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C" = [—%, %}n unit cube in R”

H a hyperplane in R"”

We are interested in Volg_1(C" N H).

Due to the convexity and central symmetry of the cube, the
maximal section is always though the centre.

The n = 2 is uninteresting, maxVolo(C? N H) = /2.

The n = 3 case is more complicated. By central symmetry,
each central section of C3 is either a hexagon or a
parallelogram.

)

24



ANANANANNNNANNNNNDNNDNONNNN0NNODDDN0D B0

[ronmEEE LB



» The n = 3 requires an elementary case analysis depending on
the direction of the normal vector of H.

24



» The n = 3 requires an elementary case analysis depending on
the direction of the normal vector of H.

> Interestingly, max Volo(C3 N H) = /2 again, and it is
attained, for example, when H is orthogonal to (0,1, 1).

24



» The n = 3 requires an elementary case analysis depending on
the direction of the normal vector of H.

> Interestingly, max Volo(C3 N H) = /2 again, and it is
attained, for example, when H is orthogonal to (0,1, 1).

» For a central diagonal section (orthogonal to the main
diagonal of C3) Volo(C3N H) = +/3/2.

24



The n = 3 requires an elementary case analysis depending on
the direction of the normal vector of H.

Interestingly, max Volo(C3 N H) = /2 again, and it is
attained, for example, when H is orthogonal to (0,1, 1).

For a central diagonal section (orthogonal to the main
diagonal of C3) Volo(C3N H) = +/3/2.

Hensley (1979) showed that Vol,_1(C" N H) <5 and
conjectured that it is, in fact, < v/2.

24



The n = 3 requires an elementary case analysis depending on
the direction of the normal vector of H.

Interestingly, max Volo(C3 N H) = /2 again, and it is
attained, for example, when H is orthogonal to (0,1, 1).

For a central diagonal section (orthogonal to the main
diagonal of C3) Volo(C3N H) = +/3/2.

Hensley (1979) showed that Vol,_1(C" N H) <5 and
conjectured that it is, in fact, < v/2.

Ball (1989) proved Hensley's conjecture (in fact he proved
much more).

24



The n = 3 requires an elementary case analysis depending on
the direction of the normal vector of H.

Interestingly, max Volo(C3 N H) = /2 again, and it is
attained, for example, when H is orthogonal to (0,1, 1).

For a central diagonal section (orthogonal to the main
diagonal of C3) Volo(C3N H) = +/3/2.

Hensley (1979) showed that Vol,_1(C" N H) <5 and
conjectured that it is, in fact, < v/2.

Ball (1989) proved Hensley's conjecture (in fact he proved
much more).

The maximum is attained for H orthogonal to (1,1,0,...,0).

24



The n = 3 requires an elementary case analysis depending on
the direction of the normal vector of H.

Interestingly, max Volo(C3 N H) = /2 again, and it is
attained, for example, when H is orthogonal to (0,1, 1).

For a central diagonal section (orthogonal to the main
diagonal of C3) Volo(C3N H) = +/3/2.

Hensley (1979) showed that Vol,_1(C" N H) <5 and
conjectured that it is, in fact, < v/2.

Ball (1989) proved Hensley's conjecture (in fact he proved
much more).

The maximum is attained for H orthogonal to (1,1,0,...,0).

Hensley (1979) also described Selberg’s argument to show
that the volume of the central diagonal section tends to

\/6/m as n = co.
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i t
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In fact, Ball proved a more general formula, for a hyperplanes
not necessarily through o, but we do not need that here.

In our case, H = H(up) is assumed to be orthogonal to
up = (1,...,1), so for such central diagonal cuts

+oo /g n
Volp_1(C" N H) = ﬁ/ (S”;t) dt.
7T — 00

It has been known for a long time that

V0|n_1(Cn N H) — \/E
7T
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» Frank and Riede (2012) determined an explicit, formula for
the volume of intersections of C” with an arbitrary hyperplane
H by evaluating the (general) integral formula of Ball.

> If one specializes their formula for a central diagonal section,
then one obtains

V0|n_1(Cn N H)

2n+1 (n—1)! Z < > n—2i)" 'sign(n — 2i).

» Numerical computations show that the above formula not
only approaches \/é as n — oo, but also seems to be

monotonically increasing for n > 3.
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Figure: Vol,—1(C" N H) for 3 < n < 110.

We do not know how to prove the monotonicty directly from this
expression of Frank and Riede, so we will examine the integral of
Ball instead.



» Konig and Koldobky (2018) proved that, in fact,
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» Konig and Koldobky (2018) proved that, in fact,

Vol,_1(C"N H) < +/6/7 forall n>2.

» Very recently, Aliev (2020) proved that

Vi _ Vol A(CMHL N H)
Vnt1 - Vol,_1(C"NH)’

which is slightly less than monotonicity.
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We start with proving the following result:

Theorem (F. Bartha, F.F., B. Gonzalez)

There exists an integer ny such that Vol,_1(C" N H) is a strictly
monotonically increasing function of n for all n > ng.

> It will become clear from the proof that getting an explicit
value for ng is a purely numerical task.
» If one has a bound for ng, then one can verify monotonicity

for all n by directly calculating the section volumes for n < ng
with the formula of Frank and Riede.

» Such a verification also yields, as a corollary, the upper bound
of Konig and Koldobsky.
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» If a > 0 fixed, then
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> Let
2 2 /sint\"
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» If a > 0 fixed, then
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If a > 0 fixed, then
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> Let
2v/n (2 [sint\"

Then

v

[1(n) = la(n)| < ex(n).

For 1 < a < 7, the error e1(n) is exponentially small in n.

v

2 +o0o 2 —n+1
ﬁ/ t"dt = Vs <2a " =:e(n).
m a
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» We will use Laplace’s method (with an explicit error estimate)
to study the behaviour of I,(n).
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On can easily check by simple differentiation that x’(t) > 0

for all t € [0, a], thus x(t) is strictly monotonically increasing.

As x(0) = 0, x(t) maps [0, a] bijectively onto [0, x(a)].
Therefore, x(t) has an inverse t = t(x) : [0, x(a)] — [0, a].
Since x'(t) # 0 everywhere in [0, a], the inverse function t(x)
is analytic in [0, x(a)] by the Lagrange Inversion Theorem.
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» We can get the first few terms of the Taylor series of t(x)
around x = 0 by inverting the Taylor series of x(t) at t =0 as
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» We can get the first few terms of the Taylor series of t(x)
around x = 0 by inverting the Taylor series of x(t) at t =0 as
follows:

t(x)—x—X3— 13x° n x7 n
o 60 151200 33600
» Then ) .
13x
)=1-> - 22X . R
£ () 20 ~ 30040 T o)

is the order 5 Taylor polynomial of t’(x) around 0 (observe
that the degree 5 term is zero), and

(™
Ro(x) = © 6!(5)X6

for some £ € (0, x) (depending on x). Lagrange remainder
» Since t(7) is C> in [0, x(a)], it attains its maximum, so
|t(7(x)| < R for some R > 0 and every x € [0, x(a)].
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Therefore, after the change of variables, we get

l,(n) =

2\/>/x(a) —nx2/6 ( J e

_2vn —nx /6 x?  13x*
x _ X R
/ 20 ~ 30240 T Re(x) ) dx

2 4
2f / o2/ X 13x dx
20 30240

+ 2\f/ e_”xz/6R6(x)dx
T Jo
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In order to evaluate the above integrals we will use the central
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In order to evaluate the above integrals we will use the central

;. bew?
e 202 | then

moments of the normal distribution: If y =

V2no?
for an integer p > 0 it holds that
0, if pis odd,

E[yP] =
i oP(p— 1), if pis even.
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In our case ;1 = 0 and 02 = 3/n. Thus, we get that

2\ﬁ/ ( )e*"X2/6|R6(x)|dx < 2Ry/n [ )e*”X2/6x6dx
T 0 6! 0
2Rﬁ +o0
w6l Jo
2Rﬁ335”
6! nd7
9R 1
87 n5/2
R 1
2 52

2
e ™7 /6,0 4y

=: ex(n).
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Notice also that
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)
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The complementary error function is defined as
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The complementary error function is defined as
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It is known that erfc(x) < e for x > 1. Then

oo 2 x?  13x4
—nx*/6 12 _ 27 )\ d
o) ( 20 30240> *

2y/n /*Wenxz/ﬁ ) x2  13x*
a)

2/

™

IN

20 30240

2y/n [T o x2  13x4
-V nx - d
T /1 ¢ 1750 " 30000 ) &

13+1 1120n?
_ Vorere( 7/6)< 3+168n+ 0n>

2240n5/2
N e,n/ﬁﬁm +1525n

<
10080n5/2

56 =: e3(n).
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Now, using the monotonicity of e;(n), we obtain that
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> l(n+1) — [,(n) — 2e1(n).

Furthermore,

6 3 13
a(n+1) = \/; (1 T 20(n+1) 1120(n + 1)2>_62("+1)_e3("+1)’

and

6 3 13
<y /=-(1-—=> - ,
L(n) < <1 2on 1120”2) + ex(n) + e3(n)
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Therefore

I(n+1)—1(n)

6 3 13(2n + 1)
= \/; <20n(n 1) T 1120m(n+ 1)2)
— 427" — (ex(n) + ex(n+ 1) + e3(n) + e3(n + 1))

6 3 R
>/ =) —4-117"— — —10e""/°.
- \/; <20n(n+ 1)> n®/2 Oc
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Clearly, there exists an ng, such that for all n > ng the above
expression is strictly positive. Thus, Vol,_1(C" N H) is strictly
monotonically increasing for n > ng. Thus, we have finished the
proof of the main theorem. O

» We note that with the same method (but more terms in the
Taylor expansion) we can prove that Vol,_1(C, N H) is a
concave sequence, i.e., 2/(n+ 1) > I(n) + I(n + 2) for
sufficiently large n.
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» The following rigorous upper bound
1t (x)] < 1.25 for all x € [0, x(a)]

can be obtained using interval arithmetic and automatic
differentiation combined with general analytic methods.

» Comparing this with the above estimate, we obtain that
ng = 145 is sufficient.

» We can check /(n) for 3 < n < 145 by calculating the exact
value by the Frank-Riede formula:
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Figure: I(n+ 1) — I(n) for 50 < n < 145 plotted by Mathematica
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Thus, we get the following theorem:

Theorem (F. Bartha, F.F., B. Gonzalez)

Vol,—1(C" N H) is a strictly monotonically increasing function of n
for all n > 3.
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Thank you for your attention.
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