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Abstract

Let p1, p2, p3 be three distinct points in the plane, and, for i = 1, 2, 3, let Ci be a
family of n unit circles that pass through pi. We show that the number of points incident
to a circle of each family is O(n11/6), improving an earlier bound for this problem due to
Elekes, Simonovits, and Szabó [3]. The problem is a special instance of a more general
problem studied by Elekes and Szabó and by Elekes and Rónyai. Our analysis is related
to recent attacks to tackle the general problem, but differs from it in a key step, which
is handled here in a more ad-hoc, geometric manners.

Keywords. Combinatorial geometry, incidences.

1 Introduction

In this paper we re-examine the following problem in combinatorial geometry, recently
studied by Elekes, Simonovits, and Szabó [3], and derive an improved bound for it.

Let p1, p2, p3 be three distinct points in the plane, and, for i = 1, 2, 3, let Ci be a family
of n unit circles that pass through pi. The goal is to obtain a subquadratic upper bound on
the number of triple points, which are points that are incident to a circle of each family. See
Figure XX for an illustration. Elekes et al. [3] have shown that the number of such points
is O(n2−η), for some constant parameter η > 0 (that they did not make concrete), as an
application of a more general technique that they have developed (see also other references
in [3]).

Using a different technique, which appears to be simpler than the one in [3], we show
that the number of triple points is O(n11/6), improving the bound and making it more
concrete.

Our derivation can be viewed as a special instance of a more general technique, which
has been studied by Elekes and Rónyai [4] and by Elekes and Szabó [5] (see also [2]). From
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by József Solymosi was supported by NSERC, ERC-AdG 321104, and OTKA NK 104183 grants.
†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. michas@tau.ac.il
‡Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. soly-

mosi@math.ubc.ca

1



a high-level point of view the setup is as follows. We have three sets A, B, C, each of n
real numbers, and we have a trivariate real polynomial F of degree d, which we assume
to be some constant. Let Z(F ) denote the subset of A × B × C where F vanishes. Then,
unless F and A, B, C have some very special structure, |Z(F )| should be significantly
subquadratic. (For a simple example where |Z(F )| is quadratic in n, consider the case
where F (x, y, z) = x+ y − z, and where A = B = C = {1, 2, . . . , n}.

Positive and significant results for this general problem have been obtained by Elekes
and Rónyai [4] and by Elekes and Szabó [5], who showed that if |Z(F )| = Ω(n1.95) and n
is large enough, then F must indeed have a very restricted form. For example, in the case
where F is of the form z − f(x, y), f must be of the form p(q(x) + r(y)) or p(q(x) · r(y))
for suitable polynomials p, q, r (see [4] and [2]). Related representations, somewhat more
complicated to state, have also been obtained for the general case (see [5] and [2]).

This paper continues the recent trend of applying a similar technique to problems in
combinatorial geometry of this nature; see Sheffer, Sharir, Solymosi [9] and Sharir and
Solymosi [8].

We will later detail the connection of our problem to the setup in [4, 5]. Roughly
speaking, for each Ci, its circles have one degree of freedom, and we parameterize them
by a suitable single real parameter. Then the condition that three circles, one from each
family, have a common point can be expressed by equation F (x, y, z) = 0, where F is a real
trivariate polynomial, and x, y, z are the parameters representing the three relevant circles.

In both problems, the specific one studied in this paper, and the general one in [4, 5], the
approach is to double count the number Q of quadruples (a, p, b, q), such that a, b represent
two circles in C1, p, q represent two circles in C2, and there exists z such that F (a, p, z) = 0
and F (b, q, z) = 0. See Figure XX for geometric representation of this condition. A lower
bound for Q is easy to obtain (see below for details), and an upper bound is obtained by
regarding each such quadruples (a, p, b, q) as an incidence between the point (p, q) and a
curve γa,b which is the locus of all points (p, q) that satisfy with a, b the above equations.

The main issue in bounding the number of incidences is the possibility that many curves
γa,b overlap each other, in which case the standard techniques for analyzing point-curve
incidences fail. A major part of the analysis in this paper is to show that the amount of
overlap is bounded.

In the general problem, the goal is to show that when there is a larger amount of overlap
between the curves, the polynomial F must have a special form. This indeed has recently
been shown in a companion paper [RS] for the special case where F (x, y, z) = z − f(x, y),
but it is still open for the general case. In our problem, this part is not needed, or, rather,
it is finessed, and the argument that the overlap is bounded is a ad-hoc argument that
exploits the geometric structure of the problem.

2 Unit circles spanned by points on three unit circles

We observe the following equivalent and, in our opinion, more convenient formulation of the
problem. Let C1, C2, C3 be three unit circles in R2, and, for each i = 1, 2, 3, let Si be a set
of n points lying on Ci. The goal is to obtain a subquadratic upper bound on the number
of unit circles, spanned by triples of points in S1 × S2 × S3. (The equivalence between this
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formulation and the one in [3], as stated in the introduction, is indeed trivial: For each i, Si
is the set of centers of the circles of Ci, and the centers of the resulting “trichromatic” unit
circles are the triple points.) See Figure YY for an illustration of this connection between
the two setups. In what follows we use the new formulation.

We note that the condition that three points p, q, r span a unit circle can be expressed
by the following identity (see Figure ZZ).

X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z +XY Z = 0, (1)

where

x = ‖p− q‖, X = x2

y = ‖p− r‖, Y = y2

z = ‖q − r‖, Z = z2.

This follows from the formula (where R is the circumradius and S is the area of the triangle
∆pqr)

1 = R =
xyz

4S
,

combined with Heron’s formula for the area of an triangle

16S2 = (x+ y + z)(−x+ y + z)(x− y + z)(x+ y − z).

Note that the left side of (1) is a polynomial of degree 6 in the coordinates of p, q, r.

For each i = 1, 2, 3, each point p ∈ Si can be parameterized by (an appropriate algebraic
representation of) the orientation vp ∈ S1 of p with respect to the center oi of Ci; denote
the set of these n orientations as Θi. In what follows we will interchangeably use both
notations, referring to a point p ∈ Si, for i = 1, 2, 3, either by its corresponding parameter
v ∈ Θi, when we want to stress the algebraic nature of the problem, or as p itself, when
geometry is concerned.

We call a triple (v1, v2, v3), with vi ∈ Θi, i = 1, 2, 3, a unit triple if the three corre-
sponding points p1 ∈ S1, p2 ∈ S2, p3 ∈ S3 span a unit circle. See Figure 1. Assuming a
suitable representation for the vi’s, the property of being a unit triple can be expressed by
a polynomial equation f(v1, v2, v3) = 0, obtained by the appropriate substitutions into (1).
Clearly, f has constant (and small) degree. This illustrates how our problem is indeed a
special instance of the general problem mentioned in the Introduction. (Although not too
complicated to do, we will not work out the explicit expression for f , but rather analyze its
properties via its geometric definition.)

Figure 1: A unit triple in S1 × S2 × S3, and the unit circle that they span.

It will become handy for the forthcoming analysis to assume that the points of S1 all lie
in the portion of C1 that is “outside” C2, i.e., outside the closed disk circumscribed by C2.
This assumption can be made without loss of generality, as a consequence of the following
simple fact. Let D1, D2, D3 denote the three (closed) unit disks circumscribed by C1, C2, C3,
respectively, and consider the intersection region U = D1 ∩D2 ∩D3. Assume that U has a
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non-empty interior. We can write ∂U , the boundary of U , as ∂U = c1 ∪ c2 ∪ c3, where ci
is a single (possibly empty) connected arc of ∂Di, for i = 1, 2, 3. Let C be a unit circle in
the plane, which is neither of C1, C2, C3. Then C avoids the relative interior of at least one
of the arcs c1, c2, c3. To see why this is true, note that the number of intersection points of
C with ∂U is even. If this number is two, then clearly C avoids the interior of at least one
of the arcs c1, c2, c3. Otherwise, there are at least four intersection points of C with ∂U ,
two of them are on the same arc, say, c1. Now suppose that C intersects also the (relative)
interior of a different arc, say, c2. Then the intersection of C with ∂ (D1 ∩D2) contains at
least three distinct points, which is impossible, as is not hard to check.

It follows that, for every triple (p1, p2, p3) ∈ S1 × S2 × S3 spanning a unit circle C,
at least one of the points p1, p2, p3 avoids ∂U . Indeed, if C avoids, say, the arc c1 then p1

cannot lie on C1 and consequently it lies outside ∂U . So, for one of the indices i0 ∈ {1, 2, 3},
and for at least a third of the number of such triples (p1, p2, p3), the point pi0 ∈ Si0 avoids
∂U ; without loss of generality assume i0 = 1. Hence, at least one third of the unit triples in
S1 × S2 × S3 involve points of S1 that lie outside U . By discarding the other points of S1,
we obtain a reduced configuration in which the points of S1 lie outside U and the number
of unit triples is at least one third of its original value. We may thus assume that all the
points of S1 lie outside U , so each of them lies either outside D2 or outside D3. One of
these subsets of S1 participates in at least half the (remaining) unit triples. To recap, by
removing the points of the other subset, we may assume that all the points of S1 lie outside
the disk D2, and then the number of unit triples is at least one sixth of the original number.
If U in non-empty but has an empty interior, namely, if it is a single point, then we can
simply remove this point from S1, if needed, remaining with a set S, lying outside U , and
reducing the number of unit circles spanned by S1 × S2 × S3 by only O(n).

We therefore continue the analysis under the assumption that the points of S1 all lie
outside D2.

Let M denote the number of unit circles spanned by triples of points in S1 × S2 × S3.
Our strategy is to double count the quantity Q that we are now going to define. For each
v3 ∈ Θ3, let Pv3 denote the set of pairs (v1, v2) ∈ Θ1 × Θ2 such that (v1, v2, v3) is a unit
triple, that is, f(v1, v2, v3) = 0. Note that we have M ≤

∑
v3∈Θ3

|Pv3 | ≤ 8M . Indeed, there
are at most eight triples in S1×S2×S3 that span the same unit circle (the circle intersects
each of C1, C2, C3 in at most two points, and each triple of points, one from each pair, spans
the circles), and clearly, by definition, at least one of them does span a unit circle that is
counted in M .

We now define Q :=
∑

v3∈Θ3
|Pv3 |(|Pv3 | − 1). The quantity Q may be interpreted as

the number of ordered pairs of distinct unit triples of the form ((va, x, v3), (vb, y, v3)), with
either va 6= vb or x 6= y, and with a common third component v3. Using the Cauchy-Schwarz
inequality, we have

Q ≥
∑
v3∈Θ3

|Pv3 |2 −
∑
v3∈Θ3

|Pv3 | ≥
1

n

 ∑
v3∈Θ3

|Pv3 |

2

− 8M ≥ M2

n
− 8M. (2)

To obtain an upper bound for Q, we use the following approach. Fix two points a 6= b ∈ S1,
with orientations va, vb ∈ Θ1, respectively, and define γa,b to be the locus of all points (x, y),
in some suitable parametric plane, for which there exists v3 (not necessarily in Θ3) such
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that

f(va, x, v3) = 0 (3)

f(vb, y, v3) = 0.

Then γa,b is an algebraic curve (in the variables x, y). Indeed, γa,b is given by the poly-
nomial expression RES(f(va, x, v3), f(vb, y, v3)), where f(va, x, v3), f(vb, y, v3) are regarded
as polynomials in the variable v3 and RES(f(va, x, v3), f(vb, y, v3)) is the resultant of these
two polynomials (which is independent of the unknown v3); for more details see, e.g., the
book [1]. To see that this is indeed a (one-dimensional) curve, (Orit says: fill in) ←−

Let Π denote the set Θ2 × Θ2, represented as a set of points in the above parametric
plane, let Γ denote the (multi-)set of the curves γa,b, with a 6= b ∈ S1, and let I = I(Π,Γ)
denote the number of incidences between the curves of Γ and the points of Π. We have
|Π|, |Γ| = Θ(n2).

Note that, for any fixed v3 ∈ Θ3 and for any ordered pair of pairs (a, c), (b, d) in Pv3 ,
with a 6= b, we have (c, d) ∈ γa,b and (d, c) ∈ γb,a. (Orit says: move to orientations.) It ←−
follows that the number I of point-curve incidences is at least 1

4

∑
v3∈Θ3

|Pv3 |(|Pv3 | − 1).
Indeed, there can be at most four values of v3 that give rise to the same incidence (any of
the pairs (a, c), (b, d), say (a, c), defines at most two unit circles that pass through the two
corresponding points, and each of these circles can intersect C3 in at most two points), and
only those values among them that belong to Θ3 are reflected in the above sum; also, the
fact that each pair of pairs in Pv3 generate two incidences is “neutralized” by the fact that
the same two incidences are generated for each of the two orderings of the pairs. That is,
we have Q ≤ 4I, so it suffices to obtain an upper bound for I.

The points of Π are clearly distinct, but this is not obvious for the curves of Γ. Ac-
tually, we need to handle situations where pairs of curves of Γ coincide or overlap in a
common irreducible component. Fortunately, this can be controlled through the following
key proposition. (Recall that this is a key issue in handling the general setup of E&R [4]
and E&S [5].)

Proposition 2.1. Any irreducible component can be shared by at most O(1) curves γa,b.

Proof. Let γ′ be an irreducible component of a curve of the form γa,b. We argue that we
can reconstruct from γ′ the values of a and b in only a constant number of ways. To prove
this property, we first claim that γ′ contains a point which is locally x-extremal (recall
that here x and y measure orientations along C2). Formally, (x0, y0) is locally x-maximal
(resp., x-minimal) if γ′ does not contain any point (x, y) in a sufficiently small neighborhood
of (x0, y0) such that x lies counterclockwise (resp., clockwise) to x0 along C2. Note that,
a priori, since each of x, y is defined over the circle C2, γ′ does not have to contain any
such extremal point. To establish the claim, recall our assumption that the points of S1

lie outside the disk circumscribed by C2. It follows that, for any a, b ∈ S1 fixed, there
exist points p, q ∈ C2 (not necessarily in S2), with orientations vp, vq ∈ S1 (with respect
to the center of C2), which are at distance > 2 from a, b, respectively. This means that
γa,b ⊂ (S1 \ {vp}) × (S1 \ {vq}). We interpret these punctured circles as respective (open)
intervals on the x- and y-axes. Since γ′ is compact and contained in the Cartesian product
of these intervals, it must have a locally x-extremal point.

Let (vξ, vη) be a locally x-extremal point of γ′, and let ξ, η be the points in C2 with
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orientations vξ, vη, respectively. Let a, b ∈ C1 be fixed, and suppose that γ′ ⊂ γa,b. We
distinguish between two cases.

The point (vξ, vη) is a locally x-extremal point of γa,b. We claim that in this case the
x-extremality of (vξ, vη) can be interpreted into certain geometric properties, from which
the pair (a, b) can be reconstructed in at most a constant number of ways.

To show this, we first introduce a procedure that, given a point x ∈ C2, constructs
a point y(x) ∈ C2, so that (vx, vy) ∈ γa,b, where vx, vy ∈ S1 are the orientations of x, y,
respectively. The procedure consists of the following two steps. Here we do not assume that
(vx, vy) is extremal, and the procedure applies to any x (and y) for which none of its four
steps fails. See Figure ??.

(i) Construct a unit circle C that passes through a and x.

C1

C2

C3

a

x

b

Figure 2: Step (i) of the construction of y from x.

(ii) Compute an intersection point z of C ∩ C3.

(iii) Construct a unit circle C ′ that passes through z and b.

(iv) Output y as one of the intersection points C ′ ∩ C2.

(Note that there are at most two choices for C, at most two choices of z, for any such C,
at most two choices for C ′, for any value z, and at most two possible output values y, for
any given C ′. In total, y can have at most 16 different values.)

Now the x-extremality of (vξ, vη) means that the construction “barely” works for ξ, but
fails, if we move ξ slightly along C2 in one direction (either increasing vξ or decreasing
it). The failure may occur at any of the four steps, and we treat each of these situations
separately. In these treatments we assume that we know the critical parameters vξ and vη
(and hence the corresponding points ξ, η), but not a and b (which we need to reconstruct).

Step (i) fails. This happens when the points a and ξ are at distance 2 apart; see Figure 6.
This allows us to reconstruct a in at most two possible ways, as an intersection point of C1

with the circle of radius 2 centered at ξ. We can then retrieve z in two possible ways, as an
intersection point of C3 with the (unique) unit circle that passes through a and ξ. Since η
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C1

C2

C3

a

x

z

b

Figure 3: Step (ii) of the construction of y from x.

C1

C2

C3

a

x

z

b

Figure 4: Step (iii) of the construction of y from x.

is also known, we can compute b, as one of the intersection points of C1 with one of the at
most two unit circles that pass through z and η. Altogether, there are (at most) two ways
to choose a, two for z, and four for b, so in the present case we can reconstruct (a, b) in at
most 16 possible ways.

Step (ii) fails. In this case, there is a unit circle that passes through a and ξ and is tangent
to C3; see Figure 7. Hence z is one of the (at most) two possible tangency points with C3,
of a unit circle that is incident to ξ. This allows us to reconstruct a, as an intersection point
of C1 with one of the unit circles that pass through ξ and z. We then retrieve b as in the
preceding case. Altogether, there are (at most) two ways to choose z, two for a, and four
for b, so here too we can reconstruct (a, b) in at most 16 possible ways.

Step (iii) fails. This is the geometrically most challenging case to analyze. Here the two
(unknown) points z, b are at distance 2 apart. Let o1, o3 denote the centers of C1, C3,
respectively. The lengths of the edges of the quadrilateral Q = o1bzo3 are thus fixed—they
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C1

C2

C3

a

x

z

b

y

Figure 5: Step (iv) of the construction of y from x.

C1

C2

C3

a

ξ

Figure 6: The situation when step (i) barely fails.

are 1,2,1 and |o1o3|, respectively, but this does not determine Q, because it can flex (with
one degree of freedom) about its fixed edge o1o3; see Figure ??. As Q flexes the midpoint
w of bz traces an algebraic curve τ of some constant degree d (see Figure ??). Note that
the unit circle that passes through b, η, z, has its center point w0 on τ . Since the point η
is known, we can find w0, by computing the intersection points of τ with the unit circle
Cη centered at η, and then retrieve b, as the intersection point of C1 with the unit circle
centered at w0. We claim that there are at most 2d intersection points of τ with Cη, and
hence at most a constant number of ways to reconstruct b. Indeed, if this were not the
case, then, by Bezout’s theorem (see, e.g., [1]), τ would have to contain Cη as one of its
components. However, we have the following simple claim.

Claim. The curve τ does not contain any unit circle as one of its components. (Orit
says: unless..) ←−

Proof. For contradiction, assume that there exists a unit circle C, centered at a point o,
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C1

C2

C3

a

ξ

Figure 7: The situation when step (ii) barely fails.

such that C ⊂ τ . By the construction of τ , every point p ∈ C is the midpoint of a segment
whose endpoints are supported by C1, C3. This implies, in particular, that C is contained
in K := conv(C1 ∪C3), the convex hull of C1 ∪C3, and since the three circles C,C1, C3 are
of the same radius, it follows that o ∈ o1o3, and in fact o must be the midpoint of o1o3. �

We can then retrieve z, as an intersection point of C3 with a unit circle that passes
through b and η, and, since ξ is also known, compute a, as one of the intersection points of
C1 with one of unit circles that pass through z and ξ.

Step (iv) fails. In this case, depicted in Figure ??, the unit circle that passes through b, η
and z is tangent to C2 at η. Hence b is one of the intersection points of the unit circle
tangent to C2 at η, and then a can be reconstructed from b, ξ and η, as in the previous case.

The point (vξ, vη) is not an extremal point of γa,b.
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[6] P. Erdős, L. Lovász, and K. Vesztergombi, On the graph of large distance, Discrete
Comput. Geom. 4 (1989), 541–549.

[7] J. Pach and M. Sharir, On the number of incidences between points and curves, Com-
binat. Probab. Comput. 7 (1998), 121–127.

[8] M. Sharir and J. Solymosi, Distinct distances from three points, Combinat. Probab.
Comput., in arXiv:1308.0814

[9] M. Sharir, A. Sheffer, and J. Solymosi, Distinct distances on two lines, J. Combinat.
Theory, Ser. A 20 (2013), 1732–1736.
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