THE ADDITIVE AND MULTIPLICATIVE LARGE SIEVE INEQUALITY

GERGELY HARCOS

We present classical versions of the additive and multiplicative large sieve inequality,
based on the treatment of Iwaniec—Kowalski [3, Section 7.4] and Tao [4].

Theorem 1 (Davenport-Halberstam [2]). Ler 6 >0, M € Z, N € N. Then for any set of
O-spaced points xi,...,xg € R/Z and any complex numbers ay+1, ... ,apy+n € C we have
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Theorem 2 (Bombieri-Davenport [1]). Let Q € N, M € Z, N € N. Then for any complex
numbers ayy1,...,apy+n € C we have
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Proof of Theorem 1. By duality, the inequality (1) is equivalent to
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for arbitrary complex numbers b, € C. Let us consider f(x) := y((x —M)/N), where
N :=max(N,871), and v : R — R is a fixed Schwartz class function such that y > 1
on [0, 1] and the Fourier transform ¥ is supported on (—1,1). Then

3) f>=1lon[M,M+N)| and suppf C (=1/N,1/N),
so it suffices to show that
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Expanding the left hand side, this becomes
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The pairs r # r’ do not contribute here, because

Zf(n)e((xr—xr/)n) = Z fm+x,—x)=0
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by Poisson summation and § > 1/N. The remaining contribution of r = 7’ is
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Proof of Theorem 2. With the notation ¢y ,, := % x(n), the inequality (2) becomes
MA+N 2 y MaN
YI Y cpnan] <(N+0Y) Y anl,
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where y runs through all primitive characters with conductor ¢ < Q. By duality, this is
equivalent to
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for arbitrary complex numbers b, € C. Let us consider f(x) := y((x —M)/N), where
N := max(N,Q?), and v : R — R is as in the previous proof. Then (3) holds, so it

suffices to show that 5

Y F(n) | Y cxuby| <NY lbgl.
ne 4 4
Expanding the left hand side and using the definition of ¢y ,, this becomes

a4’ = i Y 2

Y| b by | X fm)ax (n) | < NY byl
T\ 9(@)9(d) = -

For y # ' the function n — y ' (n) is periodic by gq’ with mean 0, hence we can write

it as a linear combination of additive characters n +— e, (rn) with r # 0 (mod gq'). Now

Poisson summation and 1/(gq’) > Q2 > 1/N show that

Y fmegm)= ¥ F (m+ qq) —o,

nez me7Z
therefore the contribution of ) # x' is zero. The remaining contribution of y = ' is

1,2 NY |5y 2.
n,q)=1
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