sikgráfrás, dualitás.

Kombi 1 → Sikgráfrás:
Evler formula: \(n - e + t = 1 + k \)
\(n - e + t = 2 \) (összefüggésre)
\(e \leq 3n - 6 \) (egyszerű sikgráfrás)
\(e \leq 2n - 4 \) (egyszerű, páros)

5-szintétel: \(\chi(G) \leq 5 \) ha \(G \) sikgráfrás
4-szintétel (Appel-Haken '76, számítógéppel) optimalis
Kuratowski-tétel: \(G \) sikgráfrás \(\iff \) nem tart. topológiás \(K_5,3 \)-at és \(K_5 \)-öt

Fáry-Wagner: \(G \) sikgráfrás \(\Rightarrow \) kerajzolható metszes nélkül egynapos élekkel.
Legyen $G(V, E)$ sikharajzolt graf. $G^*(V^*, E^*)$ dualis:

G^* csúcsai, V^* \iff G lapjai

$v_1^* v_2^* \cdots v_n^*$

G^* élei, E^* \iff G élei

e_1, e_2, \ldots, e_n

G^* összekötő v_i^*-t és v_j^*-t

G összekötő v_i-t és v_j-t

Ebben a leckeiben:

graf = multigraf:

lehetnek hurokélek és párhuz. élek.
Vágaš: min. elhalmaz, aminek az elvéttele növeli a komponensek számát.

Elvağı el: egyedül vágašt alkot.

e, e' soros el: \{e, e\} vágaš.

Dualis: lerajzolt grafhoz van! Más lerajzolás → lehet más dualis.

\[G_1^* \neq G_2^* \]

3,4,3,6 3,5,3,5
G síkbarajzolt, G* dualis.

1. G* összefüggő, síkbarajzolt
2. G és G* elei közé bijeleció
3. G lapjai \iff G* csúcsai
4. soros (párhuzamos) éléhez \iff párhuzamos (soros) éléhez
5. elvágó él (hurok él) \iff hurok él (elvágó él)
6. ha G összefüggő akkor G** = G,
 G csúcsai \iff G* lapjai
7. G köre (vágása) \iff G* vágása (köre)

sikbarajzolt (nincs metszés)

2. G, G^* éléi közti bijekció: definícióból trivi

3. G lapjai $\iff G^*$ csúcsai: def.-ből trivi

4. soros élék \iff párhuzamos élék

párhuzamos élék \iff soros élék
5. elvágó e'1 ↔ hurokel'
hurokel' ↔ elvágó e'1

6. G összefüggő:
G csúcsai ↔ G* lapjai

G* minden lapjában van G-nek csúcsa:
n-e+t = 2 n* - e* + t* = 2
e = e*, n* = t ⇒ t* = n ⇒ G* minden lapjában G-nek PONTOSAN EGY csúcsa van.

⇒ G** = G
Nem összefüggő G-re nem igaz:

\[G \Rightarrow G^* \text{ vágaása} \]
\[G \text{ vágaása} \Leftrightarrow G^* \text{ köre} \]
G, H absztrakt duálisok: $e' \iff e'$

\[\text{Kör} \iff \text{Vágás} \]

\[\text{Vágás} \iff \text{Kör} \]

Ebből elegendő az egyik, a másik következik

G sikgraf: $G^* \iff G$ absztrakt duálisa.

(trivi)

Whitney: G-nek van absztrakt duálisa $\iff G$ sikbanyjosztható.

\iff trivi

\Rightarrow bizt vázlat (ötlet)

Ha G-nek van absztrakt duálisa, akkor a részgrafjai-nah is van.

$e \nexists$ elhagy \iff összehúz
Ha topologikus K_5-neki van abstrakt dualísa: K_5-nek is van.

Hasonlóan $K_{3,3}$-mal (vagy bármimiről)

Tehát G nem sikgráf és van abstrakt dualísa.

Kuratowski: G tartalmaz top. $K_{3,3}$-át vagy top. K_5-öt.

$\implies K_{3,3}$-nak vagy K_5-nek is van abstrakt dualísa.

Eleg belátni: $K_{3,3}$-nak és K_5-nek NINCS a. dualísa.
K_5:

Öt 4 élű vágás:

4-1 él közös.

Két vágás - közös él: 6 élű vágás

Abstrakt duális: H.

Öt 4 hosszú kör, 4-1 él közös.

Még egy 4 hosszú kör!

m_g 4 élű vágás!

m_s: HASONLÓAN

$K_{3,3}$:
Whitney: G sikbarajzolható, G, H gyengén izomorf.
1. H is sikbarajzolható.
2. $G^* H^*$ gyengén izomorf
3. G, G^{**} gyengén izomorf

Biz: $G^* G$ egy dualísa $\Rightarrow G^* H$ absztraktt dualísa.

$H \leftrightarrow G \leftrightarrow G^*$
$el \leftrightarrow el \leftrightarrow el$
$kör \leftrightarrow kör \leftrightarrow vágás \leftrightarrow vágás$

$G^* H^*$ gy. izomorf:
$G \leftrightarrow G^{**}$

$H^* \leftrightarrow H \leftrightarrow G \leftrightarrow G^* \leftrightarrow G^{**}$
$el \leftrightarrow el \leftrightarrow el \leftrightarrow el \leftrightarrow el$
$kör \leftrightarrow vágás \leftrightarrow vágás \leftrightarrow kör \leftrightarrow vágás$
$vágás \leftrightarrow kör \leftrightarrow vágás \leftrightarrow kör$

éppen, a másik következik
Whitney:
G, H gyegeén izomorfák. Ekkor G-ből meghatározható H-t a következő 3 operáció ismételt alkalmazásával: