FERMAT'S TWO SQUARES THEOREM AND QUARTIC RESIDUACITY

ROLAND BACHER AND GERGELY HARCOS

This note grew out from a discussion at MathOverflow [1].

Theorem 1. Let $p = x^2 + y^2$ be a prime number with x odd and y divisible by four.

- (a) If $p \equiv 1 \pmod{16}$, then x and y are quartic residues modulo p.
- (b) If $p \equiv 9 \pmod{16}$, then y is a quartic residue modulo p, and x is not.

We shall derive this result from the following more general theorem.

Theorem 2. Let $p = x^2 + y^2$ be a prime number with x odd and y divisible by four.

- (a) The odd divisors of y are quartic residues modulo p.
- (b) A divisor of x is a quartic residue modulo p if and only if it is $\equiv \pm 1 \pmod{8}$.

This theorem follows readily from Emma Lehmer's criterion for quartic residuacity [3, Page 24], but we prefer to give an idependent proof based on quartic reciprocity in Gaussian integers. In particular, we shall rely on Theorem 2, Proposition 9.8.5, and Proposition 9.8.6 from [2, Chapter 9].

Proof of Theorem 2. Without loss of generality, $x \equiv 1 \pmod{4}$. Observe that -1 is a fourth power in \mathbb{F}_p^{\times} , because $p \equiv 1 \pmod{8}$.

Let d be an odd divisor of y. Let $d^* = \pm d$ such that $d^* \equiv 1 \pmod{4}$. Then d^* and x + yi are primary elements of $\mathbb{Z}[i]$, hence

$$\left(\frac{d^*}{x+yi}\right)_4 = \left(\frac{x+yi}{d^*}\right)_4 = \left(\frac{x}{d^*}\right)_4 = 1.$$

Therefore d^* is a fourth power in \mathbb{F}_p^{\times} , and the same is true of d.

Let d be a divisor of x. Let $d^* = \pm d$ such that $d^* \equiv 1 \pmod{4}$. Then d^* and x + yi are primary elements of $\mathbb{Z}[i]$, hence

$$\left(\frac{d^*}{x+yi}\right)_4 = \left(\frac{x+yi}{d^*}\right)_4 = \left(\frac{yi}{d^*}\right)_4 = \left(\frac{i}{d^*}\right)_4 = (-1)^{(d^*-1)/4}.$$

Therefore d^* is a fourth power in \mathbb{F}_p^{\times} if and only if $d^* \equiv 1 \pmod{8}$, and d is a fourth power in \mathbb{F}_p^{\times} if and only if $d \equiv \pm 1 \pmod{8}$.

Proof of Theorem 1. Observe that y/x has order four in the cyclic group \mathbb{F}_p^{\times} . Observe also that x is a square in \mathbb{F}_p^{\times} by quadratic reciprocity:

$$\left(\frac{x}{p}\right) = \left(\frac{p}{x}\right) = \left(\frac{x^2 + y^2}{x}\right) = \left(\frac{y^2}{x}\right) = 1.$$

Hence the elements of $\{y/x, x, y\} \subset \mathbb{F}_p^{\times}$ are squares, and we shall examine when they are fourth powers.

Assume that $p \equiv 1 \pmod{16}$. Then y/x is a quartic residue. Moreover, $x \equiv \pm 1 \pmod{8}$, hence x is a quartic residue by Theorem 2. It follows that y is a quartic residue.

Assume that $p \equiv 9 \pmod{16}$. Then y/x is not a quartic residue. Moreover, $x \equiv \pm 3 \pmod{8}$, hence x is not a quartic residue by Theorem 2. It follows again that y is a quartic residue.

1

REFERENCES

- [1] R. Bacher, G. Harcos, Discussion at MathOverflow, https://mathoverflow.net/questions/466706
- [2] K. Ireland, M. Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics, Vol. 84. Springer-Verlag, New York, 1990.
- [3] E. Lehmer, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20–29.

UNIV. GRENOBLE ALPES, INSTITUT FOURIER, F-38000 GRENOBLE, FRANCE *Email address*: roland.bacher@univ-grenoble-alpes.fr

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, POB 127, BUDAPEST H-1364, HUNGARY $\it Email\ address$: gharcos@renyi.hu