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Superpatterns

Pattern Containment

We say that a permutation p1p2 · · ·pn contains the shorter
permutation q1q2 · · ·qk as a pattern if there is a subsequence of
entries in p that relate to each other as the entries of q.

That is, p contains q as a pattern if there is a subsequence of k
entries pi1pi2 · · ·pik so that pia < pib if and only if qa < qb.
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Superpatterns

Example
The permutation p = 57821346 contains the pattern q = 132 as
shown in the figure.
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Figure: Containing the pattern 132.
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Superpatterns

k-Superpatterns

What is the shortest permutation that contains all patterns of
length k?

Let us call such a permutation a k-superpattern.
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Superpatterns

Small values of n

It is easy to see that 132 is a 2-superpattern, and 25314 is a
3-superpattern.

Also, both are optimal for their k, so if sp(k) is the length of the
shortest k-superpattern, then sp(1) = 1, sp(2) = 2, and
sp(3) = 5.
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Superpatterns

A 3-superpattern

Ex: The permutation 25314 is a 3-superpattern.
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Superpatterns

An exhaustive search is feasible by computer for the next two
values of n, resulting in sp(4) = 9 and sp(5) = 13.
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Superpatterns

Upper Bounds

I The upper bound sp(k) 6 k2 is trivial. See 1 4 7 2 5 8 3 6 9.
This was pointed out by Richard Arratia, who posed the
problem of superpatterns in 1999.

I Eriksson, Eriksson, Linusson, and Wästlund proved an
upper bound of (approximately) 2k2/3 in 2007.
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Superpatterns

AllisonMiller (2009)

Theorem. The inequality sp(k) 6
k2 + k

2
holds.

Observation. What Miller actually proves is that there is a word of
this length over the alphabet [k+ 1] that contains all patterns of length
k as subsequences.
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Superpatterns

Engen and Vatter (2019)

Theorem. The inequality sp(k) 6

⌈
k2 + 1

2

⌉
holds.

•

•

•

•

•

•

•

•

•

•

•

•

•

3 8 1310 5 2 7 12 9 4 1 6 11

10 of 39



Superpatterns

Is This It?

No. For k = 6, this bound is 19, but there is a 6-superpattern of
length 17,

6 14 10 2 13 17 5 8 3 12 9 16 1 7 11 4 15,

found by Arnar Arnarson at Permutation Patterns 2018. This
turns out to be optimal, after a gigantic computation.
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Superpatterns

Lower Bounds

Clearly, if there exists a k-superpattern of length n, then n has to
be long enough to contain k! distinct patterns of length k.

So

k! 6
(
n

k

)
,

and that leads to
k2

e2 6 n,

So k2/e2 6 sp(k).
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Superpatterns

Chroman, Kwan, and Singhal (2020)

Interestingly, this trivial lower bound is quite difficult to
improve, because most ideas do not lead to an improvement
that is significant enough to increase the constant 1/e2.

Theorem. The inequality 1.000076k2/e2 6 sp(k) holds.
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Superpatterns

Superpermutations

Posed by Karp, and included by Knuth in a 1972 Stanford techni-
cal report entitled “Selected Combinatorial Research Problems”.

What is the shortest string of {1, 2, . . . ,n} containing all
permutations on n elements as subsequences? (For n = 3,
1213121; for n = 4, 123412314321; for n = 5, M. Newey
claims the shortest has length 19.)

Still to this day, the only exact values known are those for n 6 7,
which were computed by Newey to be

1, 3, 7, 12, 19, 28, 39

in his 1973 Stanford technical report.
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Superpatterns

Superpermutations

Theorem. (Newey 1973) 6 n2 − 2n+ 4.

Theorem. (Adleman 1974) 6 n2 − 2n+ 4.
Theorem. (Koutas and Hu 1975) 6 n2 − 2n+ 4.
Theorem. (Galbiati and Preparata 1976) 6 n2 − 2n+ 4.
Theorem. (Mohanty 1980) 6 n2 − 2n+ 4.
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Superpatterns

Mohanty’s construction

Write down n copies of 1, and between two consecutive 1s,
insert any permutation of the set {2, 3, · · · ,n}. This is a string of
n2 − n+ 1 entries.

Remove n− 3 entries as follows. Let 1 < i < n− 1. Remove an
entry j from the ith segment, then in segment i− 1, move the
entry j of that segment into the last position, and in segment
i+ 1 move the entry j of that segment into the first position.

12345 1 2345 1 2345 1 2345 1

12345 1 234 1 523 1 42351
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Superpatterns

Theorem. (Zălinescu 2011) 6 n2 − 2n+ 3 for n > 10.

Theorem. (Radomirović 2012) 6

⌈
n2 −

7n
3

+
19
3

⌉
for n > 7.

Theorem. (Kleitman and Kwiatkowski 1976) > n2 − cεn
7/4+ε.
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Theorem. (Zălinescu 2011) 6 n2 − 2n+ 3 for n > 10.

Theorem. (Radomirović 2012) 6
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Superpatterns

Containing as Factors, Over [n] (Superfactors)
Theorem (Ashlock and Tillotson 1993). There is a word of length

n! + (n− 1)! + (n− 2)! + · · ·+ 2! + 1

over the alphabet [n] that contains all permutations of [n] contiguously.

Conjecture (Ashlock and Tillotson 1993). The above construction
is best possible.

Proposition (Ashlock and Tillotson 1993). Any such word has
length at least n! + (n− 1)! + n− 2.

Proposition (Houston 2014). There is a word of length

6! + 5! + 4! + 3! + 2! = 872

over the alphabet [6] that contains all permutations of [6] contiguously.
18 of 39
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Superpatterns

Theorem (Egan, 19 October 2018). There is a word of length n! +
(n − 1)! + (n − 2)! + (n − 3)! + n − 3 over the alphabet [n] that
contains all permutations of [n] contiguously.

22 of 39



Superpatterns
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Superpatterns

The Lower Bound

Proposition (Ashlock and Tillotson 1993). > n!+(n−1)!+n−2.

Question on 4Chan (2011).

You have an n episode tv series. You want to watch the
episodes in every order possible. What is the least number of
episodes that you would have to watch?

Over lapping is allowed. For example, in the case of n =
2, watching episode 1, then 2, then 1 again, would fit the
criteria.

The orders must be continuous. For example, (1, 2, 1, 3) does
NOT contain the sequence (1, 2, 3).
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Superpatterns

The 4Chan Lower Bound
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Superpatterns

Upper bound (as of now). 6 n!+(n−1)!+(n−2)!+(n−3)!+n−3.

Lower bound (as of now). > n! + (n− 1)! + (n− 2)! + n− 3.

Conjecture. n! + (n− 1)! + (n− 2)! + (n− 3)! + n− 4.
This conjecture was disproved by Robin Houston for n = 7.

Thank you.
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