WEIL'S BOUND FOR KLOOSTERMAN SUMS

GERGELY HARCOS

1. Introduction

The aim of these notes is to give a concise but self-contained proof of the following celebrated theorem due to Weil [5].

Theorem 1 (Weil). Let p > 2 be a prime number. Let a and b be integers coprime to p. Then the Kloosterman sum

$$S(a,b;p) := \sum_{t=1}^{p-1} e_p(at + b\bar{t})$$

has absolute value at most $2\sqrt{p}$.

Here $e_p(x)$ abbreviates $\exp(2\pi i x/p)$, and \bar{t} is a multiplicative inverse of t modulo p. We denote by \mathbb{F}_p the p-element field, and we identify its elements with the residue classes modulo p. Hence $e_p(x)$ is a nontrivial additive character of \mathbb{F}_p , and we can write

(1)
$$S(a,b;p) = \sum_{t \in \mathbb{F}_p^{\times}} e_p(at + bt^{-1}).$$

We fix p, a, b for the rest of the notes, except that in the next section p is an arbitrary prime. Our exposition is largely based on Iwaniec–Kowalski [2, Chapter 11], but we try to give more detail at certain points and keep the algebraic prerequisites to a minimum. A rough outline of the proof is as follows. Along with S(a,b;p), we consider all the Kloosterman sums S(ma,mb;p) with $1 \le m \le p-1$, and we write them as

$$S(ma, mb; p) = -\alpha_m - \beta_m$$

with complex numbers α_m and β_m such that $\alpha_m \beta_m = p$. That is, we have a decomposition of polynomials in $\mathbb{C}[T]$,

(2)
$$1 + S(ma, mb; p)T + pT^2 = (1 - \alpha_m T)(1 - \beta_m T).$$

It turns out that the power sums of the α_m 's and β_m 's have a geometric meaning, namely

(3)
$$p^{n} - 1 - \sum_{m=1}^{p-1} (\alpha_{m}^{n} + \beta_{m}^{n}) = |\{(x, y) \in \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}} : y^{2} = (x^{p} - x)^{2} - 4ab\}|,$$

where \mathbb{F}_{p^n} denotes the field of p^n elements. Weil showed [6, p. 70] that the right hand side can be approximated as $p^n + O_p(p^{n/2})$, hence for any integer $n \ge 1$ we have

$$\sum_{m=1}^{p-1} (\alpha_m^n + \beta_m^n) \ll_p p^{n/2}.$$

It is straightforward to deduce from here that each α_m and β_m has absolute value \sqrt{p} , and Theorem 1 follows upon noting $|S(a,b;p)| \leq |\alpha_1| + |\beta_1|$.

2. Background on finite fields

Lemma 1. Let F be a field, and let $k(X) \in F[X]$ be an irreducible polynomial. Then there is a field G containing F such that k has a root in G.

Proof. It suffices to construct a field G such that F embeds into G, and k has a root in G. The residue classes in F[X] modulo k(X) form a ring G := F[X]/(k(X)). We claim that G is a field satisfying the requirements. Clearly, the inclusion $F \subset F[X]$ induces an embedding $F \hookrightarrow G$. If $\xi \in G$ denotes the residue class of X modulo K(X), then $K(\xi) \in G$ is the residue class of K(X) modulo K(X), i.e. $K(\xi) = 0$. Now let K(X) = 0 modes K(X) = 0 modes any nonzero residue class in K(X) = 0 modulo K(

Definition 1. If $F \subset G$ are fields and $\xi \in G$, then $F(\xi)$ denotes the smallest subfield of G containing F and ξ . The element $\xi \in G$ is called *algebraic* over F if $k(\xi) = 0$ for some non-constant $k(X) \in F[X]$. In this case the unique monic polynomial $k(X) \in F[X]$ of smallest positive degree such that $k(\xi) = 0$ is called the *minimal polynomial* of ξ over F.

Lemma 2. Let $F \subset G$ be any fields. Let $\xi \in G$ be algebraic over F with minimal polynomial $k(X) \in F[X]$. Then k(X) is irreducible in F[X], and $F(\xi)$ is isomorphic to F[X]/(k(X)).

Proof. If k(X) is reducible in F[X], then it factors into smaller degree monic polynomials k(X) = u(X)v(X). As $k(\xi) = 0$, we have $u(\xi) = 0$ or $v(\xi) = 0$, a contradiction. So k(X) is irreducible in F[X]. Moreover, using the Euclidean algorithm in F[X], we see that a polynomial $a(X) \in F[X]$ satisfies $a(\xi) = 0$ if and only if a(X) is divisible by k(X) in F[X]. Consider now $F[\xi]$, the smallest subring of G containing F and ξ . Consider also the map $f: F[X]/(k(X)) \to F[\xi]$ assigning to any residue class $a(X) \mod k(X)$ the element $a(\xi) \in F[\xi]$. It is straightforward to verify that f is a ring isomorphism, hence $F[\xi]$ is isomorphic to F[X]/(k(X)). The latter ring is actually a field (cf. proof of Lemma 1), hence $F[\xi]$ is a field. It follows that $F(\xi) = F[\xi]$, and so $F(\xi)$ is isomorphic to F[X]/(k(X)). \square

Lemma 3. Let $F \subset G$ be any fields. If F is a finite field of cardinality m, then

$$F = \{ x \in G : x^m = x \}.$$

Proof. If $x \in F^{\times}$, then $x^{m-1} = 1$, because F^{\times} is a finite group of order m-1. Hence for any $x \in F$ we have $x^m = x$, i.e. $F \subset \{x \in G : x^m = x\}$. We must have equality here, because the left hand side has cardinality m, and the right hand side has cardinality at most m. \square

Lemma 4. Let F be a field, and let H be a finite subgroup of the multiplicative group F^{\times} . Then H is cyclic.

Proof. Let $x \in H$ and $y \in H$ be any two group elements of (multiplicative) orders r and s, respectively. We claim that H contains an element of order [r,s]. To see this, decompose [r,s] as ab with suitable $a \mid r$ and $b \mid s$ such that (a,b) = 1, and consider $z := x^{r/a}y^{s/b} \in H$. The order t of z clearly divides ab, because $z^{ab} = x^{rb}y^{sa} = 1$. On the other hand, $z^t = 1$ implies $z^{at} = 1$ and $z^{bt} = 1$, whence $y^{ats/b} = 1$ and $x^{btr/a} = 1$. This is only possible if $b \mid at$ and $a \mid bt$, i.e. $ab \mid t$. Hence t = ab = [r,s] as claimed. Now pick $x \in H$ so that its order r is maximal. Then any $y \in H$ has order $s \mid r$, because $[r,s] \leqslant r$ implies $s \mid r$. Fixing s and s, we observe that in s the equation s at most s solutions, and s is one of them. On the other hand, s and s are s distinct elements satisfying s and s are s distinct elements. That is, s generates s and s are done.

Lemma 5. Let $F \subset G$ be any finite fields. Then there exists $\xi \in G$ such that $F(\xi) = G$.

Proof. By Lemma 4, the multiplicative group G^{\times} is generated by some $\xi \in G$. Then $F(\xi)$ clearly contains G^{\times} , hence $F(\xi) = G$.

Theorem 2. The cardinality of any finite field is a prime power p^n . Conversely, for any prime power p^n , there is a finite field of cardinality p^n , and it is unique up to isomorphism.

Proof. Let F be any finite field. The elements 1, 1+1, 1+1+1, etc. in F cannot all be distinct. Hence, after subtraction, we see that in F we have $m \cdot 1 = 0$ for some positive integer m. If m is minimal with this property, then m is prime. Indeed, if m = kl with 0 < k, l < m, then $(k \cdot 1)(l \cdot 1) = m \cdot 1 = 0$, hence $k \cdot 1 = 0$ or $l \cdot 1 = 0$, a contradiction. So m = p is prime, and we can embed \mathbb{F}_p into F by mapping a residue class t mod p in \mathbb{F}_p to $t \cdot 1 \in F$. We call \mathbb{F}_p the *prime field* of F. In particular, F is a vector space over \mathbb{F}_p of some finite dimension n, hence $|F| = p^n$ is a prime power.

Conversely, let p^n be any prime power. We construct a field F_n of cardinality p^n , and in the next paragraph we show that any field of cardinality p^n is isomorphic to F_n . There is a field K containing \mathbb{F}_p such that any polynomial in $\mathbb{F}_p[X]$ decomposes into linear factors over K. To see this, enumerate the polynomials in $\mathbb{F}_p[X]$, and use Lemma 1 recursively to construct a chain of fields

$$\mathbb{F}_p = K_0 \subset K_1 \subset K_2 \subset \dots$$

such that in K_m the m-th polynomial decomposes into linear factors, and then define K as the union of these fields. Now we put

(4)
$$F_n := \{ x \in K : x^{p^n} = x \},$$

and we claim that F_n is a p^n -element subfield of K containing \mathbb{F}_p . On the one hand, in K[X] we have a decomposition

(5)
$$X^{p^n} - X = \prod_{i=1}^{p^n} (X - t_i),$$

and F_n is the set of roots $\{t_i: 1 \le i \le p^n\}$. The roots are distinct, because the formal derivative of the left hand side, $(X^{p^n} - X)' = p^n X^{p^n - 1} - 1 = -1$, has no root. This proves that $|F_n| = p^n$. On the other hand, F_n is the set of fixed points of σ^n , where

(6)
$$\sigma: x \mapsto x^p$$

denotes the *Frobenius map* on *K*. Clearly, $\sigma(0) = 0$, $\sigma(1) = 1$, $\sigma(xy) = \sigma(x)\sigma(y)$. Moreover, by the binomial theorem, $\sigma(x+y) = \sigma(x) + \sigma(y)$. Therefore, σ is a field endomorphism of *K* fixing \mathbb{F}_p pointwise, and the same is true of σ^n . Hence F_n is a subfield of *K* containing \mathbb{F}_p .

Let F be any field of cardinality p^n . Then the prime field of F must be \mathbb{F}_p , hence without loss of generality, F contains \mathbb{F}_p . By Lemma 5, there exists $\xi \in F$ such that $\mathbb{F}_p(\xi) = F$. Let $k(X) \in \mathbb{F}_p[X]$ be the minimal polynomial of ξ over \mathbb{F}_p . Then k(X) has a root α in K. The minimal polynomial of α over \mathbb{F}_p divides k(X) in $\mathbb{F}_p[X]$ (cf. proof of Lemma 2), therefore it equals k(X) by the irreducibility of k(X). It follows that $\mathbb{F}_p(\xi)$ is isomorphic to the subfield $\mathbb{F}_p(\alpha) \subset K$, because both fields are isomorphic to $\mathbb{F}_p[X]/(k(X))$ by Lemma 2. In particular, $\mathbb{F}_p(\alpha)$ has cardinality p^n , hence it equals F_n by Lemma 3. In the end, we see that F is isomorphic to F_n , namely $F = \mathbb{F}_p(\xi) \cong \mathbb{F}_p[X]/(k(X)) \cong \mathbb{F}_p(\alpha) = F_n$. \square

Definition 2. We identify \mathbb{F}_{p^n} with F_n defined by (4), and we regard their union

$$\overline{\mathbb{F}_p} := \bigcup_{n=1}^{\infty} \mathbb{F}_{p^n}.$$

Corollary 1. The fields \mathbb{F}_{p^n} are precisely the finite subfields of $\overline{\mathbb{F}_p}$. Moreover, $\mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$ if and only $m \mid n$.

Proof. By definition, $\mathbb{F}_{p^n} \subset \overline{\mathbb{F}_p}$. Conversely, let F be a finite subfield of $\overline{\mathbb{F}_p}$. Then, F contains \mathbb{F}_p , hence F is a vector space over \mathbb{F}_p of some finite dimension n. It follows that $|F| = p^n$, therefore $F = \mathbb{F}_{p^n}$ by Lemma 3 and (4). Assume now that $\mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$. Then, \mathbb{F}_{p^n} is a vector space over \mathbb{F}_{p^m} of some finite dimension k, hence $p^n = \mathbb{F}_{p^n} = |\mathbb{F}_{p^m}|^k = p^{mk}$. That is, n = mk, i.e. $m \mid n$. Conversely, if $m \mid n$, then (4) readily implies that $\mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$. \square

In particular, any $\alpha \in \overline{\mathbb{F}_p}$ generates some finite field $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d}$, hence by (4) and (6) we see that $\overline{\mathbb{F}_p}$ is a disjoint union of *Frobenius orbits* of the form $\{\alpha, \sigma(\alpha), \dots, \sigma^{d-1}(\alpha)\}$. In fact, for a given integer $n \geq 1$, the orbits of size $d \mid n$ partition \mathbb{F}_{p^n} . The next result describes these orbits in more detail and shows that $\overline{\mathbb{F}_p}$ is an algebraic closure of \mathbb{F}_p .

Theorem 3. A Frobenius orbit of size d in $\overline{\mathbb{F}_p}$ is the set of roots of an irreducible monic polynomial of degree d in $\mathbb{F}_p[X]$, and vice versa.

Proof. The proof relies on the fact that \mathbb{F}_p is the set of fixed points of σ in $\overline{\mathbb{F}_p}$. Let $\{\alpha, \sigma(\alpha), \dots, \sigma^{d-1}(\alpha)\} \subset \overline{\mathbb{F}_p}$ be a Frobenius orbit of size d, i.e. $\sigma^d(\alpha) = \alpha$ and the listed elements are distinct. Then the monic polynomial

$$k(X) := \prod_{i=0}^{d-1} (X - \sigma^i(\alpha))$$

lies in $\mathbb{F}_p[X]$, because σ permutes the roots and therefore fixes the coefficients of k(X). Moreover, $\{\alpha, \sigma(\alpha), \ldots, \sigma^{d-1}(\alpha)\}$ is not the disjoint union of two non-empty σ -invariant subsets, hence k(X) is irreducible in $\mathbb{F}_p[X]$. Conversely, let $k(X) \in \mathbb{F}_p[X]$ be an irreducible monic polynomial of degree d. Then, as we have seen in the proof of Theorem 2, k(X) has a root $\alpha \in \mathbb{F}_{p^d}$, and in fact $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d}$. Hence $\{\alpha, \sigma(\alpha), \ldots, \sigma^{d-1}(\alpha)\}$ is a Frobenius orbit of size d in $\overline{\mathbb{F}_p}$, i.e. $\sigma^d(\alpha) = \alpha$ and the listed elements are distinct. Each element $\sigma^i(\alpha)$ is a root of k(X), because $k(\sigma^i(\alpha)) = \sigma^i(k(\alpha)) = \sigma^i(0) = 0$, therefore the orbit is the set of roots of k(X).

Corollary 2 (Gauss). *For any integer* $n \ge 1$, *we have the following identity in* $\mathbb{F}_p[X]$:

$$X^{p^n} - X = \prod_{d \mid n} \prod_{\substack{k \text{ irred. monic} \\ \deg(k) = d}} k(X),$$

where the inner product runs through the irreducible monic polynomials of degree d in $\mathbb{F}_p[X]$.

Proof. We have seen in the proof of Theorem 2 that over \mathbb{F}_{p^n} the left hand side decomposes into distinct linear factors as (cf. (5))

$$X^{p^n}-X=\prod_{t\in\mathbb{F}_{p^n}}(X-t).$$

The field \mathbb{F}_{p^n} is a disjoint union of the Frobenius orbits of size $d \mid n$, hence the stated identity follows immediately from Theorem 3.

Definition 3. The *n*-trace of an element $\alpha \in \mathbb{F}_{p^n}$ is given by

$$\operatorname{Tr}_n(\alpha) := \sum_{i=0}^{n-1} \sigma^i(\alpha).$$

Theorem 4. The n-trace is an \mathbb{F}_p -linear surjection $\operatorname{Tr}_n : \mathbb{F}_{p^n} \to \mathbb{F}_p$. Moreover, for any $y \in \mathbb{F}_{p^n}$, we have

(7)
$$|\{x \in \mathbb{F}_{p^n} : x^p - x = y\}| = \begin{cases} 0, & \operatorname{Tr}_n(y) \neq 0; \\ p, & \operatorname{Tr}_n(y) = 0. \end{cases}$$

Proof. For any $\alpha \in \mathbb{F}_{p^n}$, we have $\sigma^n(\alpha) = \alpha$, hence

$$\sigma(\operatorname{Tr}_n(\alpha)) = \sum_{i=0}^{n-1} \sigma^{i+1}(\alpha) = \operatorname{Tr}_n(\alpha).$$

That is, $\operatorname{Tr}_n(\alpha) \in \mathbb{F}_p$. In addition, the map $\operatorname{Tr}_n : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is \mathbb{F}_p -linear, because σ (hence also σ^i) is \mathbb{F}_p -linear. Consider now the \mathbb{F}_p -linear map $\delta : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ given by

$$\delta(x) := x^p - x = \sigma(x) - x.$$

The kernel of δ equals \mathbb{F}_p , hence δ is a p-to-1 map with an image of size $|\operatorname{im} \delta| = p^{n-1}$. In addition, $\operatorname{im} \delta \subset \ker \operatorname{Tr}_n$, because for any $x \in \mathbb{F}_{p^n}$ we have

$$\operatorname{Tr}_n(\delta(x)) = \operatorname{Tr}_n(\sigma(x) - x) = \sum_{i=0}^{n-1} (\sigma^{i+1}(x) - \sigma^i(x)) = \sigma^n(x) - x = 0.$$

However, $\operatorname{Tr}_n : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is also a polynomial function of degree p^{n-1} by definition, hence it cannot vanish at more than p^{n-1} points. It follows that $\operatorname{im} \delta = \ker \operatorname{Tr}_n$. This verifies (7) and the surjectivity of Tr_n as well, because $|\operatorname{im} \operatorname{Tr}_n| = p^n/|\ker \operatorname{Tr}_n| = p$.

Remark 1. Theorem 4 and its proof can be summarized by saying that the following sequence of \mathbb{F}_p -linear maps is exact:

$$0 \longrightarrow \mathbb{F}_p \xrightarrow{\mathrm{id}} \mathbb{F}_{p^n} \xrightarrow{\delta} \mathbb{F}_{p^n} \xrightarrow{\mathrm{Tr}_n} \mathbb{F}_p \longrightarrow 0.$$

3. *L*-FUNCTIONS

In this section we prove the identity (3) with the help of *L*-functions. Recall that the parameters $p, a, b \in \mathbb{Z}$ of Theorem 1 are fixed, and the numbers $\alpha_m, \beta_m \in \mathbb{C}$ $(1 \le m \le p-1)$ satisfy (2).

The ring of polynomials $\mathbb{F}_p[X]$ bears a close similarity to the ring of integers \mathbb{Z} . We define a completely multiplicative function $\eta: \mathbb{F}_p[X] \to \mathbb{C}$ that is analogous to a Dirichlet character $\mathbb{Z} \to \mathbb{C}$.

Definition 4. Let $k(X) = c_0 X^d + \dots + c_d \in \mathbb{F}_p[X]$ be a polynomial with $c_0 \neq 0 \neq c_d$. Then k(X) decomposes into linear factors over $\overline{\mathbb{F}_p}$ as $k(X) = c_0(X - t_1) \dots (X - t_d)$, and we put

$$\eta(k) := e_p(a(t_1 + \dots + t_d))e_p(b(t_1^{-1} + \dots + t_d^{-1}))
= e_p(-a(c_1/c_0))e_p(-b(c_{d-1}/c_d)).$$

For all other polynomials $k(X) \in \mathbb{F}_p[X]$ we put $\eta(k) := 0$.

Lemma 6. We have

- $|\eta(k)| \leq 1$ for any $k \in \mathbb{F}_p[X]$;
- $\eta(k_1k_2) = \eta(k_1)\eta(k_2)$ for any $k_1, k_2 \in \mathbb{F}_p[X]$.

Proof. Both statements are clear from the definition.

Definition 5. For any integer m coprime with p, we introduce the Dirichlet series

$$L(s, \eta^m) := \sum_{k \text{ monic}} \eta^m(k) p^{-\deg(k)s}, \qquad \Re s > 1,$$

where the sum runs through the monic polynomials in $\mathbb{F}_p[X]$.

Lemma 7. The Dirichlet series $L(s, \eta^m)$ converges absolutely and locally uniformly in the half-plane $\Re s > 1$. In addition, we have the Euler product decomposition

$$L(s, \eta^m) = \prod_{k \text{ irred. monic}} \left(1 - \eta^m(k) p^{-\deg(k)s}\right)^{-1}, \qquad \Re s > 1,$$

which converges absolutely and locally uniformly in the half-plane $\Re s > 1$.

Proof. Let $\sigma > 1$ be fixed. In the half-plane $\Re s \geqslant \sigma$ we have, by Lemma 6,

$$\sum_{k \text{ monic}} \left| \eta^m(k) p^{-\deg(k)s} \right| \leqslant \sum_{k \text{ monic}} p^{-\deg(k)\sigma} = \sum_{d=1}^{\infty} p^{-d\sigma} \sum_{\substack{k \text{ monic} \\ \deg(k) = d}} 1 = \sum_{d=1}^{\infty} p^{d(1-\sigma)} < \infty,$$

which implies the first claim. The second claim follows from the same bound coupled with the facts that $\mathbb{F}_p[X]$ is a unique factorization domain and $\eta^m : \mathbb{F}_p[X] \to \mathbb{C}$ is completely multiplicative (cf. Lemma 6). The argument is very similar to the case of Dirichlet L-functions, hence we omit the details.

Theorem 5. The Dirichlet series $L(s, \eta^m)$ extends to an entire function satisfying

$$L(s, \eta^m) = 1 + S(ma, mb; p) p^{-s} + p^{1-2s}, \quad s \in \mathbb{C}.$$

Proof. It suffices to prove that the above identity holds for $\Re s > 1$. So for the rest of the proof we assume that $\Re s > 1$, which will also take care of all convergence issues. Clearly,

$$L(s, \boldsymbol{\eta}^m) = \sum_{d=1}^{\infty} p^{-ds} \sum_{\substack{k \text{ monic} \\ \deg(k) = d}} \boldsymbol{\eta}^m(k),$$

hence we are led to evaluate the inner sum (cf. Definition 4). Denoting this sum by a_d , it is obvious that $a_0 = 1$, while

$$a_1 = \sum_{t \in \mathbb{F}_p} \eta^m(x - t) = \sum_{t \in \mathbb{F}_p^{\times}} e_p(mat) e_p(mbt^{-1}) = S(ma, mb; p).$$

Regarding a_2 , we have

$$\begin{aligned} a_2 &= \sum_{c_1, c_2 \in \mathbb{F}_p} \eta^m(x^2 + c_1 x + c_2) = \sum_{c_1 \in \mathbb{F}_p} \sum_{c_2 \in \mathbb{F}_p^{\times}} e_p(-mac_1) e_p(-mbc_1/c_2) \\ &= p - 1 + \sum_{c_1 \in \mathbb{F}_p^{\times}} e_p(-mac_1) \sum_{c_2 \in \mathbb{F}_p^{\times}} e_p(-mbc_1/c_2) = p - 1 + \left(\sum_{c \in \mathbb{F}_p^{\times}} e_p(c)\right)^2 = p, \end{aligned}$$

while for $d \ge 3$ we find

$$a_{d} = \sum_{c_{1},\dots,c_{d} \in \mathbb{F}_{p}} \eta^{m} (x^{d} + c_{1}x^{d-1} + \dots + c_{d})$$

$$= \sum_{c_{d} \in \mathbb{F}_{p}^{\times}} \sum_{c_{1},\dots,c_{d-1} \in \mathbb{F}_{p}} e_{p} (-mac_{1}) e_{p} (-mbc_{d-1}/c_{d}) = \sum_{c_{d} \in \mathbb{F}_{p}^{\times}} 0 = 0.$$

We conclude that

$$L(s, \eta^m) = \sum_{d=1}^{\infty} a_d p^{-ds} = 1 + S(ma, mb; p) p^{-s} + p^{1-2s}, \qquad \Re s > 1.$$

The proof is complete.

Remark 2. Theorem 5 implies (and in fact is equivalent to) the functional equation

$$p^{s}L(s, \eta^{m}) = p^{1-s}L(1-s, \eta^{-m}).$$

More generally, if ω is a Hecke character of a curve of genus g over \mathbb{F}_q , and \mathfrak{f} denotes the conductor of ω , then by Theorems 4 and 6 in [7, Chapter VII] we have

$$N^{s/2}L(s,\omega) = \kappa N^{(1-s)/2}L(1-s,\omega^{-1}),$$

where $N := q^{2g-2+\deg(\mathfrak{f})}$, and κ is a complex number of modulus 1 depending only on ω . In our case q = p, g = 0, and $\mathfrak{f} = 2(0) + 2(\infty)$ is of degree 4, so that $N = p^2$.

Theorem 6. For any integers $1 \le m \le p-1$ and $n \ge 1$ we have

(8)
$$-(\alpha_m^n + \beta_m^n) = \sum_{t \in \mathbb{F}_{p^n}^{\times}} e_p(m \operatorname{Tr}_n(at + bt^{-1})),$$

where $\operatorname{Tr}_n: \mathbb{F}_{p^n} \to \mathbb{F}_p$ is the n-trace as in Definition 3.

Proof. The idea is to analyze the logarithmic derivative of the identity

(9)
$$(1 - \alpha_m p^{-s})(1 - \beta_m p^{-s}) = \prod_{k \text{ irred. monic}} \left(1 - \eta^m(k) p^{-\deg(k)s}\right)^{-1}, \quad \Re s > 1$$

that follows from Lemma 7, Theorem 5, and (2) with $T := p^{-s}$. First of all, the left hand side is nonzero for $\Re s > 1$ by the absolute convergence of the Euler product, hence $|\alpha_m|, |\beta_m| < p$ (this can also be verified directly). Therefore, on either side of (9), the factors remain in the half-plane $\Re z > 0$, so that applying the principal branch of the logarithm on this half-plane yields

$$\log(1-\alpha_m p^{-s}) + \log(1-\beta_m p^{-s}) = \sum_{k \text{ irred. monic}} -\log\left(1-\eta^m(k)p^{-\deg(k)s}\right), \qquad \Re s > 1.$$

Indeed, the two sides can only differ by a (constant) multiple of $2\pi i$, and then letting s > 1 and $s \to \infty$ shows that the difference is zero. We expand the logarithmic values via

$$\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}, \qquad |z| < 1,$$

and arrive at

$$\sum_{n=1}^{\infty} \frac{-(\alpha_m^n + \beta_m^n)p^{-ns}}{n} = \sum_{k \text{ irred. monic }} \sum_{r=1}^{\infty} \frac{\eta^{mr}(k)p^{-r\deg(k)s}}{r}, \qquad \Re s > 1.$$

Both sides converge absolutely and locally uniformly, hence we can differentiate termwise and divide by $-\log p$ to obtain

$$\sum_{n=1}^{\infty} -(\alpha_m^n + \beta_m^n) p^{-ns} = \sum_{k \text{ irred. monic}} \sum_{r=1}^{\infty} \deg(k) \eta^{mr}(k) p^{-r \deg(k)s}, \qquad \Re s > 1.$$

By comparing the Dirichlet coefficients on the two sides, we infer that

$$-(\alpha_m^n + \beta_m^n) = \sum_{\substack{k \text{ irred. monic} \\ r \deg(k) = n}} \deg(k) \eta^{mr}(k), \qquad n \geqslant 1$$

In other words,

(10)
$$-(\alpha_m^n + \beta_m^n) = \sum_{\substack{d \mid n \text{ irred. monic} \\ \deg(k) = d}} d\eta^{\frac{mn}{d}}(k), \qquad n \geqslant 1.$$

The polynomial k(X) = X does not contribute to the inner sum, while the other irreducible monic polynomials $k \in \mathbb{F}_p[X]$ correspond bijectively to the Frobenius orbits lying in $\mathbb{F}_{p^n}^{\times}$ (cf. Theorem 3 and the remarks preceding it). Namely, if $\{t_1, \ldots, t_d\}$ is the set of roots of k in $\overline{\mathbb{F}_p}$, then $\{t_1, \ldots, t_d\} \subset \mathbb{F}_{p^n}^{\times}$ is the corresponding Frobenius orbit of size $d \mid n$, and we have (cf. Definition 4)

$$\eta^{\frac{mn}{d}}(k) = e_p\left(ma\frac{n}{d}(t_1 + \dots + t_d)\right)e_p\left(mb\frac{n}{d}(t_1^{-1} + \dots + t_d^{-1})\right).$$

For any $1 \le j \le d$, we can interpret (cf. Definition 3)

$$\frac{n}{d}(t_1 + \dots + t_d) = \frac{n}{d} \sum_{i=0}^{d-1} \sigma^i(t_j) = \sum_{i=0}^{n-1} \sigma^i(t_j) = \operatorname{Tr}_n(t_j)$$

and

$$\frac{n}{d}(t_1^{-1} + \dots + t_d^{-1}) = \frac{n}{d} \sum_{i=0}^{d-1} \sigma^i(t_j^{-1}) = \sum_{i=0}^{n-1} \sigma^i(t_j^{-1}) = \operatorname{Tr}_n(t_j^{-1}),$$

hence

$$\eta^{\frac{mn}{d}}(k) = e_p(ma\operatorname{Tr}_n(t_j))e_p(mb\operatorname{Tr}_n(t_j^{-1})) = e_p(m\operatorname{Tr}_n(at_j + bt_j^{-1})), \qquad 1 \leqslant j \leqslant d.$$

Summing up these equations for $1 \le j \le d$, we get

$$d\eta^{\frac{mn}{d}}(k) = \sum_{j=1}^{d} e_p(m\operatorname{Tr}_n(at_j + bt_j^{-1})).$$

The right hand side is the sum of $e_p(m\operatorname{Tr}_n(at+bt^{-1}))$ over the Frobenius orbit $\{t_1,\ldots,t_d\}$ corresponding to k, hence (10) readily implies (8).

Corollary 3. The identity (3) holds for any positive integer n.

Proof. Using Theorems 6 and 4, we calculate

$$\begin{split} p^{n}-1 - \sum_{m=1}^{p-1} (\alpha_{m}^{n} + \beta_{m}^{n}) &= \sum_{m=0}^{p-1} \sum_{t \in \mathbb{F}_{p^{n}}^{\times}} e_{p}(m \operatorname{Tr}_{n}(at+bt^{-1})) \\ &= \sum_{t \in \mathbb{F}_{p^{n}}^{\times}} \sum_{m=0}^{p-1} e_{p}(m \operatorname{Tr}_{n}(at+bt^{-1})) \\ &= p | \{t \in \mathbb{F}_{p^{n}}^{\times} : \operatorname{Tr}_{n}(at+bt^{-1}) = 0\} | \\ &= | \{(x,t) \in \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}}^{\times} : x^{p} - x = at + bt^{-1}\} | \\ &= | \{(x,t) \in \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}} : at^{2} - t(x^{p} - x) + b = 0\} | \\ &= | \{(x,t) \in \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}} : (2at - (x^{p} - x))^{2} = (x^{p} - x)^{2} - 4ab\} | \\ &= | \{(x,y) \in \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}} : y^{2} = (x^{p} - x)^{2} - 4ab\} | . \end{split}$$

Comparing the two sides, we obtain (3).

Remark 3. The equation $y^2 = (x^p - x)^2 - 4ab$ defines an affine real hyperelliptic curve of genus p-1 over \mathbb{F}_p . It has two points at infinity, so by (3) the number of \mathbb{F}_{p^n} -rational points of the completed (nonsingular projective) curve C equals

$$|C(\mathbb{F}_{p^n})| = p^n + 1 - \sum_{m=1}^{p-1} (\alpha_m^n + \beta_m^n).$$

An elegant way of expressing this fact is that the zeta function of C equals

$$\zeta_C(s) = \frac{\prod_{m=1}^{p-1} (1 - \alpha_m p^{-s})(1 - \beta_m p^{-s})}{(1 - p^{-s})(1 - p^{1-s})} = \zeta_P(s) \prod_{m=1}^{p-1} L(s, \eta^m),$$

where *P* is the projective line over \mathbb{F}_n

4. The Hasse derivative

In the light of Corollary 3, we have reduced Theorem 1 to the statement that the equation $y^2 = (x^p - x)^2 - 4ab$ has $p^n + O_p(p^{n/2})$ solutions over the finite field \mathbb{F}_{p^n} . Recall that p > 2 is a fixed odd prime, and ab is coprime to p. More generally, we shall prove using the method of Stepanov [4] the following bound for hyperelliptic curves over finite fields, itself a special case of Weil's theorem for all algebraic curves over finite fields [6, p. 70].

Theorem 7 (Weil, Stepanov). Let $q = p^n$ be an odd prime power, and let $f(X) \in \mathbb{F}_q[X]$ be a polynomial of degree $m \ge 3$. Assume that q > 6m and f(X) is not a complete square in $\overline{\mathbb{F}_p}[X]$. If N denotes the number of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_q , then

$$(11) |N-q| < 4m \lceil \sqrt{q} \rceil.$$

Remark 4. Using the functional equation for the *L*-function associated with the hyperelliptic curve $y^2 = f(x)$ over \mathbb{F}_q and its extensions \mathbb{F}_{q^v} , one can deduce that the above bound improves itself to

$$|N-q| \leqslant 2 \left| \frac{m-1}{2} \right| \sqrt{q} < m\sqrt{q},$$

even without the assumption q > 6m. See Lemma 4 in [7, Appendix V] for more detail.

By Lemma 4, the multiplicative group \mathbb{F}_q^{\times} is cyclic of even order q-1, hence for any $t\in\mathbb{F}_q^{\times}$ we have $t^{\frac{q-1}{2}}=1$ or $t^{\frac{q-1}{2}}=-1$ depending on whether t is a square in \mathbb{F}_q^{\times} or not. Moreover, every square in \mathbb{F}_q^{\times} is a square in precisely two ways, hence with the notation

$$N_a := |\{x \in \mathbb{F}_q : f(x)^{\frac{q-1}{2}} = a\}|, \quad a \in \{0, \pm 1\},$$

we can express the defect N-q as

(12)
$$N-q = (N_0 + 2N_1) - (N_0 + N_1 + N_{-1}) = N_1 - N_{-1}.$$

In other words, Theorem 7 bounds the difference between the number of $x \in \mathbb{F}_q$ with f(x) a nonzero square and those with f(x) not a square.

Now the proof of Theorem 7 relies on two basic ideas. The first idea is that it suffices to show the one-sided bound

(13)
$$\max(N_0 + N_1, N_0 + N_{-1}) < \frac{q}{2} + 2m \lceil \sqrt{q} \rceil.$$

Indeed, this inequality readily yields

$$\max(N_1, N_{-1}) < \frac{q}{2} + 2m \lceil \sqrt{q} \rceil,$$

and by $N_0 + N_1 + N_{-1} = q$ also

$$\min(N_1, N_{-1}) = q - \max(N_0 + N_{-1}, N_0 + N_1) > \frac{q}{2} - 2m \lceil \sqrt{q} \rceil,$$

whence (11) follows via (12):

$$|N-q| = |N_1-N_{-1}| = \max(N_1,N_{-1}) - \min(N_1,N_{-1}) < 4m \lceil \sqrt{q} \rceil$$

The second idea is to exhibit, for any $a \in \{\pm 1\}$ and a suitable integer $\ell \geqslant 1$, a nonzero polynomial $h_a(X) \in \mathbb{F}_q[X]$ such that any $x \in \mathbb{F}_q$ satisfying $f(x)^{\frac{q-1}{2}} \in \{0,a\}$ is a root of $h_a(X)$ of order at least ℓ , i.e. $(X-x)^\ell$ divides $h_a(X)$ in $\mathbb{F}_q[X]$. The point is that in this case we have

(14)
$$\ell(N_0 + N_a) \leqslant \deg h_a, \qquad a \in \{\pm 1\},$$

and by optimizing ℓ in terms of q and m we can deduce (13), hence also Theorem 7.

In order to verify the divisibility relation $(X - x)^{\ell} \mid h_a(X)$ in $\mathbb{F}_q[X]$, we introduce a simple but powerful tool, the *Hasse derivative*.

Definition 6. Let F be a field, and let $h(X) \in F[X]$ be any polynomial. In the ring of polynomials of two variables F[X,Y], there is a unique decomposition

(15)
$$h(X+Y) = \sum_{k=0}^{\infty} (E^k h)(X) Y^k,$$

where $(E^k h)(X) \in F[X]$, and the terms for $k > \deg h$ vanish. The polynomial $(E^k h)(X)$ is called the k-th Hasse derivative of h(X).

It is clear that the operator $E^k: F[X] \to F[X]$ is F-linear, and also translation invariant in the sense that for any $x \in F$ the k-th Hasse derivative of the translated polynomial h(X+x) equals $(E^kh)(X+x)$. It is also clear that $\deg(E^kh) \leqslant (\deg h) - k$ for $0 \leqslant k \leqslant \deg h$, with the convention that $\deg 0 = 0$, while $E^kh = 0$ for $k > \deg h$. In fact the binomial theorem gives that $E^k(X^n) = \binom{n}{k} X^{n-k}$ for $0 \leqslant k \leqslant n$, while $E^k(X^n) = 0$ for k > n.

Lemma 8. Let F be a field, $h(X) \in F[X]$, and $x \in F$. Then $(X - x)^{\ell} \mid h(X)$ holds in F[X] if and only if $(E^k h)(x) = 0$ for any $0 \le k < \ell$.

Proof. By translation invariance, we can assume without loss of generality that x = 0. Then, (15) implies by the substitution $X \mapsto 0$ that

$$h(Y) = \sum_{k=0}^{\infty} (E^k h)(0) Y^k,$$

whence $Y^{\ell} \mid h(Y)$ holds in F[Y] if and only if $(E^k h)(0) = 0$ for any $0 \le k < \ell$.

Lemma 9 (Leibniz rule). For any polynomials $h_1(X), \ldots, h_n(X) \in F[X]$ we have

$$E^{k}(h_{1}\cdots h_{n}) = \sum_{\substack{k_{1}+\cdots+k_{n}=k\\k_{1},\ldots,k_{n}\geqslant 0}} E^{k_{1}}(h_{1}) \ldots E^{k_{n}}(h_{n}).$$

Proof. This is straightforward from the definition (15). Indeed,

$$h_1(X+Y)\dots h_n(X+Y) = \left(\sum_{k_1=0}^{\infty} (E^{k_1}h_1)(X)Y^{k_1}\right) \cdots \left(\sum_{k_n=0}^{\infty} (E^{k_n}h_n)(X)Y^{k_n}\right)$$
$$= \sum_{k_1,\dots,k_n \geqslant 0} \left(E^{k_1}(h_1)(X) \dots E^{k_n}(h_n)(X)\right)Y^{k_1+\dots+k_n},$$

and the result follows.

Lemma 10. Let F be a field, and let $f(X), g(X) \in F[X]$ be arbitrary. For any integers $0 \le k < n$, the polynomial $E^k(gf^n)$ is of the form $g^{(k)}f^{n-k}$, where $g^{(k)}(X) \in F[X]$. Moreover, for a fixed f, the polynomial $g^{(k)}$ depends F-linearly on g. Finally,

(16)
$$\deg g^{(k)} \leqslant \deg g + k \deg f - k.$$

Proof. By Lemma 9,

$$E^{k}(gf^{n}) = \sum_{\substack{k_{0}+k_{1}+\cdots+k_{n}=k\\k_{0},k_{1},\dots,k_{n}\geqslant 0}} E^{k_{0}}(g)E^{k_{1}}(f)\dots E^{k_{n}}(f).$$

Clearly, at least n-k of the integers $k_1,\ldots,k_n\geqslant 0$ must vanish, hence each term on the right hand side is divisible by f^{n-k} in F[X]. This shows that $E^k(gf^n)$ is of the form $g^{(k)}f^{n-k}$, where $g^{(k)}(X)\in F[X]$. Moreover, for a fixed f, the factor $E^{k_0}(g)$ depends F-linearly on g, hence the same is true of the polynomial $g^{(k)}$. Finally, (16) is immediate from

$$\deg(g^{(k)}f^{n-k}) \leqslant \deg(gf^n) - k.$$

5. STEPANOV'S AUXILIARY POLYNOMIALS

In this section we construct the two nonzero auxiliary polynomials $h_{\pm 1}(X) \in \mathbb{F}_q[X]$ that will allow us to derive (13) via (14). We assume the conditions of Theorem 7, and we fix a value $a \in \{\pm 1\}$. The statement of Theorem 7 does not change upon replacing f(X) by f(X+x) for any $x \in \mathbb{F}_q$, hence we can assume without loss of generality that $f(0) \neq 0$. Indeed, $f(x) \neq 0$ for some $x \in \mathbb{F}_q$, because f(X) has degree less than q.

We have seen that for the validity of (14) it suffices that

(17)
$$f(x)^{\frac{q-1}{2}} \in \{0, a\} \implies (E^k h_a)(x) = 0, \quad x \in \mathbb{F}_q, \ 0 \leqslant k < \ell.$$

We choose $h_a(X)$ to be a multiple of $f(X)^{\ell}$, so that we can restrict to the values $f(x)^{\frac{q-1}{2}} = a$ in (17). Specifically, we seek $h_a(X)$ in the form

(18)
$$h_a(X) := f(X)^{\ell} \sum_{0 \le i \le J} \left\{ r_j(X) + s_j(X) f(X)^{\frac{q-1}{2}} \right\} X^{jq},$$

where J > 0 is a real parameter (to be chosen later in terms of ℓ , m, q), and

$$r_i(X), s_i(X) \in \mathbb{F}_q[X], \quad 0 \leqslant j < J$$

are any polynomials with

(19)
$$\deg r_j, \deg s_j < \frac{q-m}{2}, \qquad 0 \leqslant j < J.$$

We examine first the possibility that $h_a(X) = 0$. Assume that this is the case, but not all the polynomials $r_j(X), s_j(X) \in \mathbb{F}_q[X]$ are zero. Let $0 \le i < J$ be minimal such that either $r_i(X)$ or $s_i(X)$ is nonzero. Then

$$\sum_{i \le j < J} \left\{ r_j(X) + s_j(X) f(X)^{\frac{q-1}{2}} \right\} X^{(j-i)q} = 0,$$

whence in $\mathbb{F}_q[X]$ we have the congruence

$$r_i(X) + s_i(X)f(X)^{\frac{q-1}{2}} \equiv 0 \pmod{X^q}$$
.

From here we infer that

$$r_i(X)^2 f(X) \equiv s_i(X)^2 f(X)^q \equiv s_i(X)^2 f(X^q) \equiv s_i(X)^2 f(0) \pmod{X^q}$$
.

By (19), the two sides are polynomials of degree less than q, hence in fact

$$r_i(X)^2 f(X) = s_i(X)^2 f(0).$$

As $f(0) \neq 0$, both $r_i(X)$ and $s_i(X)$ are nonzero, and f(X) is a complete square in $\overline{\mathbb{F}_p}[X]$. This contradicts the assumptions of Theorem 7, hence we proved that $h_a(X) \neq 0$ unless all the polynomials $r_j(X), s_j(X) \in \mathbb{F}_q[X]$ are zero.

Now we examine what $(E^k h_a)(x) = 0$ means for $f(x)^{\frac{q-1}{2}} = a$ and $0 \le k < \ell$, cf. (17). In order to find the Hasse derivative $(E^k h_a)(X)$, we go back to the definition (15), and we make a simple observation. Starting from the congruence in $\mathbb{F}_a[X,Y]$,

$$(X+Y)^{jq} = (X^q + Y^q)^j \equiv X^{jq} \pmod{Y^q},$$

we see that

$$h_a(X+Y) \equiv \sum_{0 \le j \le I} \left\{ r_j(X+Y) f(X+Y)^\ell + s_j(X+Y) f(X+Y)^{\ell + \frac{q-1}{2}} \right\} X^{jq} \pmod{Y^q},$$

whence for $0 \le k < q$ the coefficient of Y^k as an element of $\mathbb{F}_q[X]$ must be the same on the two sides. That is,

$$(E^k h_a)(X) = \sum_{0 \leqslant j < J} \left\{ E^k(r_j f^{\ell})(X) + E^k(s_j f^{\ell + \frac{q-1}{2}})(X) \right\} X^{jq}, \qquad 0 \leqslant k < q.$$

By Lemma 10, we can rewrite this identity as

$$(20) (E^k h_a)(X) = f(X)^{\ell-k} \sum_{0 \leqslant j < J} \left\{ r_j^{(k)}(X) + s_j^{(k)}(X) f(X)^{\frac{q-1}{2}} \right\} X^{jq}, 0 \leqslant k < q,$$

where the polynomials $r_j^{(k)}, s_j^{(k)} \in \mathbb{F}_q[X]$ depend \mathbb{F}_q -linearly on the initial $r_j, s_j \in \mathbb{F}_q[X]$, and

(21)
$$\deg r_j^{(k)}, \deg s_j^{(k)} < \frac{q-m}{2} + k(m-1), \qquad 0 \leqslant j < J, \ 0 \leqslant k < q.$$

In passing, it is worthwhile to remark that $r_j^{(0)}=r_j$ and $s_j^{(0)}=s_j$. From now on we assume that $\ell\leqslant q$, then by (20) we can reduce (17) to the simpler condition

(22)
$$\sum_{0 \le i \le I} \left\{ r_j^{(k)}(X) + a s_j^{(k)}(X) \right\} X^j = 0, \qquad 0 \le k < \ell.$$

Here we relied on the crucial fact that $x^{jq} = x^j$ for any $x \in \mathbb{F}_q$.

The constraints (22) constitute a homogeneous system of linear equations for the coefficients of $r_i(X)$ and $s_i(X)$. By (19), the number of variables in this system is

$$\geqslant 2J\left\lceil \frac{q-m}{2} \right\rceil \geqslant J(q-m),$$

while by (21), the number of equations is

$$\leq \sum_{0 \leq k < \ell} \left\lceil \frac{q-m}{2} + k(m-1) + J \right\rceil < \ell \left(\frac{q-m}{2} + J \right) + \frac{\ell^2}{2} (m-1).$$

This means that the construction (18) yields a nonzero polynomial $h_a(X) \in \mathbb{F}_q[X]$ validating (14) as long as $\ell \leqslant q$ and

$$J(q-m)\geqslant \ell\left(\frac{q-m}{2}+J\right)+\frac{\ell^2}{2}(m-1).$$

Rearranging the last inequality.

$$\left(J - \frac{\ell}{2}\right)(q - m - \ell) \geqslant \frac{\ell^2 m}{2},$$

hence by imposing $\ell \leqslant q/3$ and utilizing m < q/6 (cf. Theorem 7) it suffices to have

$$\left(J - \frac{\ell}{2}\right) \frac{q}{2} \geqslant \frac{\ell^2 m}{2}.$$

This motivates the choice

$$J:=\frac{\ell}{2}+\frac{\ell^2m}{a}.$$

With this choice (14) yields, upon recalling (18) and (19),

$$\ell(N_0 + N_a) \le \deg h_a < m\left(\ell + \frac{q-1}{2}\right) + \frac{q-m}{2} + Jq < mq + \frac{\ell q}{2} + \ell^2 m.$$

In short,

$$N_0 + N_a < \frac{q}{2} + \frac{mq}{\ell} + \ell m,$$

and by choosing $\ell := \lceil \sqrt{q} \rceil$ we obtain (13). Note that the intermediate constraint $\ell \leqslant q/3$ is now automatically satisfied, because the conditions of Theorem 7 force q > 18.

The proof of Theorem 7 is now complete. To conclude Theorem 1 via Corollary 3, we apply Theorem 7 for $n \ge 4$ and $\underline{f}(X) := (X^p - X)^2 - 4ab$. All we need to check is that $\underline{f}(X)$ is not a complete square in $\overline{\mathbb{F}_p}[X]$. However, this is clear: $\underline{f}(X) = \underline{g}(X)^2$ would imply

$$(X^{p} - X - g(X))(X^{p} - X + g(X)) = 4ab,$$

an obvious contradiction to the fact that one of the factors $X^p - X \pm g(X)$ is non-constant.

6. SUPPLEMENTS

With a bit of algebraic number theory, we can show that the inequality in Theorem 1 is always strict. The proof below is due to Elkies and MathOverflow user Lucia (see [3]).

Theorem 8. Let
$$p > 2$$
 be a prime, and let $(ab, p) = 1$. Then $|S(a, b; p)| < 2\sqrt{p}$.

Proof. The Kloosterman sum S(a,b;p) is real, as can be seen by writing -t for t in (1). Therefore, by Theorem 1, we only need to exclude the possibility that

(23)
$$\sum_{t=1}^{p-1} e_p(at + b\bar{t}) = \pm 2\sqrt{p}.$$

Let us assume (23). Then both sides lie in the ring $\mathbb{Z}[\xi]$, where $\xi := e^{2\pi i/p}$, which consists of the integral linear combinations of $1, \xi, \xi^2, \ldots$ Raising the equation to the *p*-th power yields, by the multinomial theorem,

$$\sum_{t=1}^{p-1} 1 \equiv \pm 2^p p^{p/2} \pmod{p\mathbb{Z}[\xi]}.$$

The left hand side is congruent to -1 modulo $p\mathbb{Z}[\xi]$, hence further squaring both sides,

$$1 \equiv 2^{2p} p^p \equiv 0 \pmod{p\mathbb{Z}[\xi]}.$$

That is, $1 \in p\mathbb{Z}[\xi]$, which is a contradiction as we explain now. It is classical and easy to prove with the Schönemann–Eisenstein criterion that the cyclotomic polynomial

$$k(X) := X^{p-1} + X^{p-2} + \dots + X + 1 = (X - \xi)(X - \xi^2) \dots (X - \xi^{p-1})$$

is irreducible over \mathbb{Q} , hence $\mathbb{Q}(\xi)$ is isomorphic to $\mathbb{Q}[X]/(k(X))$ by Lemma 2 and its proof. In particular, $\{1, \xi, \dots, \xi^{p-2}\}$ is a basis of $\mathbb{Q}(\xi)$ as a vector space over \mathbb{Q} , and $\mathbb{Z}[\xi]$ consists of the vectors whose coordinates are integers with respect to this basis. This shows readily that $1 \notin p\mathbb{Z}[\xi]$, because $1 \notin p\mathbb{Z}$, and we are done.

Finally, following Heath-Brown [1], we give an application of Theorem 1 to the distribution of products modulo a prime number.

Theorem 9. Let p > 2 be a prime number. Let $\mathcal{U}, \mathcal{V} \subseteq \{1, 2, ..., p-1\}$ be two intervals, and let $r \in \{1, 2, ..., p-1\}$ be a nonzero residue modulo p. Then

$$\left| \sum_{\substack{u \in \mathcal{U}, \ v \in \mathcal{V} \\ uv \equiv r \ (\text{mod } p)}} 1 - \frac{|\mathcal{U}||\mathcal{V}|}{p-1} \right| < 2p^{1/2} (\log p)^2.$$

Proof. Using Fourier analysis on $\mathbb{Z}/p\mathbb{Z}$, we can express

$$\sum_{\substack{u \in \mathcal{U}, \ v \in \mathcal{V} \\ uv \equiv r \pmod{p}}} 1 = \sum_{t=1}^{p-1} \left(\sum_{\substack{u \in \mathcal{U} \\ t \equiv u \pmod{p}}} 1 \right) \left(\sum_{\substack{v \in \mathcal{V} \\ \bar{t} \equiv \bar{r}v \pmod{p}}} 1 \right)$$

$$= \sum_{t=1}^{p-1} \left(\sum_{u \in \mathcal{U}} \frac{1}{p} \sum_{a=1}^{p} e_p(a(t-u)) \right) \left(\sum_{v \in \mathcal{V}} \frac{1}{p} \sum_{b=1}^{p} e_p(b(\bar{t} - \bar{r}v)) \right)$$

$$= \frac{1}{p^2} \sum_{a,b=1}^{p} \left(\sum_{t=1}^{p-1} e_p(at + b\bar{t}) \right) \left(\sum_{u \in \mathcal{U}} e_p(-au) \right) \left(\sum_{v \in \mathcal{V}} e_p(-b\bar{r}v) \right).$$

The first inner sum is p-1 when both a and b equal p, it is -1 when exactly one of a and b equals p, and otherwise it is the Kloosterman sum S(a,b;p) considered in Theorem 1. Using this information, we obtain

$$\sum_{\substack{u \in \mathcal{U}, \ v \in \mathcal{V} \\ uv \equiv r \ (\text{mod } p)}} 1 = |\mathcal{U}||\mathcal{V}| \frac{p+1}{p^2} + \frac{1}{p^2} \sum_{a,b=1}^{p-1} S(a,b;p) \left(\sum_{u \in \mathcal{U}} e_p(-au) \right) \left(\sum_{v \in \mathcal{V}} e_p(-b\overline{r}v) \right),$$

whence by Theorem 1 and the fact that $\mathscr U$ and $\mathscr V$ are intervals,

$$\begin{split} \left| \sum_{\substack{u \in \mathcal{U}, v \in \mathcal{V} \\ uv \equiv r \, (\text{mod } p)}} 1 - \frac{|\mathcal{U}||\mathcal{V}|}{p-1} \right| &< \frac{1}{p} + 2\sqrt{p} \left(\frac{1}{p} \sum_{a=1}^{p-1} \left| \sum_{u \in \mathcal{U}} e_p(-au) \right| \right) \left(\frac{1}{p} \sum_{b=1}^{p-1} \left| \sum_{v \in \mathcal{V}} e_p(-b\bar{r}v) \right| \right) \\ &< \frac{1}{p} + 2p^{1/2} \left(\frac{1}{p} \sum_{c=1}^{p-1} \frac{1}{\sin\left(\frac{\pi c}{p}\right)} \right)^2 < 2p^{1/2} (\log p)^2. \end{split}$$

Here, the last inequality can be checked numerically for p < 11, while for $p \ge 11$ we verify it as follows. We have

$$\frac{1}{p} \sum_{c=1}^{p-1} \frac{1}{\sin\left(\frac{\pi c}{p}\right)} = \frac{2}{p} \sum_{c=1}^{\frac{p-1}{2}} \frac{1}{\sin\left(\frac{\pi c}{p}\right)} < \sum_{c=1}^{\frac{p-1}{2}} \frac{1}{c} < 0.68 + \log\frac{p-1}{2} < -0.01 + \log p,$$

therefore

$$\left(\frac{1}{p}\sum_{c=1}^{p-1}\frac{1}{\sin\left(\frac{\pi c}{p}\right)}\right)^2 < (-0.01 + \log p)^2 < (\log p)^2 - \frac{\log p}{100} < (\log p)^2 - \frac{1}{2p^{3/2}}.$$

The proof is complete.

Corollary 4. Let $p, r, \mathcal{U}, \mathcal{V}$ as in Theorem 9. If $|\mathcal{U}||\mathcal{V}| > 2p^{3/2}(\log p)^2$, then the congruence $uv \equiv r \pmod{p}$ has a solution in $u \in \mathcal{U}$ and $v \in \mathcal{V}$.

Proof. If the congruence $uv \equiv r \pmod p$ has no solution in $u \in \mathcal{U}$ and $v \in \mathcal{V}$, then Theorem 9 yields

$$\frac{|\mathscr{U}||\mathscr{V}|}{p-1} < 2p^{1/2}(\log p)^2,$$

hence also $|\mathcal{U}||\mathcal{V}| < 2p^{3/2}(\log p)^2$.

REFERENCES

- D. R. Heath-Brown, Arithmetic applications of Kloosterman sums, Nieuw Arch. Wiskd. (5) 1 (2000), 380– 384
- [2] H. Iwaniec, E. Kowalski, *Analytic number theory*, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004.
- [3] Responses to MathOverflow question No. 166297, http://mathoverflow.net/questions/166297
- [4] S. A. Stepanov, An elementary proof of the Hasse-Weil theorem for hyperelliptic curves, J. Number Theory 4 (1972), 118–143.
- [5] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 204–207.
- [6] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Ind., 1041, Hermann et Cie., Paris, 1948.
- [7] A. Weil, Basic number theory, Third edition, Die Grundlehren der Mathematischen Wissenschaften, 144, Springer-Verlag, New York-Berlin, 1974.

MTA ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, POB 127, BUDAPEST H-1364, HUNGARY *E-mail address*: gharcos@renyi.hu

CENTRAL EUROPEAN UNIVERSITY, NADOR U. 9, BUDAPEST H-1051, HUNGARY *E-mail address*: harcosg@ceu.hu