AN INTERESTING INDEFINITE INTEGRAL QUADRATIC FORM

GERGELY HARCOS

This note is based on Thomas Browning's MathOverflow post [1].

Theorem. Let a,b,c be positive integers, and consider the quadratic form

$$P(x,y) := ax^2 - abcxy - cy^2.$$

The smallest positive value of P(x, y) over $x, y \in \mathbb{Z}$ equals a.

Proof. Let $x_0, y_0 \in \mathbb{Z}$ be such that $P(x_0, y_0) > 0$. We shall show that $P(x_0, y_0) \ge a$. The matrix

$$T := \begin{pmatrix} ab^2c + 1 & bc \\ ab & 1 \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$

fixes both the lattice \mathbb{Z}^2 and the quadratic form P(x,y). Hence P(x,y) is constant along the orbit of lattice points

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} := T^n \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \qquad n \in \mathbb{Z}.$$

Note that $P(x_n, y_n) = P(x_0, y_0) > 0$, hence $x_n \neq 0$. Note also that $y_{n+1} = abx_n + y_n$. We shall prove below that there exist both negative and positive values among the y_n 's. Hence there exists $n \in \mathbb{Z}$ such that $y_n y_{n+1} \leq 0$. However, for such an $n \in \mathbb{Z}$ we have

$$P(x_n, y_n) = ax_n^2 - cy_n y_{n+1} \geqslant ax_n^2 \geqslant a.$$

Hence $P(x_0, y_0) \ge a$ as needed.

Now we prove that there exist both negative and positive values among the y_n 's. The trace of T exceeds 2, hence T has an eigenvalue $\lambda_1 \in (1, \infty)$ and an eigenvalue $\lambda_2 \in (0, 1)$. Diagonalizing T, a straightforward calculation gives that if $n \to \infty$, then

$$(\lambda_1 - \lambda_2)\lambda_1^{-n}T^n \to T - \lambda_2 I$$
 and $(\lambda_2 - \lambda_1)\lambda_1^{-n}T^{-n} \to T - \lambda_1 I$.

In particular,

$$(\lambda_1 - \lambda_2)\lambda_1^{-n}y_n \to abx_0 + (1 - \lambda_2)y_0$$
 and $(\lambda_2 - \lambda_1)\lambda_1^{-n}y_{-n} \to abx_0 + (1 - \lambda_1)y_0$.

Multiplying these two limits, another straightforward calculation gives that

$$-(\lambda_1 - \lambda_2)^2 \lambda_1^{-2n} y_n y_{-n} \to ab^2 P(x_0, y_0), \qquad n \to \infty.$$

As $P(x_0, y_0) > 0$, it follows that $y_n y_{-n} < 0$ for every sufficiently large positive integer n. \square

REFERENCES

[1] T. Browning, Response to MathOverflow question No. 466399, https://mathoverflow.net/questions/466399

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, POB 127, BUDAPEST H-1364, HUNGARY *Email address*: gharcos@renyi.hu