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I Cn =
[
−1

2 ,
1
2

]n
unit cube in Rn

I H a hyperplane in Rn

I We are interested in Vold−1(Cn ∩ H).

I Due to the convexity and central symmetry of the cube, the
maximal section is always though the centre.

I The n = 2 is uninteresting, max Vol2(C 2 ∩ H) =
√

2.

I The n = 3 case is more complicated. By central symmetry,
each central section of C 3 is either a hexagon or a
parallelogram.
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I The n = 3 requires an elementary case analysis depending on
the direction of the normal vector of H.

I Interestingly, max Vol2(C 3 ∩ H) =
√

2 again, and it is
attained, for example, when H is orthogonal to (0, 1, 1).

I For a central diagonal section (orthogonal to the main
diagonal of C 3) Vol2(C 3 ∩ H) =

√
3/2.

I Hensley (1979) showed that Voln−1(Cn ∩ H) ≤ 5 and
conjectured that it is, in fact, ≤

√
2.

I Ball (1989) proved Hensley’s conjecture (in fact he proved
much more).

I The maximum is attained for H orthogonal to (1, 1, 0, . . . , 0).

I Hensley (1979) also described Selberg’s argument to show
that the volume of the central diagonal section tends to√

6/π as n→∞.
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I K. Ball (1985): if H(u) = u⊥ for u = (u1, . . . , un), then

Voln−1(Cn ∩ H(u)) =
‖u‖2

π

∫ +∞

−∞

n∏
k=1

sin ukt

ukt
dt.

I In fact, Ball proved a more general formula, for a hyperplanes
not necessarily through o, but we do not need that here.

I In our case, H = H(u0) is assumed to be orthogonal to
u0 = (1, . . . , 1), so for such central diagonal cuts

Voln−1(Cn ∩ H) =

√
n

π

∫ +∞

−∞

(
sin t

t

)n

dt.

I It has been known for a long time that

Voln−1(Cn ∩ H)→
√

6

π
.
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I Frank and Riede (2012) determined an explicit, formula for
the volume of intersections of Cn with an arbitrary hyperplane
H by evaluating the (general) integral formula of Ball.

I If one specializes their formula for a central diagonal section,
then one obtains

Voln−1(Cn ∩ H)

=

√
n

2n+1(n − 1)!

n∑
i=0

(−1)i
(
n

i

)
(n − 2i)n−1sign(n − 2i).

I Numerical computations show that the above formula not

only approaches
√

6
π as n→∞, but also seems to be

monotonically increasing for n ≥ 3.
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Figure: Voln−1(C n ∩ H) for 3 ≤ n ≤ 110.

We do not know how to prove the monotonicty directly from this
expression of Frank and Riede, so we will examine the integral of
Ball instead.
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We do not know how to prove the monotonicty directly from this
expression of Frank and Riede, so we will examine the integral of
Ball instead.

7 / 24



I König and Koldobky (2018) proved that, in fact,

Voln−1(Cn ∩ H) ≤
√

6/π for all n ≥ 2.

I Very recently, Aliev (2020) proved that

√
n√

n + 1
≤ Voln(Cn+1 ∩ H)

Voln−1(Cn ∩ H)
,

which is slightly less than monotonicity.
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We start with proving the following result:

Theorem (F. Bartha, F.F., B. Gonzalez)

There exists an integer n0 such that Voln−1(Cn ∩ H) is a strictly
monotonically increasing function of n for all n ≥ n0.

I It will become clear from the proof that getting an explicit
value for n0 is a purely numerical task.

I If one has a bound for n0, then one can verify monotonicity
for all n by directly calculating the section volumes for n < n0

with the formula of Frank and Riede.

I Such a verification also yields, as a corollary, the upper bound
of König and Koldobsky.
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Proof.

I We need to examine the behaviour of

I (n) =
2
√
n

π

∫ +∞

0

(
sin t

t

)n

dt, for n ≥ 3.

I As a first step, we only consider the part of the integral close
to 0, as most of the weight is located there as n→∞.
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I If a > 0 fixed, then∣∣∣∣2√nπ
∫ +∞

a

(
sin t

t

)n

dt

∣∣∣∣ ≤ 2
√
n

π

∫ +∞

a

∣∣∣∣sin t

t

∣∣∣∣n dt
<

2
√
n

π

∫ +∞

a
t−ndt =

2
√
n

π

a−n+1

n − 1
< 2a−n =: e1(n).

I Let

Ia(n) :=
2
√
n

π

∫ a

0

(
sin t

t

)n

dt.

I Then
|I (n)− Ia(n)| < e1(n).

I For 1 < a < π
2 , the error e1(n) is exponentially small in n.
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I We will use Laplace’s method (with an explicit error estimate)
to study the behaviour of Ia(n).

I Let us make the following change of variables in the integral

sin t

t
= e−x

2/6, thus x =

√
−6 log

sin t

t
,

where we define the value of sin t/t to be 1 at t = 0.

I This way sin t/t is analytic everywhere on R, and thus x(t) is
analytic in [0, x(a)]. (Note that x(a) < 1.08.)
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analytic in [0, x(a)]. (Note that x(a) < 1.08.)
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I The Taylor series of x(t) around t = 0 begins as

x = t +
t3

60
+

139t5

151200
+

83t7

1296000
+ . . . .

I On can easily check by simple differentiation that x ′(t) > 0
for all t ∈ [0, a], thus x(t) is strictly monotonically increasing.

I As x(0) = 0, x(t) maps [0, a] bijectively onto [0, x(a)].

I Therefore, x(t) has an inverse t = t(x) : [0, x(a)]→ [0, a].

I Since x ′(t) 6= 0 everywhere in [0, a], the inverse function t(x)
is analytic in [0, x(a)] by the Lagrange Inversion Theorem.
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I We can get the first few terms of the Taylor series of t(x)
around x = 0 by inverting the Taylor series of x(t) at t = 0 as
follows:

t(x) = x − x3

60
− 13x5

151200
+

x7

33600
+ . . . .

I Then

t ′(x) = 1− x2

20
− 13x4

30240
+ R6(x)

is the order 5 Taylor polynomial of t ′(x) around 0 (observe
that the degree 5 term is zero), and

R6(x) =
t(7)(ξ)

6!
x6

for some ξ ∈ (0, x) (depending on x). Lagrange remainder

I Since t(7) is C∞ in [0, x(a)], it attains its maximum, so
|t(7(x)| ≤ R for some R > 0 and every x ∈ [0, x(a)].
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Therefore, after the change of variables, we get

Ia(n) =
2
√
n

π

∫ x(a)

0
e−nx

2/6t ′(x)dx

=
2
√
n

π

∫ x(a)

0
e−nx

2/6

(
1− x2

20
− 13x4

30240
+ R6(x)

)
dx

=
2
√
n

π

∫ x(a)

0
e−nx

2/6

(
1− x2

20
− 13x4

30240

)
dx

+
2
√
n

π

∫ x(a)

0
e−nx

2/6R6(x)dx .
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In order to evaluate the above integrals we will use the central

moments of the normal distribution: If y = 1√
2πσ2

e−
(x−µ)2

2σ2 , then

for an integer p ≥ 0 it holds that

E[yp] =

{
0, if p is odd,

σp(p − 1)!!, if p is even.
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In our case µ = 0 and σ2 = 3/n. Thus, we get that

2
√
n

π

∫ x(a)

0
e−nx

2/6|R6(x)|dx ≤ 2R
√
n

π6!

∫ x(a)

0
e−nx

2/6x6dx

<
2R
√
n

π6!

∫ +∞

0
e−nx

2/6x6dx

=
2R
√
n

π6!

33

n3
5!!

=
9R

8π

1

n5/2

<
R

2

1

n5/2
=: e2(n).
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Notice also that

2
√
n

π

∫ +∞

0
e−nx

2/6

(
1− x2

20
− 13x4

30240

)
dx

=

√
3π

2

2
√
n

π

(
1

n1/2
− 3

20n3/2
− 13

1120n5/2

)
=

√
6

π

(
1− 3

20n
− 13

1120n2

)
.
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The complementary error function is defined as

erfc(x) :=
2√
π

∫ +∞

x
e−τ

2
dτ.

It is known that erfc(x) ≤ e−x
2

for x > 1. Then

2
√
n

π

∣∣∣∣∣
∫ +∞

x(a)
e−nx

2/6

(
1− x2

20
− 13x4

30240

)
dx

∣∣∣∣∣
≤ 2
√
n

π

∫ +∞

x(a)
e−nx

2/6

∣∣∣∣1− x2

20
− 13x4

30240

∣∣∣∣ dx
<

2
√
n

π

∫ +∞

1
e−nx

2/6

(
1 +

x2

20
+

13x4

30240

)
dx

=
√

6πerfc(
√

n/6)

(
13 + 168n + 1120n2

2240n5/2

)
+ e−n/6√n117 + 1525n

10080n5/2
< 5e−n/6 =: e3(n).
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Now, using the monotonicity of e1(n), we obtain that

I (n + 1)− I (n) ≥ (Ia(n + 1)− e1(n + 1))− (Ia(n) + e1(n))

≥ Ia(n + 1)− Ia(n)− 2e1(n).

Furthermore,

Ia(n+1) ≥
√

6

π

(
1− 3

20(n + 1)
− 13

1120(n + 1)2

)
−e2(n+1)−e3(n+1),

and

Ia(n) ≤
√

6

π

(
1− 3

20n
− 13

1120n2

)
+ e2(n) + e3(n).
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Therefore

I (n + 1)− I (n)

≥
√

6

π

(
3

20n(n + 1)
+

13(2n + 1)

1120n2(n + 1)2

)
− 4a−n − (e2(n) + e2(n + 1) + e3(n) + e3(n + 1))

≥
√

6

π

(
3

20n(n + 1)

)
− 4 · 1.1−n − R

n5/2
− 10e−n/6.

Clearly, there exists an n0, such that for all n ≥ n0 the above
expression is strictly positive. Thus, Voln−1(Cn ∩ H) is strictly
monotonically increasing for n ≥ n0. Thus, we have finished the
proof of the main theorem.

I We note that with the same method (but more terms in the
Taylor expansion) we can prove that Voln−1(Cn ∩ H) is a
concave sequence, i.e., 2I (n + 1) ≥ I (n) + I (n + 2) for
sufficiently large n.
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Numerical bounds

I The following rigorous upper bound

|t(7)(x)| ≤ 1.25 for all x ∈ [0, x(a)]

can be obtained using interval arithmetic and automatic
differentiation combined with general analytic methods.

I Comparing this with the above estimate, we obtain that
n0 = 145 is sufficient.

I We can check I (n) for 3 ≤ n ≤ 145 by calculating the exact
value by the Frank-Riede formula:
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Numerical bounds

20 40 60 80 100 120 140

0.00002

0.00004

0.00006

0.00008

Figure: I (n + 1)− I (n) for 50 ≤ n ≤ 145 plotted by Mathematica

Thus, we get the following theorem:

Theorem (F. Bartha, F.F., B. Gonzalez)

Voln−1(Cn ∩ H) is a strictly monotonically increasing function of n
for all n ≥ 3.
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Thank you for your attention.
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