − j + n)−

1
2
−ε.

We ignore the terms for which j + n < k and rearrange the rest of the sum grouping the
terms based on the value m ..= j + n. For a given m ≥ k and j ∈ {1, . . . , k − 1} we have
n = m− j and hence k− j+n = k+m−2j. Therefore the average of k− j+n for a given
m as j runs through 1, . . . , k − 1 is exactly m, and consequently the convexity of x−

1
2
−ε

implies that
k−1∑
j=1

(k +m− 2j)−
1
2
−ε ≥ (k − 1)m−

1
2
−ε.

It follows that

cov(Yu, Yv) ≥
γ(k − 1)
√
d− 1

k

∞∑
m=k

m−1−2ε ≥ γ(k − 1)
√
d− 1

k

∫ ∞
k

x−1−2ε dx︸ ︷︷ ︸
k−2ε/(2ε)

≥ γk1−2ε

√
d− 1

k
,

and the same is true for corr(Yu, Yv) (again with a different γ). Note that there exist
constants 0 < γ < γ̃ such that for any W,W ′ jointly normal random variables we have

γ
∣∣ corr(W,W ′)

∣∣ ≤ ∣∣ corr(sign(W ), sign(W ′))
∣∣ ≤ γ̃

∣∣ corr(W,W ′)
∣∣.

This means that we get the same correlation (up to a constant factor) after taking the sign
of Y :

corr(Xu, Xv) ≥
γk1−2ε

√
d− 1

k
.

Now working with symmetric binary variables, elementary computations show that when
P (Xu = Xv) is close to 1/2, we have

γ

∣∣∣∣P (Xu = Xv)−
1

2

∣∣∣∣ ≤ ∣∣ corr(Xu, Xv)
∣∣ ≤ γ̃

∣∣∣∣P (Xu = Xv)−
1

2

∣∣∣∣ ,
and

γ

∣∣∣∣P (Xu = Xv)−
1

2

∣∣∣∣2 ≤ ∣∣I(Xu, Xv)
∣∣ ≤ γ̃

∣∣∣∣P (Xu = Xv)−
1

2

∣∣∣∣2 .
It follows that

I(Xu, Xv) ≥
γk2−4ε

(d− 1)k
,

which indeed confirms that the bound in Theorem 2 is essentially sharp.
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[1] Ágnes Backhausz, Balázs Gerencsér, Viktor Harangi, and Máté Vizer. Correlation bound for distant
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