LECTURE NOTES: A SPECIAL CUBIC MODULO PRIMES

GERGELY HARCOS

We shall prove the following result.

Theorem. Let p# 3 be a prime. If p= +£1 (mod 9 then ¥ — 3x— 1 has three distinct
roots modulo p. Otherwiséx- 3x— 1 has no root modulo p.

We need a certain amount of algebra for the proof. Observe that the residues modulo
form a setf', in which the four basic operations of arithmetic can be performed (mqualulo
of course), and the “usual rules” apply. For exampjéal-b) +1/(a+b) = 2a/(a® — b?)
for all residues such that # +b. We say thaff', is afield, it is an example of di-
nite field You are already familiar with some infinite fields, nam&yR, C. If F is a
field, then we can talk about polynomiadgx” + an_1x"~1 + - - 4 ag with coefficientsa;
in F, and we can add or multiply them in the usual manner. For examg ime have
(x—2)(x+2) = x> + 1 which shows that modulo 5 there exist two square-roots bf
namely+2. If a polynomial with coefficients i is a product of smaller degree poly-
nomials, then we say it issducible otherwise we say it ifreducible The irreducible
polynomials play a similar role among all polynomials as primes among integers. For
example, every monic polynomial can be written as a product of monic irreducible poly-
nomials in a unique fashion apart from reordering the factors. If we are given a polynomial
with integercoefficients, then for any primgwe can regard it as a polynomial with coeffi-
cients inFp, and ask how it factors into irreducibles among such polynomialsp ¥earies,
the decomposition pattern varies greatly yet there is some regularity (e.g. statistically) in
them. Understanding how and to what extent this regularity holds, turned out to be a very
deep and fundamental question in number theory. A lot of current research is aimed at
understanding some aspect of this general question.

Examplel. Here are factorizations of — 8x? + 3 into irreducibles modulo a few primes:
X —8¢+3=x3(x+1)> (mod 3
X — 8¢ +3= (X% +6x+3)(C+x°+5x+1) (mod 7
X° — 8% +3= (x+3)(}%+3x+10) 0+ 7x+4) (mod 13
X°—8¢+3=x"4+15¢+3 (mod 23
X° — 8%+ 3= (x+25)(x+26) (x> + 7%+ 8x+22) (mod 29
X° — 8¢ + 3= (x+ 16)(x+22) (x4 27) (x> + 28x+26) (mod 3
X — 8¢ +3= (x+32)(xX* + 213+ 17%° + 31x+15) (mod 53
X° — 8x% + 3= (X+ 12)(x+ 20)(x+ 40) (x+66)(x+68) (mod 103.

You can generate such examples WHAT HEMAT ICA using the following command:

TableForm[Table [{Prime[n],
Factor [x"5-8x"2+3,Modulus->Prime[n]]},{n,1,100}]1]
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A very important feature of fields is the following. F is any field andP(x) is any
polynomial with coefficients in it, theR is contained in some fielB’ whereP(x) has a
root. The construction d¥’ from F andP(x) is similar to how we construdt fromR and
x2 + 1. Without loss of generality?(x) is irreducible of some degree ThenF' is simply
the set of formal expressiomg +ai€ + - - +an-1£" ! where¢ is just a symbol and the
coefficientsy are fromF. Itis clear how to add such expressions: we do it componentwise.
The natural multiplication also works, but we might encounter powetslmyond&" 1.

In this case we act as § were a root ofP(x). The equatiorP() = 0 exactly tells us
how to expres€" as a combination of E,...,E"1. Using this rule repeatedly, we can
expressany power ofE as a combination of £, ...,£"1, hence we obtain a well-defined
multiplication on our sef’. Itis remarkable thaf’ is a field, that is, we can even divide by
nonzero elements. The reason is essentially the same aByibya field. There we need
to show that for any integernot divisible byp there are integenss such thafyr — ps=1;
these can be found by running the Euclidean algorithm on thegqai). Here we need to
show that for any polynomiaD(x) not divisible byP(x) there are polynomialR(x), S(x)
such tha(x)R(x) — P(x)S(x) = 1; these can be found by running the Euclidean algorithm
on the painQ,P). In the fieldF’ just describedf is indeed a root oP(x)!

Example2. From Example 1 we know thaf + x? 4 5x+ 1 is irreducible inF7. Now we
can “add a root€ of this polynomial taf'; by considering all ¥ = 343 expressions of the
form ag + a1 & + axE2 with ag, a1, ap € F7 and performing the basic operations “with the
understanding” thaf3 + £2 + 5E + 1 = 0. We obtain a field of 343 elements. To see how
it works, let us multiply two random elements:

(1+4E +2E2)(5+ 6 4 3E2) =54 5E 4-2E2 + 363+ 6E%
=558 42624 (3+6¢)E3
=54+ 5¢ 4282 — (34 6E)(1+5E 4 £2)
=24 5¢ +4E2 4 £3
— 24264382 (1458 +&?)
=143&2
In other words, among polynomials with coefficientsFip (1 -+ 4x 4 2x%)(5+ 6x + 3x?)
has residue 4 3x? when divided by & 5x+x?+x3. Indeed,
(144X +26) (54 6x+3x%) = (1+3%®) + (44 6X) (1 +5x+ X2 +X°).

Finding the reciprocal of 1 4& +2£2 in our field is a bit harder. For this we need to find
polynomialsR(x), S(x) such that

(14 4x+23)R(X) = 1+ S(X) (1 +5x+ X% + ).
The Euclidean algorithm providd¥x) = 6+ 2x+ 4x? andS(x) = 5+ x, hence
(1+4E +2E2)(6+26 +4E%) =1

Now we understand that any polynomiIx) with coefficients in a field® has a root
in some extensioR’ of F. This means that allowing coefficients from the extended field
F’ we have a factorizatioR(x) = (x— £)Q(x). By induction on the degree of P(x) we
can see that there is an extensigrof F such thaP(x) = [{L, (x— &) for suitable&; € F'.
In particular, for any primep and any positive integer there is a field= containingFp
such tha" — 1=, (x— &) for suitable; € F. Without any further assumption it may
happen that the roots are not distinct, thakis- 1 = (x — £)?Q(x) for some polynomial
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Q(x) with coefficients inF. The familiar notion of derivative from analysis can be defined
formally for polynomials over any field. The Leibniz rule then implies for our situation
that

X"t = 2(x = &)Q(X) + (x— &)*Q (x),
hence also thaté"! = 0. Here£"1 is nonzero bye" = 1, thereforen as an element of
Fp is zero, whence as an integer is divisible by. We proved that thé;’s are all distinct
whenp+n.

From now on we assume thpt n. Then[F, has a (finite) field extension containing
distinctn-th roots of unity. Let be ann-th root of unity, then there is a smallest positive
integerm such thatt™ = 1: we say that is aprimitive mth root of unity. It is easy to
see thatm | n, hence each-th root of unity is a primitivem-th root of unity for a unique
divisorm| n. We now show by induction on that whenever a fiel&f containsn distinct
n-th roots of unity, it containg(n) primitive n-th roots of unity. If the statement holds for
m | n excludingm = n, then the number of nonprimitiveth roots of unity inF is the sum
of ¢(m) over thesen's. This sum isn— ¢(n), hence indee# containsp(n) primitive n-th
roots of unity. If¢ is any of them, thed1,&,...,E" 1} is the set of alh-th roots of unity
and{&K: (k,n) = 1} is the set of primitive ones.

We can finally begin the proof of our Theorem. We speaify 9, thenpt nby p # 3.

We shall work in a field= which containgF, and a primitive 9-th root of unitg. Using
the relations (which follow fron£® = 1, £3 £ 1)

1+£%+&°=0 and 1+ i(é‘ +ET =0,

it is straightforward to verify that
X =3 —1= (x+&+E X+ E2+EA)(x+E+E7Y)

and the factors on the right hand side are distinct. For exandplef 1 = £2+ &2
implies by squaring? + &2 = £4+ 4, hence also that these all vanish because we can
divide by 3 inF. But&é + &1 = 0 would yieldé4 = 1, a contradiction. Now the question
boils down to the following: how many of the elemeiits- £ 1, E2+ E-2, E4 4 -4 lie

in Fp? To answer this, we observe tligf can be identified as the set of rootsx8f—x in

F. IndeedF, is a subset of the roots by Fermat’s little theorem but this subset already has
p elements. So what we really want to know is this: how many of the elenfent§ 2,

E24 £72 E44 £ are fixed by the map— xP? This map is called therobenius magnd

is extremely important in number theory and algebraic geometry. It has the nice property
that(a+b)P = aP + bP for anya, b € F by the binomial theorem. In particular,

(E+EHP=EP+EP, (B2HEPP=8P 482, (EHEHP=EP .
Now we can see that fgp = +£1 (mod 9 the Frobenius map fixes all the sums on the
left hand sides, while fop = +2,+4 (mod 9 it permutes them in a cyclic fashion. The
Theorem is proved.
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