THE BOMBIERI-HALASZ-MONTGOMERY INEQUALITY

GERGELY HARCOS

We present two proofs of a useful generalization of Bessel’s inequality. The statement
is due to Bombieri [1] who attributes it to Selberg. In the context of zero density estimates,
Bombieri’s inequality is rooted in the work of Haladsz [3], Haldsz—Turan [4], and Mont-
gomery [5]. Our exposition follows loosely Davenport [2, §27] and Montgomery [7, §5].
A more direct proof can be found in [6, §1], or in the original source [1].

Theorem 1 (Bombieri [1]). Let &, ¢, ..., §r be vectors in a complex Hilbert space. Then

(D Y& 00 <IIE]Pmax ) [(6s. 91)].
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First proof. Letus fix ¢y, ..., ¢g, and identify the smallest constant B > 0 such that

) Y 1€ 0n)1* < BIEIP

holds for all £&. Without loss of generality, & is of the form ¥ c;¢s for some (c;) € CR.
Then (2) says that

ZCSCTZWS» ¢ ){0r, &) < Bzcsawm &)

holds for all (c;) € CR. In other words, introducing the positive semidefinite matrix

3) A= ({05, 0))1<50<R

the constant B > 0 is such that BA — A? is positive semidefinite. Diagonalizing A in an
orthogonal basis of CR, we see that the smallest admissible B equals the largest eigenvalue
p(A) of A. Therefore, (1) is a consequence of the well-known bound [8, Prop. 7.6]

@) P(A) < [IAll = max } {65, 91)]. O

Second proof. As in the first proof, we shall identify the smallest constant B > 0 for (2).
Let () be an orthonormal basis of the Hilbert space. Then we can write & = Y, a, Wy,
and (2) says that
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<BY laqf*,  (an) € *(C).
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Equivalently, by the duality principle (which is a consequence of the Cauchy—Schwartz
inequality),
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<BY |, (¢;) € CR.
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Z cr(Wn, 9r)
-
Replacing ¢, by ¢, and expanding the left-hand side, we obtain the alternative form

(5) Y c@i (9 0) <BY |esf, (e eCR
st K

So with the notation (3), the matrix B-id — A is positive semidefinite. As in the first proof,
we conclude that the smallest admissible B equals p(A), and then (1) follows by (4). O
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Remark. In the second proof, we could have obtained (1) more directly, without recourse
to eigenvalues. Indeed, we have

2 2
Eeion ) < X 0 0, 001 = Y e K 00,601,

whence (5) holds with
B=max (0,00
1
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