
Functional Analysis, BSM, Spring 2012

Exercise sheet: spectrum; polar decomposition

Solutions

1. By de�nition, λ ∈ σ(T ) if and only if λI − T is invertible. We have seen that if S is invertible, then so is
S∗. Since (S∗)∗ = S, this means that S is invertible if and only if S∗ is invertible. Using (λI − T )∗ = λI − T ∗
the statement follows.

2. a) In a complex Hilbert space every positive operator is self-adjoint, and hence normal. Thus σ(T ) = σap(T ).
Suppose that λ is an approximate eigenvalue of T , that is, there exist xn ∈ X such that ‖xn‖ = 1 for all n and
‖Txn − λxn‖ → 0. It follows that

|(Txn − λxn, xn)| ≤ ‖Txn − λxn‖‖xn‖ → 0.

Since
(Txn − λxn, xn) = (Txn, xn)− (λxn, xn) = (Txn, xn)− λ,

we get that (Txn, xn)→ λ. Since T is positive, (Txn, xn) is a nonnegative real number for all n, thus so is λ.
b) The same proof yields that every approximate eigenvalue of a self-adjoint operator T is real. (We need to
use that if T is self-adjoint, then (Tx, x) is real for any x ∈ H.)

3. If T is unitary, then so is T ∗. In particular, ‖T‖ = ‖T ∗‖ = 1. Therefore both σ(T ) and σ(T ∗) are contained
in the closed unit disk {λ : |λ| ≤ 1}.

On the other hand, if T is unitary, then it is invertible and T−1 = T ∗. Now suppose that there exists
λ ∈ σ(T ) with |λ| < 1. Then λ−1 ∈ σ(T−1) = σ(T ∗). Since |λ−1| > 1, this contradicts that σ(T ∗) is contained
in the closed unit disk.

4. Recall that (kerS)⊥ = cl(ranS∗). Using this for S = λI − T :

λ ∈ σp(T )⇔ ker(λI − T ) 6= {0} ⇔ cl(ran(λI − T )∗) 6= H ⇔ ran(λI − T ∗) is not dense.

5. Recall that
σr(T ) = {λ : ker(λI − T ) = {0} and ran(λI − T ) is not dense} .

If T is normal, then kerT = kerT ∗ = (ranT )⊥. It follows that for a normal operator the kernel is trivial if and
only if the range is dense. Since λI − T is normal, we conclude that σr(T ) = ∅.
6. Recall that S is invertible if and only if S is bounded below and ranS is dense. If λ ∈ σ(T ), then
λI − T is not invertible, so either λI − T is not bounded below (i.e., λ is an approximate eigenvalue of T ),
or cl(ran(λI − T )) 6= H. Since cl(ran(λI − T )) = (ker(λI − T )∗)⊥ = (ker(λI − T ∗))⊥, the latter means that
ker(λI − T ∗) 6= {0} (i.e., λ is an eigenvalue of T ∗).

7. a) If R is the right shift operator, then R∗R = I, so |R| = I and we must have U = R in the polar
decomposition.
b) If L is the left shift operator, then

L∗L : (α1, α2, α3, . . .) 7→ (0, α2, α3, . . .).

The square root of this operator is itself. This means that we can choose U to be the left shift.

8.* In a complex Hilbert space every positive operator is self-adjoint. So if A1A2 is positive, then A1A2 =
(A1A2)∗ = A∗2A

∗
1 = A2A1. For the converse, suppose that A1 and A2 commute. Let B1 =

√
A1; B1 is a

positive operator for which A1 = B2
1 . We also know from the square root lemma that B1 commutes with A2.

Therefore
(A1A2x, x) = (B1B1A2x, x) = (B1A2x,B

∗
1x) = (A2B1x,B1x) ≥ 0.



9. We may assume that ‖A‖ ≤ 1 and ‖An‖ ≤ 1 for all n. Then with the notations of the proof of the square
root lemma:

√
A = I −

∞∑
k=1

ck(I −A)k and
√
An = I −

∞∑
k=1

ck(I −An)k for all n.

Recall that ck are positive real numbers with
∑∞

k=1 ck = 1. Therefore

∥∥∥√A−√An

∥∥∥ ≤ ∞∑
k=1

ck
∥∥(I −A)k − (I −An)k

∥∥ .
Now let ε > 0 be arbitrary. We choose K such that

∞∑
k=K+1

ck < ε/4.

It is easy to see that for any �xed k,
∥∥(I −A)k − (I −An)k

∥∥ → 0 as n → ∞. So there exists N such that∥∥(I −A)k − (I −An)k
∥∥ ≤ ε/(2K) for all 1 ≤ k ≤ K and n > N . Since ‖(I −A)k − (I −An)k‖ ≤ 2,

∥∥∥√A−√An

∥∥∥ ≤ K∑
k=1

∥∥(I −A)k − (I −An)k
∥∥+

∞∑
k=K+1

2ck <
ε

2
+
ε

2
= ε

for any n > N .

10. In view of the previous exercise, it su�ces to show that ‖T ∗nTn − T ∗T‖ → 0. We know that

‖T ∗n − T ∗‖ = ‖(Tn − T )∗‖ = ‖Tn − T‖ → 0.

So it is enough to prove that if ‖An −A‖ → 0 and ‖Bn −B‖ → 0, then ‖AnBn −AB‖ → 0, but this is clear,
since

‖AnBn −AB‖ ≤ ‖AnBn −ABn‖+ ‖ABn −AB‖ = ‖(An −A)Bn‖+ ‖A(Bn −B)‖ ≤
‖An −A‖‖Bn‖+ ‖A‖‖Bn −B‖ → 0.

11.* The statement will easily follow from the following lemma.
Lemma: Let An, A ∈ B(H). Suppose that An ∈ B(H) is invertible for each n and ‖An − A‖ → 0 as n → ∞.
If A is not invertible, then A is not bounded below.
Proof of the lemma: Assume that A is bounded below, but not invertible. It means that ranA cannot be
dense, thus (ranA)⊥ is not trivial: there exists x 6= 0 such that x is orthogonal to ranA. We know that An is
surjective for each n, so there exists xn 6= 0 such that Anxn = x. Then

(A−An)xn = Axn −Anxn = Axn − x.

Since Axn is in ranA, it is orthogonal to x, so

‖(A−An)xn‖2 = ‖Axn‖2 + ‖x‖2 ≥ ‖Axn‖2.

Therefore
‖Axn‖
‖xn‖

≤ ‖(A−An)xn‖
‖xn‖

≤ ‖A−An‖ → 0

as n→∞, which contradicts that A is bounded below.

Now let λ be an arbitrary element of the boundary of the spectrum. Since the spectrum is closed, this means
that λ ∈ σ(T ), but there exist λn /∈ σ(T ) such that λn → λ. So we can use the lemma with An = λnI − T and
A = λI − T . We get that λI − T is not bounded below, that is, λ is an approximate eigenvalue. This is what
we wanted to prove.


