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We shall prove the following result.

Theorem. Let p 6= 3 be a prime. If p≡ ±1 (mod 9) then x3−3x−1 has three distinct
roots modulo p. Otherwise x3−3x−1 has no root modulo p.

We need a certain amount of algebra for the proof. Observe that the residues modulop
form a setFp in which the four basic operations of arithmetic can be performed (modulop
of course), and the “usual rules” apply. For example, 1/(a−b)+1/(a+b) = 2a/(a2−b2)
for all residues such thata 6= ±b. We say thatFp is a field, it is an example of afi-
nite field. You are already familiar with some infinite fields, namelyQ, R, C. If F is a
field, then we can talk about polynomialsanxn + an−1xn−1 + · · ·+ a0 with coefficientsai

in F , and we can add or multiply them in the usual manner. For example inF5 we have
(x− 2)(x+ 2) = x2 + 1 which shows that modulo 5 there exist two square-roots of−1,
namely±2. If a polynomial with coefficients inF is a product of smaller degree poly-
nomials, then we say it isreducible, otherwise we say it isirreducible. The irreducible
polynomials play a similar role among all polynomials as primes among integers. For
example, every monic polynomial can be written as a product of monic irreducible poly-
nomials in a unique fashion apart from reordering the factors. If we are given a polynomial
with integercoefficients, then for any primep we can regard it as a polynomial with coeffi-
cients inFp and ask how it factors into irreducibles among such polynomials. Asp varies,
the decomposition pattern varies greatly yet there is some regularity (e.g. statistically) in
them. Understanding how and to what extent this regularity holds, turned out to be a very
deep and fundamental question in number theory. A lot of current research is aimed at
understanding some aspect of this general question.

Example1. Here are factorizations ofx5−8x2 +3 into irreducibles modulo a few primes:

x5−8x2 +3≡ x2(x+1)3 (mod 3)

x5−8x2 +3≡ (x2 +6x+3)(x3 +x2 +5x+1) (mod 7)

x5−8x2 +3≡ (x+3)(x2 +3x+10)(x2 +7x+4) (mod 13)

x5−8x2 +3≡ x5 +15x2 +3 (mod 23)

x5−8x2 +3≡ (x+25)(x+26)(x3 +7x2 +8x+22) (mod 29)

x5−8x2 +3≡ (x+16)(x+22)(x+27)(x2 +28x+26) (mod 31)

x5−8x2 +3≡ (x+32)(x4 +21x3 +17x2 +31x+15) (mod 53)

x5−8x2 +3≡ (x+12)(x+20)(x+40)(x+66)(x+68) (mod 103).

You can generate such examples withMATHEMATICAr using the following command:

TableForm[Table[{Prime[n],
Factor[x^5-8x^2+3,Modulus->Prime[n]]},{n,1,100}]]
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A very important feature of fields is the following. IfF is any field andP(x) is any
polynomial with coefficients in it, thenF is contained in some fieldF ′ whereP(x) has a
root. The construction ofF ′ from F andP(x) is similar to how we constructC from R and
x2 +1. Without loss of generality,P(x) is irreducible of some degreen. ThenF ′ is simply
the set of formal expressionsa0 +a1ξ + · · ·+an−1ξ n−1 whereξ is just a symbol and the
coefficientsai are fromF . It is clear how to add such expressions: we do it componentwise.
The natural multiplication also works, but we might encounter powers ofξ beyondξ n−1.
In this case we act as ifξ were a root ofP(x). The equationP(ξ ) = 0 exactly tells us
how to expressξ n as a combination of 1,ξ , . . . ,ξ n−1. Using this rule repeatedly, we can
expressanypower ofξ as a combination of 1,ξ , . . . ,ξ n−1, hence we obtain a well-defined
multiplication on our setF ′. It is remarkable thatF ′ is a field, that is, we can even divide by
nonzero elements. The reason is essentially the same as whyFp is a field. There we need
to show that for any integerq not divisible byp there are integersr,ssuch thatqr− ps= 1;
these can be found by running the Euclidean algorithm on the pair(q, p). Here we need to
show that for any polynomialQ(x) not divisible byP(x) there are polynomialsR(x),S(x)
such thatQ(x)R(x)−P(x)S(x) = 1; these can be found by running the Euclidean algorithm
on the pair(Q,P). In the fieldF ′ just described,ξ is indeed a root ofP(x)!

Example2. From Example 1 we know thatx3 +x2 +5x+1 is irreducible inF7. Now we
can “add a root”ξ of this polynomial toF7 by considering all 73 = 343 expressions of the
form a0 + a1ξ + a2ξ 2 with a0,a1,a2 ∈ F7 and performing the basic operations “with the
understanding” thatξ 3 +ξ 2 +5ξ +1 = 0. We obtain a field of 343 elements. To see how
it works, let us multiply two random elements:

(1+4ξ +2ξ
2)(5+6ξ +3ξ

2) = 5+5ξ +2ξ
2 +3ξ

3 +6ξ
4

= 5+5ξ +2ξ
2 +(3+6ξ )ξ 3

= 5+5ξ +2ξ
2− (3+6ξ )(1+5ξ +ξ

2)

= 2+5ξ +4ξ
2 +ξ

3

= 2+2ξ +3ξ
2− (1+5ξ +ξ

2)

= 1+3ξ
2

In other words, among polynomials with coefficients inF7, (1+ 4x+ 2x2)(5+ 6x+ 3x2)
has residue 1+3x2 when divided by 1+5x+x2 +x3. Indeed,

(1+4x+2x2)(5+6x+3x2) = (1+3x2)+(4+6x)(1+5x+x2 +x3).

Finding the reciprocal of 1+4ξ +2ξ 2 in our field is a bit harder. For this we need to find
polynomialsR(x), S(x) such that

(1+4x+2x2)R(x) = 1+S(x)(1+5x+x2 +x3).

The Euclidean algorithm providesR(x) = 6+2x+4x2 andS(x) = 5+x, hence

(1+4ξ +2ξ
2)(6+2ξ +4ξ

2) = 1.

Now we understand that any polynomialP(x) with coefficients in a fieldF has a rootξ
in some extensionF ′ of F . This means that allowing coefficients from the extended field
F ′ we have a factorizationP(x) = (x− ξ )Q(x). By induction on the degreen of P(x) we
can see that there is an extensionF ′ of F such thatP(x) = ∏n

i=1(x−ξi) for suitableξi ∈ F ′.
In particular, for any primep and any positive integern there is a fieldF containingFp

such thatxn−1 = ∏n
i=1(x−ξi) for suitableξi ∈ F . Without any further assumption it may

happen that the roots are not distinct, that is,xn−1 = (x− ξ )2Q(x) for some polynomial
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Q(x) with coefficients inF . The familiar notion of derivative from analysis can be defined
formally for polynomials over any field. The Leibniz rule then implies for our situation
that

nxn−1 = 2(x−ξ )Q(x)+(x−ξ )2Q′(x),
hence also thatnξ n−1 = 0. Hereξ n−1 is nonzero byξ n = 1, thereforen as an element of
Fp is zero, whencen as an integer is divisible byp. We proved that theξi ’s are all distinct
whenp - n.

From now on we assume thatp - n. ThenFp has a (finite) field extension containingn
distinctn-th roots of unity. Letξ be ann-th root of unity, then there is a smallest positive
integerm such thatξ m = 1: we say thatξ is a primitive m-th root of unity. It is easy to
see thatm | n, hence eachn-th root of unity is a primitivem-th root of unity for a unique
divisor m | n. We now show by induction onn that whenever a fieldF containsn distinct
n-th roots of unity, it containsϕ(n) primitive n-th roots of unity. If the statement holds for
m | n excludingm= n, then the number of nonprimitiven-th roots of unity inF is the sum
of ϕ(m) over thesem’s. This sum isn−ϕ(n), hence indeedF containsϕ(n) primitive n-th
roots of unity. Ifξ is any of them, then{1,ξ , . . . ,ξ n−1} is the set of alln-th roots of unity
and{ξ k : (k,n) = 1} is the set of primitive ones.

We can finally begin the proof of our Theorem. We specifyn = 9, thenp - n by p 6= 3.
We shall work in a fieldF which containsFp and a primitive 9-th root of unityξ . Using
the relations (which follow fromξ 9 = 1, ξ 3 6= 1)

1+ξ
3 +ξ

−3 = 0 and 1+
4

∑
i=1

(ξ i +ξ
−i) = 0,

it is straightforward to verify that

x3−3x−1 = (x+ξ +ξ
−1)(x+ξ

2 +ξ
−2)(x+ξ

4 +ξ
−4)

and the factors on the right hand side are distinct. For example,ξ + ξ−1 = ξ 2 + ξ−2

implies by squaringξ 2 +ξ−2 = ξ 4 +ξ−4, hence also that these all vanish because we can
divide by 3 inF . But ξ +ξ−1 = 0 would yieldξ 4 = 1, a contradiction. Now the question
boils down to the following: how many of the elementsξ + ξ−1, ξ 2 + ξ−2, ξ 4 + ξ−4 lie
in Fp? To answer this, we observe thatFp can be identified as the set of roots ofxp−x in
F . Indeed,Fp is a subset of the roots by Fermat’s little theorem but this subset already has
p elements. So what we really want to know is this: how many of the elementsξ + ξ−1,
ξ 2+ξ−2, ξ 4+ξ−4 are fixed by the mapx 7→ xp? This map is called theFrobenius mapand
is extremely important in number theory and algebraic geometry. It has the nice property
that(a+b)p = ap +bp for anya,b∈ F by the binomial theorem. In particular,

(ξ +ξ
−1)p = ξ

p +ξ
−p, (ξ 2 +ξ

−2)p = ξ
2p +ξ

−2p, (ξ 4 +ξ
−4)p = ξ

4p +ξ
−4p.

Now we can see that forp ≡ ±1 (mod 9) the Frobenius map fixes all the sums on the
left hand sides, while forp≡ ±2,±4 (mod 9) it permutes them in a cyclic fashion. The
Theorem is proved.
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