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What will this talk be about?

I want to show how a graph-limit approach can be used to attack certain
problems about finite graphs.
My goal is to give a general introduction to the area so I will not only focus on my
own results.

Invariant processes over the d-regular infinite tree

Gaussian Wave Functions

Local convergence of graphs

Random regular graphs

Randomized local algorithms and Factor of IID processes

Entropy inequalities
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Random processes on the d-regular tree Td

Td : an infinite tree where each vertex has exactly d neighbors (d ≥ 3);

V = V (Td): vertex-set of Td ;

Γ = Aut(Td): the group of graph automorphisms of Td ;

Aut(Td) acts on MV in a natural way for any measurable space M.

Invariant processes on Td

a random labeling Xv of the vertices such that the joint distribution of the labels
is invariant under Aut(Td)
in other words: a probability distribution on MV that is Aut(Td)-invariant

M will be either a discrete set or R.
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Examples

M = {0, 1}; P(Xv = 0) = P(Xv = 1) = 1/2,
and Xu and Xv are different whenever u and v are neighbors.

Ising model over Td : a tree-indexed Markov chain with state space

M = {0, 1} and transition matrix

(
p 1− p

1− p p

)
;

Gaussian processes: Xv , v ∈ V , are jointly Gaussian with mean 0;
completely described by the covariances cov(Xu,Xv );
note that cov(Xu,Xv ) depends only on the distance of u and v because of
the Aut(Td)-invariance.

Gaussian Wave Function:
a Gaussian process that satisfies the eigenvector equation∑

u∈N(v)

Xu = λXv

for some eigenvalue λ. Such a process exists for any λ ∈ [−d , d ].
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Local convergence of graphs

We will only need the following special case.

Gn → Td

Let Gn be a sequence of d-regular graphs with the number of vertices tending to
infinity.
We say that Gn converges locally to Td if the graphs Gn contain“few short
cycles”, that is, for every L the number of cycles shorter than L divided by the
number of vertices goes to 0;
equivalently, if for every R the proportion of vertices whose R-neighborhood is a
tree converges to 1.
If this is the case, we say that Gn is a large-girth sequence.

Example: random regular graphs
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Random d-regular graphs

Definition
Let GN denote a uniform random graph among all d-regular graphs on N
(distinguished) vertices.

The random graph and the corresponding adjacency matrix:

2

1

N

j i



0 1 0 0 0 0 1 1
1 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0
0 1 1 0 0 1 0 0
0 0 1 0 0 1 0 1
0 1 0 1 1 0 0 0
1 0 1 0 0 0 0 1
1 0 0 0 1 0 1 0


Spectral properties of the adjacency matrix are closely related to various graph
parameters.

Invariant processes on infinite trees 20th April 2017 6 / 14



Random d-regular graphs

Definition
Let GN denote a uniform random graph among all d-regular graphs on N
(distinguished) vertices.

The random graph and the corresponding adjacency matrix:

2

1

N

j i



0 1 0 0 0 0 1 1
1 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0
0 1 1 0 0 1 0 0
0 0 1 0 0 1 0 1
0 1 0 1 1 0 0 0
1 0 1 0 0 0 0 1
1 0 0 0 1 0 1 0



Spectral properties of the adjacency matrix are closely related to various graph
parameters.

Invariant processes on infinite trees 20th April 2017 6 / 14



Random d-regular graphs

Definition
Let GN denote a uniform random graph among all d-regular graphs on N
(distinguished) vertices.

The random graph and the corresponding adjacency matrix:

2

1

N

j i



0 1 0 0 0 0 1 1
1 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0
0 1 1 0 0 1 0 0
0 0 1 0 0 1 0 1
0 1 0 1 1 0 0 0
1 0 1 0 0 0 0 1
1 0 0 0 1 0 1 0


Spectral properties of the adjacency matrix are closely related to various graph
parameters.

Invariant processes on infinite trees 20th April 2017 6 / 14



Random d-regular graphs, properties

Their study was initiated mainly by Bollobás and Wormald around 1980.

Usual setting: d fixed and N →∞.

GN → Td locally (almost surely).

Consequence: the eigenvalue distributions weakly converge to the
Kesten-McKay measure, which is supported on [−2

√
d − 1, 2

√
d − 1].

The independence ratio of GN (i.e. the density of the largest independent
set) is asymptotically 2 log(d)/d .

Questions
Independence ratio for small d?

Eigenvectors of the adjacency matrix? Delocalization?
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Randomized local algorithms on finite graphs

Given a graph,

we first put IID labels on its vertices, then apply a fixed local rule
at each vertex. The rule depends on the isomorphism type of the rooted, labelled
neighborhood.
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A very simple exmaple

Let G be a finite graph.

Let us put IID labels, say uniform random from [0, 1], on the vertices.

Then we color a vertex red if its label is larger than the label of each of its
neighbors.

The red vertices form an independent set (no red neighbors).

If G is d-regular, then the (expected value) of the density of this independent
set is 1/(d + 1).

Can we do better if we require G to have some extra properties, say, if the girth
(length of the shortest cycle) of G is large?

Theorem(Csóka, Gerencsér, Harangi, Virág)

Any 3-regular graph of sufficiently large girth has independance ratio at least 0.43.
(This is the best bound proved without using computers.)

Key fact in the proof: the Gaussian Wave Function with eigenvalue
λ = −2

√
d − 1 is the weak limit of factor of IID processes.

Invariant processes on infinite trees 20th April 2017 9 / 14



A very simple exmaple

Let G be a finite graph.

Let us put IID labels, say uniform random from [0, 1], on the vertices.

Then we color a vertex red if its label is larger than the label of each of its
neighbors.

The red vertices form an independent set (no red neighbors).

If G is d-regular, then the (expected value) of the density of this independent
set is 1/(d + 1).

Can we do better if we require G to have some extra properties, say, if the girth
(length of the shortest cycle) of G is large?
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Factor of IID processes on Td

Motivation: we want to consider invariant processes on Td that tell us something
about finite graphs (processes that arise as some kind of limits of labelings on
finite graphs).

Factor of IID processes

take an IID process Z = (Zv )v∈V on [0, 1]V ;

take a measurable space M (usually R or a discrete set of colors);

take a measurable function F : [0, 1]V → MV that is Aut(Td)-equivariant ;

then we say that X = (Xv )v∈V
..= F (Z ) is a factor of the IID process Z .

The joint distribution of Xv is clealry invariant under Aut(Td).

Randomized local algorithms on large-girth graphs can be described by factor of
IID processes. For the previous example: M = {red, black} and

Xv =

{
red if Zv > Zu for each neighbor u of v

black otherwise
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Examples

M = {0, 1}; P(Xv = 0) = P(Xv = 1) = 1/2,
and Xu and Xv are different whenever u and v are neighbors.
NOT a factor of IID

Ising model over Td : a tree-indexed Markov chain with state space

M = {0, 1} and transition matrix

(
p 1− p

1− p p

)
OPEN: for which p is the Ising model a factor of IID?

Gaussian Wave Functions for eigenvalue λ:
if λ ∈ [−2

√
d − 1, 2

√
d − 1], then it is a weak limit of factor of IID processes

Theorem (Harangi, Virág): Factor of IID processes are not closed under weak
limits.
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Independence ratio

Using the fact that the Gaussian Wave Function with eigenvalue λ = −2
√
d − 1 is

a weak limit of factor of IID processes one can construct factor of IID independent
sets with large density:

Theorem(Csóka, Gerencsér, Harangi, Virág)

There exists a factor of IID independent set on Td with density > 0.43.

Consequence: any 3-regular graph of sufficiently large girth has independence
ratio > 0.43.
Consequence: the independence ratio of the random 3-regular graph GN is larger
than 0.43 with high probability.
(These are the best bounds proved without using computers.)

Theorem(Harangi, Virág)

There is a lower bound for the independence ratio of a vertex-transitive graph in
terms of the smallest eigenvalue λmin of its adjacency matrix.
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Eigenvectors of random regular graphs

Theorem (Backhausz, Szegedy)

The eigenvectors of the adjacency matrix of the random d-regular graph GN

converge locally (in some sense) to Gaussian Wave Functions on Td .

Consequence: The “local statistics” of the eigenvectors of a random regular graph
are nearly Gaussian.

Key tool: Entropy inequalities for factors of IID and other invariant processes.

“edge-vertex entropy inequality”:

H ( ) ≥ 2(d − 1)

d
H ( )

“star-edge entropy inequality”:

H
(

d

)
≥ d

2
H ( )
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Dynamical systems over groups

Dynamical system: a group Γ acting on a probability space (Ω, µ) by
measure-preserving transformations.

Bernoulli shifts: the natural action on (Ω, µ) = (KΓ, κΓ) for some probability
space (K , κ).

Generalized Bernoulli shifts: Γ y (KS , κS), where S is a countable set with a
Γ-action.

Invariant measures: given a fixed measurable action Γ y Ω, one might be
interested in the measures µ on Ω that are invariant under the Γ-action.

Factors of Bernoulli shifts: F : KS1
1 → KS2

2 is a factor map if it commutes

with the Γ-actions. If ν = κS1
1 , then the push-forward measure µ = F∗ν is

also Γ-invariant.

The special considered in this talk

Γ = Aut(Td) and S = V (Td).
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