GERGELY HARCOS

Let q be a positive integer and q=dd' a decomposition. For any residue class $c' \mod d'$ satisfying (c',d,d')=1 there is some $c\in\mathbb{Z}$ such that (c,d)=1 and $c\equiv c'\pmod{d'}$. Indeed, by the Chinese remainder theorem, there exists $c\in\mathbb{Z}$ such that $c\equiv 1\pmod{p}$ for any prime $p\mid d$ with $p\nmid d'$ and also $c\equiv c'\pmod{d'}$. We only need to verify that for any prime $p\mid d$ with $p\mid d'$ we have $p\nmid c$, but this follows from $p\nmid c'$ and $c\equiv c'\pmod{p}$.

Theorem. For any $d \mid q$ take a set of integers c coprime with d which represent all residue classes $c' \mod d'$ satisfying (c',d,d')=1. Extend each such pair (c,d) to some matrix $\begin{pmatrix} * & * \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. The resulting matrices will represent $\Gamma_0(q) \backslash SL_2(\mathbb{Z})$.

Proof. We need to show that for any $\binom{*}{c} \binom{*}{D} \in \operatorname{SL}_2(\mathbb{Z})$ there is a unique $\binom{*}{c} \binom{*}{d}$ in our set of matrices such that $\binom{*}{c} \binom{*}{D} \binom{*}{c} \binom{*}{d}^{-1} \in \Gamma_0(q)$. The condition can be rewritten as $cD \equiv Cd \pmod{q}$. In particular, it is necessary that (d,q) = (D,q), hence by $d \mid q$, we must in fact take d := (D,q). Writing d' := q/d and D' := D/d, it remains to show that there is a unique c in our construction which satisfies $cD' \equiv C \pmod{d'}$. As (D',d') = (D,q)/d = 1, the previous congruence is equivalent to $c \equiv c' \pmod{d'}$, where $c' \pmod{d'}$ denotes the congruence class $C\overline{D'} \pmod{d'}$ with $\overline{D'}$ the inverse of $D' \pmod{d'}$. We clearly have (c',d,d') = 1 by (C,D) = 1 and $(\overline{D'},d') = 1$, hence there is a unique $c \equiv c' \pmod{d'}$ in our construction with the required properties.

Corollary. The index of $\Gamma_0(q)$ in $SL_2(\mathbb{Z})$ equals

$$[SL_2(\mathbb{Z}):\Gamma_0(q)] = q \prod_{p|q} (1+p^{-1}).$$

Proof. The set of representatives in the Theorem has cardinality

$$\sum_{dd'=q} \sum_{\substack{c' \bmod d' \\ (c',d,d')=1}} 1 = \sum_{dd'=q} \sum_{c' \bmod d'} \sum_{r | (c',d,d')} \mu(r) = \sum_{r^2 e e' = q} \mu(r) \sum_{f' \bmod e'} 1 = \sum_{r^2 | q} \mu(r) \sigma\left(\frac{q}{r^2}\right),$$

where $\sigma(n)$ is the sum of divisors of n, and we used the notation d=re, d'=re', c'=rf'. The sum on the right-hand side is multiplicative in q, and for a prime power $q=p^{\alpha}$ it equals $q(1+p^{-1})$ as can be seen by inspecting the cases $\alpha=1$ and $\alpha\geqslant 2$ separately. The result follows.

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127, Budapest H-1364, Hungary

Email address: gharcos@renyi.hu

1