WEIL’S BOUND FOR KLOOSTERMAN SUMS

GERGELY HARCOS

1. INTRODUCTION

The aim of these notes is to give a concise but self-contained proof of the following
celebrated theorem due to Weil [5].

Theorem 1 (Weil). Let p > 2 be a prime number. Let a and b be integers coprime to p.
Then the Kloosterman sum

p—1
S(a,b;p) =) e,(at+br)
1

=
has absolute value at most 2./p.

Here e, (x) abbreviates exp(2mix/p), and 7 is a multiplicative inverse of r modulo p.
We denote by F, the p-element field, and we identify its elements with the residue classes
modulo p. Hence e, (x) is a nontrivial additive character of IF,, and we can write

(1) S(a,b;p) =Y eplat+bt7").

teFy

We fix p, a, b for the rest of the notes, except that in the next section p is an arbitrary prime.

Our exposition is largely based on Iwaniec—Kowalski [2, Chapter 11], but we try to give
more detail at certain points and keep the algebraic prerequisites to a minimum. A rough
outline of the proof is as follows. Along with S(a,b; p), we consider all the Kloosterman
sums S(ma,mb; p) with 1 <m < p—1, and we write them as

S(ma,mb;p) = =04 — ﬁm

with complex numbers @, and f3,, such that oy, f3,, = p. That is, we have a decomposition
of polynomials in C[T],

@) 1+S(ma,mb; p)T + pT* = (1 aT)(1 = BuT).
It turns out that the power sums of the o;,’s and 3,,’s have a geometric meaning, namely

p—1
G P 1= Y (o) = [{(xy) €Fpr x Fpr: y* = (x" —x)* — dab}],

m=1
where IF,» denotes the field of p” elements. Weil showed [6, p. 70] that the right hand side
can be approximated as p" + O ( p/ 2), hence for any integer n > 1 we have

p—1
Y (e +Bo) <, 02,
m=1
It is straightforward to deduce from here that each ¢, and 3, has absolute value ,/p, and
Theorem 1 follows upon noting |S(a,b; p)| < |ai| + |Bi].
1
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2. BACKGROUND ON FINITE FIELDS

Lemma 1. Let F be a field, and let k(X) € F[X] be an irreducible polynomial. Then there
is a field G containing F such that k has a root in G.

Proof. 1t suffices to construct a field G such that F' embeds into G, and k has a root
in G. The residue classes in F[X] modulo k(X) form a ring G := F[X]/(k(X)). We
claim that G is a field satisfying the requirements. Clearly, the inclusion F C F[X] in-
duces an embedding F — G. If §& € G denotes the residue class of X modulo k(X), then

k(&) € G is the residue class of k(X) modulo k(X), i.e. k(§) = 0. Now let a(X) mod
k(X) be any nonzero residue class in G, i.e. a(X) € F[X] is not divisible by k(X). Us-
ing the Euclidean algorithm in F[X], we can find polynomials b(X),/(X) € F[X] such
that a(X)b(X) — k(X)I(X) = 1. More precisely, the Euclidean algorithm finds a nonzero
polynomial of the form a(X)b(X) — k(X)!(X) whose divisors are the common divisors of
a(X) and k(X). As k(X) is irreducible, and a(X) is not divisible by k(X), the polyno-
mial a(X)b(X) — k(X)I(X) is a nonzero constant. Dividing »(X) and /(X) by this nonzero
constant, we can achieve a(X)b(X) — k(X)I(X) = 1. This means that 5(X) mod k(X) is a
multiplicative inverse of a(X) mod k(X ), hence G is a field. O

Definition 1. If F C G are fields and & € G, then F(&) denotes the smallest subfield of
G containing F and . The element & € G is called algebraic over F if k(&) = 0 for
some non-constant k(X) € F[X]. In this case the unique monic polynomial k(X) € F[X] of
smallest positive degree such that k(€) = 0 is called the minimal polynomial of & over F.

Lemma 2. Let F C G be any fields. Let & € G be algebraic over F with minimal polyno-
mial k(X) € F|X]. Then k(X) is irreducible in F[X], and F (&) is isomorphic to F[X]/(k(X)).

Proof. If k(X) is reducible in F[X], then it factors into smaller degree monic polynomials
k(X) = u(X)v(X). As k(&) =0, we have u(&) =0 or v(§) = 0, a contradiction. So k(X)
is irreducible in F[X]. Moreover, using the Euclidean algorithm in F[X], we see that a
polynomial a(X) € F[X] satisfies a(&) = 0 if and only if a(X) is divisible by k(X) in
F[X]. Consider now F[&], the smallest subring of G containing F and . Consider also the
map f : F[X]/(k(X)) — F[&] assigning to any residue class a(X) mod k(X) the element
a(&) € F[E]. Tt is straightforward to verify that f is a ring isomorphism, hence F[£] is
isomorphic to F[X]/(k(X)). The latter ring is actually a field (cf. proof of Lemma 1), hence
F[E] is afield. It follows that F (&) = F[£], and so F (&) is isomorphic to F[X]/(k(X)). O

Lemma 3. Let F C G be any fields. If F is a finite field of cardinality m, then
F={xeG: x"=x}.

Proof. If x € F*, then X1 =1, because F* is a finite group of order m — 1. Hence for
any x € F we have X" = x,1.e. F C {x € G: x™ =x}. We must have equality here, because
the left hand side has cardinality m, and the right hand side has cardinality at most m. [

Lemma 4. Let F be a field, and let H be a finite subgroup of the multiplicative group F*.
Then H is cyclic.

Proof. Letx € H and y € H be any two group elements of (multiplicative) orders r and s,
respectively. We claim that H contains an element of order [r,s]. To see this, decompose
[r,s] as ab with suitable a | » and b | s such that (a,b) = 1, and consider z := x"/y*/> ¢ H.
The order ¢ of z clearly divides ab, because %’ = x*y*® = 1. On the other hand, 7' = 1
implies 7 = 1 and z” = 1, whence y**/” = 1 and x”"/® = 1. This is only possible if b | ar
and a | bt, i.e. ab | t. Hence t = ab = [r,s] as claimed. Now pick x € H so that its order r is
maximal. Then any y € H has order s | r, because [r,s] < r implies s | r. Fixing y and s, we
observe that in F the equation #* = 1 has at most s solutions, and y is one of them. On the
other hand, xkr/s (1 < k < s) are s distinct elements satisfying #* = 1, hence y must be one
these elements. That is, x generates H, and we are done. O
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Lemma 5. Let F C G be any finite fields. Then there exists & € G such that F(§) = G.

Proof. By Lemma 4, the multiplicative group G* is generated by some & € G. Then F(£)
clearly contains G*, hence F(§) =G. O

Theorem 2. The cardinality of any finite field is a prime power p". Conversely, for any
prime power p", there is a finite field of cardinality p", and it is unique up to isomorphism.

Proof. Let F be any finite field. The elements 1, 141, 1 + 1+ 1, etc. in F cannot all be
distinct. Hence, after subtraction, we see that in F we have m -1 = 0 for some positive
integer m. If m is minimal with this property, then m is prime. Indeed, if m = kI with
0 <k,0<m,then (k-1)(I-1)=m-1=0, hence k-1 =0o0r/-1=0, a contradiction. So
m = p is prime, and we can embed I, into F' by mapping a residue class t mod p in F, to
t-1 € F. We call F, the prime field of F. In particular, F is a vector space over I, of some
finite dimension n, hence |F| = p" is a prime power.

Conversely, let p”* be any prime power. We construct a field F;, of cardinality p”, and in
the next paragraph we show that any field of cardinality p” is isomorphic to F;,,. There is
a field K containing [F,, such that any polynomial in F,[X] decomposes into linear factors
over K. To see this, enumerate the polynomials in F,[X], and use Lemma 1 recursively to
construct a chain of fields

F,=KoCKiCK>)C...
such that in K, the m-th polynomial decomposes into linear factors, and then define K as
the union of these fields. Now we put

4) F,:={x€K: P =x},

and we claim that F, is a p"-element subfield of K containing IF,,. On the one hand, in K[X]
we have a decomposition

pn
(5) X" —x =T]x-n),
i=1

and F;, is the set of roots {#; : 1 <i < p"}. The roots are distinct, because the formal
derivative of the left hand side, (X" —X)' = p"X?"~! — 1 = —1, has no root. This proves
that |F,| = p". On the other hand, F,, is the set of fixed points of 6", where

(6) o:x+—xP

denotes the Frobenius map on K. Clearly, (0) =0, o(1) = 1, o(xy) = o(x)o(y). More-
over, by the binomial theorem, 6(x+y) = 6(x) + o(y). Therefore, o is a field endomor-
phism of K fixing IF, pointwise, and the same is true of ¢”. Hence F, is a subfield of K
containing I ,.

Let F be any field of cardinality p". Then the prime field of F' must be IF;,, hence without
loss of generality, F' contains F,,. By Lemma 5, there exists § € F such that F,(§) = F.
Let k(X) € F,[X] be the minimal polynomial of & over F,. Then k(X) has a root & in
K. The minimal polynomial of & over F), divides k(X) in F,[X] (cf. proof of Lemma 2),
therefore it equals k(X ) by the irreducibility of k(X). It follows that F,(&) is isomorphic to
the subfield F, (o) C K, because both fields are isomorphic to F,,[X]/(k(X)) by Lemma 2.
In particular, F, (o) has cardinality p”, hence it equals F,, by Lemma 3. In the end, we see
that F is isomorphic to F,,, namely F =F,(&) = F,[X]/(k(X)) = F,(a) = F,. O

Definition 2. We identify F,» with F;, defined by (4), and we regard their union
IET, = U F pr-
n=1

Corollary 1. The fields Fn are precisely the finite subfields of IFT, Moreover, Fym C Fpn
if and only m | n.
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Proof. By definition, F,» C IFT,. Conversely, let F be a finite subfield of ]FT,. Then, F
contains IF,, hence F is a vector space over I, of some finite dimension »n. It follows that
|F| = p", therefore F = IF,» by Lemma 3 and (4). Assume now that [F,n C F . Then, F
is a vector space over IF,» of some finite dimension k, hence p" = Fpn = |Fn|t = p"k,
That is, n = mk, i.e. m | n. Conversely, if m | n, then (4) readily implies that Fpm CFpn. O

In particular, any & € F, generates some finite field F,(ct) = FF 4, hence by (4) and (6)
we see that I, is a disjoint union of Frobenius orbits of the form {@, o (a),...,0¢7 1 (a)}.
In fact, for a given integer n > 1, the orbits of size d | n partition F,». The next result
describes these orbits in more detail and shows that [, is an algebraic closure of FF),.

Theorem 3. A Frobenius orbit of size d in E is the set of roots of an irreducible monic
polynomial of degree d in F,[X], and vice versa.

Proof. The proof relies on the fact that F, is the set of fixed points of ¢ in F,. Let
{a,0(a),...,0? ()} C F, be a Frobenius orbit of size d, i.e. 6/ () = a and the listed
elements are distinct. Then the monic polynomial

d—1

k(X) =[] (X~ o'(a))

i=0
lies in [F,,[X], because ¢ permutes the roots and therefore fixes the coefficients of k(X).
Moreover, {a, 6 (),...,69 (o)} is not the disjoint union of two non-empty c-invariant
subsets, hence k(X) is irreducible in IF,[X]. Conversely, let k(X) € F,[X] be an irreducible
monic polynomial of degree d. Then, as we have seen in the proof of Theorem 2, k(X) has
aroot o € F 4, and in fact F(a) = F . Hence {o,0(),...,0% ()} is a Frobenius

orbit of size d in F,, i.e. 0¢(t) = a and the listed elements are distinct. Each element
o'(a) is a root of k(X), because k(c'(a)) = o' (k(a)) = 6°(0) = 0, therefore the orbit is
the set of roots of k(X). O

Corollary 2 (Gauss). For any integer n > 1, we have the following identity in F ,[X]:

x-x=[] [I k.
d|n kirred. monic
deg(k)=d
where the inner product runs through the irreducible monic polynomials of degree d in

F,[X].

Proof. We have seen in the proof of Theorem 2 that over F,» the left hand side decomposes
into distinct linear factors as (cf. (5))

X" —X=[] x-u.

ZEFPH

The field F» is a disjoint union of the Frobenius orbits of size d | n, hence the stated
identity follows immediately from Theorem 3. O

Definition 3. The n-trace of an element & € IF» is given by

Tr, (o) := Z ol(a).

Theorem 4. The n-trace is an F,-linear surjection Tr, : Fpn — F,. Moreover, for any
y € Fpyn, we have

0, Tr,(y) #0;
=0.

no. P _x= =
@) HxeFpn: x¥ —x =y} {p, Tra(y)
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Proof. For any o € Fpn, we have 6" () = o, hence

o(Tr,(a Z o o) =Tr, ().

That is, Tr, () € F,. In addition, the map Tr,, : F,» — F), is F,-linear, because o (hence

also o7) is IF,-linear. Consider now the IF,-linear map & : F,» — [ given by
O(x):=x"—x=0(x)—x.

The kernel of § equals [, hence & is a p-to-1 map with an image of size |im§| = p"~!.

In addition, im 6 C kerTr,, because for any x € F,» we have

n—1

Tr,(8(x)) = Try(o(x) —x) = Z (6" (x) — 6'(x)) = 6"(x) —x = 0.

i=0
However, Tr, : F,» — I, is also a polynomial function of degree p"~! by definition, hence

it cannot vanish at more than p”’l points. It follows that im 6 = ker Tr,,. This verifies (7)
and the surjectivity of Tr, as well, because |imTr, | = p"/|ker Tr, | = p. O

Remark 1. Theorem 4 and its proof can be summarized by saying that the following se-
quence of [F,-linear maps is exact:

0—F, L Fp-5Fp 25 F, — 0.

3. L-FUNCTIONS

In this section we prove the identity (3) with the help of L-functions. Recall that the
parameters p,a,b € Z of Theorem 1 are fixed, and the numbers o, B, €C (1 <m< p—1)
satisfy (2).

The ring of polynomials F,[X] bears a close similarity to the ring of integers Z. We
define a completely multiplicative function 1 : F,,[X] — C that is analogous to a Dirichlet
character Z — C.

Definition 4. Let k(X) = coX? +---+c4 € F,[X] be a polynomial with ¢y # 0 # c,. Then
k(X) decomposes into linear factors over F, as k(X) = co(X —11) ... (X —t4), and we put
(k) :=ep(ats +---+1a))ep(b(ty '+ +1;1))

=ep(—aler/co))ep(=blca-1/ca))-

For all other polynomials k(X) € F,[X]| we put n(k) := 0.
Lemma 6. We have
o [n(k)| <1 foranyk e F,[X];
o N (kiky) = n(ki)n (k) for any ki, kr € Fp[X].
Proof. Both statements are clear from the definition. O

Definition 5. For any integer m coprime with p, we introduce the Dirichlet series
Z nm —deg k) Rs > 1,

k monic
where the sum runs through the monic polynomials in F,[X].

Lemma 7. The Dirichlet series L(s,n™) converges absolutely and locally uniformly in the
half-plane Rs > 1. In addition, we have the Euler product decomposition

o= T1 (1-nmwp @) s>,

k irred. monic

which converges absolutely and locally uniformly in the half-plane Rs > 1.
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Proof. Let ¢ > 1 be fixed. In the half-plane Rs > o we have, by Lemma 6,

Z ’nm(k)pfdeg(k)x‘ < Z pfdeg(k)c — Z p7d6 Z 1= Z pd(lfc) < oo,
k monic k monic d=1 k monic d=1
deg(k)=d

which implies the first claim. The second claim follows from the same bound coupled with
the facts that IF,[X] is a unique factorization domain and ™ : F,[X]| — C is completely
multiplicative (cf. Lemma 6). The argument is very similar to the case of Dirichlet L-
functions, hence we omit the details. O

Theorem 5. The Dirichlet series L(s,n™) extends to an entire function satisfying
L(s,n™) = 1+ S(ma,mb; p)p~* + p' =%, seC.

Proof. Tt suffices to prove that the above identity holds for Rs > 1. So for the rest of the
proof we assume that Rs > 1, which will also take care of all convergence issues. Clearly,

Lsn™ =Y pr* Y 0"k,
d=1 k monic
deg(k)=d

hence we are led to evaluate the inner sum (cf. Definition 4). Denoting this sum by ay, it
is obvious that ay = 1, while

ay = Z n"x—t)= Z ep(mat)e,(mbt ") = S(ma,mb; p).

X
1€Fyp 1€Fy

Regarding a,, we have

a = Z nm(x2—|—c1x—|—c2): Z Z ep(—macy)e,(—mbcy/ca)

C],C2€IF], CIEFI, Cze]F;
2
=p—1+ Z ep(—macy) Z ep(—mbci/c2) =p—1+ Z ep(c) | =p,
c|€Fp €l ceFy
while for d > 3 we find
ag = Z nm(xd+c1xd71+~--+cd)
Cl,.‘.,CdE]Fp
= Z Z ep(—macy)e,(—mbcy_1/cq) = Z 0=0.
g €F) C1riCa—1€F)p c4€Fp
We conclude that
L(s,n™) = Z agp™ % = 1+ S(ma,mb;p)p~* + p' =%, Rs > 1.
d=1
The proof is complete. (]

Remark 2. Theorem 5 implies (and in fact is equivalent to) the functional equation

PL ") = L1 =507,

More generally, if @ is a Hecke character of a curve of genus g over IF,, and § denotes the
conductor of @, then by Theorems 4 and 6 in [7, Chapter VII] we have

NS/ZL(S7CO) — KN<17‘)/2L<1 —S,(Dil),

where N := ¢?¢-2+de2()) and k is a complex number of modulus 1 depending only on .
In our case g = p, g = 0, and f = 2(0) 4 2(0) is of degree 4, so that N = p?.



WEIL’S BOUND FOR KLOOSTERMAN SUMS 7

Theorem 6. For any integers 1 <m < p—1andn > 1 we have
8) — (o) +Bp) = Z ep( mTr,,(at—l—bfl))7
teF*,
P
where Tr, : Fpn — I, is the n-trace as in Definition 3.

Proof. The idea is to analyze the logarithmic derivative of the identity

~1

©  (A=awp )1 =Pup )= H (1 - nm(k)pfdeg(k)s) ) Rs > 1,
k irred. monic

that follows from Lemma 7, Theorem 5, and (2) with T := p~*. First of all, the left
hand side is nonzero for Rs > 1 by the absolute convergence of the Euler product, hence
|6t |, |Bm| < p (this can also be verified directly). Therefore, on either side of (9), the factors
remain in the half-plane Rz > 0, so that applying the principal branch of the logarithm on
this half-plane yields

log(1—aup ™) +log(1—Bup™*)= ),  —log (1 - n"’(k)p’deg("”) , o Rs> L
k irred. monic

Indeed, the two sides can only differ by a (constant) multiple of 27/, and then letting s > 1
and s — oo shows that the difference is zero. We expand the logarithmic values via

— Z"
log(l1—z)=—Y =, lz] < 1,
n=1 n
and arrive at
mr( ) —rdeg(k)s

o —(om+ B n
y ety Z R St

n=1 k irred. monic r=

Both sides converge absolutely and locally uniformly, hence we can differentiate termwise
and divide by —log p to obtain

Z + ﬁm = Z Z deg 7rdeg(k)s7 Rs > 1.

n=1 k irred. monic r=

By comparing the Dirichlet coefficients on the two sides, we infer that

—(ap+Bn)= Y deg(k)n™(k), n>1.
k irred. monic
rdeg(k)=n
In other words,
(10) —(ep+B) =Y Y dndf(k), >l
d|n kirred. monic
deg(k)=d

The polynomial k(X ) = X does not contribute to the inner sum, while the other irreducible
monic polynomials k € F,[X] correspond bijectively to the Frobenius orbits lying in IF;"
(cf. Theorem 3 and the remarks preceding it). Namely, if {r1,...,7;} is the set of roots of
kin F,, then {f1,...,t4} C IF » is the corresponding Frobenius orbit of size d | n, and we
have (cf. Definition 4)

) = e, (mag(tl +-~~—|—fd)> ep (mbg(tf1+...+t;1)).

For any 1 < j < d, we can interpret (cf. Definition 3)

n nd=l ; n—1 ;
E(tl +"'+td) = p Z o (tj) = Z (o (tj) :Trn(tj)
i=0 i=0

and

(Z;I _i___._del) _ Z‘&;Gi(tjl) - Z oi(;j?l) :Trn(tjfl),

Ul
i
i
S
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hence

mn

nd (k)= ep(maTr,,(tj))ep(mbTr,,(t71 )) = ep(mTry,(at; —i—bt;l))7 1

Summing up these equations for 1 <

N
~.
N
Q

Jj<d, we get
I}lil d
Z (mTry(atj+bt; H).
The right hand side is the sum of e, (m Tr,(at + bt ~!')) over the Frobenius orbit {r1,...,t;}
corresponding to k, hence (10) readily implies (8).
Corollary 3. The identity (3) holds for any positive integer n.

Proof. Using Theorems 6 and 4, we calculate

p—1 p—1
P1-Y (@B = Y ¥ epmTrafar+br))
m=1 m=0 IGF;,,

p—1
Z Z ep(mTry(at +bt~ "))

X m=0
teIFp,,

pl{t €Fypu: Try(at+bt™") =0}

=|{(x,1) EFpn xF xP —x=at+bt" '}

= {(x,) EFpn x Fp : at* —t(xP —x)+b = 0}|
= [{(x.1)

={(x,y) €EFpn xFp: y? = (x” —x)* —4ab}|.

EFpn xFpn s (2at — (xP —x))* = (x —x)? —dab}|

Comparing the two sides, we obtain (3). (]

Remark 3. The equation y? = (x” — x)? — 4ab defines an affine real hyperelliptic curve of
genus p — 1 over ). It has two points at infinity, so by (3) the number of [ n-rational
points of the completed (nonsingular projective) curve C equals

p—1

ICEm)=p"+1= Y (an+B)

m=1

An elegant way of expressing this fact is that the zeta function of C equals

D (1= up™*) (1= B
R e ) ) )

where P is the projective line over IF,.

4. THE HASSE DERIVATIVE

In the light of Corollary 3, we have reduced Theorem 1 to the statement that the equation
¥> = (¥ —x)? — dab has p" + O,(p"/?) solutions over the finite field F,». Recall that
p > 2 is a fixed odd prime, and ab is coprime to p. More generally, we shall prove using
the method of Stepanov [4] the following bound for hyperelliptic curves over finite fields,
itself a special case of Weil’s theorem for all algebraic curves over finite fields [6, p. 70].

Theorem 7 (Weil, Stepanov). Let g = p" be an odd prime power, and let f(X) € F,[X] be
a polynomial of degree m > 3. Assume that g > 6m and f(X ) is not a complete square in
F,[X]. If N denotes the number of solutions of the equation y* = f(x) over F,, then

(11) IN—gl <4m[\/q].
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Remark 4. Using the functional equation for the L-function associated with the hyperel-
liptic curve y* = f(x) over IF, and its extensions F,v, one can deduce that the above bound
improves itself to

m—1
N-al<2| "7 | Va<mya
even without the assumption g > 6m. See Lemma 4 in [7, Appendix V] for more detail.

By Lemma 4, thcla multiplicatlive group IF‘; is cyclic of even order ¢ — 1, hence for any
q— q— . . .
te ]F; we havet 2 =1 ort 2 = —1 depending on whether 7 is a square in F; or not.
Moreover, every square in ]FqX is a square in precisely two ways, hence with the notation

g—1
2

Noi=l{xeF,: f(x)
we can express the defect N — g as
(12) N—qg=(No+2N;)— (No+Ni+N_1) =N, —N_j.

In other words, Theorem 7 bounds the difference between the number of x € F, with f(x)
a nonzero square and those with f(x) not a square.

Now the proof of Theorem 7 relies on two basic ideas. The first idea is that it suffices
to show the one-sided bound

(13) max(No + Ny, No+N_1) < g+2mwcﬂ.

=a}|, ac€{0,£1},

Indeed, this inequality readily yields
max(Ny,N_1) < % +omlyq ],
and by Nop+ N1 +N_1 =g also

min(N;,N_1) = g —max(No +N_1,No +Np) > g—me\/Zﬂ,
whence (11) follows via (12):
N —¢q| =|Ni —N_i| = max(N{,N_1) —min(N(,N_) < 4m[\/q |.

The second idea is to exhibit, for any a € {£1} and a suitable integer ¢ > 1, a nonzero
polynomial /,(X) € F,[X] such that any x € I, satisfying f(x)% € {0,a} is a root of
ha(X) of order at least £, i.e. (X —x)* divides h,(X) in F,[X]. The point is that in this case

we have
(14) (No+N,) < deghy, a € {£1},

and by optimizing ¢ in terms of ¢ and m we can deduce (13), hence also Theorem 7.
In order to verify the divisibility relation (X —x)* | h,(X) in F,[X], we introduce a
simple but powerful tool, the Hasse derivative.

Definition 6. Let F be a field, and let #(X) € F[X] be any polynomial. In the ring of
polynomials of two variables F[X,Y], there is a unique decomposition

(15) hX+Y)=Y (E*n)(x)Y*,

k=0
where (E¥R)(X) € F[X], and the terms for k > degh vanish. The polynomial (E¥h)(X) is
called the k-th Hasse derivative of h(X).

It is clear that the operator EX : F[X] — F[X] is F-linear, and also translation invariant in
the sense that for any x € F the k-th Hasse derivative of the translated polynomial (X + x)
equals (E*h)(X +x). It is also clear that deg(EXh) < (degh) — k for 0 < k < degh, with the
convention that deg0 = 0, while E¥h = 0 for k > degh. In fact the binomial theorem gives
that EX(X") = (})X"~* for 0 < k < n, while E¥(X") = 0 for k > n.
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Lemma 8. Let F be a field, h(X) € F[X], and x € F. Then (X —x)" | h(X) holds in F[X] if
and only if (E*h)(x) = 0 for any 0 < k < L.

Proof. By translation invariance, we can assume without loss of generality that x = 0.
Then, (15) implies by the substitution X — 0 that

=

h(Y) = Y (E*h)(0)Y*,

k=0
whence Y* | A(Y) holds in F[Y] if and only if (E¥A)(0) = 0 for any 0 < k < £. O

Lemma 9 (Leibniz rule). For any polynomials hy(X),... hy(X) € F[X] we have

EX(hy - h)= Y EM (). E*(hy).
ki +kn=k
Ky s kin =0

Proof. This is straightforward from the definition (15). Indeed,

h(X+Y). . hy(X+Y) = ( y (Eklhl)(X)Y“) ( y (Ek"ho(X)Yk")

k=0 k=0

= Z (Ekl (hl)(X)Ekn(hn)(X)> Yk1+"'+kn,

and the result follows. O

Lemma 10. Let F be a field, and let f(X),g(X) € F[X] be arbitrary. For any integers
0 < k < n, the polynomial E*(gf") is of the form g®) f"~* where g¥)(X) € F[X]. Moreover,
for a fixed f, the polynomial g(k) depends F-linearly on g. Finally,

(16) degg(k) <degg+kdegf—k.
Proof. By Lemma 9,
EgfM)= Y ENQEN(f)...EM(f).

ko+ky+-+kp=k
koK1 e kn 20

Clearly, at least n — k of the integers k1, ... ,k, > 0 must vanish, hence each term on the right
hand side is divisible by f"~* in F[X]. This shows that E¥(gf") is of the form g*) ",
where g¥) (X) € F[X]. Moreover, for a fixed £, the factor EX(g) depends F-linearly on g,
hence the same is true of the polynomial g<k). Finally, (16) is immediate from

deg(gW /%) < deg(gf") — k.

5. STEPANOV’S AUXILIARY POLYNOMIALS

In this section we construct the two nonzero auxiliary polynomials /.41 (X) € IF,[X] that
will allow us to derive (13) via (14). We assume the conditions of Theorem 7, and we fix
a value a € {£1}. The statement of Theorem 7 does not change upon replacing f(X) by
f(X +x) for any x € Fy, hence we can assume without loss of generality that f(0) # 0.
Indeed, f(x) # 0 for some x € Fy, because f(X) has degree less than g.

We have seen that for the validity of (14) it suffices that

g—1

(17) f@x) T €{0,a} = (E*h,)(x)=0, x€F, 0<k</l.

We choose /,(X) to be a multiple of £(X)?, so that we can restrict to the values f(x) S —a

in (17). Specifically, we seek /,(X) in the form
(18) ha(X) = 1) Y {0 +5,00700" X0,

0<j<J
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where J > 0 is a real parameter (to be chosen later in terms of ¢, m, g), and
ri(X),s;(X) € Fg[X],  0<j<J

are any polynomials with

(19) degr;, degs; < %, 0<j<J.

We examine first the possibility that /,(X) = 0. Assume that this is the case, but not all
the polynomials r;(X),s;(X) € F,[X] are zero. Let 0 < i < J be minimal such that either
ri(X) or s;(X) is nonzero. Then

Y {00 +sx000)" }xU0i <o,
i<j<J

whence in F,[X| we have the congruence
R(X) +s:(X)f(X)T =0 (mod X).
From here we infer that
(X2 f(X) = si(X)*F(X)? = 5:(X)* f(X) = 5(X)*f(0)  (mod X).
By (19), the two sides are polynomials of degree less than ¢, hence in fact
ri(X)?f(X) = si(X)*£(0).

As f(0) # 0, both r;(X) and s;(X) are nonzero, and f(X) is a complete square in F,[X].
This contradicts the assumptions of Theorem 7, hence we proved that /,(X) # 0 unless all
the polynomials r;(X),s;(X) € F,[X] are zero.

Now we examine what (E*h,)(x) = 0 means for f(x)% =aand 0 < k </, cf. (17).
In order to find the Hasse derivative (E*h,)(X), we go back to the definition (15), and we
make a simple observation. Starting from the congruence in Fy[X,Y],

(X +Y)4=(X14+Y9)/ =X/ (mod YY),
we see that
h(X+Y)= Y {rj(x+Y)f(X+Y)Z+s,(X+Y)f(X+Y)”? }qu (mod Y1),
0<j<J

whence for 0 < k < g the coefficient of Y* as an element of [F4[X] must be the same on the
two sides. That is,

E'n)X) = ¥ {E0if 00+ B 0 pxi, o<k<q
0<j<J
By Lemma 10, we can rewrite this identity as
Q) (ER)00) =10 ¥ {APe0+s )T bxi 0<k<a,
0<j<J

(k) (k)

where the polynomials r; ,sE. € F,[X] depend F,-linearly on the initial r;,s; € IF,[X], and

Q1) degr'"), degs® <q+k(m—l), 0<j<J, 0<k<gq.
In passing, it is worthwhile to remark that rj.o) =r;and sE.O) = 5. From now on we assume
that ¢ < g, then by (20) we can reduce (17) to the simpler condition

22) y {rﬁ")(x)msﬁ.")(x)}xf:o, 0<k<?.

0<j<J

Here we relied on the crucial fact that x/¢ = x/ for any x € F,,.
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The constraints (22) constitute a homogeneous system of linear equations for the coef-
ficients of r;(X) and s;(X). By (19), the number of variables in this system is

>2J [‘12’”] > J(q—m),
while by (21), the number of equations is
qg—m qg—m ?
< —— +k(m—1 0 —— —(m—1).
O;Kj +k(m )+J} < ( 5 +J>+2(m )

This means that the construction (18) yields a nonzero polynomial h,(X) € F,[X] validat-
ing (14) as long as ¢ < g and

— 02
J(g—m)>¢ =2,y +—(m—1).
2 2
Rearranging the last inequality,

12 Pm
- — — — >
<J 2>(q m—{) > >

hence by imposing ¢ < ¢/3 and utilizing m < ¢/6 (cf. Theorem 7) it suffices to have
N\ g Pm
-3
( 2) 2772

¢ Pm
Ji=-+—.
2+ q

With this choice (14) yields, upon recalling (18) and (19),

This motivates the choice

1\ g- ‘
0(No +N,) < deghy < m <z+ c12> + % tig< mq+3q +2m.

In short,

No+Ny < ng%Jrﬁm,

and by choosing ¢ := [/q] we obtain (13). Note that the intermediate constraint £ < g/3
is now automatically satisfied, because the conditions of Theorem 7 force g > 18.

The proof of Theorem 7 is now complete. To conclude Theorem 1 via Corollary 3, we
apply Theorem 7 for n > 4 and f(X) := (X? —X)? —4ab. All we need to check is that
f(X) is not a complete square in F,[X]. However, this is clear: f(X) = g(X)? would imply

(XP =X —g(X))(XP =X +¢(X)) = 4ab,

an obvious contradiction to the fact that one of the factors X” — X + g(X) is non-constant.

6. SUPPLEMENTS

With a bit of algebraic number theory, we can show that the inequality in Theorem 1 is
always strict. The proof below is due to Elkies and MathOverflow user Lucia (see [3]).

Theorem 8. Let p > 2 be a prime, and let (ab,p) = 1. Then |S(a,b; p)| < 2,/p.

Proof. The Kloosterman sum S(a, b; p) is real, as can be seen by writing —¢ for ¢ in (1).
Therefore, by Theorem 1, we only need to exclude the possibility that
p—1
23) ep(at +bf) = £2,/p.
1

1=
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Let us assume (23). Then both sides lie in the ring Z[£], where & := e2™i/P_ which consists
of the integral linear combinations of 1,&,&2,.... Raising the equation to the p-th power
yields, by the multinomial theorem,

pil 1=+27p"?  (mod pZ[g]).
t=1

The left hand side is congruent to —1 modulo pZ[&], hence further squaring both sides,
1=2%p" =0 (mod pZ[&]).

That is, 1 € pZ|&], which is a contradiction as we explain now. It is classical and easy to
prove with the Schonemann—FEisenstein criterion that the cyclotomic polynomial

k(X):=XP 4 XP 24 X4+1=(X-E)(X-EY)...(x=¢&rT)

is irreducible over Q, hence Q(&) is isomorphic to Q[X]/(k(X)) by Lemma 2 and its proof.
In particular, {1,&,...,EP2} is a basis of Q() as a vector space over Q, and Z[£] consists
of the vectors whose coordinates are integers with respect to this basis. This shows readily
that 1 & pZ|&], because 1 € pZ, and we are done. O

Finally, following Heath-Brown [1], we give an application of Theorem 1 to the distri-
bution of products modulo a prime number.

Theorem 9. Let p > 2 be a prime number. Let %,V C {1,2,...,p— 1} be two intervals,

and let r € {1,2,...,p— 1} be a nonzero residue modulo p. Then

27
p—1

ueU , ve vy’
uv=r (mod p)

<2p'*(logp)*.

Proof. Using Fourier analysis on Z/pZ, we can express

Y

ue , ve vV t ueEw vey
wv=r (mod p) 1=u (mod p) =rv (mod p)
p—1 12 12 ~
= Z - Zep(a(t—u)) Z *Zep(h(t_f"))
=1 \ue# P a=1 ver P =1

P p—1
- % Z (Z ep(at+bt)> < Z ep(—au)> (Z ep(—brv)> .
ab=1 \t=1 ucw vey

The first inner sum is p — 1 when both a and b equal p, it is —1 when exactly one of a and
b equals p, and otherwise it is the Kloosterman sum S(a,b; p) considered in Theorem 1.
Using this information, we obtain

p+l 1Al _
Z 1= +— ZSabp Ze,, —au) Ze,,(—brv) ,
ueU , ve v p a,b=1 ucw vey

uv=r (mod p)

whence by Theorem 1 and the fact that %/ and ¥ are intervals,

4lva
‘ 7] 7+2\f Z Ze,, —au) Z Zep —brv)
ucew , ve v’ _1 a=1 \ue#% P = vey
uv= r(mo p)
| 2
1 18-
< *+2p1/2 — < 2p1/2(logp)
p P = sin (?)
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Here, the last inequality can be checked numerically for p < 11, while for p > 11 we verify
it as follows. We have

p—1 p—1
1 2 & 1 &1 —1
Y =Y <) - <068+log "~ < —0.01 +logp,
P ¢=1 sin (E) P ¢=1 sin <ﬂ> e=1¢ 2
14 P
therefore
2
150 5 logp 1
-Y —— | <(-0.01+1 < (logp)? — —=£ < (logp)* — —=.
P& (@) ( +logp)” < (logp)”— - < (logp) TS
P
The proof is complete. (]

Corollary 4. Let p,r, %,V as in Theorem 9. If |% || V| > 2p>/*(log p)?, then the congru-
ence uv =r (mod p) has a solutioninu € % andv €Y.

Proof. If the congruence uv = r (mod p) has no solution in u € % and v € ¥, then The-
orem 9 yields

44
AP o112 0g 2,
p—1
hence also |% ||| < 2p>/*(log p)?. H
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