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1. INTRODUCTION

In this note, we give a simple and self-contained proof of Selberg’s identity for the
Kloosterman sum

(1 S(m,n;q) = Z* e<mx+nx>.

x (mod g) )

Here, x runs through the reduced residues modulo ¢, X is the multiplicative inverse of x
modulo ¢, and e(7) := exp(2mit) denotes the standard additive character of the circle group
R/Z. The identity was stated without proof by Selberg in his early paper [4], rediscovered
by Kuznetsov [2, Theorem 4] through his famous formula, and proved in an elementary
way by Matthes [3] and Andersson [1, Part III]:

Theorem. For any positive integer q, and for any integers m and n, we have

N mn g\
) S(m,n;q) Z)dS(l )

I
d|(mn,q ds d

2. THE PROOF

For the proof of the above Theorem, let us denote by P(g) the statement that (2) holds
for all m,n € Z. Then, clearly, it suffices to show the following two results.

Lemma 1. If g1 and g, are coprime positive integers, then P(q1) and P(q2) imply P(q1q2).
Lemma 2. P(p%) is true for any prime p and any nonnegative integer 0.

Proof of Lemma 1. Let us denote g := q1q2, and let m,n € Z be arbitrary. We start from
the well-known identity'

3) S(m,n;q) = S(m,ng2";q1)S(m,nqi*;q2),

where g; is the multiplicative inverse of g» modulo ¢, and g is the multiplicative in-
verse of g; modulo g,. To prove this identity, we represent x in (1) as x = x1g2 + x241,
where x| (mod ¢;) and x; (mod ¢ ) are uniquely determined reduced residues. Then, it is
straightforward to verify that

X=X +qiag  (modg),

(mx+nx) (mx1+nc]22)c1> (mxz+nc]12)cz>
e =e e
q q 9 ’

1usually written in the more symmetric form S(m,n;q) = S(mqz,nq2;91)S(mq1,nq1:q2)
1

whence
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and (3) follows. Combining (3) with P(g;) and P(q2), we obtain
J—) _
S(m,niq) =), d1d25<1,m”‘12 -‘“>5<17m”‘11 .%)

7 2 s
di|(mnga*q1) di di dy d
| (m.nq1%q2)
mn(qa2dy)* Q1> ( mn(qid,)? (J2)
= dldzs(l,; s(1,——~1L 42
d1|(n;n,q|) (did)? " dy (didy)? " dy
d2|<mv”:q2)

In the last sum, we observe that gd; is the multiplicative inverse of g, /d, modulo g /dj,
while g7d; is the multiplicative inverse of g;/d; modulo ¢»/d,. Therefore, adapting (3)
for the product of the last two Kloosterman sums, and introducing the notation d := dd>,
we arrive at

mn q192
Smmg)= Y d1d25<1,;)
d1|(mony) (did2)?" did,

da|(m.n,q2)

_ dl(mz,n.,q)d s(1, %; %) .

That is, P(q) holds, and we are done. The proof Lemma 1 is complete. (]

Proof of Lemma 2. We fix the prime p, and proceed by induction on &¢. We want to prove
P(p*). For a = 0 the statement is trivial, so we assume that o > 1 and P(p®*~') holds. Let
us denote g := p%, and let m,n € Z be arbitrary. If (m, p) = 1 or (n, p) = 1, we get from (1)
by a simple change of variable that S(m,n;q) = S(1,mn;q), which is (2) in this situation.
So from now on we assume that p divides both m and n. Then, using also the induction

hypothesis P(p®~!), the equation (2) that we want to prove simplifies to
m n

@) S(m,n;q) = S(1,mn;q) + pS (Mq)
p PP

For a =1, i.e. ¢ = p, equation (4) is valid, because it is straightforward that

Smmp)=p—1,  S(Lmmp)=—1, S (m,”;1> ~1.
pp
So from now on we assume that ¢ > 2. Then, in the definition (1), the coprimality condi-
tion (x,q) = 1 is equivalent to (x,q/p) = 1, whence in (4) the left hand side is equal to the
second term on the right hand side. That is, (4) simplifies further to S(1,mn;q) = 0. Note
that here p? | mn by assumption. More generally, we shall show the following:
Q) S(1,r;p*)=0  whenever  p|randa > 2.

We verify (5) by direct calculation. According to the definition (1),

S(rg)= Y e (””) .

x (mod gq) q

Here, ¢ = p* is a prime power divisible by p?, and r is divisible by p. We claim that the
map x — x + rx permutes the reduced residues modulo g. Clearly, x + rx is always coprime
to g, hence it suffices to check that the map is injective modulo g. Assuming

x+rx=y+ry (mod gq),

where x and y are coprime to g, we infer

0
xy(x—y)+r(y—x)=0 (mod g),
(xy—r)(x—y)=0
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In the last congruence, xy — r is coprime to g, whence x =y (mod ¢) as claimed. From
here (5) is immediate:

S(rig)= Y e(k>: Yy e(k>— Yy e(’;)=0—0=0.

k (mod g) 94 I<k<g N4/ 1<k<q
plk

The proof Lemma 2 is complete. (]

3. CONCLUDING REMARKS

The proof of Lemma 2 shows that, for a prime power modulus ¢ = p%, all but the last
two terms in Selberg’s identity (2) vanish. More precisely, if either m or n is not divisible by
g, then d := (m,n,q) is the only divisor that contributes to (2). If m and n are both divisible
by g, then the divisors d = g and d = ¢/p contribute (¢ and —g/p, respectively), but the
others do not. By refining this observation and combining it with the proof of Lemma 1, we
can see that, for a general modulus g, only those divisors d | (m,n,q) contribute to (2) for
which both (m,q)/d and (n,q)/d are square-free. For example, in the special case n = 0,
Selberg’s identity (2) yields the usual evaluation of Ramanujan sums:

S(m,0:q) :dl(%q)d 5(1,0;%) :d‘(z )d i (g) .
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