
WEIL’S BOUND FOR KLOOSTERMAN SUMS

GERGELY HARCOS

1. INTRODUCTION

The aim of these notes is to give a concise but self-contained proof of the following
celebrated theorem due to Weil [5].

Theorem 1 (Weil). Let p > 2 be a prime number. Let a and b be integers coprime to p.
Then the Kloosterman sum

S(a,b; p) :=
p−1

∑
t=1

ep(at +bt)

has absolute value at most 2
√

p.

Here ep(x) abbreviates exp(2πix/p), and t is a multiplicative inverse of t modulo p.
We denote by Fp the p-element field, and we identify its elements with the residue classes
modulo p. Hence ep(x) is a nontrivial additive character of Fp, and we can write

(1) S(a,b; p) = ∑
t∈F×p

ep(at +bt−1).

We fix p, a, b for the rest of the notes, except that in the next section p is an arbitrary prime.
Our exposition is largely based on Iwaniec–Kowalski [2, Chapter 11], but we try to give

more detail at certain points and keep the algebraic prerequisites to a minimum. A rough
outline of the proof is as follows. Along with S(a,b; p), we consider all the Kloosterman
sums S(ma,mb; p) with 16 m6 p−1, and we write them as

S(ma,mb; p) =−αm−βm

with complex numbers αm and βm such that αmβm = p. That is, we have a decomposition
of polynomials in C[T ],

(2) 1+S(ma,mb; p)T + pT 2 = (1−αmT )(1−βmT ).

It turns out that the power sums of the αm’s and βm’s have a geometric meaning, namely

(3) pn−1−
p−1

∑
m=1

(αn
m +β

n
m) = |{(x,y) ∈ Fpn ×Fpn : y2 = (xp− x)2−4ab}|,

where Fpn denotes the field of pn elements. Weil showed [6, p. 70] that the right hand side
can be approximated as pn +Op(pn/2), hence for any integer n> 1 we have

p−1

∑
m=1

(αn
m +β

n
m)�p pn/2.

It is straightforward to deduce from here that each αm and βm has absolute value
√

p, and
Theorem 1 follows upon noting |S(a,b; p)|6 |α1|+ |β1|.
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2. BACKGROUND ON FINITE FIELDS

Lemma 1. Let F be a field, and let k(X) ∈ F [X ] be an irreducible polynomial. Then there
is a field G containing F such that k has a root in G.

Proof. It suffices to construct a field G such that F embeds into G, and k has a root
in G. The residue classes in F [X ] modulo k(X) form a ring G := F [X ]/(k(X)). We
claim that G is a field satisfying the requirements. Clearly, the inclusion F ⊂ F [X ] in-
duces an embedding F ↪→ G. If ξ ∈ G denotes the residue class of X modulo k(X), then
k(ξ ) ∈ G is the residue class of k(X) modulo k(X), i.e. k(ξ ) = 0. Now let a(X) mod
k(X) be any nonzero residue class in G, i.e. a(X) ∈ F [X ] is not divisible by k(X). Us-
ing the Euclidean algorithm in F [X ], we can find polynomials b(X), l(X) ∈ F [X ] such
that a(X)b(X)− k(X)l(X) = 1. More precisely, the Euclidean algorithm finds a nonzero
polynomial of the form a(X)b(X)− k(X)l(X) whose divisors are the common divisors of
a(X) and k(X). As k(X) is irreducible, and a(X) is not divisible by k(X), the polyno-
mial a(X)b(X)− k(X)l(X) is a nonzero constant. Dividing b(X) and l(X) by this nonzero
constant, we can achieve a(X)b(X)− k(X)l(X) = 1. This means that b(X) mod k(X) is a
multiplicative inverse of a(X) mod k(X), hence G is a field. �

Definition 1. If F ⊂ G are fields and ξ ∈ G, then F(ξ ) denotes the smallest subfield of
G containing F and ξ . The element ξ ∈ G is called algebraic over F if k(ξ ) = 0 for
some non-constant k(X) ∈ F [X ]. In this case the unique monic polynomial k(X) ∈ F [X ] of
smallest positive degree such that k(ξ ) = 0 is called the minimal polynomial of ξ over F .

Lemma 2. Let F ⊂ G be any fields. Let ξ ∈ G be algebraic over F with minimal polyno-
mial k(X)∈F [X ]. Then k(X) is irreducible in F [X ], and F(ξ ) is isomorphic to F [X ]/(k(X)).

Proof. If k(X) is reducible in F [X ], then it factors into smaller degree monic polynomials
k(X) = u(X)v(X). As k(ξ ) = 0, we have u(ξ ) = 0 or v(ξ ) = 0, a contradiction. So k(X)
is irreducible in F [X ]. Moreover, using the Euclidean algorithm in F [X ], we see that a
polynomial a(X) ∈ F [X ] satisfies a(ξ ) = 0 if and only if a(X) is divisible by k(X) in
F [X ]. Consider now F [ξ ], the smallest subring of G containing F and ξ . Consider also the
map f : F [X ]/(k(X))→ F [ξ ] assigning to any residue class a(X) mod k(X) the element
a(ξ ) ∈ F [ξ ]. It is straightforward to verify that f is a ring isomorphism, hence F [ξ ] is
isomorphic to F [X ]/(k(X)). The latter ring is actually a field (cf. proof of Lemma 1), hence
F [ξ ] is a field. It follows that F(ξ ) =F [ξ ], and so F(ξ ) is isomorphic to F [X ]/(k(X)). �

Lemma 3. Let F ⊂ G be any fields. If F is a finite field of cardinality m, then

F = {x ∈ G : xm = x}.

Proof. If x ∈ F×, then xm−1 = 1, because F× is a finite group of order m− 1. Hence for
any x ∈ F we have xm = x, i.e. F ⊂ {x ∈G : xm = x}. We must have equality here, because
the left hand side has cardinality m, and the right hand side has cardinality at most m. �

Lemma 4. Let F be a field, and let H be a finite subgroup of the multiplicative group F×.
Then H is cyclic.

Proof. Let x ∈ H and y ∈ H be any two group elements of (multiplicative) orders r and s,
respectively. We claim that H contains an element of order [r,s]. To see this, decompose
[r,s] as ab with suitable a | r and b | s such that (a,b) = 1, and consider z := xr/ays/b ∈ H.
The order t of z clearly divides ab, because zab = xrbysa = 1. On the other hand, zt = 1
implies zat = 1 and zbt = 1, whence yats/b = 1 and xbtr/a = 1. This is only possible if b | at
and a | bt, i.e. ab | t. Hence t = ab = [r,s] as claimed. Now pick x ∈ H so that its order r is
maximal. Then any y ∈H has order s | r, because [r,s]6 r implies s | r. Fixing y and s, we
observe that in F the equation ts = 1 has at most s solutions, and y is one of them. On the
other hand, xkr/s (16 k 6 s) are s distinct elements satisfying ts = 1, hence y must be one
these elements. That is, x generates H, and we are done. �
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Lemma 5. Let F ⊂ G be any finite fields. Then there exists ξ ∈ G such that F(ξ ) = G.

Proof. By Lemma 4, the multiplicative group G× is generated by some ξ ∈G. Then F(ξ )
clearly contains G×, hence F(ξ ) = G. �

Theorem 2. The cardinality of any finite field is a prime power pn. Conversely, for any
prime power pn, there is a finite field of cardinality pn, and it is unique up to isomorphism.

Proof. Let F be any finite field. The elements 1, 1+ 1, 1+ 1+ 1, etc. in F cannot all be
distinct. Hence, after subtraction, we see that in F we have m · 1 = 0 for some positive
integer m. If m is minimal with this property, then m is prime. Indeed, if m = kl with
0 < k, l < m, then (k ·1)(l ·1) = m ·1 = 0, hence k ·1 = 0 or l ·1 = 0, a contradiction. So
m = p is prime, and we can embed Fp into F by mapping a residue class t mod p in Fp to
t ·1 ∈ F . We call Fp the prime field of F . In particular, F is a vector space over Fp of some
finite dimension n, hence |F |= pn is a prime power.

Conversely, let pn be any prime power. We construct a field Fn of cardinality pn, and in
the next paragraph we show that any field of cardinality pn is isomorphic to Fn. There is
a field K containing Fp such that any polynomial in Fp[X ] decomposes into linear factors
over K. To see this, enumerate the polynomials in Fp[X ], and use Lemma 1 recursively to
construct a chain of fields

Fp = K0 ⊂ K1 ⊂ K2 ⊂ . . .

such that in Km the m-th polynomial decomposes into linear factors, and then define K as
the union of these fields. Now we put

(4) Fn := {x ∈ K : xpn
= x},

and we claim that Fn is a pn-element subfield of K containing Fp. On the one hand, in K[X ]
we have a decomposition

(5) X pn −X =
pn

∏
i=1

(X− ti),

and Fn is the set of roots {ti : 1 6 i 6 pn}. The roots are distinct, because the formal
derivative of the left hand side, (X pn −X)′ = pnX pn−1−1 =−1, has no root. This proves
that |Fn|= pn. On the other hand, Fn is the set of fixed points of σn, where

(6) σ : x 7→ xp

denotes the Frobenius map on K. Clearly, σ(0) = 0, σ(1) = 1, σ(xy) = σ(x)σ(y). More-
over, by the binomial theorem, σ(x+ y) = σ(x)+σ(y). Therefore, σ is a field endomor-
phism of K fixing Fp pointwise, and the same is true of σn. Hence Fn is a subfield of K
containing Fp.

Let F be any field of cardinality pn. Then the prime field of F must be Fp, hence without
loss of generality, F contains Fp. By Lemma 5, there exists ξ ∈ F such that Fp(ξ ) = F .
Let k(X) ∈ Fp[X ] be the minimal polynomial of ξ over Fp. Then k(X) has a root α in
K. The minimal polynomial of α over Fp divides k(X) in Fp[X ] (cf. proof of Lemma 2),
therefore it equals k(X) by the irreducibility of k(X). It follows that Fp(ξ ) is isomorphic to
the subfield Fp(α)⊂ K, because both fields are isomorphic to Fp[X ]/(k(X)) by Lemma 2.
In particular, Fp(α) has cardinality pn, hence it equals Fn by Lemma 3. In the end, we see
that F is isomorphic to Fn, namely F = Fp(ξ )∼= Fp[X ]/(k(X))∼= Fp(α) = Fn. �

Definition 2. We identify Fpn with Fn defined by (4), and we regard their union

Fp :=
∞⋃

n=1

Fpn .

Corollary 1. The fields Fpn are precisely the finite subfields of Fp. Moreover, Fpm ⊂ Fpn

if and only m | n.
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Proof. By definition, Fpn ⊂ Fp. Conversely, let F be a finite subfield of Fp. Then, F
contains Fp, hence F is a vector space over Fp of some finite dimension n. It follows that
|F |= pn, therefore F = Fpn by Lemma 3 and (4). Assume now that Fpm ⊂ Fpn . Then, Fpn

is a vector space over Fpm of some finite dimension k, hence pn = Fpn = |Fpm |k = pmk.
That is, n = mk, i.e. m | n. Conversely, if m | n, then (4) readily implies that Fpm ⊂ Fpn . �

In particular, any α ∈ Fp generates some finite field Fp(α) = Fpd , hence by (4) and (6)
we see that Fp is a disjoint union of Frobenius orbits of the form {α,σ(α), . . . ,σd−1(α)}.
In fact, for a given integer n > 1, the orbits of size d | n partition Fpn . The next result
describes these orbits in more detail and shows that Fp is an algebraic closure of Fp.

Theorem 3. A Frobenius orbit of size d in Fp is the set of roots of an irreducible monic
polynomial of degree d in Fp[X ], and vice versa.

Proof. The proof relies on the fact that Fp is the set of fixed points of σ in Fp. Let
{α,σ(α), . . . ,σd−1(α)} ⊂ Fp be a Frobenius orbit of size d, i.e. σd(α) = α and the listed
elements are distinct. Then the monic polynomial

k(X) :=
d−1

∏
i=0

(X−σ
i(α))

lies in Fp[X ], because σ permutes the roots and therefore fixes the coefficients of k(X).
Moreover, {α,σ(α), . . . ,σd−1(α)} is not the disjoint union of two non-empty σ -invariant
subsets, hence k(X) is irreducible in Fp[X ]. Conversely, let k(X) ∈ Fp[X ] be an irreducible
monic polynomial of degree d. Then, as we have seen in the proof of Theorem 2, k(X) has
a root α ∈ Fpd , and in fact Fp(α) = Fpd . Hence {α,σ(α), . . . ,σd−1(α)} is a Frobenius
orbit of size d in Fp, i.e. σd(α) = α and the listed elements are distinct. Each element
σ i(α) is a root of k(X), because k(σ i(α)) = σ i(k(α)) = σ i(0) = 0, therefore the orbit is
the set of roots of k(X). �

Corollary 2 (Gauss). For any integer n> 1, we have the following identity in Fp[X ]:

X pn −X = ∏
d|n

∏
k irred. monic

deg(k)=d

k(X),

where the inner product runs through the irreducible monic polynomials of degree d in
Fp[X ].

Proof. We have seen in the proof of Theorem 2 that over Fpn the left hand side decomposes
into distinct linear factors as (cf. (5))

X pn −X = ∏
t∈Fpn

(X− t).

The field Fpn is a disjoint union of the Frobenius orbits of size d | n, hence the stated
identity follows immediately from Theorem 3. �

Definition 3. The n-trace of an element α ∈ Fpn is given by

Trn(α) :=
n−1

∑
i=0

σ
i(α).

Theorem 4. The n-trace is an Fp-linear surjection Trn : Fpn → Fp. Moreover, for any
y ∈ Fpn , we have

(7) |{x ∈ Fpn : xp− x = y}|=

{
0, Trn(y) 6= 0;
p, Trn(y) = 0.
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Proof. For any α ∈ Fpn , we have σn(α) = α , hence

σ(Trn(α)) =
n−1

∑
i=0

σ
i+1(α) = Trn(α).

That is, Trn(α) ∈ Fp. In addition, the map Trn : Fpn → Fp is Fp-linear, because σ (hence
also σ i) is Fp-linear. Consider now the Fp-linear map δ : Fpn → Fpn given by

δ (x) := xp− x = σ(x)− x.

The kernel of δ equals Fp, hence δ is a p-to-1 map with an image of size | imδ | = pn−1.
In addition, imδ ⊂ kerTrn, because for any x ∈ Fpn we have

Trn(δ (x)) = Trn(σ(x)− x) =
n−1

∑
i=0

(σ i+1(x)−σ
i(x)) = σ

n(x)− x = 0.

However, Trn : Fpn → Fp is also a polynomial function of degree pn−1 by definition, hence
it cannot vanish at more than pn−1 points. It follows that imδ = kerTrn. This verifies (7)
and the surjectivity of Trn as well, because | imTrn |= pn/|kerTrn |= p. �

Remark 1. Theorem 4 and its proof can be summarized by saying that the following se-
quence of Fp-linear maps is exact:

0−→ Fp
id−→ Fpn

δ−→ Fpn
Trn−→ Fp −→ 0.

3. L-FUNCTIONS

In this section we prove the identity (3) with the help of L-functions. Recall that the
parameters p,a,b∈Z of Theorem 1 are fixed, and the numbers αm,βm ∈C (16m6 p−1)
satisfy (2).

The ring of polynomials Fp[X ] bears a close similarity to the ring of integers Z. We
define a completely multiplicative function η : Fp[X ]→ C that is analogous to a Dirichlet
character Z→ C.

Definition 4. Let k(X) = c0Xd + · · ·+cd ∈ Fp[X ] be a polynomial with c0 6= 0 6= cd . Then
k(X) decomposes into linear factors over Fp as k(X) = c0(X− t1) . . .(X− td), and we put

η(k) :=ep(a(t1 + · · ·+ td))ep(b(t−1
1 + · · ·+ t−1

d ))

=ep(−a(c1/c0))ep(−b(cd−1/cd)).

For all other polynomials k(X) ∈ Fp[X ] we put η(k) := 0.

Lemma 6. We have
• |η(k)|6 1 for any k ∈ Fp[X ];

• η(k1k2) = η(k1)η(k2) for any k1,k2 ∈ Fp[X ].

Proof. Both statements are clear from the definition. �

Definition 5. For any integer m coprime with p, we introduce the Dirichlet series

L(s,ηm) := ∑
k monic

η
m(k)p−deg(k)s, ℜs > 1,

where the sum runs through the monic polynomials in Fp[X ].

Lemma 7. The Dirichlet series L(s,ηm) converges absolutely and locally uniformly in the
half-plane ℜs > 1. In addition, we have the Euler product decomposition

L(s,ηm) = ∏
k irred. monic

(
1−η

m(k)p−deg(k)s
)−1

, ℜs > 1,

which converges absolutely and locally uniformly in the half-plane ℜs > 1.
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Proof. Let σ > 1 be fixed. In the half-plane ℜs> σ we have, by Lemma 6,

∑
k monic

∣∣∣ηm(k)p−deg(k)s
∣∣∣6 ∑

k monic
p−deg(k)σ =

∞

∑
d=1

p−dσ
∑

k monic
deg(k)=d

1 =
∞

∑
d=1

pd(1−σ) < ∞,

which implies the first claim. The second claim follows from the same bound coupled with
the facts that Fp[X ] is a unique factorization domain and ηm : Fp[X ]→ C is completely
multiplicative (cf. Lemma 6). The argument is very similar to the case of Dirichlet L-
functions, hence we omit the details. �

Theorem 5. The Dirichlet series L(s,ηm) extends to an entire function satisfying

L(s,ηm) = 1+S(ma,mb; p)p−s + p1−2s, s ∈ C.

Proof. It suffices to prove that the above identity holds for ℜs > 1. So for the rest of the
proof we assume that ℜs > 1, which will also take care of all convergence issues. Clearly,

L(s,ηm) =
∞

∑
d=1

p−ds
∑

k monic
deg(k)=d

η
m(k),

hence we are led to evaluate the inner sum (cf. Definition 4). Denoting this sum by ad , it
is obvious that a0 = 1, while

a1 = ∑
t∈Fp

η
m(x− t) = ∑

t∈F×p

ep(mat)ep(mbt−1) = S(ma,mb; p).

Regarding a2, we have

a2 = ∑
c1,c2∈Fp

η
m(x2 + c1x+ c2) = ∑

c1∈Fp

∑
c2∈F×p

ep(−mac1)ep(−mbc1/c2)

= p−1+ ∑
c1∈F×p

ep(−mac1) ∑
c2∈F×p

ep(−mbc1/c2) = p−1+

 ∑
c∈F×p

ep(c)

2

= p,

while for d > 3 we find

ad = ∑
c1,...,cd∈Fp

η
m(xd + c1xd−1 + · · ·+ cd)

= ∑
cd∈F×p

∑
c1,...,cd−1∈Fp

ep(−mac1)ep(−mbcd−1/cd) = ∑
cd∈F×p

0 = 0.

We conclude that

L(s,ηm) =
∞

∑
d=1

ad p−ds = 1+S(ma,mb; p)p−s + p1−2s, ℜs > 1.

The proof is complete. �

Remark 2. Theorem 5 implies (and in fact is equivalent to) the functional equation

psL(s,ηm) = p1−sL(1− s,η−m).

More generally, if ω is a Hecke character of a curve of genus g over Fq, and f denotes the
conductor of ω , then by Theorems 4 and 6 in [7, Chapter VII] we have

Ns/2L(s,ω) = κN(1−s)/2L(1− s,ω−1),

where N := q2g−2+deg(f), and κ is a complex number of modulus 1 depending only on ω .
In our case q = p, g = 0, and f= 2(0)+2(∞) is of degree 4, so that N = p2.
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Theorem 6. For any integers 16 m6 p−1 and n> 1 we have

(8) − (αn
m +β

n
m) = ∑

t∈F×pn

ep(mTrn(at +bt−1)),

where Trn : Fpn → Fp is the n-trace as in Definition 3.

Proof. The idea is to analyze the logarithmic derivative of the identity

(9) (1−αm p−s)(1−βm p−s) = ∏
k irred. monic

(
1−η

m(k)p−deg(k)s
)−1

, ℜs > 1,

that follows from Lemma 7, Theorem 5, and (2) with T := p−s. First of all, the left
hand side is nonzero for ℜs > 1 by the absolute convergence of the Euler product, hence
|αm|, |βm|< p (this can also be verified directly). Therefore, on either side of (9), the factors
remain in the half-plane ℜz > 0, so that applying the principal branch of the logarithm on
this half-plane yields

log(1−αm p−s)+ log(1−βm p−s) = ∑
k irred. monic

− log
(

1−η
m(k)p−deg(k)s

)
, ℜs > 1.

Indeed, the two sides can only differ by a (constant) multiple of 2πi, and then letting s > 1
and s→ ∞ shows that the difference is zero. We expand the logarithmic values via

log(1− z) =−
∞

∑
n=1

zn

n
, |z|< 1,

and arrive at
∞

∑
n=1

−(αn
m +β n

m)p−ns

n
= ∑

k irred. monic

∞

∑
r=1

ηmr(k)p−r deg(k)s

r
, ℜs > 1.

Both sides converge absolutely and locally uniformly, hence we can differentiate termwise
and divide by − log p to obtain

∞

∑
n=1
−(αn

m +β
n
m)p−ns = ∑

k irred. monic

∞

∑
r=1

deg(k)ηmr(k)p−r deg(k)s, ℜs > 1.

By comparing the Dirichlet coefficients on the two sides, we infer that

−(αn
m +β

n
m) = ∑

k irred. monic
r deg(k)=n

deg(k)ηmr(k), n> 1.

In other words,

(10) − (αn
m +β

n
m) = ∑

d|n
∑

k irred. monic
deg(k)=d

dη
mn
d (k), n> 1.

The polynomial k(X) = X does not contribute to the inner sum, while the other irreducible
monic polynomials k ∈ Fp[X ] correspond bijectively to the Frobenius orbits lying in F×pn

(cf. Theorem 3 and the remarks preceding it). Namely, if {t1, . . . , td} is the set of roots of
k in Fp, then {t1, . . . , td} ⊂ F×pn is the corresponding Frobenius orbit of size d | n, and we
have (cf. Definition 4)

η
mn
d (k) = ep

(
ma

n
d
(t1 + · · ·+ td)

)
ep

(
mb

n
d
(t−1

1 + · · ·+ t−1
d )
)
.

For any 16 j 6 d, we can interpret (cf. Definition 3)

n
d
(t1 + · · ·+ td) =

n
d

d−1

∑
i=0

σ
i(t j) =

n−1

∑
i=0

σ
i(t j) = Trn(t j)

and
n
d
(t−1

1 + · · ·+ t−1
d ) =

n
d

d−1

∑
i=0

σ
i(t−1

j ) =
n−1

∑
i=0

σ
i(t−1

j ) = Trn(t−1
j ),
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hence

η
mn
d (k) = ep(maTrn(t j))ep(mbTrn(t−1

j )) = ep(mTrn(at j +bt−1
j )), 16 j 6 d.

Summing up these equations for 16 j 6 d, we get

dη
mn
d (k) =

d

∑
j=1

ep(mTrn(at j +bt−1
j )).

The right hand side is the sum of ep(mTrn(at +bt−1)) over the Frobenius orbit {t1, . . . , td}
corresponding to k, hence (10) readily implies (8). �

Corollary 3. The identity (3) holds for any positive integer n.

Proof. Using Theorems 6 and 4, we calculate

pn−1−
p−1

∑
m=1

(αn
m +β

n
m) =

p−1

∑
m=0

∑
t∈F×pn

ep(mTrn(at +bt−1))

= ∑
t∈F×pn

p−1

∑
m=0

ep(mTrn(at +bt−1))

= p|{t ∈ F×pn : Trn(at +bt−1) = 0}|

= |{(x, t) ∈ Fpn ×F×pn : xp− x = at +bt−1}|

= |{(x, t) ∈ Fpn ×Fpn : at2− t(xp− x)+b = 0}|

= |{(x, t) ∈ Fpn ×Fpn : (2at− (xp− x))2 = (xp− x)2−4ab}|

= |{(x,y) ∈ Fpn ×Fpn : y2 = (xp− x)2−4ab}|.

Comparing the two sides, we obtain (3). �

Remark 3. The equation y2 = (xp− x)2−4ab defines an affine real hyperelliptic curve of
genus p− 1 over Fp. It has two points at infinity, so by (3) the number of Fpn -rational
points of the completed (nonsingular projective) curve C equals

|C(Fpn)|= pn +1−
p−1

∑
m=1

(αn
m +β

n
m).

An elegant way of expressing this fact is that the zeta function of C equals

ζC(s) =
∏

p−1
m=1(1−αm p−s)(1−βm p−s)

(1− p−s)(1− p1−s)
= ζP(s)

p−1

∏
m=1

L(s,ηm),

where P is the projective line over Fp.

4. THE HASSE DERIVATIVE

In the light of Corollary 3, we have reduced Theorem 1 to the statement that the equation
y2 = (xp − x)2 − 4ab has pn +Op(pn/2) solutions over the finite field Fpn . Recall that
p > 2 is a fixed odd prime, and ab is coprime to p. More generally, we shall prove using
the method of Stepanov [4] the following bound for hyperelliptic curves over finite fields,
itself a special case of Weil’s theorem for all algebraic curves over finite fields [6, p. 70].

Theorem 7 (Weil, Stepanov). Let q = pn be an odd prime power, and let f (X) ∈ Fq[X ] be
a polynomial of degree m > 3. Assume that q > 6m and f (X) is not a complete square in
Fp[X ]. If N denotes the number of solutions of the equation y2 = f (x) over Fq, then

(11) |N−q|< 4md√q e.
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Remark 4. Using the functional equation for the L-function associated with the hyperel-
liptic curve y2 = f (x) over Fq and its extensions Fqν , one can deduce that the above bound
improves itself to

|N−q|6 2
⌊

m−1
2

⌋
√

q < m
√

q,

even without the assumption q > 6m. See Lemma 4 in [7, Appendix V] for more detail.

By Lemma 4, the multiplicative group F×q is cyclic of even order q− 1, hence for any

t ∈ F×q we have t
q−1

2 = 1 or t
q−1

2 = −1 depending on whether t is a square in F×q or not.
Moreover, every square in F×q is a square in precisely two ways, hence with the notation

Na := |{x ∈ Fq : f (x)
q−1

2 = a}|, a ∈ {0,±1},
we can express the defect N−q as

(12) N−q = (N0 +2N1)− (N0 +N1 +N−1) = N1−N−1.

In other words, Theorem 7 bounds the difference between the number of x ∈ Fq with f (x)
a nonzero square and those with f (x) not a square.

Now the proof of Theorem 7 relies on two basic ideas. The first idea is that it suffices
to show the one-sided bound

(13) max(N0 +N1,N0 +N−1)<
q
2
+2md√q e.

Indeed, this inequality readily yields

max(N1,N−1)<
q
2
+2md√q e,

and by N0 +N1 +N−1 = q also

min(N1,N−1) = q−max(N0 +N−1,N0 +N1)>
q
2
−2md√q e,

whence (11) follows via (12):

|N−q|= |N1−N−1|= max(N1,N−1)−min(N1,N−1)< 4md√q e.
The second idea is to exhibit, for any a ∈ {±1} and a suitable integer ` > 1, a nonzero
polynomial ha(X) ∈ Fq[X ] such that any x ∈ Fq satisfying f (x)

q−1
2 ∈ {0,a} is a root of

ha(X) of order at least `, i.e. (X− x)` divides ha(X) in Fq[X ]. The point is that in this case
we have

(14) `(N0 +Na)6 degha, a ∈ {±1},
and by optimizing ` in terms of q and m we can deduce (13), hence also Theorem 7.

In order to verify the divisibility relation (X − x)` | ha(X) in Fq[X ], we introduce a
simple but powerful tool, the Hasse derivative.

Definition 6. Let F be a field, and let h(X) ∈ F [X ] be any polynomial. In the ring of
polynomials of two variables F [X ,Y ], there is a unique decomposition

(15) h(X +Y ) =
∞

∑
k=0

(Ekh)(X)Y k,

where (Ekh)(X) ∈ F [X ], and the terms for k > degh vanish. The polynomial (Ekh)(X) is
called the k-th Hasse derivative of h(X).

It is clear that the operator Ek : F [X ]→ F [X ] is F-linear, and also translation invariant in
the sense that for any x ∈ F the k-th Hasse derivative of the translated polynomial h(X +x)
equals (Ekh)(X +x). It is also clear that deg(Ekh)6 (degh)−k for 06 k6 degh, with the
convention that deg0 = 0, while Ekh = 0 for k > degh. In fact the binomial theorem gives
that Ek(Xn) =

(n
k

)
Xn−k for 06 k 6 n, while Ek(Xn) = 0 for k > n.
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Lemma 8. Let F be a field, h(X) ∈ F [X ], and x ∈ F. Then (X−x)` | h(X) holds in F [X ] if
and only if (Ekh)(x) = 0 for any 06 k < `.

Proof. By translation invariance, we can assume without loss of generality that x = 0.
Then, (15) implies by the substitution X 7→ 0 that

h(Y ) =
∞

∑
k=0

(Ekh)(0)Y k,

whence Y ` | h(Y ) holds in F [Y ] if and only if (Ekh)(0) = 0 for any 06 k < `. �

Lemma 9 (Leibniz rule). For any polynomials h1(X), . . . ,hn(X) ∈ F [X ] we have

Ek(h1 · · ·hn) = ∑
k1+···+kn=k
k1,...,kn>0

Ek1(h1) . . .Ekn(hn).

Proof. This is straightforward from the definition (15). Indeed,

h1(X +Y ) . . .hn(X +Y ) =

(
∞

∑
k1=0

(Ek1h1)(X)Y k1

)
· · ·

(
∞

∑
kn=0

(Eknhn)(X)Y kn

)
= ∑

k1,...,kn>0

(
Ek1(h1)(X) . . .Ekn(hn)(X)

)
Y k1+···+kn ,

and the result follows. �

Lemma 10. Let F be a field, and let f (X),g(X) ∈ F [X ] be arbitrary. For any integers
06 k< n, the polynomial Ek(g f n) is of the form g(k) f n−k, where g(k)(X)∈F [X ]. Moreover,
for a fixed f , the polynomial g(k) depends F-linearly on g. Finally,

(16) degg(k) 6 degg+ k deg f − k.

Proof. By Lemma 9,

Ek(g f n) = ∑
k0+k1+···+kn=k

k0,k1,...,kn>0

Ek0(g)Ek1( f ) . . .Ekn( f ).

Clearly, at least n−k of the integers k1, . . . ,kn> 0 must vanish, hence each term on the right
hand side is divisible by f n−k in F [X ]. This shows that Ek(g f n) is of the form g(k) f n−k,
where g(k)(X) ∈ F [X ]. Moreover, for a fixed f , the factor Ek0(g) depends F-linearly on g,
hence the same is true of the polynomial g(k). Finally, (16) is immediate from

deg(g(k) f n−k)6 deg(g f n)− k.

�

5. STEPANOV’S AUXILIARY POLYNOMIALS

In this section we construct the two nonzero auxiliary polynomials h±1(X) ∈ Fq[X ] that
will allow us to derive (13) via (14). We assume the conditions of Theorem 7, and we fix
a value a ∈ {±1}. The statement of Theorem 7 does not change upon replacing f (X) by
f (X + x) for any x ∈ Fq, hence we can assume without loss of generality that f (0) 6= 0.
Indeed, f (x) 6= 0 for some x ∈ Fq, because f (X) has degree less than q.

We have seen that for the validity of (14) it suffices that

(17) f (x)
q−1

2 ∈ {0,a} =⇒ (Ekha)(x) = 0, x ∈ Fq, 06 k < `.

We choose ha(X) to be a multiple of f (X)`, so that we can restrict to the values f (x)
q−1

2 = a
in (17). Specifically, we seek ha(X) in the form

(18) ha(X) := f (X)` ∑
06 j<J

{
r j(X)+ s j(X) f (X)

q−1
2

}
X jq,
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where J > 0 is a real parameter (to be chosen later in terms of `, m, q), and

r j(X),s j(X) ∈ Fq[X ], 06 j < J

are any polynomials with

(19) degr j, degs j <
q−m

2
, 06 j < J.

We examine first the possibility that ha(X) = 0. Assume that this is the case, but not all
the polynomials r j(X),s j(X) ∈ Fq[X ] are zero. Let 0 6 i < J be minimal such that either
ri(X) or si(X) is nonzero. Then

∑
i6 j<J

{
r j(X)+ s j(X) f (X)

q−1
2

}
X ( j−i)q = 0,

whence in Fq[X ] we have the congruence

ri(X)+ si(X) f (X)
q−1

2 ≡ 0 (mod Xq).

From here we infer that

ri(X)2 f (X)≡ si(X)2 f (X)q ≡ si(X)2 f (Xq)≡ si(X)2 f (0) (mod Xq).

By (19), the two sides are polynomials of degree less than q, hence in fact

ri(X)2 f (X) = si(X)2 f (0).

As f (0) 6= 0, both ri(X) and si(X) are nonzero, and f (X) is a complete square in Fp[X ].
This contradicts the assumptions of Theorem 7, hence we proved that ha(X) 6= 0 unless all
the polynomials r j(X),s j(X) ∈ Fq[X ] are zero.

Now we examine what (Ekha)(x) = 0 means for f (x)
q−1

2 = a and 0 6 k < `, cf. (17).
In order to find the Hasse derivative (Ekha)(X), we go back to the definition (15), and we
make a simple observation. Starting from the congruence in Fq[X ,Y ],

(X +Y ) jq = (Xq +Y q) j ≡ X jq (mod Y q),

we see that

ha(X +Y )≡ ∑
06 j<J

{
r j(X +Y ) f (X +Y )`+ s j(X +Y ) f (X +Y )`+

q−1
2

}
X jq (mod Y q),

whence for 06 k < q the coefficient of Y k as an element of Fq[X ] must be the same on the
two sides. That is,

(Ekha)(X) = ∑
06 j<J

{
Ek(r j f `)(X)+Ek(s j f `+

q−1
2 )(X)

}
X jq, 06 k < q.

By Lemma 10, we can rewrite this identity as

(20) (Ekha)(X) = f (X)`−k
∑

06 j<J

{
r(k)j (X)+ s(k)j (X) f (X)

q−1
2

}
X jq, 06 k < q,

where the polynomials r(k)j ,s(k)j ∈ Fq[X ] depend Fq-linearly on the initial r j,s j ∈ Fq[X ], and

(21) degr(k)j , degs(k)j <
q−m

2
+ k(m−1), 06 j < J, 06 k < q.

In passing, it is worthwhile to remark that r(0)j = r j and s(0)j = s j. From now on we assume
that `6 q, then by (20) we can reduce (17) to the simpler condition

(22) ∑
06 j<J

{
r(k)j (X)+as(k)j (X)

}
X j = 0, 06 k < `.

Here we relied on the crucial fact that x jq = x j for any x ∈ Fq.



12 GERGELY HARCOS

The constraints (22) constitute a homogeneous system of linear equations for the coef-
ficients of r j(X) and s j(X). By (19), the number of variables in this system is

> 2J
⌈

q−m
2

⌉
> J(q−m),

while by (21), the number of equations is

6 ∑
06k<`

⌈
q−m

2
+ k(m−1)+ J

⌉
< `

(
q−m

2
+ J
)
+

`2

2
(m−1).

This means that the construction (18) yields a nonzero polynomial ha(X) ∈ Fq[X ] validat-
ing (14) as long as `6 q and

J(q−m)> `

(
q−m

2
+ J
)
+

`2

2
(m−1).

Rearranging the last inequality,(
J− `

2

)
(q−m− `)>

`2m
2

,

hence by imposing `6 q/3 and utilizing m < q/6 (cf. Theorem 7) it suffices to have(
J− `

2

)
q
2
>

`2m
2

.

This motivates the choice

J :=
`

2
+

`2m
q

.

With this choice (14) yields, upon recalling (18) and (19),

`(N0 +Na)6 degha < m
(
`+

q−1
2

)
+

q−m
2

+ Jq < mq+
`q
2
+ `2m.

In short,

N0 +Na <
q
2
+

mq
`

+ `m,

and by choosing ` := d√qe we obtain (13). Note that the intermediate constraint ` 6 q/3
is now automatically satisfied, because the conditions of Theorem 7 force q > 18.

The proof of Theorem 7 is now complete. To conclude Theorem 1 via Corollary 3, we
apply Theorem 7 for n > 4 and f (X) := (X p−X)2− 4ab. All we need to check is that
f (X) is not a complete square in Fp[X ]. However, this is clear: f (X) = g(X)2 would imply

(X p−X−g(X))(X p−X +g(X)) = 4ab,

an obvious contradiction to the fact that one of the factors X p−X±g(X) is non-constant.

6. SUPPLEMENTS

With a bit of algebraic number theory, we can show that the inequality in Theorem 1 is
always strict. The proof below is due to Elkies and MathOverflow user Lucia (see [3]).

Theorem 8. Let p > 2 be a prime, and let (ab, p) = 1. Then |S(a,b; p)|< 2
√

p.

Proof. The Kloosterman sum S(a,b; p) is real, as can be seen by writing −t for t in (1).
Therefore, by Theorem 1, we only need to exclude the possibility that

(23)
p−1

∑
t=1

ep(at +bt) =±2
√

p.
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Let us assume (23). Then both sides lie in the ring Z[ξ ], where ξ := e2πi/p, which consists
of the integral linear combinations of 1,ξ ,ξ 2, . . . . Raising the equation to the p-th power
yields, by the multinomial theorem,

p−1

∑
t=1

1≡±2p pp/2 (mod pZ[ξ ]).

The left hand side is congruent to −1 modulo pZ[ξ ], hence further squaring both sides,

1≡ 22p pp ≡ 0 (mod pZ[ξ ]).

That is, 1 ∈ pZ[ξ ], which is a contradiction as we explain now. It is classical and easy to
prove with the Schönemann–Eisenstein criterion that the cyclotomic polynomial

k(X) := X p−1 +X p−2 + · · ·+X +1 = (X−ξ )(X−ξ
2) . . .(X−ξ

p−1)

is irreducible over Q, hence Q(ξ ) is isomorphic to Q[X ]/(k(X)) by Lemma 2 and its proof.
In particular, {1,ξ , . . . ,ξ p−2} is a basis of Q(ξ ) as a vector space over Q, and Z[ξ ] consists
of the vectors whose coordinates are integers with respect to this basis. This shows readily
that 1 6∈ pZ[ξ ], because 1 6∈ pZ, and we are done. �

Finally, following Heath-Brown [1], we give an application of Theorem 1 to the distri-
bution of products modulo a prime number.

Theorem 9. Let p > 2 be a prime number. Let U ,V ⊆ {1,2, . . . , p−1} be two intervals,
and let r ∈ {1,2, . . . , p−1} be a nonzero residue modulo p. Then∣∣∣∣∣ ∑

u∈U , v∈V
uv≡r (mod p)

1− |U ||V |
p−1

∣∣∣∣∣< 2p1/2(log p)2.

Proof. Using Fourier analysis on Z/pZ, we can express

∑
u∈U , v∈V

uv≡r (mod p)

1 =
p−1

∑
t=1

(
∑

u∈U
t≡u (mod p)

1

)(
∑

v∈V
t≡rv (mod p)

1

)

=
p−1

∑
t=1

(
∑

u∈U

1
p

p

∑
a=1

ep(a(t−u))

)(
∑

v∈V

1
p

p

∑
b=1

ep(b(t− rv))

)

=
1
p2

p

∑
a,b=1

(
p−1

∑
t=1

ep(at +bt)

)(
∑

u∈U
ep(−au)

)(
∑

v∈V
ep(−brv)

)
.

The first inner sum is p−1 when both a and b equal p, it is −1 when exactly one of a and
b equals p, and otherwise it is the Kloosterman sum S(a,b; p) considered in Theorem 1.
Using this information, we obtain

∑
u∈U , v∈V

uv≡r (mod p)

1 = |U ||V | p+1
p2 +

1
p2

p−1

∑
a,b=1

S(a,b; p)

(
∑

u∈U
ep(−au)

)(
∑

v∈V
ep(−brv)

)
,

whence by Theorem 1 and the fact that U and V are intervals,∣∣∣∣∣ ∑
u∈U , v∈V

uv≡r (mod p)

1− |U ||V |
p−1

∣∣∣∣∣< 1
p
+2
√

p

(
1
p

p−1

∑
a=1

∣∣∣∣∣ ∑u∈U ep(−au)

∣∣∣∣∣
)(

1
p

p−1

∑
b=1

∣∣∣∣∣∑v∈V ep(−brv)

∣∣∣∣∣
)

<
1
p
+2p1/2

 1
p

p−1

∑
c=1

1

sin
(

πc
p

)
2

< 2p1/2(log p)2.
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Here, the last inequality can be checked numerically for p < 11, while for p> 11 we verify
it as follows. We have

1
p

p−1

∑
c=1

1

sin
(

πc
p

) =
2
p

p−1
2

∑
c=1

1

sin
(

πc
p

) <

p−1
2

∑
c=1

1
c
< 0.68+ log

p−1
2

<−0.01+ log p,

therefore 1
p

p−1

∑
c=1

1

sin
(

πc
p

)
2

< (−0.01+ log p)2 < (log p)2− log p
100

< (log p)2− 1
2p3/2 .

The proof is complete. �

Corollary 4. Let p,r,U ,V as in Theorem 9. If |U ||V |> 2p3/2(log p)2, then the congru-
ence uv≡ r (mod p) has a solution in u ∈U and v ∈ V .

Proof. If the congruence uv≡ r (mod p) has no solution in u ∈U and v ∈ V , then The-
orem 9 yields

|U ||V |
p−1

< 2p1/2(log p)2,

hence also |U ||V |< 2p3/2(log p)2. �
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