Functional Analysis, BSM, Spring 2012
Exercise sheet: spectrum; polar decomposition
Solutions

1. By definition, A € o(T) if and only if A — T' is invertible. We have seen that if S is invertible, then so is
S*. Since (S*)* = S, this means that S is invertible if and only if S* is invertible. Using (A\I — T)* = A\ — T*
the statement follows.

2. a) In a complex Hilbert space every positive operator is self-adjoint, and hence normal. Thus o(T) = 04,(T).

Suppose that A is an approximate eigenvalue of T, that is, there exist z,, € X such that ||x,|| = 1 for all n and
T2, — Axy|| — 0. It follows that

((Txn = Az, 20)| < || T2n = Azalllza] — 0.

Since
(Txp — Mo, n) = (T, xn) — (AT, Tpn) = (T, Tn) — A,

we get that (Tx,,x,) — \. Since T is positive, (T'x,,x,) is a nonnegative real number for all n, thus so is A.
b) The same proof yields that every approximate eigenvalue of a self-adjoint operator 7' is real. (We need to
use that if T is self-adjoint, then (T'z, x) is real for any = € H.)
3. If T is unitary, then so is T*. In particular, |T|| = ||T*|| = 1. Therefore both ¢(T") and o(T*) are contained
in the closed unit disk {\: |A| < 1}.

On the other hand, if T is unitary, then it is invertible and 7! = T*. Now suppose that there exists
A € o(T) with || < 1. Then A= € o(T~1) = o(T*). Since [A\~!| > 1, this contradicts that o(T™*) is contained
in the closed unit disk.
4. Recall that (ker S)* = cl(ran S*). Using this for S = A\ — T

A € 0,(T) & ker(M —T) # {0} & cl(ran(\] — T)*) # H < ran(A — T*) is not dense.

5. Recall that
or-(T) ={\ : ker(A\] —T) = {0} and ran(AI —T) is not dense} .

If T is normal, then ker T' = ker T* = (ranT)L. It follows that for a normal operator the kernel is trivial if and
only if the range is dense. Since AI — T is normal, we conclude that o,.(T) = 0.

6. Recall that S is invertible if and only if S is bounded below and ranS is dense. If A € o(T), then
Al — T is not invertible, so either A\I — T is not bounded below (i.e., A is an approximate eigenvalue of T),
or cl(ran(A — T)) # H. Since cl(ran(A —T)) = (ker(A — T)*)* = (ker(A] — T™))*, the latter means that
ker(A — T%) # {0} (i.e., A is an eigenvalue of T%).

7. a) If R is the right shift operator, then R*R = I, so |R| = I and we must have U = R in the polar
decomposition.

b) If L is the left shift operator, then

L*L: (O[l,OéQ,ag,. . ) = (0,&27013, . )

The square root of this operator is itself. This means that we can choose U to be the left shift.

8.*% In a complex Hilbert space every positive operator is self-adjoint. So if A;As is positive, then A;A; =
(A1Ay)* = A3A; = AyA;. For the converse, suppose that A; and Ay commute. Let By = /Ay; By is a
positive operator for which A; = B%. We also know from the square root lemma that B; commutes with As.
Therefore

(A1 Asz, x) = (B1B1Asx, x) = (B1Aszx, Bix) = (A3 Bix, Biz) > 0.



9. We may assume that |4 <1 and ||4,] <1 for all n. Then with the notations of the proof of the square
root lemma:

VA=T1- ch(IfA)k and VA, =1— ch(IfAn)k for all n.
k=1 k=1

Recall that ¢, are positive real numbers with >"~ | ¢, = 1. Therefore
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Now let € > 0 be arbitrary. We choose K such that
Z cr < 6/4.
k=K+1

It is easy to see that for any fixed k, ||(I — A)* — (I — A,)*|| — 0 as n — oo. So there exists N such that
H(I— A — (I—An)’“H <e/(2K) forall 1 <k < K and n > N. Since ||(I — A)* — (I — A,)*|| <2,
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for any n > N.
10. In view of the previous exercise, it suffices to show that ||T*T,, — T*T|| — 0. We know that

1T =T = (T = T)"|| = |7 = T|| = 0.

So it is enough to prove that if ||A, — A|| — 0 and ||B,, — B|| — 0, then ||A,, B, — AB|| — 0, but this is clear,
since

|AnBy — AB| < | AnBy — ABy| + |AB, — AB| = [(An — A)By| + || A(B, — B)|| <
| A — AlllBall + | AB,, — B —o.

11.* The statement will easily follow from the following lemma.

Lemma: Let A,, A € B(H). Suppose that A, € B(H) is invertible for each n and ||4,, — A| — 0 as n — oc.
If A is not invertible, then A is not bounded below.

Proof of the lemma: Assume that A is bounded below, but not invertible. It means that ran A cannot be
dense, thus (ran A)~ is not trivial: there exists  # 0 such that x is orthogonal to ran A. We know that A,, is
surjective for each n, so there exists x,, # 0 such that A,x, = z. Then

(A— Az, = Az, — Apx, = Az, — .
Since Az, is in ran A, it is orthogonal to z, so
(A = Ap)znl* = [|Azn|* + [l2]|* = || Az, 2.

Therefore
Azl _ [[(A— An)zn
[E |- (e

as n — oo, which contradicts that A is bounded below.

<[[A=Anll =0

Now let A be an arbitrary element of the boundary of the spectrum. Since the spectrum is closed, this means
that A € o(T'), but there exist A, ¢ o(7T') such that A, — A. So we can use the lemma with A,, = \,] —T and
A =X —T. We get that Al — T is not bounded below, that is, A is an approximate eigenvalue. This is what
we wanted to prove.



