STIRLING’S APPROXIMATION

GERGELY HARCOS

Theorem 1. For every positive integer n we have
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Proof. We present a proof due to Noam D. Elkies [1] and David E. Speyer [2]. The starting
point is the identity
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By this identity, it suffices to show that
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For the lower bound, we rewrite the integral in terms of u := tanx, and estimate it as
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Here we used that 1+ < ¢’ for ¢ # 0, which is a consequence of the strict convexity of the
function # — ¢’ on R. For the upper bound, we estimate the integral as
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Here we used that cosx < e~*'/2 for 0 < |x| < /2, which is a consequence of the strict
concavity of the function x — logcosx +x2/2 on (—7/2,7/2). O
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Proof. Let n — oo. First we prove the weaker statement that
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holds for some constant ¢ > 0. Equivalently,

Theorem 2. We have, as n — oo,
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To prove this, we write the left-hand side as a Riemann—Stieltjes integral (using log 1 = 0)
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where x — [x] is the integer part function. We decompose
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where x — {x} is the fractional part function, then we get
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On the right-hand side, we evaluate the first integral explicitly, and we apply integration by
parts on the second integral. We obtain
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We estimate the integral on the right-hand side by rewriting it as
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It is clear that S(x ) is bounded (in fact —1 / 8 < S(x ) 0), therefore we infer

where the last improper integral converges. Choosing ¢ > 0 such that —1 4 logc equals
this improper integral, we conclude (2):
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where
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We have established (1), and it remains to show that in this asymptotic formula the
constant ¢ equals v/27. To see this, we observe the following consequence of (1):
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Comparing the right-hand sides, the claim ¢ = /27 follows. (]

However, by Theorem 1,
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