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Motivation: randomized local algorithms on graphs

Given a graph,

we first put IID labels on its vertices, then apply a fixed local rule
at each vertex. The rule depends on the isomorphism type of the rooted, labelled
neighborhood.
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An exmaple
Let G be a 3-regular graph with girth(G ) ≥ 5.

Let us put IID labels of standard normal distribution on the vertices.
The 2-neighborhood of each vertex looks like this:

t

t1 t2 t3

t11 t12 t21 t22 t31 t32

Apply the following local rule

red if all three inequalities below are satisfied:

t − t1 − t2 − t3 > t1 − t − t11 − t12 and

t − t1 − t2 − t3 > t2 − t − t21 − t22 and

t − t1 − t2 − t3 > t3 − t − t31 − t32;

black, otherwise.
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Let’s see what happens
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What we gained

We obtained a random independent set on G .

The probability that a vertex is colored red can be computed easily:

1

2
− 3

4π
arccos

(
3

4

)
= 0.327...

(the area of a certain spherical triangle).
Therefore the expected size of our independent set is ≈ 0.327 · |V (G )|.

which proves that

Any 3-regular graph of girth at least 5 has independance ratio at least 0.327.

If we consider larger r and more complicated rules, then in the limit we get:

Theorem(Csóka, Gerencsér, H, Virág)

Any 3-regular graph of sufficiently large girth has independance ratio at least 0.43.
(This is the best bound proved without using computers.)

For this one needs to study processes on the limit graph...
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Processes on the d-regular tree Td

Td : an infinite tree where each vertex has d neighbors (d ≥ 3);

V (Td): vertex-set; Γ = Aut(Td): the group of graph automorphisms of Td ;

Aut(Td) acts on MV (Td ) in a natural way for any set M;

stabilizer of a fixed vertex o: group of those automorphisms that fix o.

Factor of IID processes

take an IID process Z = (Zv )v∈V (Td ) on [0, 1]V (Td );

take a measurable space M (usually R or a discrete set of colors);

take a measurable function f : [0, 1]V (Td ) → M that is invariant under the
stabilizer of a root o;

Xo
..= f (Z ) will be the new label/color of o;

“move the root” to other vertices and apply the same rule: we get the factor
of IID process X = (Xv )v∈V (Td ) on MV (Td );

the joint distribution of X is clealry invariant under Aut(Td);

X is said to be a block factor if f depends on a finite neighborhood of o.
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Dynamical systems over groups

Dynamical system: a group Γ acting on a probability space (Ω, µ) by
measure-preserving transformations.

Bernoulli shifts: the natural action on (Ω, µ) = (KΓ, κΓ) for some probability
space (K , κ).

Generalized Bernoulli shifts: Γ y (KS , κS), where S is a countable set with a
Γ-action.

Invariant measures: given a fixed measurable action Γ y Ω, one might be
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2 is a factor map if it commutes
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Tail σ-algebras

Let Ω = MV (Td ) and for v ∈ V (Td) let πv : MV (Td ) → M denote the natural
coordinate projection. For V ⊆ V (Td) let σ(V ) be the σ-algebra generated by the
maps πv , v ∈ V .

Tail

The tail σ-algebra is defined as
⋂

r σ(V (Td) \ Br ), where Br stands for the r -ball
around some fixed vertex o. (Clearly, the tail does not depend on the choice of o.)

1-ended tails

The 1-ended tail σ-algebra corresponding to an infinite simple path (v0, v1, v2, . . .)
is
⋂

n σ(Dn), where Dn is the set of vertices closer to vn than to vn−1.
A σ-algebra is said to be trivial w.r.t. a probability measure if it contains only sets
of measure 0 or 1.
It is easy to see that for an Aut(Td)-invariant measure µ on MV (Td ) the 1-ended
tails are all trivial or none are trivial.
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Some simple results and open questions

Open: trivial tail implies FIID?

It follows easily from the Kolmogorov 0-1 Law: block factors have trivial tail.

Not true for arbitrary factors!

In fact, there exists a FIID for which “any tail broader than a 1-ended tail” is
non-trivial.

Szegedy’s “sparse tail” for discrete M?
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Ergodic processes

Definition

Let Γ y (Ω, µ) be a dynamical system over Γ.
It is said to be ergodic (or Γ-ergodic) if for any measurable, Γ-invariant A ⊂ Ω it
holds that µ(A) = 0 or µ(A) = 1.
That is, any measurable, Γ-invariant Ω→ R function is µ-a.e. constant.

Question: Does Aut(Td)-ergodicity imply 1-ended tail triviality? Not quite!
Let V (Td) = V0 ∪ V1 be the partition of V (Td) into even and odd vertices, and
consider the process that is 1V0 with probability 1/2 and 1V1 also with probability
1/2.
Instead: consider the group Aut+(Td) of parity-preserving automorphisms of Td ;
this is a subgroup of Aut(Td) of index 2.
Any Aut(Td)-ergodic process is the equal mixture of two Aut+(Td)-ergodic
processes.

Correlation bounds for FIID processes 21st April 2016 10 / 20



Ergodic processes

Definition

Let Γ y (Ω, µ) be a dynamical system over Γ.
It is said to be ergodic (or Γ-ergodic) if for any measurable, Γ-invariant A ⊂ Ω it
holds that µ(A) = 0 or µ(A) = 1.
That is, any measurable, Γ-invariant Ω→ R function is µ-a.e. constant.

Question: Does Aut(Td)-ergodicity imply 1-ended tail triviality?

Not quite!
Let V (Td) = V0 ∪ V1 be the partition of V (Td) into even and odd vertices, and
consider the process that is 1V0 with probability 1/2 and 1V1 also with probability
1/2.
Instead: consider the group Aut+(Td) of parity-preserving automorphisms of Td ;
this is a subgroup of Aut(Td) of index 2.
Any Aut(Td)-ergodic process is the equal mixture of two Aut+(Td)-ergodic
processes.

Correlation bounds for FIID processes 21st April 2016 10 / 20



Ergodic processes

Definition

Let Γ y (Ω, µ) be a dynamical system over Γ.
It is said to be ergodic (or Γ-ergodic) if for any measurable, Γ-invariant A ⊂ Ω it
holds that µ(A) = 0 or µ(A) = 1.
That is, any measurable, Γ-invariant Ω→ R function is µ-a.e. constant.

Question: Does Aut(Td)-ergodicity imply 1-ended tail triviality? Not quite!
Let V (Td) = V0 ∪ V1 be the partition of V (Td) into even and odd vertices, and
consider the process that is 1V0 with probability 1/2 and 1V1 also with probability
1/2.

Instead: consider the group Aut+(Td) of parity-preserving automorphisms of Td ;
this is a subgroup of Aut(Td) of index 2.
Any Aut(Td)-ergodic process is the equal mixture of two Aut+(Td)-ergodic
processes.

Correlation bounds for FIID processes 21st April 2016 10 / 20



Ergodic processes

Definition

Let Γ y (Ω, µ) be a dynamical system over Γ.
It is said to be ergodic (or Γ-ergodic) if for any measurable, Γ-invariant A ⊂ Ω it
holds that µ(A) = 0 or µ(A) = 1.
That is, any measurable, Γ-invariant Ω→ R function is µ-a.e. constant.

Question: Does Aut(Td)-ergodicity imply 1-ended tail triviality? Not quite!
Let V (Td) = V0 ∪ V1 be the partition of V (Td) into even and odd vertices, and
consider the process that is 1V0 with probability 1/2 and 1V1 also with probability
1/2.
Instead: consider the group Aut+(Td) of parity-preserving automorphisms of Td ;
this is a subgroup of Aut(Td) of index 2.

Any Aut(Td)-ergodic process is the equal mixture of two Aut+(Td)-ergodic
processes.

Correlation bounds for FIID processes 21st April 2016 10 / 20



Ergodic processes

Definition

Let Γ y (Ω, µ) be a dynamical system over Γ.
It is said to be ergodic (or Γ-ergodic) if for any measurable, Γ-invariant A ⊂ Ω it
holds that µ(A) = 0 or µ(A) = 1.
That is, any measurable, Γ-invariant Ω→ R function is µ-a.e. constant.

Question: Does Aut(Td)-ergodicity imply 1-ended tail triviality? Not quite!
Let V (Td) = V0 ∪ V1 be the partition of V (Td) into even and odd vertices, and
consider the process that is 1V0 with probability 1/2 and 1V1 also with probability
1/2.
Instead: consider the group Aut+(Td) of parity-preserving automorphisms of Td ;
this is a subgroup of Aut(Td) of index 2.
Any Aut(Td)-ergodic process is the equal mixture of two Aut+(Td)-ergodic
processes.

Correlation bounds for FIID processes 21st April 2016 10 / 20



A result of Pemantle

Theorem(Pemantle, 1992)

Let Γ+ = Aut+(Td) and let µ be an Γ+-invariant process on Ω = MV (Td ).
If µ is Γ+-ergodic, then it is 1-ended tail trivial.

Proof strategy:
Let B be an event in Ω = MV (Td ) that depends on finitely many coordinates.
We need to show that B is independent from σ(α) for any end α ∈ ∂Td .
Equivalently:

Eµ (1B |σ(α)) is µ-a.e. constant.

For the sake of simplicity, we will only consider events that depend only on one
coordinate:

B = {ω : ωv ∈ A} for some vertex v ∈ V (Td) and a measurable set A ⊂ M.
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Definitions

The boundary of Td

the boundary ∂Td is defined as the set of ends in Td ;

there is a natural topology (and the corresponding Borel σ-algebra) on Td ;

for any vertex v ∈ V (Td) a probability measure mv can be defined on ∂Td ;
essentially the “uniform measure” as seen from v ;

these measures are absolutely continuous w.r.t. each other, thus null sets on
∂Td are well defined.

Height function in direction α

A height function hα : V (Td)→ Z can be defined for any end α.

Horocycles

The level sets of hα are called the horocycles in direction α.
The horocycle through v in direction α is denoted by Cα(v).
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Sketch of the proof

Easy to see

Fix a measurable A ⊂ M. Then the function

g(ω, v , α) = Eµ
(
1{ωv∈A}|σ(α)

)
can be defined in such a way that it satisfies the following properties:

g : Ω× V (Td)× ∂Td → R is a bounded, measurable function;

for any fixed ω ∈ Ω and α ∈ ∂Td : g(ω, ·, α) only depends on hα(·);

g is Γ+-invariant: g(γ · ω, γ · v , γ · α) = g(ω, v , α) for all γ ∈ Γ+.

Claim
If mu is Γ+-invariant and g satisfies the above properties, then for µ-a.e. ω0 it
holds that g(ω0, v , α) depends only on the parity of v (modulo null sets of α).

Γ+-ergodicity + Claim =⇒ Theorem

We get two Γ+-invariant functions: geven : Ω→ R and godd : Ω→ R. If µ is
ergodic, they must be µ-a.e. constant.
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Proof of the claim, I
Fix v and let v0, v1, v2 . . . be a non-backtracking random walk started at v0 = v ,
so the corresponding (random) end α has distribution mv .

For any fixed ω

G (ω, v , vk) ..= Erw (g(ω, v , α)|v0, v1, . . . , vk) is a bounded martingale,

and it converges almost surely to g(ω, v , α) as k →∞.
Thus for any fixed ω and ε > 0:

Prw (|G (ω, v , vk)− g(ω, v , α)| > ε)→ 0 as k →∞.

Therefore ∃N(ε) such that for any k ≥ N(ε):

Pµ,rw (|G (ω, v , vk)− g(ω, v , α)| > ε) < ε.

Now we fix N ≥ N(ε) and consider two such random walks v0, v1, . . . and
u0, u1, . . . (with corresponding ends α and β) coupled in a way that vk = uk holds
if and only if k ≤ N. Then

Pµ,rw (|g(ω, v , α)− g(ω, v , β)| > 2ε)

≤ Pµ,rw (|G (ω, v , vN)− g(ω, v , α)| > ε)

+ Pµ,rw (|G (ω, v , vN)− g(ω, v , β)| > ε) < ε+ ε = 2ε.
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Proof of the claim, II

So we saw that Pµ,rw (|g(ω, v , α)− g(ω, v , β)| > 2ε) < 2ε,

where α and β are random ends “branching” after exactly N steps from v .

Because of the Γ+-invariance of g , the probability

Pµ (|g(ω, v , α0)− g(ω, v , β0)| > 2ε)

is the same for any instances α0, β0 of the random ends.
Therefore this probability is less than 2ε.
The horocycles Cα0 (v) and Cβ0 (v) have (d − 2)(d − 1)N−1 common vertices.

We essentially obtained that

If we consider g as a Ω× {horocycles} → R function, then for horocycles C1 and
C2 with sufficiently large intersection g(ω,C1) and g(ω,C2) are arbitrarily likely to
be arbitrarily close to each other.

However, it is easy to see that for any two horocycles C and C ′ of the same parity,
there is an integer m such that for any N there exists a chain of horocyles
C0 = C ,C1, . . . ,Cm = C ′ with the property that Ci−1 and Ci share at least
(d − 2)(d − 1)N−1 vertices.
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Correlation bounds

Let X = (Xv )v∈V (Td ) be a factor of IID process on RV (Td ). A natural question is
“how independent” the random variables Xv are.

Theorem(Backhausz, Szegedy, Virág)

|corr(Xu,Xv )| ≤
(
k + 1− 2k

d

)(
1√

d − 1

)k

, where k = dist(u, v),

provided that varXv <∞. (This is sharp.)

Theorem(Backhausz, Gerencsér, H, Vizer)

If two connected subsets V1,V2 ⊂ V (Td) have large distance, then they are
“almost independent” in the following sense: for an arbitrary factor X , any
function f1 of (Xv )v∈V1

and any function f2 of (Xv )v∈V2
have small correlation,

essentially of (the optimal) order 1/(
√
d − 1)k .

Do we really need connectedness? Yes!
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Outline of the proof

Let T̃d−1 denote the rooted (d − 1)-ary tree.

Step 1: we might assume that V1 and V2 are both isomorphic to T̃d−1 and
their roots have distance k .

Step 2: We claim that |corr(f1(X ), f2(X ))| is maximized by functions f1 and
f2 that are invariant under the automorphism group of T̃d−1.

Step 3: in fact, they should “come from” the same Aut(T̃d−1)-invariant

measurable function f : MV (T̃d−1) → R.
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Outline of the proof
Step 4: given such a function f , for any directed edge e of Td , apply f to the
(labelled) subgraph “behind” e and write its value on e. The process we
obtain on the directed edge set E (Td) will be a factor of IID process.

Step 5: we prove a a correlation decay result similar to
Backhausz-Szegedy-Virág but for directed edges instead of vertices.
Step 6: to finish Step 5 we need to estimate the norms of the powers of the
non-backtracking operator.
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Step 3: a lemma

Let (A,F) be an arbitrary measurable space. Suppose that

X1,X2 are (A,F)-valued random variables;

X1 and X2 are exchangeable,
that is, (X1,X2) and (X2,X1) have the same joint distribution;

there exists a constant α ≥ 0 with the property that for any measurable
f : A→ R we have ∣∣corr

(
f (X1), f (X2)

)∣∣ ≤ α (∗)

provided that f (X1) has finite variance.

Then for any measurable functions f1, f2 : A→ R∣∣corr
(
f1(X1), f2(X2)

)∣∣ ≤ α
provided that f1(X1) and f2(X2) have finite variances.
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Proof of the lemma
We might assume that var(f1(X1)) = var(f2(X2)) = 1.

Since X1 and X2 are exchangeable we have

cov(f1(X1), f2(X2)) = cov(f1(X2), f2(X1)).

It follows that

corr
(
f1(X1), f2(X2)

)
= cov

(
f1(X1), f2(X2)

)
=

1

4

(
cov

(
(f1 + f2)(X1), (f1 + f2)(X2)

)
− cov

(
(f1− f2)(X1), (f1− f2)(X2)

))
.

Using the triangle inequality and applying (∗) to the function f = f1 + f2 and
to f = f1 − f2 we obtain that∣∣corr

(
f1(X1), f2(X2)

)∣∣ ≤ α

4

(
var
(
(f1 + f2)(X1)

)
+ var

(
(f1 − f2)(X1)

))
=
α

4

(
2 var

(
f1(X1)

)
+ 2 var

(
f2(X1)

))
= α.
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= cov

(
f1(X1), f2(X2)

)
=

1

4

(
cov

(
(f1 + f2)(X1), (f1 + f2)(X2)

)
− cov

(
(f1− f2)(X1), (f1− f2)(X2)

))
.

Using the triangle inequality and applying (∗) to the function f = f1 + f2 and
to f = f1 − f2 we obtain that∣∣corr

(
f1(X1), f2(X2)

)∣∣ ≤ α

4

(
var
(
(f1 + f2)(X1)

)
+ var

(
(f1 − f2)(X1)

))
=
α

4

(
2 var

(
f1(X1)

)
+ 2 var

(
f2(X1)

))
= α.
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