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Empty triangles in x-monotone drawings of Kn

by Martin Balko

Source: Proposed by Jan Kynčl in 2014, personal communication.

Definitions:

• In a drawing of a graph the vertices are mapped to distinct points of the plane and every edge
is represented by a simple continuous arc connecting the images of its endpoints.

• A drawing of a graph is semisimple if no two adjacent edges cross. A drawing is simple if it
is semisimple and, moreover, no two edges have more than one common crossing.

• A curve γ in R2 is x-monotone if every vertical line intersects γ in at most one point. A
drawing of a graph in which every edge is represented by an x-monotone curve is called
x-monotone.

• In a semisimple drawing of Kn, the edges of three pairwise connected vertices form a Jordan
curve which we call a triangle. We say that a triangle T is empty if there is no vertex in the
bounded component of R2\T . Let t(D) denote the number of empty triangles in a semisimple
drawing D.

a b c d e a b c d e

Figure 1: Simple (left) and semisimple (right) x-monotone drawings of K5 with four empty triangles.

Problem 1. What is the minimum number of empty triangles in a simple x-monotone drawing
of Kn?

Formally, we are interested in the (asymptotic) growth rate of the function f(n) = min t(D)
where the minimum is taken over all simple x-monotone drawings D of Kn. The same question can
be formulated for drawings where we allow independent edges to cross more than once.

Problem 2. What is the minimum number of empty triangles in a semisimple x-monotone drawing
of Kn?

Related results:

• Obviously, we have f(n) ≥ n − 2 and the same bound holds for semisimple x-monotone
drawings. We should have the bound f(n) ≥ 2n− 6.

• The following table summarizes the minimum number of empty triangles for small cases:

n 3 4 5 6 7 8 9 10 11
Simple x-monotone 1 2 4 6 10 14 18
Semisimple x-monotone 1 2 4 6 8 10 12 ≤ 14 ≤ 16
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• There is a characterization of simple and semisimple x-monotone drawings of Kn using small
forbidden subconfigurations in [3].

• In simple (not necessarily x-monotone) drawings of Kn the number of empty triangles is
known to be at least n [1] and at most 2n − 4 [5]. The upper bound is tight for n ≤ 8 [1].
However in both these estimates we also count exterior-empty triangles, that is, a triangle T
is considered empty if there is no vertex in at least one of the two components of R2 \ T .

• In rectilinear drawings of Kn, that is, drawings where every edge is represented by a line
segment, the number of empty triangles is at least n2 − 32

7
n + 22

7
[2] and at most 1.6196n2 +

o(n2) [4].

• Combining the previous results with the fact that every rectilinear drawing of Kn is x-
monotone, we have Ω(n) ≤ f(n) ≤ O(n2).
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The square of a directed graph

by Zoltán L. Blázsik

This problem deals with the square of an oriented graph. An oriented graph is a simple graph
(no loops or multiple edges) in which each edge is replaced by an arc. Thus you produce a simple
directed graph (without multiple edges or “reversed arcs”).

To get the square of an oriented graph (or any directed graph) you leave the vertex set the same,
keep all the arcs, and for each pair of arcs of the form (u, v), (v, w) you add the arc (u,w) if that
arc was not already present.

Problem 1. Prove that for every oriented graph, D, there exists a vertex whose out-degree at least
doubles when you square the oriented graph.

Remarks. The question was posed by Nate Dean here: http://dimacs.rutgers.edu/~hochberg/
undopen/graphtheory/graphtheory.html.

Nate Dean learned this problem from Paul Seymour. David Fisher proved this theorem for
tournaments (i.e., orientations of complete graphs).

A Fake Geometry Problem

by Neal Bushaw

A graph G is strongly regular if there are parameters k, λ, µ ∈ N such that G is k-regular,
every pair of neighbors have exactly λ common neighbors, and every pair of non-neighbors have
exactly µ common neighbors. A considerable generalization of this is the distance regular graph
– for every pair of vertices u, v at distance i, the number of vertices at both distance j from u and
distance k from v is determined only by i, j, k (and not by the specific choices of u, v). Things that
involve distance are geometric, so I hereby declare this a geometry related problem.

It is easy to prove that all bipartite strongly regular graphs are hamiltonian. Is the same true
for distance regular graphs?

Conjecture 1. Every bipartite distance regular graph is hamiltonian.

(This is likely hard to prove, so I propose some simple problems to start.)

Problem 2. Prove or disprove: every bipartite distance regular graph with diameter three is hamil-
tonian.

This has been proven computationally (there are finitely many such graphs). A combinatorial
proof ought to be doable, and would give nice insight to proving the higher diameter cases.

Problem 3. Prove or disprove: every bipartite distance regular graph with diameter four is hamil-
tonian.

And then, induction?
Remarks. The above problems and conjectures are closely related to conjectures of Lovász in

the 1970s about vertex transitive and distance transitive graph hamiltonicity. The conjectures were
generated independently in May 2018 by an automated conjecturing project at VCU. There are
several related conjectures made by the software that may give additional directions for work. (I.e.,
is it true that every perfect distance regular graph is hamiltonian?)

http://dimacs.rutgers.edu/~hochberg/undopen/graphtheory/graphtheory.html
http://dimacs.rutgers.edu/~hochberg/undopen/graphtheory/graphtheory.html
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The flip diameter of diagonal rectangulations

by Jean Cardinal

A diagonal rectangulation is a partition of the unit square into axis-aligned rectangles, such
that every rectangle intersects the (upper left to bottom right) diagonal. Combinatorial equivalence
classes of such rectangulations are in bijection with Baxter permutations and so-called twin binary
trees.

The flip graph on these rectangulations has one vertex per rectangulation, and two are adjacent
whenever the corresponding rectangulations differ by a flip, as illustrated below.

Problem 1. What is the diameter of the flip graph of diagonal rectangulations with n rectangles?

The best known upper bound is due to Ackerman et al. (LATIN’14), and is 11n.

Chromatic number of the odd distance graph of the plane

by Gábor Damásdi

Let G be the graph whose vertices are the points of the plane and two point is connected by an
edge if they are odd integer distance apart.

Problem 1. What is the chromatic number of G? Is it even finite?

Problem 2. Which graphs are subgraphs of G?

Remark 1. Kn,n,n is a subgraph, so every 3 colorable graph is a subgraph of G. On the other hand
K4 and the 5-wheel graph are not subgraphs. (The 5-wheel graph is a six vertex graph that you get
by adding an extra vertex to C5 and connecting it to all other vertices)
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On an Generalized Turán problem for trees

by Beka Ergemlidze

Let ex(n,H, F ) denote the maximum possible number of copies of H in an F -free graph on n
vertices. Alon and Shikhelman started the systematic study of ex(n,H, F ) and showed that for any
two trees H and F , we have ex(n,H, F ) = Θ(nm) where m is an integer depending on H and F .

Recently, Shikhelman asked the following question.

Question 1. Is it true that for any graph H and tree T , ex(n,H, T ) = Θ(nm) for some integer m?

In other words, can the exponent be a fraction if a tree is forbidden? As a first step, it would
be interesting to at least prove the above statement for a large class of trees or disprove it.

References

[1] Noga Alon and Clara Shikhelman. “Many T copies in H-free graphs.” Journal of Combinatorial
Theory, Series B 121 (2016): 146–172.

Equilateral sets in `dp

by Nóra Frankl

In a normed space X a subset S ⊂ X is equilateral if the distance between any two points of S
is one.

Problem 1 (Kusner). Prove that the cardinality of an equilateral set in `dp is at most d + 1 for
2 < p <∞.

Problem 2 (Kusner). Prove that the cardinality of an equilateral set in `d1 is at most 2d.

Remarks. Problem 1 is easy for p = 2 and solved for p = 4 by Swanepoel. The best general
upper bounds are due to Alon and Pudlák: An equilateral set in `dp has at most cpd

(2p+2)/(2p−1) for
some constant cp, and an equilateral set in `d1 has at most cd log d points for some constant c.
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Max-min (non) orientable genus of a (complete) bipartite graph

by Radoslav Fulek

Let G = (V,E) be a simple graph. The orientable genus of G, denoted by g(G), is the minimum
g ∈ N such that G can be embedded, i.e., drawn without crossings, on an orientable surface with
orientable genus g. Informally, a surface of orientable genus g is a 2-sphere with g handles. It is a
folklore result that g(G) exists for every graph, see [1, Section 3.4] for a more precise definition of
the orientable genus and its variants.

An embedding of a connected graph on a surface is cellular if each of its faces is homeomorphic
to an open disc. A minimum genus embedding of a connected graph is always cellular, and a cellular
embedding of G is up to an orientation preserving homeomorphism of the surface determined by
the set cyclic orders of the edges at the vertices of G, a.k.a. rotations. Thus, computing g := g(G)
corresponds to figuring out a set of rotations of its vertices that yields an embedding of G on an
orientable surface of genus g.

The maximum orientable genus gmax(G) of a connected graph G is the maximum g such that G
has a cellular embedding on an orientable surface of genus g.

The following questions about a variant of the orientable genus posted recently on mathover-
flow https://mathoverflow.net/questions/295766/max-min-genus-of-a-bipartite-graph by
Greg Bodwin was brought to my attention by Jan Kynčl.

Let G be a connected bipartite graph with bipartition V = V1 ] V2. We define the max-min
genus, denoted by gmax−min(G) as follows. First, Player 1, who is trying to maximize genus, picks a
circular ordering of the edges at each of the vertices in V1. Then Player 2, who is trying to minimize
genus, views Player 1’s choice and picks a circular ordering of the edges at each of the vertices in V2.
Then gmax−min(G) is defined as the orientable genus of G after orderings are fixed under optimal
play.

Question 1. Is there an interesting upper bound on gmax−min(G) in terms of |V1| and |V2|?

Clearly, g(G) ≤ gmax−min(G) ≤ gmax(G), and by Euler’s formula we immediately get gmax(G) ≤⌊
|E|−|V |+1

2

⌋
.

Question 2. Can we asymptotically improve upon gmax−min(G) ≤
⌊
|E|−|V |+1

2

⌋
(if G has sufficiently

many edges in terms of the number of vertices)?

Question 3. What is the value of gmax−min(Kn,m)?

If this is too hard. One can try to prove non-trivial upper and lower bounds.
The variant of the problem for non-orientable genus g̃(G) [1, Section 3.4], in which the second

player can also choose the signs on the edges, seems more tractable. One can start with the
complete bipartite graph Kn,m, n > 2, m > 2, for which the value of the non-orientable genus is⌈

(n−2)(m−2)
2

⌉
[1, Theorem 4.4.7] and the non-orientable maximum genus mn−n−m+1 [1, Theorem

4.5.1].

Question 4. What is the max-min non-orientable genus of Kn,m?

References

[1] Mohar, B., and Thomassen, C. Graphs on surfaces, vol. 10. JHU Press, 2001.

https://mathoverflow.net/questions/295766/max-min-genus-of-a-bipartite-graph
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Sperner families of separable sets of points

by Dániel Gerbner

Suppose we have n points on the plane. We say that a subset of the points is separable if it can
be strictly separated from the remaining points by a line. We say that a family of sets is Sperner
if none of the sets contains another set from the family.

Problem 1. Given n points, what is the maximum size of a Sperner family of separable sets?

Remarks. A separable set of cardinality k is often called k-set. Géza Tóth showed that there
exists a set of n points in the plane with neΩ(

√
logk) k-sets. This gives a lower bound neΩ(

√
logn). On

the other hand it is known that the total number of sparable sets is O(n2). More info and links
about k-sets can be found here: http://jeffe.cs.illinois.edu/open/ksets.html.

Colouring unit-distance graphs of lattices

by Tamás Hubai

De Grey’s recent breakthrough paper[1] shows that the plane cannot be 4-coloured without
unit distances within a single colour class. In particular we have a computer-assisted proof that
Z[ω1, ω3, ω4] is not 4-colourable where ωt = exp(i arccos(1− 1

2t
)). We also know that Z[ω1, ω3] only

has a finite number of 4-colourings, which implies the previous claim.

Problem 1. Remove computer dependence from claims about the 4-colourings of Z[ω1, ω3].

Remarks. The set of valid colourings is described at [2]. Here is a short summary. Any colouring
of the triangular grid Z[ω1] that extends to a colouring of Z[ω1, ω3] consists of alternating stripes
of two colours each, recurring with a period of 8. Rotation by ω3 around a vertex yields the same
colouring as rotation by either ω2

1 or ω−2
1 , with the same choice for all vertices.

Even if a ring S = Z[z1, . . . , zt] has an infinite number of colourings, we are interested in its

asymptotics, so we define the colouring freedom per vertex as λk(S) = lim sup log ck(Si)
|Si| where ck is

the number of k-colourings and Si ⊂ S denotes the set of vertices with description length ≤ i. For
instance, λ4(Z) = 3, λ4(Z[ω1]) ≈ 1.5 and λ4(Z[ω1, ω3]) = 0.

Problem 2. We know that if S has a finite number of k-colourings then the plane cannot be k-
coloured. Does the same hold for λk(S) = 0, i.e. a subexponential number of k-colourings?

Problem 3. Can we bound λk(S) from above using λk(Z[z1, . . . , zt−1])?

References

[1] de Grey, The chromatic number of the plane is at least 5, arxiv.org/abs/1804.02385

[2] Polymath16 blog, fourth thread, dustingmixon.wordpress.com/?p=4902#comment-4366

[3] Polymath16 wiki, michaelnielsen.org/polymath1/?Hadwiger-Nelson_problem

http://jeffe.cs.illinois.edu/open/ksets.html
arxiv.org/abs/1804.02385
dustingmixon.wordpress.com/?p=4902#comment-4366
michaelnielsen.org/polymath1/?Hadwiger-Nelson_problem
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Proper 3-coloring points with respect to disks and related problems

by Balázs Keszegh

Problem 1. Is it true, that there exists an m such that for any pseudo-disk arrangement any finite
set of points admits a 3-coloring such that any pseudo-disk that contains at least m points contains
two points with different colors.

For pseudo-disks m = 3 is not enough as observed by Géza Tóth, but m = 4 might be enough.
For disks m = 2 is not enough but m = 3 might be enough.

This conjecture also has a natural dual counterpart:

Problem 2. The members of any pseudo-disk arrangement admit a 3-coloring such that any point
that is contained in at least m pseudo-disks is contained in two pseudo-disks with different colors.

Remarks. These problems are asked in [4], for disks asked already in [2], which case is also still
open. Solving these problems for disks would be already very nice.

At least for homothets of a convex polygon we know that there is such a 3-coloring (for some m
depending on the polygon) [4]. In both the primal [7] and dual cases such 2-colorings do not exist
(whatever is m) even if instead of all disks we just take unit disks [5]. If 4 colors can be used then
we know that this is possible even for m = 2. E.g., in the point coloring case for disks, 4-coloring
the (planar) Delaunay-graph is good, for the dual setting see [1] for disks and [6, 3] for pseudo-disks.
In [3] a common generalization is posed about coloring intersection hypergraphs of two pseudo-disk
families. Even in this general case 4 colors are enough [3], but with 3 colors the problem is open.

References
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8th Emléktábla Workshop 9

Poset Ramsey numbers

by Dániel Korándi

For a poset P , the k-color poset Ramsey number Rk(P ) is the smallest integer N such that any
k-coloring of the elements of the N -dimensional Boolean lattice QN (i.e., the poset on the power
set 2[N ] of [N ] = {1, . . . , N} with the relation ⊆) contains a monochromatic induced copy of P .
Axenovich and Walzer [1] showed (in 10 lines) that 2n ≤ R2(Qn) ≤ n2 + 2n

Problem 1. Improve the lower or the upper bound for R2(Qn) (or both).

As for more colors, Cheng et al. [2] proved R3(Q2) = 6, and asked if Rk(Q2) = 2k (the 2-colored
case R2(Q2) = 4 was observed in [1]).

Problem 2. Prove that Rk(Q2) > 2k.

Of course, it would also be interesting to prove Rk(Q2) = 2k, or any other good bound on this
quantity. It is known [1] that Rk(P ) = Θ(k) for every poset P .

References

[1] Axenovich, Maria; Walzer, Stefan, Boolean lattices: Ramsey properties and embeddings. Order
34. 2017, 287-298.

[2] Cheng, Yen-Jen; Li, Wei-Tian; Liu, Chia-An; Wu, Zi-Ying, Ramsey-type of problems on posets
in the Boolean lattices. In preparation.
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Reversing permutations

by István Kovács

Two permutations π1, π2 of [n], as vectors of length n are reversing if there are two coor-
dinates which contain the same elements in π1 and π2, but in reversed order. For example:
{8, 7, 6, 5, 4, 3, 2, 1} and {8, 7, 4, 5, 6, 3, 2, 1} are reversing since in both permutations the third and
fifth coordinates contain the same two elements (4 and 6), but the order of these two elements in
the two permutations is different.

Conjecture 1. [J. Körner] There is a constant C such that the maximal number of pairwise re-
versing permutations of [n] is at most Cn

It is not hard to construct an exponentially large pairwise reversing family of permutations as
the “Cartesian product” of two pairwise reversing constructions is also pairwise reversing. The best
upper bound follows from the following result of Cibulka.

Theorem 1 (Cibulka). The maximal number of pairwise not reversing permutations of [n] is
nn/2+o(n).

Cibulka’s result can be utilized as follows. Let G be a graph whose vertices are the permutations
of [n] and two vertices are connected by an edge when the corresponding permutations are reversing.
The maximal number of pairwise reversing permutations is G’s clique number: ω(G). Cibulka’s
result says that G’s independence number, α(G) ≈ nn/2. It is easy to see that G is vertex-transitive.
It is a folklore result that for vertex-transitive graphs ω(G)α(G) ≤ |V (G)|. (For our proof, the lower
bound on α(G) is enough which is the easier part of Cibulka’s result.)

An equivalent reformulation: Two perfect matchings on 2n vertices are C4-creating if their union
(the union of their edges) contains C4 as a subgraph.

Conjecture 2. There is a constant D such that the maximal number of pairwise C4-creating perfect
matchings on 2n vertices is at most D2n

It is not hard to prove and it is certainly not hard to feel that Conjecture 1 is equivalent
to Conjecture 2 but we will not prove their equivalence now. The advantage of the language of
conjecture 2 is that it is easier to see that there is a large number of paiwise not C4-creating perfect
matchings. For many values of 2n, there are bipartite, C4-free and (roughly)

√
2n-regular graphs by

a theorem or Reiman. Using the van der Warden theorem, it is easy to show that any such graph

must contain roughly
√

2n
2n

= (2n)n perfect matchings. These perfect matchings are clearly not
C4-creating since not just every pairwise union, but the union of the whole system is also C4-free.

It is also unknown whether the maximal number of pairwise C2k-creating perfect matchings is
less than an exponential function of the ground set.
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Tilings with noncongruent triangles

by Andrey Kupavskii

Problem 1. Is it true that in any tiling of the plane by triangles of unit area and perimeter

(i) there are two isometric triangles of the same orientation?

(ii) there are k pairwise isometric triangles for any k ∈ N?

Together with J. Pach and G. Tardos [1] we showed that in such a tiling there are no two triangles
sharing a side, and thus no two isometric triangles (but, potentially, with different orientation). This
answered a question of R. Nandakumar [2].

References

[1] A. Kupavskii, J. Pach, G. Tardos, Tilings with noncongruent triangles, to appear in European
Journal of Combinatorics, arXiv:1711.04504

[2] R. Nandakumar, Filling the plane with non-congruent pieces, Blog entries, http://

nandacumar.blogspot.in, December 2014, January 2015, June 2016

Two games on a square grid

by Dániel Lenger

Square achievement game: Two players alternately write O’s (first player) and X’s (second
player) in the unoccupied cells of an n× n grid. The first player (if any) to occupy four cells at the
vertices of a square with horizontal and vertical sides is the winner. What is the outcome of the
game given optimal play?

Problem 1. What is the outcome of the Square achievement game if both player play with optimal
strategy?

http://www.openproblemgarden.org/op/a_game_on_an_n_x_n_grid

Transversal achievement game: Two players alternately write O’s (first player) and X’s (second
player) in the unoccupied cells of an n× n grid. The first player (if any) to occupy a set of n cells
having no two cells in the same row or column is the winner.

Problem 2. What is the outcome of the Transversal achievement game if both player play with
optimal strategy?

http://www.openproblemgarden.org/op/a_transversal_achievement_game_on_a_square_grid

Remarks. Both question were asked by Martin Erickson.
For the Square achievement game there are some known results when n is small, mostly proved

by computer: http://archive.ysjournal.com/article/
an-investigation-of-ericksons-square-game-using-the-minimax-algorithm/

Roland Bacher and Shalom Eliahou proved that every 15×15 binary matrix contains four equal
entries (all 0’s or all 1’s) at the vertices of a square with horizontal and vertical sides. So the game
must result in a winner for n ≥ 15.

http://nandacumar.blogspot.in
http://nandacumar.blogspot.in
http://www.openproblemgarden.org/op/a_game_on_an_n_x_n_grid
http://www.openproblemgarden.org/op/a_transversal_achievement_game_on_a_square_grid
http://archive.ysjournal.com/article/
an-investigation-of-ericksons-square-game-using-the-minimax-algorithm/
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Bichromatic intersections

by Leonardo Mart́ınez

This problem is related to the Colorful Helly Theorem, and more precisely, to a recent de-
velopment that was accepted for SoCG 2018 and can be found on the following link: https:

//arxiv.org/abs/1803.06229. In that paper the authors state a dimensionality conjecture. This
proposal concerns the first unknown case of the conjecture.

Let F and G be two finite families of convex sets on R3. We say that F and G have the colorful
intersection hypothesis if for every A ∈ F and B ∈ F the intersection A ∩B is non-empty.

Problem 1. Can we find a constant k or a positive real number α ∈ (0, 1) for which any of the
following results is true?

• If F and G have the colorful intersection hypothesis, then either F or G can be pierced with
k lines.

• If F and G have the colorful intersection hypothesis, then either F has a transversal line
through at least α|F | sets or G has a transversal line through at least α|G| sets.

• If F is pairwise intersecting, then F can be pierced with k lines.

• If F is pairwise intersecting, then F has a transversal line through at least α|F | sets.

Remarks.
Clearly i) is the strongest and implies the rest, but proving any of the results would be interesting.
Under the colorful intersection hypothesis, a projection argument combined with the Colorful

Helly Theorem on the line yields that for any vector v, for at least one of F or G we can find a
transversal hyperplane through every set.

Luis Montejano proved that if |F | = |G| = 3 and they satisfy the colorful intersection hypothesis,
then there is either a line through the three sets of F or a line through the three sets of G. This
result suggests that the conjecture could be “dimensionally” correct. Unfortunately, this result
cannot be applied directly to the problem since there cannot be any (p, q)-like theorem for lines on
R3.

https://arxiv.org/abs/1803.06229
https://arxiv.org/abs/1803.06229
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Colored spanning trees

by Viola Mészáros

There are n vertices colored by 2 < k < n colors. A multicolored spanning tree is a spanning
tree where the endpoints of each edge are of distinct colors. A minimum (or maximum) spanning
tree is a spanning tree with minimum (or maximum) total edge length.

Problem 1. Compute the minimum (or maximum) multicolored spanning tree with k > 2 colors.

In fact the minimum or maximum spanning tree is to be computed in a complete k − partite
geometric graph.

Remarks.
Biniaz, Bose, Eppstein, Maheshwari, Morin and Smid present Θ(n log n)-time algorithms that

solve the minimum and maximum spanning tree problems for k = 2, and they give O(n log n log k)-
time algorithms for k > 2. A faster algorithm is desired when k > 2 or a matching lower bound.

You may find the previous results here: https://arxiv.org/pdf/1611.01661.pdf.

On an Extremal Problem for Poset Dimension

by Abhishek Methuku

Let f(n) be the largest integer such that every poset on n elements has a 2-dimensional subposet
on f(n) elements. What is the asymptotics of f(n)? This question is due to Dorais.

Applying Dilworth’s theorem it is easy to show that f(n) ≥
√
n. Guśpiel, Micek and Polak

showed the best known upper bound: f(n) ≤ 4n2/3 + o(n2/3). Their main idea was to take a
(k × k × k)-cube with a natural order on its elements and show that it does not contain a large
2-dimensional subposet by using a multidimensional version of Marcus-Tardos theorem first proved
by Klazar and Marcus.

In summary the best known bounds on f(n) are the following.

Theorem 1. √
n ≤ f(n) ≤ 4n2/3 + o(n2/3).

It would be interesting to determine if the lower bound is true.
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Lower bound on point guards in orthogonal art galleries

by Tamás Róbert Mezei

An orthogonal polygon in the plane is a polygon composed of axis-parallel lines segments, such
that the line segments only intersect in their end-vertices. An orthogonal art gallery is a region
bounded by an orthogonal polygon. Two points in a gallery have r-vision of each other, if the
minimal axis-parallel rectangle containing both of them is contained in the gallery. A point guard
is a point in the gallery equipped with r-vision (the region covered by a point guard is called an
r-star). A horizontal mobile guard (alternatively, vertical) is a horizontal line segment contained in
the gallery; it covers a point x in the gallery if x is r-visible from a point on its line segment.

Let P be an orthogonal art gallery. Let p be the minimum number of point guards required to
cover P . Let mH (alternatively, mV ) be the minimum number of horizontal (vertical) mobile guards
required to cover P . Informally, the goal of the following problem is to understand the relationship
between these parameters.

Problem 1. Find a non-trivial lower bound on p which is a function of mV , mH , and/or some
other attributes of P .

Motivation. With Ervin Győri1, I recently proved that p ≤ b4
3
(mV + mH − 1)c. The upper

bound can be computed in linear time. The result is sharp, as demonstrated on Figure 1. It would be
nice to have an estimate complementing this upper bound. Trivially, max{mH ,mV } ≤ p. Figure 2
demonstrates that without using other parameters nothing stronger holds. This weak inequality
and our previously mentioned result already imply that 4

3
(mV +mH − 1) is an 8

3
-approximation of

p. I expect that a non-trivial lower bound will help us come up with an upper bound (preferably
one which can still be computed in linear time) which approximates p to a tighter factor than 8

3
.

Figure 1: mV + mH = 13, p = 16

Figure 2: mV ,mH ≥ 1 arbitrary, p = max{mV ,mH}

1https://trm.hu/publication/mobile-vs-point-guards/

https://trm.hu/publication/mobile-vs-point-guards/
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Discrete square boundaries

by Dániel T. Nagy

Let B ⊂ Z2 be a finite set and let S be the set of points that are centers of (discrete) square
boundaries contained in B.

Problem 1. How small can |B| be if |S| is given?

In [1] we showed that |B| ≥ Ω
(
(|S|/ log(|S|))7/8

)
, and there are constructions for |B| ≤

O(|S|7/8). We should look for the exact order of magnitude and possibly for strong constants
in the bounds.

If this proves to be too easy, there is similar problem in n dimensions about k-skeletons of cubes

and their centers. Thornton [2] showed constructions with |B| ≤ O
(
|S|1−

n−k

2n2

)
and proved that

|B| ≥ Ω (|S|α) holds for every α < 1− n−k
2n2 .
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Crossing families of triangles

by Zoltán Lóránt Nagy

Problem 1. Consider N points in the 3-D space so that no four points lie on a plane. Each triple
of points determines a triangle. How large a family of mutually crossing triangles must there be?
We say that two triangles cross if they intersect on their interiors.

Remarks. The 2-D variant of this problem, concerning line segments of a plane determined by
point pairs from a planar point set, is discussed for example in the paper of B. Aronov, P. Erdős,
W. Goddard, D. J. Kleitman, M. Klugerman, J. Pach, and L. J. Schulman, namely in Crossing
Families, Combinatorica 14 (1994), 127-134. It has been shown that there must always be a family
of size

√
N/12, but it is believed that there must always be families of much larger size as well.
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A Helly type question on piercing certain set families in Rd

by Márton Naszódi

The transversal (or piercing) number of a set family F is the minimum number t such that there
is a t-point set that intersects all members of F .

Problem 1. Let F be a finite family of

(a) half-spaces in Rd,

(b) half-spaces in Rd not containing the origin,

(c) spherical caps on Sd−1,

(d) translates of a convex body/convex polytope/Euclidean ball/... in Rd,

(e) positive homothets of a convex body/convex polytope/Euclidean ball/... in Rd,

(f) your favorite objects.

Is there a Helly–type theorem for piercing F? More formally, is there a c = c(k, d), such that if
any subfamily of c members of F has a transversal of size at most k, then so does F?

Warning 1: If F is any family of convex sets, then there is no such c, even for d = k = 2. See
Klee’s rosette on p.12 of [1].

Warning 2: A family of translates of a convex polytope in R3 may have arbitrarily large VC–
dimension [2].
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[2] Naszódi, M., and Taschuk, S. On the transversal number and VC-dimension of families of
positive homothets of a convex body. Discrete Math. 310, 1 (2010), 77–82.
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Counting subgraphs

by Cory Palmer

Let H and F be graphs. Denote the maximum number of copies of the graph H in an n-vertex
F -free graph by ex(n,H, F ).

When H is the graph of a single edge, K2, then this is just the ordinary Turán function, ex(n, F ).
The systematic study of ex(n,H, F ) (for graphs beyond K2) was initiated by Alon and Shikhelman.
A famous example counts pentagons in triangle-free graphs. Hatami, Hladký, Král’, Norine and
Razborov and independently Grzesik proved,

ex(n,C5, K3) ≤
(n

5

)5

.

For complete graphs, Erdős showed, that if t < k, then

ex(n,Kt, Kk) =

(
k − 1

t

)(
n

k − 1

)t
+ o(nt).

However, many specific cases for H and F remain open. A example is,

Problem 1. Determine ex(n,C5, K4).

This is also interesting for other cycles Ck and complete graphs Kt. Another (likely much harder)
problem posed by Erdős,

Problem 2. Determine ex(n,K3, Kr,r,r).

Bichromatic pencils

by Dömötör Pálvölgyi

A pencil is a collection of some lines through a point, called the center of the pencil. If the
points of the plane are colored, then call a pencil bichromatic if there is a color that is present on
all the lines of the pencil such that this color is different from the color of the center of the pencil.

Problem 1. Given any non-monochromatic coloring of the plane with finitely many colors, and
m directions, α1, . . . , αm, is it true that there is a point p and an angle ϕ such that the pencil
determined by the lines of direction α1 + ϕ, . . . , αm + ϕ through p is bichromatic?

Remarks. I can only prove the statement for m = 2; a natural easiest open case is when there
are m = 3 lines that close a 60◦ angle.

The question is related to polymath16, you can see here how: https://dustingmixon.wordpress.
com/2018/05/05/polymath16-fourth-thread-applying-the-probabilistic-method/#comment-4306.

I’ve already posed this problem on mathoverflow: https://mathoverflow.net/questions/

299616/bichromatic-pencils.

In fact, it might be even possible to get that all the lines of the pencil are intersected by
some another line such that the intersection points are all of the same color (and this color dif-
fers from the color of the center of the pencil). When can, in general, ask under what condi-
tions it is possible to find a similar copy of an almost monochromatic finite point configuration
(S, s0), where almost monochromatic means that all the points of S have the same color, and
the color of s0 is required to be different. I cannot even answer this if (S, s0) ⊂ R. Naturally,
I’ve posed also this problem on mathoverlow: https://mathoverflow.net/questions/300604/

almost-monochromatic-point-sets.

https://dustingmixon.wordpress.com/2018/05/05/polymath16-fourth-thread-applying-the-probabilistic-method/#comment-4306
https://dustingmixon.wordpress.com/2018/05/05/polymath16-fourth-thread-applying-the-probabilistic-method/#comment-4306
https://mathoverflow.net/questions/299616/bichromatic-pencils
https://mathoverflow.net/questions/299616/bichromatic-pencils
https://mathoverflow.net/questions/300604/almost-monochromatic-point-sets
https://mathoverflow.net/questions/300604/almost-monochromatic-point-sets
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Independent sets in tangled grids

by Dömötör Pálvölgyi

A poset P is called an n × n tangled grid if it can be partitioned into chains A1, . . . , An, and
also into chains B1, . . . , Bn, which have the additional property that |Ai ∩Bj| ≤ 1 for any i, j.

Problem 1. What is the maximum number f(n) of antichains that can occur in an n× n tangled
grid?

It was observed in [2] that f(n) also gives an upper bound for the maximum possible number of
stable matching among n men and n women. Here the Ai correspond to the men and the Bj to the
women of the stable matching, and every intersection corresponds to an operation called rotation.
In fact, since in each rotation there are at least two-two men and women, some elements of this
poset should be contracted, but for an upper bound it will do.

It was proved in [2] that f(n) ≤ Cn for some large enough C. The goal would be to determine the
best possible C, which I conjecture to be 4 (with possibly some polynomial multiplicative factor).
This is attained in the (untangled) n × n grid ordered as a diamond (with a unique smallest and
largest element), there the answer is

(
2n
n

)
.

A possible approach to bound f(n) is to denote the maximum number of antichains among
n × n tangled grids with m elements by F (m) = Fn(m) (note that f(n) ≤ F (n2)) and apply the
counting argument used also for the famous proof of the Crossing-lemma https://en.wikipedia.

org/wiki/Crossing_number_inequality#Proof. This, however, doesn’t give any good bounds on
C. Nevertheless, I sketch it below.

We obviously have F (m) ≤ 2m. Denote by r the number of (x, y) ∈
(
P
2

)
that are in strict

relation, that is, for which x <P y and there is no i or j for which x, y ∈ Ai or ∈ Bj (i.e., they are
not contained in the same chain). It is easy to see that r ≥ m − 2n. If we keep every chain with
probability p = 3n

m
, then the new poset will have n′ = pn chains2, m′ = p2m elements and r′ = p4r

strict relations. The inequality r′ ≥ m′−2n′ is equivalent to p4r ≥ p2m−2pn, which gives r ≥ m3

27n2 .

This means that for some element p ∈ P is in (strict) relation with at least m2

27n2 other elements.

Depending whether p is a part of the antichain of not, we get F (m) ≤ F (m− 1) +F (m− 1− m2

27n2 )
(using the convexity of F ). This is practically the same recursion as the one obtained in [1], which
finishes the proof. Unfortunately, the exponent is quite bad, and it has been improved very little,
so this approach might not give any good bound.

In [2] they obtain the weaker recursion that some element p ∈ P is in relation with Ω
(
m

3
2

n
3
2

)
other

elements, but both from above and below, which gives a simpler but weaker recursion.
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The Chen-Chvátal conjecture for set systems

by Balázs Patkós

A famous theorem of DeBruijn and Erdős states that every set of n non-collinear points in the
plane determine at least n lines. One can define lines in metric spaces in the following way: if
(M, d) is a metric space with x, y ∈M, then

xy = {x, y} ∪ {z ∈M : d(x, y) + d(y, z) =

= d(x, z)} ∪ {z ∈M : d(x, z) + d(y, z) =

= d(x, y)} ∪ {z ∈M : d(x, y) + d(x, z) = d(y, z)}

The Chen-Chvátal conjecture states that if there is no pair x, y ∈ M with xy = M, then M
contains at least |M| distinct lines. I would be pretty happy to see the following special case solved:
M is a family of finite sets and d is the Hamming distance. (More importantly, Vašek Chvátal would
also be delighted.)

Tiling Zn

by István Tomon

A tile T is a finite subset of the discrete integer lattice Zn. A subset T ′ of Zn is a copy of T
if T ′ is isometric to T . Recently, it was proved by Leader, Gruslys and Tan [1] that for any tile
T ⊂ Zd there exists a positive integer n such that Zn can be completely tiled with copies of T . In
particular, they proved that if T ⊂ [k]d, then we can choose n = exp(100(d log k)2).

Let n(T ) denote the smallest n for which Zn can be tiled with copies of T . What can we say
about n(T ) in general? Is it true that n(T ) can be bounded by a function of |T | and d alone? This
question seems already challenging for one dimensional tiles.

Conjecture 1. (Gruslys,Leader, Tan) For every positive integer t there exists a positive integer
n(t) such that if T ⊂ Z with |T | = t, then n(T ) ≤ n(t).

Also, there are no examples (to the best of my knowledge) of tiles for which n(T ) is large, that
is, for which n(T ) is super-polynomial in k (or in |T |). It would be interesting to find families of
tiles which have particularly bad properties regarding tiling.
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Saturation version of the Erdős-Szekeres theorem

by Casey Tompkins

Problem 1. Let f(n) denote the minimum number of points one can take in the plane in general
position and containing no convex n-gon, such that the addition of any further point yields a convex
n-gon. Find good bounds (for starters, the order of magnitude) of this function.

Remarks. For n ≤ 5 the value of f(n) is equal to that of the Erdős-Szekeres extremal problem.
I think (but can no longer reconstruct) that for n = 6 the functions differ. My guess is that f(n)
is linear in n or at worst polynomial.

One could consider the weaker condition where the point set is allowed to contain a convex
n-gon, but any further point must yield a new convex n-gon. However, in a conversation years ago
with David Malec, we noticed that here the answer is to simply take 2n − 4 points in a circle. It
is easy to check that such a configuration is (weakly) saturated. Moreover, if we have a set S of
only 2n − 5 points, then it cannot contain both an n − 1 cap and an n − 1 cup since a cap and a
cup can intersect in at most 2 points. Thus, we could add a new point far north or far south of the
configuration without creating a convex n-gon.
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Edges of multigraphs

by Michael Kaufmann, Torsten Ueckerdt, János Pach, Géza Tóth

A drawing of a graph G, with possible parallel edges, but no loops, is called nice, if
1. parallel edges do not cross,
2. both of the two regions determined by two parallel edges contain a vertex of G,
3. any two non-parallel edges cross at most once.

Determine the maximum number of edges of a graph G of n vertices that has a nice drawing.
Our best bounds are cn2 and cn3.

János Pach, Géza Tóth: A crossing lemma for multigraphs, SoCG 2018.

Geometric Ramsey numbers

by Tomáš Valla

Complete geometric graph KP on point set P ⊂ R2 in general position is a complete graph with
vertex set P , whose edges are drawn as straight-line segments. If P is in convex position, then KP

is a convex complete geometric graph.
Given a graph G, the geometric Ramsey number of G, denoted by Rg(G), is the smallest integer

n such that every complete geometric graph KP on n vertices with edges arbitrarily coloured by two
colours contains a monochromatic non-crossing copy of G. The convex geometric Ramsey number
of G, denoted Rc(G), is defined analogously, only KP is convex complete geometric graph.

Problem 1. Does there exist a polynomial p(n), such that for every n and every outerplanar graph
G on n vertices, the geometric Ramsey number satisfies Rg(G) ≤ p(n)?

Problem 2 (Károlyi). Does there exists a universal constant c such that Rg(G) < cn2 for every
outerplanar graph G with n vertices?

Problem 3. For a path Pn it is known that Rc(Pn) = 2n− 3 ≤ Rg(Pn) ≤ O(n3/2). Try to improve
the bounds.

The last (?) paper on the topic is https://arxiv.org/pdf/1308.5188.pdf.

https://arxiv.org/pdf/1308.5188.pdf
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Turán numbers of ordered 6-cycles

by Máté Vizer

An ordered graph is a simple graph G = (V,E) with a linear ordering on its vertex set. We
say that the ordered graph H is an ordered subgraph of G if there is an embedding of H in G that
respects the ordering of the vertices. The Turán problem for a set of ordered graphs H asks the
following. What is the maximum number ex<(n,H) of edges that an ordered graph on n vertices
can have without containing any H ∈ H as an ordered subgraph? When H contains a single ordered
graph H, we simply write ex<(n,H).

The interval chromatic number of an ordered graph H, is the minimum number of intervals the
(linearly ordered) vertex set of H can be partitioned into, so that no two vertices belonging to the
same interval are adjacent in H.

Pach and Tardos [2] started the systematic study of the Turán numbers of ordered graphs. For
example they proved an ordered analogue of the Erdős-Stone-Simonovits theorem. A consequence
of this result is that the Turán number of ordered graphs with interval chromatic number larger
than 2 is asymptotically determined.

In [1] we investigated the Turán number of some families of ordered 6-cycles with interval
chromatic number 2.

Problem 1. What is the order of magnitude of ex<(n,C), where C is an ordered 6-cycle with
interval chromatic number 2?

You can find the ”conjecture version” of this problem in [1] (Conjecture 2).
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Cover half graph with complete bipartite graph

by Zhiyu Wang

A difference graph H(a, b; f) is a bipartite graph on a + b vertices with partite sets U =
{u1, . . . , ua} and W = {w1, . . . , wb}, equipped with a non-increasing function f : [a] → [b] such
that f(1) = b and, for all i ∈ [a], N(vi) = {w1, . . . , wf(i)} if f(i) ≥ 1. The definition of H above is
symmetric with respect to the roles of U and W . That is, if H(a, b; f) is a difference graph, then
the function g(j) := max{i : f(i) ≥ j} witnesses that H(b, a; g) = H(a, b; f).

A difference graph cover of a graph G is a family H of subgraphs of G such that E(G) =⋃
H∈HE(H) and each H is a difference graph. For a vertex v ∈ G, we use mult(v,H) to denote

the number of difference graphs in H that contain v. The local difference graph cover number of G,
denoted by ldc(G) is defined as

ldc(G) = min

{
max
v∈V (G)

{mult(v,H)} : H is a difference graph cover of G

}
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Similarly, the local bipartite graph cover number of G, denoted by lbc(G) is defined as

lbc(G) = min

{
max
v∈V (G)

{mult(v,H)} : H is a bipartite graph cover of G

}
Because every nonempty complete bipartite graph is a difference graph, it is clear that ldc(G) ≤

lbc(G) for every graph G. It is not very hard to show that for every difference graph H = H(m,n; f),
we have lbc(H) ≤ dlog2(m+ 1)e, noting ldc(H) = 1. As a result, for any graph G with v vertices,
lbc(G)/ldc(G) = O(log v).

Proposition 1. Let H = H(m,n; f) be a difference graph. Then lbc(H) ≤ dlog2(m+ 1)e. Conse-
quently, for all graphs G on v vertices,

ldc(G) ≤ lbc(G) ≤ ldc(G) dlog2(v/2 + 1)e .
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Figure 1: Young diagrams are given which represent complete bipartite graph covers (partitions,
in fact) of the edge set of Hn = H(n, n, fn) with fn(i) = n + 1 − i for n = 3, 7, 15, respectively.
The cases for n = 3, 7 are labeled. The cover for H3 corresponds to the graphs {1, 2, 3} × {1},
{1} × {2, 3}, and {2} × {2}. The cover for H15 shows lbc(H15) ≤ 3.

Remark 2. It may be convenient to visualize H = H(m,n; f) as a Young diagram in which the
ith row has length f(i), for i ∈ [m], so each square corresponds to an edge in the difference graph.
(See Figure 1.) A complete bipartite graph cover is equivalent to a cover of the Young diagram
with generalized rectangles. That is, a bipartite graph corresponds to the product set S × T so that
S ⊆ [m], T ⊆ [n] and S × T is contained entirely in the Young diagram. Then lbc(H) is the
maximum number of generalized rectangles in any row or column.

In Proposition 1, we establish an upper bound on lbc(H) for difference graphs H that is loga-
rithmic in the smallest partition class, however it is not clear whether this bound is achieved. We
would like to determine the largest value of lbc(H) over all difference graphs H. For difference graph
Hn = H(n, n; fn) with fn(i) = n + 1 − i, the construction in Figure 1 for H15 can be extended to
show lbc(Hn) ≤ log(n + 1) − 1 when n + 1 is a power of 2 and n ≥ 15, but the following question
remains:

Problem 1. Let n + 1 be a power of 2 and let Hn = H(n, n; fn) be the difference graph such that
fn(i) = n+ 1− i. What is the exact value of lbc(Hn)?

This problem was raised by Heather Smith in our joint paper in [1] .
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Obstructions to shellability

by Russ Woodroofe and Andrés David Santamaŕıa-Galvis

Before stating some questions, let us recall that...
A simplicial complex on a finite vertex set V is a set family ∆ ⊆ P(V ) which is closed under

taking subsets. A member σ of ∆ is a face of ∆, and it has dimension dimσ := |σ|− 1. Notice that
the empty set is also a face of ∆ with dim∅ = −1. A maximal face with respect to inclusion is a
facet and we say that a complex is pure if all the facets have the same dimension. For a face τ of
∆, the link of τ in ∆ is defined by link∆(τ) := {γ ∈ ∆ : γ ∩ τ = ∅ , γ ∪ τ ∈ ∆}

In a simplicial complex, a sequence σ1, σ2, . . . , σt of the facets is called a shelling if it satisfies

that
(⋃j−1

i=1 σi

)
∩ σj is a pure (dimσj − 1)-dimensional subcomplex for every 2 ≤ j ≤ t, with σ

denoting the set of all faces included in σ. The complex is shellable if it has a shelling.
An obstruction to shellability (OTS) is a minimal non-shellable complex with the property that

every induced subcomplex is shellable. A related notion is of a cd-obstruction to shellability (cd-
OTS), which is non-shellable but has every proper induced subcomplex and every proper link
shellable.

The OTS notion was introduced by Wachs in [1] almost 20 years ago. She showed that for every
positive integer d there is an OTS of dimension d. Then, she asked whether there are finitely many
OTS in each dimension. Nowadays it is known only for very low dimensions. For instance, there
is no obstructions to shellability of dimension 0, a unique obstruction of dimension 1, and OTS of
dimension 2 have at most 7 vertices.

Question 1. From the previous discussion, it is almost natural to ask ourselves in a Ramsey way,
what is the number of vertices that a d-dimensional OTS can have?

Bounds for these numbers are also welcomed and similar questions can be stated for cd-OTS.

On the other hand, OTS has been fully characterized for a complete family of simplicial com-
plexes: Given a finite graph G we can get the independence complex ∆(G) whose facets are the
maximal independent sets of G. Woodroofe characterized OTS for those kind of simplicial com-
plexes in [2] proving that the OTS here are exactly the independence complexes of the cycles Cn,
where n = 4 or n ≥ 6. With the goal to extend these results to hypergraphs, an interesting starting
problem would be:

Problem 2. Characterize OTS that are independence complexes of 3-uniform hypergraphs or non-
uniform hypergraphs with hyperedges of cardinality 2 and 3.
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