
INTRODUCTION TO GRAPH ENTROPY

VIKTOR HARANGI

Abstract. This is an introduction to the notion of (conditional) graph entropy. It is
mainly based on [3]. It was created as supplementary material to the website

https://www.renyi.hu/~harangi/ge.htm.

1. Graph entropy: a visual introduction

1.1. A coding problem with indistinguishable letters. Suppose that the discrete ran-
dom variable 𝑋 takes values in a finite alphabet 𝒳 . If we take a large number of IID copies
𝑋1, . . . , 𝑋ℓ, then with high probability the outcome will be a so-called typical sequence, in
which the frequency of each letter 𝑥 ∈ 𝒳 is close to its probability

𝑝𝑥 ..= P(𝑋 = 𝑥).

Recall that the Shannon entropy of 𝑋 is defined as

𝐻(𝑋) =
∑︁
𝑥

−𝑝𝑥 log 𝑝𝑥.

Loosely speaking, any typical sequence has probability roughly exp
(︀
− ℓ𝐻(𝑋)

)︀
, and hence

the number of typical sequences is roughly exp
(︀
ℓ𝐻(𝑋)

)︀
. This observation essentially proves

the following classical result: 𝐻(𝑋) gives the minimal code rate required to encode the IID
sequence (𝑋𝑖) such that, with high probability, it is uniquely decodable.

Körner introduced [5] a natural variant of this coding problem, where not every pair of
letters can be distinguished. Let 𝐺 be a graph with vertex set 𝑉 (𝐺) = 𝒳 describing which
pairs are distinguishable: 𝑥, 𝑥′ ∈ 𝒳 can be distinguished if and only if 𝑥𝑥′ is an edge of 𝐺.
Furthermore, we say that the sequences 𝑥1, . . . , 𝑥ℓ and 𝑥′

1, . . . , 𝑥
′
ℓ are distinguishable if 𝑥𝑖

and 𝑥′
𝑖 are distinguishable for at least one index 𝑖. In this variant we wish to encode the

IID sequence with high probability in a way that distinguishable sequences are mapped to
different codewords. Again, we are interested in the minimal achievable code rate that we
call the graph entropy of 𝑋 w.r.t. 𝐺 and denote by 𝐻𝐺(𝑋).

For example, consider the alphabet 𝒳 = {𝑎, 𝑐, 𝑑,𝑚, 𝑛, 𝑜, 𝑢} with the graph 𝐺 below:

That is, the following pairs of letters are indistinguishable:

𝑎 𝑎 𝑎 𝑎 𝑐 𝑚 𝑛
𝑐 𝑑 𝑜 𝑢 𝑜 𝑛 𝑢

Some examples for distinguishable and indistinguishable words (sequences):
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indistinguishable pairs distinguishable pairs
𝑚𝑜𝑎𝑛𝑎 𝑢𝑛𝑐𝑜𝑎𝑑 𝑚𝑎𝑑 𝑚𝑜𝑎𝑛𝑎 𝑢𝑛𝑐𝑜𝑎𝑑 𝑑𝑎𝑑
𝑛𝑜𝑑𝑢𝑎 𝑛𝑢𝑜𝑐𝑐𝑎 𝑚𝑢𝑑 𝑛𝑜𝑑𝑢𝑛 𝑑𝑢𝑜𝑛𝑐𝑎 𝑚𝑢𝑑

1.2. From empty to complete. For the complete graph 𝐺, we get back the original coding
problem, so 𝐻𝐺(𝑋) = 𝐻(𝑋), while for the empty graph any two sequences are indistinguish-
able, and hence 𝐻𝐺(𝑋) = 0. In general, 0 ≤ 𝐻𝐺(𝑋) ≤ 𝐻(𝑋).
To get an idea how graph entropy typically changes in-between, let us start from the

empty graph on 𝑁 vertices and add edges randomly one by one, computing graph entropy
(for uniform 𝑋) after each step. The results are plotted below for 𝑁 = 10, 20, 40.
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In a similar experiment, we plotted graph entropy (again for uniform 𝑋) and edge density
for 2000 random graphs1 on 𝑁 = 40 vertices:

1.3. The independent set polytope and a simple formula. In Körner’s original paper
[5] a fairly simple (non-asymptotic) formula was given for 𝐻𝐺(𝑋). Later, Csiszár, Körner,
Lovász, Marton, and Simonyi [1] found an even simpler one, which is based on the following
(high-dimensional) polytope.

Definition. Given a simple finite graph 𝐺, we say that a subset 𝐽 of the vertex set 𝑉 (𝐺)
is an independent set of 𝐺 if the induced subgraph 𝐺[𝐽 ] contains no edges. By 𝒥 (𝐺) we
denote the set of independent sets of 𝐺.

The independent set polytope or vertex-packing polytope VP(𝐺) is defined as the convex
hull of the characteristic vectors of the independent sets of 𝐺:

VP(𝐺) ..= conv
(︀
{1𝐽 : 𝐽 ∈ 𝒥 (𝐺)}

)︀
⊆ [0, 1]𝑉 (𝐺) ⊂ R𝑉 (𝐺).

Next we consider the following function:

(1) (𝑎𝑥) ↦→
∑︁

𝑥∈𝑉 (𝐺)

−𝑝𝑥 log(𝑎𝑥) for
(︀
𝑎𝑥
)︀
𝑥∈𝒳 ∈ [0, 1]𝒳 .

It turns out [1] that graph entropy is the minimum of this function over VP(𝐺):

(2) 𝐻𝐺(𝑋) = min
(𝑎𝑥)∈VP(𝐺)

∑︁
𝑥∈𝑉 (𝐺)

−𝑝𝑥 log(𝑎𝑥).

We explain the details through the following example. Consider the graph below.

1We considered Erdős–Rényi random graphs 𝐺(𝑁, 𝑝) for randomly chosen 𝑝 ∈ [0, 1].
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The vertex set is 𝑉 (𝐺) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗}. Note that the red vertices form an inde-
pendent set {𝑎, 𝑒, 𝑖, 𝑗}. For simplicity, we will refer to this set as 𝑎𝑒𝑖𝑗. Similarly, 𝑐𝑑𝑓𝑔 is also
an independent set. In fact, this graph has 11 inclusion-maximal2 independent sets:

𝑎𝑐𝑗, 𝑎𝑒𝑖𝑗, 𝑎𝑏𝑒, 𝑐𝑓𝑔𝑗, 𝑒𝑔𝑖𝑗, 𝑒𝑓𝑔𝑗, 𝑑𝑔𝑖, 𝑑ℎ𝑖, 𝑏𝑑ℎ, 𝑐𝑑𝑓𝑔, 𝑑𝑓ℎ.

The characteristic vector 1𝐽 of an independent set 𝐽 has ones at the coordinates corre-
sponding to the vertices in 𝐽 , and has zeros elsewhere. For instance, the vectors correspond-
ing to the sets 𝑎𝑒𝑖𝑗, 𝑐𝑑𝑓𝑔, 𝑏𝑑ℎ, 𝑐𝑓𝑔𝑗 are the following:

𝑎𝑒𝑖𝑗 :
(︀𝑎
1,

𝑏

0,
𝑐

0,
𝑑

0,
𝑒

1,
𝑓

0,
𝑔

0,
ℎ

0,
𝑖

1,
𝑗

1
)︀

𝑐𝑑𝑓𝑔 :
(︀
0, 0, 1, 1, 0, 1, 1, 0, 0, 0

)︀
𝑏𝑑ℎ :

(︀
0, 1, 0, 1, 0, 0, 0, 1, 0, 0

)︀
𝑐𝑓𝑔𝑗 :

(︀
0, 0, 1, 0, 0, 1, 1, 0, 0, 1

)︀
The vertex-packing polytope VP(𝐺) consists of points that are convex combinations of such
characteristic vectors. For example, if we take the linear combination of the four vectors
above with the nonnegative weights 0.4, 0.3, 0.2, 0.1 (note that their sum is 1), then we get
the following point:

(3)

(︂
𝑎

0.4,
𝑏

0.2,
𝑐

0.4,
𝑑

0.5,
𝑒

0.4,
𝑓

0.4,
𝑔

0.4,
ℎ

0.2,
𝑖

0.4,
𝑗

0.5

)︂
∈ VP(𝐺).

For a uniform random 𝑋 (i.e., when 𝑝𝑥 = 1/10 for each 𝑥), then the function value (1) at
this point is:

1

10

(︀
6 log(5/2) + 2 log(5) + 2 log(2)

)︀
≈ 1.01029.

This is, of course, only one possible convex combination. We will later see that there is a
simple iterative algorithm for finding the optimal weights. For this particular graph, the

optimal weights are
3

8
,
1

4
,
1

4
,
1

8
(and 0 for the seven remaining maximal independent sets).

The corresponding (optimal) point in VP(𝐺) is

(4)

(︂
𝑎

3/8,
𝑏

1/4,
𝑐

3/8,
𝑑

1/2,
𝑒

3/8,
𝑓

3/8,
𝑔

3/8,
ℎ

1/4,
𝑖

3/8,
𝑗

1/2

)︂
∈ VP(𝐺).

The value at this point gives graph entropy:

𝐻𝐺(𝑋) =
1

10

(︀
6 log(8/3) + 2 log(4) + 2 log(2)

)︀
≈ 1.00438586.

2When we want to find the optimal convex combination, then it suffices to consider the inclusion-maximal
independent sets (not contained by larger independent sets).
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This is summarized by the following graphical representation (that our program code gen-
erates automatically when graph entropy is computed):

The rows represent independent sets with positive weights, while the columns correspond to
the vertices of 𝐺 (i.e., the letters of our alphabet). The red bar chart shows the corresponding
point (𝑎𝑥). Given a letter 𝑥 ∈ 𝒳 = 𝑉 (𝐺), the height of the bar above 𝑥 is equal to the
coordinate 𝑎𝑥, which is simply the sum of the weights of the sets containing 𝑥 (that is, the
weights at the end of those rows which contain a blue dot ∙ at the column of 𝑥).
For a larger example, the graph below has 63 maximal independent sets, out of which 15

are used with positive weights in the optimal convex combination.

1.4. Optimality check and error bound. There is a very simple way to check whether
a given point (𝑎𝑥) ∈ VP(𝐺) is optimal.

Theorem. Given (𝑎𝑥) ∈ VP(𝐺), if∑︁
𝑥∈𝐽

𝑝𝑥
𝑎𝑥

≤ 1 for all 𝐽 ∈ 𝒥 (𝐺),

then (𝑎𝑥) is optimal: 𝐻𝐺(𝑋) =
∑︁

𝑥∈𝑉 (𝐺)

−𝑝𝑥 log(𝑎𝑥).

As an illustration, let us confirm that the point given by (4) is indeed optimal: for each
independent set 𝐽 , we need to add up 𝑝𝑥/𝑎𝑥 for 𝑥 ∈ 𝐽 , and verify that each sum is at most
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one:

𝑎𝑐𝑗 : (8/3 + 8/3 + 2)/10 = 11/15;

𝑎𝑒𝑖𝑗 : (8/3 + 8/3 + 8/3 + 2)/10 = 1;

𝑎𝑏𝑒 : (8/3 + 4 + 8/3)/10 = 14/15;

𝑐𝑓𝑔𝑗 : (8/3 + 8/3 + 8/3 + 2)/10 = 1;

𝑒𝑔𝑖𝑗 : (8/3 + 8/3 + 8/3 + 2)/10 = 1;

𝑒𝑓𝑔𝑗 : (8/3 + 8/3 + 8/3 + 2)/10 = 1;

𝑑𝑔𝑖 : (2 + 8/3 + 8/3)/10 = 11/15;

𝑑ℎ𝑖 : (2 + 4 + 8/3)/10 = 13/15;

𝑏𝑑ℎ : (4 + 2 + 4)/10 = 1;

𝑐𝑑𝑓𝑔 : (8/3 + 2 + 8/3 + 8/3)/10 = 1;

𝑑𝑓ℎ : (2 + 8/3 + 4)/10 = 13/15.

In fact, this optimality check is a special case of the following error bound. Given an arbitrary
point (𝑎𝑥) ∈ VP(𝐺), let us compute the following quantity:

𝛿 ..= max
𝐽∈𝒥

(︂∑︁
𝑥∈𝐽

𝑝𝑥
𝑎𝑥

− 1

)︂
.

Then the error3 at (𝑎𝑥) is at most 𝛿:(︂ ∑︁
𝑥∈𝑉 (𝐺)

−𝑝𝑥 log(𝑎𝑥)

)︂
−𝐻𝐺(𝑋) ∈

[︀
0, 𝛿

]︀
.

In particular, 𝛿 must always be nonnegative, and if 𝛿 = 0, then (𝑎𝑥) must be optimal (leading
to the optimality check described in the theorem above).

As an example, consider the point (𝑎𝑥) as in (3). It is not optimal because for 𝐽 = 𝑏𝑑ℎ we
have (5 + 2 + 5)/10 = 1.2, which is greater than 1. In fact, for this point 𝛿 = 1.2− 1 = 0.2,
guaranteeing that 𝐻𝐺(𝑋) is at most 𝛿 = 0.2 away from the value (1.01029) at (𝑎𝑥). The
true error for this point is roughly 1.01029− 1.00439 = 0.0059.

Later we will see that there is a simple iterative algorithm that always converges to graph
entropy. However, the rate of convergence may vary. Computing the error bound above,
we are guaranteed to be at most 𝛿 away from the actual value of 𝐻𝐺(𝑋). The next plot
compares the error bound (blue) to the true error (red) through iterations when we run the
algorithm for the cycle graph 𝐺 = 𝐶11 with some non-uniform 𝑋. (Precision means the
number of “precise decimal digits”, that is, − log10 of the error.)

3By the error at (𝑎𝑥) we mean the distance of the value at (𝑎𝑥) from the graph entropy 𝐻𝐺(𝑋).
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2. Graph entropy: as an alternating optimization problem

2.1. Körner’s original formula. An independent set of 𝐺 contains no edges, and hence
any two letters in the set are indistinguishable. Therefore one possible strategy for encoding
a sequence 𝑋1, . . . , 𝑋ℓ is to replace each 𝑋𝑖 with an independent set 𝐽𝑖 ⊆ 𝒳 containing 𝑋𝑖,
and encode the sequence 𝐽1, . . . , 𝐽ℓ instead. If we do this randomly in a way that (𝑋𝑖, 𝐽𝑖) are
IID samples of some (𝑋, 𝐽) where 𝐽 is a random independent set containing 𝑋, then we can
encode the 𝐽𝑖 sequence with rate 𝐻(𝐽). Note that the number of times any given typical 𝑋𝑖

sequence is “covered” by typical 𝐽𝑖 sequences has exponential rate 𝐻(𝐽 |𝑋). Based on this,
one can design an encoding with rate 𝐻(𝐽)−𝐻(𝐽 |𝑋) = 𝐼(𝑋; 𝐽). Then, for a given 𝑋, one
needs to choose (𝑋, 𝐽) in a way that the mutual information 𝐼(𝑋; 𝐽) is as small as possible.
Körner showed [5] that this is the best achievable code rate, and hence we have the following
formula for graph entropy:

(5) 𝐻𝐺(𝑋) = min
𝑋∈𝐽 ind.set

𝐼(𝑋; 𝐽).

2.2. Alternating optimization hidden in the background. We have seen that graph
entropy can be obtained as the solution of two different minimization problems; see (2)
and (5). In fact, they both stem from the same alternating optimization problem that we
introduce next. (This was pointed out in [3] in the more general setting of conditional graph
entropy.)

Problem. Suppose that we have probability measures on a given finite set 𝒥 :

∙ a finite family: 𝜇𝑥, 𝑥 ∈ 𝒳 ;
∙ and a single measure: 𝜈.

For each 𝑥 ∈ 𝒳 we have the constraint that the support supp𝜇𝑥 must be contained in a
given subset 𝒥𝑥 of 𝒥 . Find the measures 𝜇𝑥, 𝜈 that minimize the weighted sum of the
Kullback–Leibler divergences:∑︁

𝑥

𝑝𝑥𝐷KL(𝜇𝑥 ‖ 𝜈) for some given weights 𝑝𝑥 ≥ 0.

To summarize, given 𝒥𝑥 ⊆ 𝒥 , 𝑥 ∈ 𝒳 and 𝑝𝑥 ≥ 0, 𝑥 ∈ 𝒳 , find the minimum of the above
sum under the constraint supp𝜇𝑥 ⊆ 𝒥𝑥.

In our setting we have a random variable 𝑋 taking values in the finite set 𝒳 , and 𝐺 is a
graph on the vertex set 𝒳 . From this point on we will use small 𝑗 to denote an independent
set of 𝐺, hence each 𝑗 is a subset of 𝒳 . We choose 𝒥 to be the set of all 𝑗, while

𝒥𝑥
..= {𝑗 : 𝑥 ∈ 𝑗}

consists of the independent sets containing a fixed 𝑥. With this setup and with 𝑝𝑥 ..= P(𝑋 =
𝑥), the minimum of the problem above turns out to be precisely 𝐻𝐺(𝑋).

To get concrete formulas, let us represent the distributions 𝜇𝑥 and 𝜈 by the following
vectors:

𝑞 =
(︀
𝑞𝑗|𝑥

)︀
(𝑗,𝑥)∈𝒥×𝒳 ∈ R𝒥×𝒳 ;

𝑟 =
(︀
𝑟𝑗
)︀
𝑗∈𝒥 ∈ R𝒥 ,

where 𝑞𝑗|𝑥 and 𝑟𝑗 stand for 𝜇𝑥({𝑗}) and 𝜈({𝑗}), respectively.4

4We index the coordinates/variables by 𝑗|𝑥 to emphasize the fact that they express certain conditional
probabilities. This notation may also serve as a reminder that 𝑞𝑗|𝑥 have to sum up to 1 for any fixed 𝑥.
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Then

𝐷KL(𝜇𝑥 ‖ 𝜈) =
∑︁
𝑗

𝑞𝑗|𝑥 log
𝑞𝑗|𝑥
𝑟𝑗

,

and hence the function to minimize is

𝜙(𝑞, 𝑟) ..=
∑︁
𝑥,𝑗

𝑝𝑥 𝑞𝑗|𝑥 log
𝑞𝑗|𝑥
𝑟𝑗

.

The constraints for 𝑞 and 𝑟 lead to the following definition. Let 𝐾q ⊂ R𝒥×𝒳 and 𝐾r ⊂ R𝒥

be the following convex polytopes:

𝐾q
..=

{︂
𝑞 =

(︀
𝑞𝑗|𝑥

)︀
: 𝑞𝑗|𝑥 ≥ 0;

∑︁
𝑗∋𝑥

𝑞𝑗|𝑥 = 1 (∀𝑥 ∈ 𝒳 ); 𝑞𝑗|𝑥 = 0 if 𝑥 /∈ 𝑗

}︂
and

𝐾r
..=

{︂
𝑟 =

(︀
𝑟𝑗
)︀
: 𝑟𝑗 ≥ 0;

∑︁
𝑗

𝑟𝑗 = 1

}︂
.

By int(𝐾q) and int(𝐾r) we denote the relative interiors of the polytopes (within their affine
hull).

With these notation, we need to find min𝐾q×𝐾r 𝜙(𝑞, 𝑟). This is an alternating minimization
problem: the point is that if we fix one of the two variables 𝑞 and 𝑟, then there are explicit
formulas for the optimal choice of the other variable.

We define the mappings5

𝐴 : 𝐾r → R𝒳 ;

𝑄 : 𝐾r → 𝐾q ⊂ R𝒥×𝒳 ;

𝑅 : 𝐾q → 𝐾r ⊂ R𝒥

by the following coordinate-wise functions 𝑄𝑗|𝑥, 𝑅𝑗, 𝐴𝑥:

𝑅𝑗(𝑞) ..=
∑︁
𝑥∈𝑗

𝑝𝑥 𝑞𝑗|𝑥;

𝐴𝑥(𝑟) ..=
∑︁
𝑗∋𝑥

𝑟𝑗;

𝑄𝑗|𝑥(𝑟) ..=

{︃
0 if 𝑥 /∈ 𝑗;

𝑟𝑗
𝐴𝑥(𝑟)

if 𝑥 ∈ 𝑗.

When minimizing 𝜙(𝑞, 𝑟), it turns out that 𝑟 = 𝑅(𝑞) is the optimal choice for a fixed 𝑞, and
similarly 𝑞 = 𝑄(𝑟) is optimal for a fixed 𝑟; that is, for any 𝑞 and 𝑟 we have

𝜙(𝑞, 𝑟) ≥ 𝜙
(︀
𝑞, 𝑅(𝑞)

)︀
and 𝜙(𝑞, 𝑟) ≥ 𝜙

(︀
𝑄(𝑟), 𝑟

)︀
.

So we can explicitly define the following functions:

𝜙q(𝑞) ..= min
𝑟

𝜙(𝑞, 𝑟) = 𝜙
(︀
𝑞, 𝑅(𝑞)

)︀
=

∑︁
𝑥

𝑝𝑥
∑︁
𝑗∋𝑥

𝑞𝑗|𝑥 log 𝑞𝑗|𝑥 −
∑︁
𝑗

𝑅𝑗(𝑞) log𝑅𝑗(𝑞);

𝜙r(𝑟) ..= min
𝑞

𝜙(𝑞, 𝑟) = 𝜙
(︀
𝑄(𝑟), 𝑟

)︀
= −

∑︁
𝑥

𝑝𝑥 log𝐴𝑥(𝑟) = −
∑︁
𝑥

𝑝𝑥 log
∑︁
𝑗∋𝑥

𝑟𝑗.

5It is straightforward to check that 𝑄(𝑟) ∈ 𝐾q and 𝑅(𝑞) ∈ 𝐾r always hold. Note that Since the formula

for 𝑄𝑗|𝑥 involves a division by 𝐴𝑥, it only defines 𝑄 over the subset 𝐾*
r
..= 𝐾r ∖

⋃︁
𝑥

𝐴−1
𝑥 (0). For 𝑟 ∈ 𝐾r ∖𝐾*

r

let 𝑄(𝑟) be an arbitrary point in int(𝐾q).
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Then, by definition, min
𝐾q×𝐾r

𝜙 = min
𝐾q

𝜙q = min
𝐾r

𝜙r. Note that for

𝜙a(𝑎) ..= −
∑︁
𝑥

𝑝𝑥 log 𝑎𝑥

we clearly have 𝜙r(𝑟) = 𝜙a

(︀
𝐴(𝑟)

)︀
. It follows that min𝐾r 𝜙r = min𝐾a 𝜙a if we define 𝐾a as

the set of 𝐴(𝑟):
𝐾a

..=
{︀
𝐴(𝑟) : 𝑟 ∈ 𝐾r

}︀
.

Note that 𝐴(𝑟) is the convex combination of the characteristic functions of the sets 𝑗 ⊆ 𝒳
(with weights 𝑟𝑗). So if 𝒥 consists of the independent sets of a graph 𝐺 on 𝒳 , then 𝐾a =
VP(𝐺).

So the q-problem min𝜙q is actually equivalent to Körner’s original formula (5) while the
a-problem (which is just a simple reformulation of the r-problem) gives back (2).

Theorem. We have the following formulas for graph entropy:

𝐻𝐺(𝑋) = min
𝐾q×𝐾r

𝜙 = min
𝐾q

𝜙q = min
𝐾r

𝜙r = min
𝐾a

𝜙a.

2.3. Iterative algorithm. When trying to find the minimum of 𝜙(𝑞, 𝑟), the fact that we
can easily optimize in either variable (while the other is fixed) gives rise to the following
simple iterative algorithm. Let us start from a point 𝑞(0) and apply 𝑅 and 𝑄 alternately:

(6) 𝑞(0) 𝑅↦−→ 𝑟(0) 𝑄↦−→ 𝑞(1) 𝑅↦−→ 𝑟(1) 𝑄↦−→ 𝑞(2) 𝑅↦−→ 𝑟(2) · · · .
The corresponding 𝜙-value decreases at each step:

𝜙
(︀
𝑞(0), 𝑟(0)

)︀
= 𝜙q(𝑞

(0))⩾ ⩾

𝜙
(︀
𝑞(1), 𝑟(0)

)︀
= 𝜙r(𝑟

(0))⩾ ⩾

𝜙
(︀
𝑞(1), 𝑟(1)

)︀
= 𝜙q(𝑞

(1))⩾ ⩾

𝜙
(︀
𝑞(2), 𝑟(1)

)︀
= 𝜙r(𝑟

(1))⩾ ⩾

𝜙
(︀
𝑞(2), 𝑟(2)

)︀
= 𝜙q(𝑞

(2))
...

...

One can also think of this alternating optimization as “jumping” between the q-problem
min𝐾q 𝜙q and the r-problem min𝐾r 𝜙r using the maps 𝑄 : 𝐾r → 𝐾q and 𝑅 : 𝐾q → 𝐾r. The
value to minimize (i.e., the 𝜙q-value and the 𝜙r-value, respectively) always decreases, so with
each step we get closer to the optimum.

Following the footsteps of the general theory of Csiszár and Tusnády [2], it was shown
in [3] that for an arbitrary starting point 𝑞(0) in the relative interior int(𝐾q), the iterative
process converges to the minimum.

Theorem ([3]). For an arbitrary starting point 𝑞(0) ∈ int(𝐾q) consider the sequence (6) ob-
tained by alternating optimization. Then 𝜙

(︀
𝑞(𝑛), 𝑟(𝑛)

)︀
is a decreasing sequence that converges

to min
𝐾q×𝐾r

𝜙 = 𝐻𝐺(𝑋) as 𝑛 → ∞.

3. Conditional graph entropy

3.1. The generalization of Körner’s formula. The analogous problem with side infor-
mation 𝑌𝑖 at the receiver leads to the notion of conditional graph entropy 𝐻𝐺(𝑋|𝑌 ). Let
(𝑋, 𝑌 ) be discrete random variables of some given joint distribution and let (𝑋𝑖, 𝑌𝑖) be IID
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samples. We assume that the decoder knows the sequence 𝑌1, 𝑌2, . . ., and, as before, that
some of the outcomes of 𝑋 are indistinguishable, described by a graph 𝐺. If we want to
use the same approach (i.e., choosing a random independent set 𝐽), then 𝐽 and 𝑌 should
be independent conditioned on 𝑋 (because the sender does not know 𝑌𝑖 when choosing 𝐽𝑖).
This can be made rigorous, leading to the following formula:

𝐻𝐺(𝑋|𝑌 ) = min
𝐽

𝐼(𝑋; 𝐽 |𝑌 ) = min
𝐽

(︂
𝐻(𝐽 |𝑌 )−𝐻(𝐽 |𝑋, 𝑌 )⏟  ⏞  

𝐻(𝐽 |𝑋)

)︂
,

where 𝐽 is a random independent set of 𝐺 such that 𝑋 ∈ 𝐽 , and 𝐽 and 𝑌 are conditionally
independent conditioned on 𝑋 (which is equivalent to saying that 𝑌 −𝑋 − 𝐽 is a Markov
chain).

3.2. Compression with side information. Suppose now that the receiver wishes to re-
cover the values 𝑓(𝑋𝑖, 𝑌𝑖) of some given function 𝑓 : 𝒳 ×𝒴 → 𝒵 (with high probability, over
long blocks) as depicted in the figure below.

Orlitsky and Roche [6] showed that the minimal rate of information that needs to be trans-
mitted is precisely the conditional graph entropy of the so-called characteristic graph, which
is defined on the vertex set 𝒳 as follows: vertices 𝑥1, 𝑥2 ∈ 𝒳 are connected with an edge if
and only if

∃𝑦 ∈ 𝒴 s.t.
(︀
𝑓(𝑥1, 𝑦) ̸= 𝑓(𝑥2, 𝑦) & P(𝑋 = 𝑥1, 𝑌 = 𝑦) > 0 & P(𝑋 = 𝑥2, 𝑌 = 𝑦) > 0

)︀
.

We mention that in the special case 𝑓(𝑥, 𝑦) = 𝑥, which was already studied in Shannon’s
classical work [7], the optimal rate is given by the conditional entropy 𝐻(𝑋|𝑌 ) = 𝐻(𝑋, 𝑌 )−
𝐻(𝑌 ).

3.3. Generalized formulas. In this conditional setting the alternating optimization prob-
lem is as follows.

Problem. Suppose that we have two finite families of probability measures on a given finite
set 𝒥 : 𝜇𝑥, 𝑥 ∈ 𝒳 and 𝜈𝑦, 𝑦 ∈ 𝒴 . In the first family for each 𝑥 ∈ 𝒳 we have a constraint:
the support supp𝜇𝑥 must be contained in a given subset 𝒥𝑥 of 𝒥 . Find the measures 𝜇𝑥, 𝜈𝑦
that minimize the weighted sum of the Kullback–Leibler divergences:∑︁

𝑥,𝑦

𝑝𝑥,𝑦𝐷KL(𝜇𝑥 ‖ 𝜈𝑦) for some given weights 𝑝𝑥,𝑦 ≥ 0.

To summarize, given 𝒥𝑥 ⊆ 𝒥 , 𝑥 ∈ 𝒳 and 𝑝𝑥,𝑦 ≥ 0, 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 , find the minimum of the
above sum under the constraint supp𝜇𝑥 ⊆ 𝒥𝑥.

In our setting we have random variables 𝑋 and 𝑌 taking values in the finite sets 𝒳 and 𝒴 ,
respectively, and 𝐺 is a graph on the vertex set 𝒳 . As before, 𝒥 is the set of all independent
sets 𝑗 of 𝐺, while

𝒥𝑥
..= {𝑗 : 𝑥 ∈ 𝑗}

consists of the independent sets containing a fixed 𝑥. With 𝑝𝑥,𝑦 ..= P(𝑋 = 𝑥, 𝑌 = 𝑦), the
above minimum is 𝐻𝐺(𝑋|𝑌 ).
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Let us represent the distributions 𝜇𝑥 and 𝜈𝑦 by the following vectors:

𝑞 =
(︀
𝑞𝑗|𝑥

)︀
(𝑗,𝑥)∈𝒥×𝒳 ∈ R𝒥×𝒳 ;

𝑟 =
(︀
𝑟𝑗|𝑦

)︀
(𝑗,𝑦)∈𝒥×𝒴 ∈ R𝒥×𝒴 ,

where 𝑞𝑗|𝑥 and 𝑟𝑗|𝑦 stand for 𝜇𝑥({𝑗}) and 𝜈𝑦({𝑗}), respectively. Then

𝐷KL(𝜇𝑥 ‖ 𝜈𝑦) =
∑︁
𝑗

𝑞𝑗|𝑥 log
𝑞𝑗|𝑥
𝑟𝑗|𝑦

,

so the function to minimize is

𝜙(𝑞, 𝑟) ..=
∑︁
𝑥,𝑦,𝑗

𝑝𝑥,𝑦 𝑞𝑗|𝑥 log
𝑞𝑗|𝑥
𝑟𝑗|𝑦

.

The constraints for 𝑞 and 𝑟 lead to the following definitions:

𝐾q
..=

{︂
𝑞 =

(︀
𝑞𝑗|𝑥

)︀
: 𝑞𝑗|𝑥 ≥ 0;

∑︁
𝑗∋𝑥

𝑞𝑗|𝑥 = 1 (∀𝑥 ∈ 𝒳 ); 𝑞𝑗|𝑥 = 0 if 𝑥 /∈ 𝑗

}︂
and

𝐾r
..=

{︂
𝑟 =

(︀
𝑟𝑗|𝑦

)︀
: 𝑟𝑗|𝑦 ≥ 0;

∑︁
𝑗

𝑟𝑗|𝑦 = 1 (∀𝑦 ∈ 𝒴)

}︂
.

The general formulas for the mappings 𝐴 : 𝐾r → R𝒳 ; 𝑄 : 𝐾r → 𝐾q ⊂ R𝒥×𝒳 ; 𝑅 : 𝐾q →
𝐾r ⊂ R𝒥×𝒴 are as follows:

𝑅𝑗|𝑦(𝑞) ..=
∑︁
𝑥∈𝑗

𝑝𝑥|𝑦 𝑞𝑗|𝑥;

𝐴𝑥(𝑟) ..=
∑︁
𝑗∋𝑥

∏︁
𝑦

(︀
𝑟𝑗|𝑦

)︀𝑝𝑦|𝑥
;

𝑄𝑗|𝑥(𝑟) ..=

⎧⎨⎩0 if 𝑥 /∈ 𝑗;∏︀
𝑦

(︀
𝑟𝑗|𝑦

)︀𝑝𝑦|𝑥⧸︂
𝐴𝑥(𝑟) if 𝑥 ∈ 𝑗.

(Here we define 𝑡0 = 1 even for 𝑡 = 0.)

Remark. Note that 𝑅 is a linear map and it actually describes how the conditional distri-
butions 𝐽 |𝑌 = 𝑦 can be expressed in terms of 𝐽 |𝑋 = 𝑥 in a Markov chain 𝑌 −𝑋 − 𝐽 .

As for 𝜙q and 𝜙r, we have

𝜙q(𝑞) ..= 𝜙
(︀
𝑞, 𝑅(𝑞)

)︀
=

∑︁
𝑥

𝑝𝑥
∑︁
𝑗∋𝑥

𝑞𝑗|𝑥 log 𝑞𝑗|𝑥 −
∑︁
𝑦

𝑝𝑦
∑︁
𝑗

𝑅𝑗|𝑦(𝑞) log𝑅𝑗|𝑦(𝑞)

and

𝜙r(𝑟) ..= 𝜙
(︀
𝑄(𝑟), 𝑟

)︀
= −

∑︁
𝑥

𝑝𝑥 log𝐴𝑥(𝑟) = −
∑︁
𝑥

𝑝𝑥 log
∑︁
𝑗∋𝑥

∏︁
𝑦

(︀
𝑟𝑗|𝑦

)︀𝑝𝑦|𝑥
.

With these notations, we can express conditional graph entropy in various ways:

𝐻𝐺(𝑋|𝑌 ) = min
𝐾q

𝜙q = min
𝐾r

𝜙r = min
𝐾r

−
∑︁
𝑥

𝑝𝑥 log𝐴𝑥.
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It can be seen easily that 𝐴𝑥 : 𝐾r → [0, 1] is a concave function for each 𝑥. It means that the
set of image points 𝑎 = (𝑎𝑥)𝑥∈𝒳 with 𝑎𝑥 = 𝐴𝑥(𝑟), as 𝑟 ranges over 𝐾r, (essentially) defines
a convex corner6 𝐾a in R𝒳 . Then we have

𝐻𝐺(𝑋|𝑌 ) = min
𝐾a

𝜙a, where 𝜙a(𝑎) = −
∑︁
𝑥

𝑝𝑥 log 𝑎𝑥.

A nice feature of this a-problem is that the minimum is attained at a single point 𝑎 ∈ 𝐾a

because 𝜙a is strictly convex (provided that 𝑝𝑥 = P(𝑋 = 𝑥) > 0 for each 𝑥). Also note that
𝜙a depends only on the distribution of 𝑋, while the convex corner 𝐾a depends only on the
graph 𝐺 and the conditional distributions 𝑌 |𝑋 = 𝑥 for any given 𝑥. Thus, the parameters
of the problem are, so to say, split between 𝜙a and 𝐾a.
Moreover, in [3] another convex corner, denoted by 𝐿, was defined such that

𝐻𝐺(𝑋|𝑌 ) = min
𝐾a

𝜙a = −min
𝐿

𝜙a;

a vector 𝑎 =
(︀
𝑎𝑥
)︀
𝑥∈𝒳 ∈ 𝐾a being optimal (i.e., the minimum point of 𝜙a) if and only if

𝑎−1 ..=
(︀
𝑎−1
𝑥

)︀
𝑥∈𝒳 ∈ 𝐿. This provides a fairly simple way to check optimality, and even leading

to an error bound for the iterative algorithm, which was shown to converge to 𝐻𝐺(𝑋|𝑌 ) in
this conditional setting as well.

Further material

For a more detailed exposition of the conditional setting, see [3]. Simonyi’s excellent
survey [8] is a good source for further results on graph entropy. A possible generalization to
graphons can be found in [4].
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