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Comparing the various Sobolev norms of automorphic forms is useful in the the-
ory of quantum chaos and subconvexity of L-functions, which in turn have deep
arithmetic applications. We consider the following special case.

Problem. Let f be a Hecke-Maass cuspidal newform of level N and Laplacian
eigenvalue \. Assume that || f||, = 1 with respect to dzdy/y*. Bound ||f||., in
terms of N and M.

In the A-aspect the first nontrivial (and so far unsurpassed) bound is due to
Iwaniec and Sarnak [6]: [|f]., <. A*?*¢ for any € > 0. In the N-aspect
the trivial bound is || f||., <, N, while the most optimistic bound would be
£l <xe N71/2+¢. Here and later, the dependence on A is understood to be
continuous. The breakthrough in the N-aspect was recently achieved by Blomer—
Holowinsky [2] who proved ||f|. <. N72/9M+¢  at least for square-free N.
The restriction on N seems difficult to remove as it is needed for a certain ap-
plication of Atkin—Lehner theory. By a systematic use of geometric arguments
Templier [7] derived ||f||., <, N71/227¢, and Helfgott—Ricotta [3] improved this
to || fllo <xe N7Y/20+¢ As we shall explain below, an efficient use of Atkin—
Lehner theory leads to a short and clean proof of the following result [5]:

Theorem. Let f be an L?-normalized Hecke—-Maass cuspidal newform of square-
free level N, trivial nebentypus, and Laplacian eigenvalue \. Then for any € > 0
we have a bound

Hf”oo <<>\76 N_1/6+E,

where the implied constant depends continuously on \.

The theorem improves our earlier bound [4] with exponent —1/12+¢. A hybrid
version can also be established, improving significantly on [2, Theorem 2].

We turn to an informal discussion of our method. Very vaguely, the idea of
proving a result as above has been like this:

(1) Pick any z € ) where |f(2)| needs to be estimated.

(2) Apply an Atkin—Lehner operator on z to ensure that Im z is not too small.

(3) Use the amplification method and some trace formula to reduce the prob-
lem to a counting problem depending on z.

(4) Do the counting based on the diophantine properties of z.

Our improvement results mainly from the following shortcut:

(2’) Apply an Atkin-Lehner operator on z to maximize Im z.
(4’) Observe that z has good diophantine properties automatically, allowing a
more efficient counting.



For a square-free level N the Atkin—Lehner operators can be represented by
matrices of the form

1 f(a b
Wy = 7%M (C d) S SLQ(R), M | N,

where a, b, c,d € 7 are integers satisfying
ad —bec =M, a=0(M), d=0(M), c=0(N).
A key feature is the multiplication rule

U
WaiWagr = Wagn with M = m,

which shows that the Wj,’s form a group Ag(N) containing I'g(NN) as a normal
subgroup. As a result, Atkin—Lehner operators induce an action on I'o(N)\$
by the finite group Ag(N)/To(N) = (Z/27)“N), where w(N) is the number of
distinct prime factors of V.

By Atkin—Lehner theory [1], a Hecke-Maass cuspidal newform f of level N is an
eigenvector for Ag(IN) with eigenvalues +1, therefore in examining the sup-norm
of f we can restrict to the following fundamental domain for Ag(N):

F(N):={z€H|Imz>Imdz for all § € Ay(N)}.

Our starting point was the observation that the elements of F(N) have good
diophantine properties (we assume that N is square-free):

Lemma. Let z =z +iy € F(N). Then the lattice (1, z) has minimal distance at
least N~'/2 and covolume y > N1,

The usefulness of this lemma becomes apparent when we relate |f(z)| to a
lattice counting problem depending on z. By combining the amplification method
of Duke—Friedlander—Iwaniec with the pretrace formula of Selberg we obtain

A2 [f(2)]” <ae NS y—\}M(z,l,N%

1>1

b) such that

where M (z,1, N) denotes the number of integral matrices v = (LCL d

(%) det(y) =1, c=0(N), }—022—|—(a—d)z—|—b|2 < ly*N°,
A is a large parameter (the amplifier length), and
A 1=1,
y =11, 1 =1Iyorllyor i3 or 1213 with A <ly,ly < 2A primes;
0, otherwise.

Our second key observation is that for each range [ < L and for each fixed ¢ the
inequality in (%) can be used to bound the number of choices for the pair (a —d, b).
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Indeed, the pairs correspond to the lattice points in a disk of radius < L'/2yN¢,
hence the Lemma together with some geometry of numbers yields the bound

#(a—d,b) <. N (1 FLY2NY2y 4 Ly)

for any c. A simple manipulation of (%) also shows ¢ <, L'/2N¢/y. Finally for
any triple (¢,a — d, b) we regard the identity

(a+d)* — 4l = (a — d)? + 4bc

as an equation for the pair (a+d, ). By the sparsity of potential I’s we can bound
the number of quadruples (¢, a —d, b, a + d) efficiently, which of course is the same
as bounding the sum of M(z,l, N) over the {’s considered.

Along these lines we obtain

AZ[£(2)]* <re N° (A +AS2NY2 4 A4N—1) ,

at least when y < N~2/3 and A* < y~2N—¢. The latter is automatic for y < N—2/3
under the choice

A= N1/3—¢
which incidentally also balances the terms in the previous display. Hence by am-
plification we really see that

flo+iy) <ae N7+ < N72/3,

For the remaining range y > N~2/3 we use a simple bound based on the Fourier
expansion at the cusp oo (see [7, § 3.2] or [2, (92) & (27)]):

f(:c—Hy) e N—1/2+ey—1/2 < N_1/6+6, y > N_2/3.
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