ON A RESULT OF ANDRAS BIRO

GERGELY HARCOS

We give a short proof of the following result of Andrés Bird, originally proved in [2].

Theorem. There exists 0 < ¢ < 1 with the following property. For every sufficiently large
integer n there are n complex numbers z1,...,z, such that max|z;| = 1 and the n power
sums

sy:i=2z+-+2z,, v=1,...,n,

are of modulus at most c.

Remark. The infimum of admissible c lies in (0.5,0.7). The upper bound follows from the
proof below, while the lower bound was established in [1].

Proof. We can relax the condition max |z;| = 1 to max |z;| > 1. Let us use the notation
(Z—Zl)"'(Z—Zn) :aoz"—‘,—alznfl + - +ay,

so that ap = 1. The condition max |z;| > 1 is certainly satisfied when z = 1 is a root of the
left hand side, i.e. when

ap+---+a,=0.

For 0 < m < n the inverse Newton—Girard formulae tell us that
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where the j,’s run through nonnegative integers, hence our task is to minimize max |sy |
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If we write T := |n/2] and assume that
S| = =857 =W,
then in s741,...,s, the condition becomes linear:
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The coefficients can be evaluated explicitly, so that the equation becomes
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After dividing by (*'}™) we obtain
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which clearly has a solution satisfying
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hence a brief argument based on Riemann sums shows that under n — oo the previous

inequality becomes
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Altogether we see that for any w in the unit disk, c is admissible as long as
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For w := —0.43246 — 0.54237i the left hand side is approximately 0.693676, hence

¢ :=0.693677

is admissible. O

|ST+1|,.-.,|Sn| <0<1)+
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