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We present classical versions of the additive and multiplicative large sieve inequality,
based on the treatment of Iwaniec–Kowalski [3, Section 7.4] and Tao [4].

Theorem 1 (Davenport–Halberstam [2]). Let δ > 0, M ∈ Z, N ∈ N. Then for any set of
δ -spaced points x1, . . . ,xR ∈R/Z and any complex numbers aM+1, . . . ,aM+N ∈C we have
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Theorem 2 (Bombieri–Davenport [1]). Let Q ∈ N, M ∈ Z, N ∈ N. Then for any complex
numbers aM+1, . . . ,aM+N ∈ C we have
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Proof of Theorem 1. By duality, the inequality (1) is equivalent to
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for arbitrary complex numbers br ∈ C. Let us consider f (x) := ψ((x−M)/Ñ), where
Ñ := max(N,δ−1), and ψ : R→ R>0 is a fixed Schwartz class function such that ψ > 1
on [0,1] and the Fourier transform ψ̂ is supported on (−1,1). Then

(3) f > 1 on [M,M+ Ñ] and supp f̂ ⊂ (−1/Ñ,1/Ñ),

so it suffices to show that
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Expanding the left hand side, this becomes
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Proof of Theorem 2. With the notation cχ,n :=
√

q
φ(q)χ(n), the inequality (2) becomes
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where χ runs through all primitive characters with conductor q 6 Q. By duality, this is
equivalent to
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for arbitrary complex numbers bχ ∈ C. Let us consider f (x) := ψ((x−M)/Ñ), where
Ñ := max(N,Q2), and ψ : R→ R>0 is as in the previous proof. Then (3) holds, so it
suffices to show that
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Expanding the left hand side and using the definition of cχ,n, this becomes
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For χ 6= χ ′ the function n 7→ χχ ′(n) is periodic by qq′ with mean 0, hence we can write
it as a linear combination of additive characters n 7→ eqq′(rn) with r 6≡ 0 (mod qq′). Now
Poisson summation and 1/(qq′)> Q−2 > 1/Ñ show that
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therefore the contribution of χ 6= χ ′ is zero. The remaining contribution of χ = χ ′ is
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