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Beyond planarity of graphs

by Eyal Ackerman

A topological graph is a graph drawn in the plane with its vertices as distinct points and its edges
as Jordan arcs that connect the corresponding points and do not contain any other vertex as an
interior point. Every pair of edges in a topological graph has a finite number of intersection points,
each of which is either a common endpoint or a crossing point. It is usually assumed that exactly
two edges cross at every crossing point. A topological graph is called simple, if every pair of its
edges intersect at most once. If every edge is a straight-line segment, then the graph is geometric.

A plane graph is a topological graph with no crossings. There are several ways to generalize the
notion of planarity. Call a topological graph k-quasi-planar if it has no k pairwise crossing edges.
Hence, a plane graph is 2-quasi-planar. The following is a well-known and rather old conjecture
(see e.g., [9, 15]).

Conjecture 1. For any integer k ≥ 2, every n-vertex k-quasi-planar graph has Ok(n) edges.

This conjecture was verified for k = 3 [4, 6, 17], for k = 4 [3], and (for any k) for convex geometric
graphs [10]. For k ≥ 5 the currently best upper bounds on the size of n-vertex k-quasi-planar graphs
are n(log n)O(log k) by Fox and Pach [11], and, for simple topological graphs, Ok(n log n) due to Suk
and Walczak [20].

It is likely that the following is easier to prove than Conjecture 1.

Conjecture 2. Call two edges in a geometric graph virtually crossing, if a line that contains one
edge crosses the other edge. Then an n-vertex geometric graph with no k pairwise virtually crossing
edges has Ok(n) edges.

Another possible generalization of a plane graph is a k-planar topological graph, which is a
topological graph in which every edge is crossed at most k times. The notion of 1-planarity was
introduced in 1965 by Ringel [19], and since then many properties of k-planar graphs have been
studied. Let ek(n) denote the maximum number of edges in a k-planar topological graph with n > 2
vertices, and let e∗k(n) denote the same quantity for simple topological graphs. Clearly, e0(n) =
3n−6. It was shown by Pach and Tóth [18] that e∗k(n) ≤ 4.108

√
kn and that e∗k(n) ≤ (k+3)(n−2)

for 0 ≤ k ≤ 4 (equality holds for 0 ≤ k ≤ 2 for infinitely many values of n). Pach et al. [16] observed
that the latter bound applies also for not necessarily simple topological graphs when k ≤ 3, and
proved a better bound for k = 3, namely, e3(n) ≤ 5.5n − 11. The author recently proved that
e∗4(n) ≤ 6n− 12 [2]. The last two bounds are tight up to an additive constant.

Determining ek(n) or e∗k(n) for small values of k, apart from being an interesting problem on its
own, leads to better lower bounds in the famous Crossing Lemma that states that every topological
graph with n vertices and m ≥ 4n edges has at least cm

3

n2 crossings [5, 13]. This lemma is tight,
apart from the multiplicative constant c. The recent bound on e∗4(n) implies that that c > 0.0345,
whereas the best upper bound is c < 0.09 [18].

Problem 3. Improve the bounds on the multiplicative constant in the Crossing Lemma, for example,
by determining e5(n).

Any improved lower bound for the Crossing Lemma, immediately implies improved bounds for
its many applications, such as the maximum number of incidences between points and lines in the
plane. Another example is the following nice conjecture due to Albertson.
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Conjecture 4. The crossing number of a graph G is at least the crossing number of Kχ(G).

The Albertson conjecture is known to hold for small values of r = χ(G): For r = 5 it is equivalent
to the Four Color Theorem, whereas for r = 6, r ≤ 12, and r ≤ 16, it was verified by Oporowskia
and Zhao [14], Albertson, Cranston, and Fox [7], and Barát and Tóth [8], respectively. Barát and
Tóth [8] have also verified the conjecture for n-vertex graphs such that n ≤ r + 4 or n ≥ 3.57r,
while the recent bound on e∗4(n) implies that the Albertson conjecture holds also when r ≤ 18, and
when n ≥ 3.03r.

Returning to k-planar graphs, it is easy to see that a k-planar topological graph G can be
decomposed into k + 1 plane graphs. Thus, a 1-planar graph can be decomposed into two plane
graphs. However, recall that an n-vertex 1-planar graph has at most 4n− 8 edges, which suggests
that a 1-planar graph might be decomposed into sparser graphs. Indeed, it was shown in [1] that a
1-planar graph can be decomposed into a plane graph and a plane forest. Since we know that the
size of a 2-planar graph is at most 5n− 10 [18], the following is also possible.

Problem 5. Is it true that a 2-planar graph can be decomposed into a plane graph and two plane
forests?

Obviously, it would also be interesting to consider decompositions of k-planar graphs for k > 2.

Another way to allow crossings but still get a graph that is not ‘far’ from begin planar, is to
require the crossings to be connected in a certain way. For example, call a simple topological graph
fan-planar if for every edge e every two edges that cross e share a common vertex. Note that every
fan-planar graph is 3-quasi-planar and therefore has O(n) edges. Hence, the interesting question is
to determine exactly the maximum size of a fan-planar graph.

Problem 6. Is it true that an n-vertex fan-planar topological graph has at most 5n− 10 edges?

This bound, if true, is tight. It is only known to hold if for each edge e every two edges that
cross e share a common vertex on the same side of e [12] (it would also be interesting to simplify
this rather long and technical proof).

Here is another way that crossing edges might be regarded as ‘close’ to each other.

Problem 7. Determine the maximum number of edges in an n-vertex (simple) topological graph in
which for every pair of crossing edges e and e′ there is a crossing-free edge that connects an endpoint
of e and an endpoint of e′.
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Erdős-Hajnal and their descendents

by János Pach

1. Erdős-Hajnal conjecture. A classic result of Erdős and Szekeres [8] in Ramsey theory states
that every graph on n vertices contains a clique or an independent set of size at least 1

2
log n. In

[6], Erdős showed that this bound is tight up to a constant factor by showing that there exists a
graph on n vertices, for every integer n > 1, with no clique or independent set of more than 2 log n
vertices.

In [7], Erdős and Hajnal showed that given a graph F , the family G(F ) of all graphs that
do not contain F as an induced subgraph have much stronger Ramsey-type properties. They
showed that every graph on n vertices in G(F ) contains a clique or independent set of size ec1

√
logn,

where c1 = c1(F ) is a suitable constant. They “conjectured” that one can always find a clique or
independent set of size nc2 , where c2 = c2(F ). Despite much attention by various researchers in
the area, the Erdős-Hajnal conjecture remains open [4]. It was shown in [3] that the Erdős-Hajnal
conjecture is equivalent to the following.

Conjecture 1. For any tournament T , every T -free tournament of n vertices has a transitive
subtournament of size at least nε, where ε = ε(T ) is a positive constant.

This conjecture is known to be true for all tournaments T with at most 5 vertices. In contrast,
the original Erdős-Hajnal conjecture is open already for F = C5.

Problem 2. Verify the Erdős-Hajnal conjecture for special forbidden graphs or tournaments.

One can obtain interesting instances of the above problem using geometric constructions. A
string graph is the intersection graph of a set of continuous curves in the plane. That is, we assign
a vertex to each curve, and connect two vertices by an edge if and only if the corresponding curves
intersect. It is well known and easy to see that no string graph contains an induced subgraph
isomorphic to the 15-vertex graph obtained from K5 by subdividing each of its edges by a vertex.
Thus, if the Erdős-Hajnal conjecture is true, then so is the following statement.

Conjecture 3. There is an absolute constant ε > 0 such that every string graph of n vertices has
a clique or an independent set of size at least nε.

This conjecture is true for intersection graphs of segments [18] and, more generally, for the
intersection graphs of collections of curves, any two of which have at most k points in common,
where k is a fixed integer [11]. In particular, it was shown by Larman et al. [15] that the intersection
graph of any collection of n segments in the plane has a clique or an independent set of size at least
n1/4.

Conjecture 4. There exists ε > 0 such that the intersection graph of n segments in the plane has
a clique or an independent set of size at least n1/4+ε.

Let l1 and l2 be two non-vertical lines in 3-space. If l1 passes over l2, we write l1 � l2.

Problem 5. Estimate the largest ε > 0 such that from any collection of n lines in general position
in 3-space we can select nε members that are totally ordered by the relation �.
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Why do geometrically defined graphs and hypergraphs have nicer Ramsey-type properties than
the generic ones? On a “philosophical” level, we can say that these graphs have lots of interesting
structural properties that an “average” graph does not have. It seems that from the point of
view of Ramsey theory, random or random-like graphs show the worst behavior, so excluding them
significantly modifies the answers. In particular, in many cases we can introduce some natural partial
orders on a family of n geometric objects, which enable us to use Dilworth’s theorem, stating that
for every partial order we can find a chain or an antichain of size at least

√
n. Ramsey’s theorem

implies the existence of chains or antichains of size only log n.

2. Perfect regularity lemmas and Ramsey-type theorems for semi-algebraic graphs.
Szemerédi’s regularity lemma [22] is one of the most powerful tools in modern combinatorics. It was
introduced by Szemerédi in his proof of the Erdős-Turán conjecture on long arithmetic progressions
in dense subsets of the integers.

In its simplest version, the regularity lemma gives a rough structural characterization of all
graphs. A partition is called equitable if any two parts differ in size by at most one. According to
the lemma, for every ε > 0 there is K = K(ε) such that every graph has an equitable partition
of its vertex set into at most K parts such that all but at most an ε fraction of the pairs of parts
are ε-regular. For a pair (Vi, Vj) of vertex subsets, e(Vi, Vj) denotes the number of edges in the

graph running between Vi and Vj. The density d(Vi, Vj) is defined as
e(Vi,Vj)

|Vi||Vj | . The pair (Vi, Vj)

is called ε-regular if for all V ′i ⊂ Vi and V ′j ⊂ Vj with |V ′i | ≥ ε|Vi| and |V ′j | ≥ ε|Vj|, we have
|d(V ′i , V

′
j ) − d(Vi, Vj)| ≤ ε. The number of parts K grows extremely fast as function of 1/ε. It

follows from the proof that K(ε) may be taken to be of an exponential tower of twos of height
ε−O(1). Gowers [12] used a probabilistic construction to show that such an enormous bound is
indeed necessary. Consult [9] for other proofs that improve on various aspects of the result.

Alon et al. [2] (see also Fox et al. [13]) established a strengthening of the regularity lemma for
point sets in Rd equipped with a semi-algebraic relation E. To be more precise, let V be an ordered
point set in Rd, and let E ⊂

(
V
2

)
. We say that E is a semi-algebraic relation on V with complexity

at most t if there are at most t polynomials g1, . . . , gs ∈ R[x1, . . . , x2d], s ≤ t, of degree at most t
and a Boolean formula Φ such that for vertices u, v ∈ V such that u comes before v in the ordering,

(u, v) ∈ E ⇔ Φ(g1(u, v) ≥ 0; . . . ; gs(u, v) ≥ 0) = 1.

At the evaluation of g`(u, v), we substitute the variables x1, . . . , xd with the coordinates of u, the
variables xd+1, . . . , x2d with the coordinates of v. We may assume that the semi-algebraic relation
E is symmetric, i.e., for all points u, v ∈ Rd, (u, v) ∈ E if and only if (v, u) ∈ E. We assume that
the dimension d and complexity t are fixed parameters, and n = |V | tends to infinity.

It was shown in [2] that any point set V ⊂ Rd equipped with a semi-algebraic relation E ⊂
(
V
2

)
has an equitable partition into a bounded number of parts such that all but at most an ε-fraction
of the pairs of parts (V1, V2) behave not only regularly, but homogeneously in the sense that either
V1 × V2 ⊆ E or V1 × V2 ∩ E = ∅. Their proof is essentially qualitative: it gives a poor estimate for
the number of parts in such a partition. Fox, Pach, and Suk [10] gave a much stronger quantitative
form of this result, showing that the number of parts can be taken to be polynomial in 1/ε.

Consequently, the intersection graph G = (V,E) of any collection of n semi-algebraic sets in
Rd of complexity at most t has two subsets V1, V2 ⊂ V with |V1|, |V2| ≥ c(d, t)n such that either
V1 × V2 ⊆ E or V1 × V2 ∩ E = ∅. In such cases, we say that the family of intersection graphs has
the strong Erdős-Hajnal property. Indeed, this property implies the existence of a positive constant
ε = ε(d, t) > 0 such that all n-vertex subgraphs of the family have a clique or an independent set
of size at least nε. This provides another reason why the family of intersection graphs of segments
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satisfy this condition, that is, has the (weak) Erdős-Hajnal property. Notice that string graphs are
not semi-algebraic with bounded complexity, therefore, we cannot apply these techniques to them.
Moreover, they do not have the strong Erdős-Hajnal property [19]. However, they may well have
the weak one.

One can also attempt to estimate off-diagonal Ramsey numbers in the semi-algebraic setting.
Let R(s, n) denote the smallest positive integer R such that every Ks-free graph of R vertices has an
independent set of size n. With a little abuse of notation, hiding the dependence on the parameters
d and t, we denote by R∗(s, n) the same quantity restricted to (d-dimensional) semi-algebraic graphs
of bounded complexity (t). It is known [1], [14] that R(3, n) = Θ(n2/ log n) and, for fixed s > 3,
R(s, n) = nΘ(1). For a long time, it was conjectured that R∗(s, n) = O(n), but Pawlik et al. [20]
exhibited triangle-free intersection graphs of Ω(n log log n) segments with no independent set of size
n.

Conjecture 6. If a system of n log log n segments has no three pairwise intersecting members, then
it has Ω(n) disjoint ones.

Problem 7. What is the smallest c ≥ 1 such that R∗(3, n) = nc ?

There are 4-dimensional triangle-free semi-algebraic graphs with bounded complexity showing
that c ≥ 4/3. Note that each segment can be described by 4 real coordinates. Thus, segment
intersection graphs “live” in 4 + 4 = 8-space. It is likely that for d = 2, 3, the smallest value of c is
close to 1.

Analogously, one can define semi-algebraic k-uniform hypergraphs (k-ary relations) of bounded
complexity, and define the off-diagonal Ramsey functions Rk(s, n) and R∗k(s, n). For 3-uniform

hypergraphs, we know [5], [21] that R∗3(s, n) = 2n
o(1)

, for every fixed s ≥ 3.

Conjecture 8. For every s ≥ 3, we have R∗3(s, n) = nc, with a suitable constant c = c(s) > 0.

Here is another unusual Ramsey-type geometric question, addressed first by Mubayi and Suk [17].

Problem 9. What is the smallest number S = S(n) such that no matter how we 2-color all
(
S
2

)
segments induced by S points in general position in the plane, we can always find n points that form
the vertex set of a convex n-gon and all segments between them are of the same color?

It was shown in [17] that 22n−2 < S(n) < 2O(n2 logn).

3. Graphs and hypergraphs of bounded VC-dimension. Let F be a set system on a ground
set V . The Vapnik-Chervonenkis dimension (VC-dimension) of F is the largest integer D for which
there exists a D-element set S ⊂ V such that for every subset B ⊂ S, one can find a member
A ∈ F with A ∩ S = B. Given a graph G = (V,E), for any vertex v ∈ V , let N(v) denote the
neighborhood of v in G, that is, the set of vertices in V that are connected to v. We note that v
itself is not in N(v). Then we say that G has VC-dimension D, if the set system induced by the
neighborhoods in G, i.e., F = {N(v) ⊂ V : v ∈ V }, has VC-dimension D.

It can be easily deduced from the Thom-Milnor theorem that for every d and t, there exists
an integer D = D(d, t) such that the VC-dimension of every d-dimensional semi-algebraic graph of
complexity t is at most D. The question arises: which favorable properties of semi-algebraic graphs
remain true for all graphs with bounded VC-dimension.

Consider first the Erdős-Hajnal conjecture. Given a bipartite graph F , the closure of a bipartite
graph F is the set of all graphs that can be obtained from F by adding edges between two vertices in
the same part. It is known (see [16]) that a graph has bounded VC-dimension if and only if it does
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not contain any induced subgraph that belongs to the closure of some fixed bipartite graph F . By
the result of Erdős and Hajnal mentioned earlier, all n-vertex graphs with bounded VC-dimension
contain a clique or an independent set of size eΩ(

√
logn). For graphs of bounded VC-dimension, Fox,

Pach, and Suk improved this bound to e(logn)1−o(1)
. In semi-algebraic graphs of bounded complexity,

one can always find a clique or independent set of size nε. Can this be extended to all graphs of
bounded VC-dimension?

Problem 10. Is it true that for any positive integer D, there exists ε = ε(D) > 0 such that every
n-vertex graph with VC-dimension at most D contains a clique or an independent set of size at least
nε?

For graphs of bounded VC-dimension, no “perfect regularity lemma,” similar to the one estab-
lished for semi-algebraic graphs, holds. (Verify this!) However, one can prove a somewhat weaker,
“almost perfect” version. For V1, V2 ⊂ V , we say that the pair (V1, V2) is ε-homogenous if the edge

density d(V1, V2) = e(V1,V2)
|V1||V2| between them is less than ε or greater than 1 − ε. The Lovász and

Szegedy [16] “ultra-strong” regularity lemma states that for any ε > 0, there is a (least) K = K(ε)
such that the vertex set V of any graph with VC-dimension D has an equitable partition into at most
K ≤ (1/ε)O(d2) parts such that all but at most an ε-fraction of all pairs of parts are ε-homogeneous.
Fox, Suk, and I improved the upper bound on K(ε) to c(1/ε)2d+1, where c = c(d).
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Title?

by Günter Rote

1 Bimonotone Drawings

An x-monotone curve C is the graph C = { (x, f(x)) | a ≤ x ≤ b } of some continuous function f
over some interval; a y-monotone curve is written similarly as C = { (f(x), x) | a ≤ x ≤ b }.

Research Question 1. What is the complexity of the following problem?
Given a graph whose vertices have given positions in the plane with distinct x- and y-coordinates,

can we draw the edges as non-crossing curves that are both x-monotone and y-monotone?

2 Windrose Planarity

A quadrant-constrained or q-constrained plane graph assigns to each directed edge a direction
SW→NE, SE→NW, NW→SE, or NE→SW. Such a graph is windrose-planar if it can be redrawn
such that each edge is both x-monotone and y-monotone in the given direction. This is a strength-
ening of the well-known concept of upward-planarity to two directions: vertical and horizontal.

Exercise 1. Let G be a triangulated q-constrained graph with the following properties.

1. The graph obtained by directing all edges from W to E is acyclic.

2. The graph obtained by directing all edges from S to N is acyclic.

3. Each interior vertex u has at least one neighbor in each of the 4 quadrants.

Then choosing the x-coordinates of the vertices consistently with the order implied by the first condi-
tion, and choosing the y-coordinates independently consistently with the order of the first condition,
is sufficient to produce a straight-line windrose-planar drawing, provided that some trivial necessary
conditions are met, see Angelini et al. [1].

Consider a face cycle v1v2 . . . vk in a 2-connected q-constrained graph G. To each vertex of
this cycle, we can assign a category from the range {0◦, 90◦, 180◦, 270◦, 360◦}. The category is the
interior angle between the two incident edges under the assumption that all edges are drawn in
±45◦ directions (slope ±1) in their respective quadrants.

Exercise 2. 1. Formulate a rule to decide between the angle categories 0◦ and 360◦ when two
adjacent edges point into the same quadrant.

2. Prove that, if G is windrose-planar, then the sum of angle categories must be kπ − 360◦.

3. How can a triangular face have sum of angle categories different from 180◦?

4. Prove that every face cycle with correct angle sum can be triangulated into triangles with angle
sum 180◦ by inserting k − 3 diagonals.

It has been proved [1] that every q-constrained graph that satisfies certain obvious necessary
conditions has a windrose-planar drawing. Moreover, we can find such a drawing with at most one
bend per edge.

Research Question 2. Can we completely get rid of bends?
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3 Slope Number of Balanced 3-Trees

Consider the plane graph Tk that is obtained from K4 by repeating the following operation k − 1
times: Add a vertex into every bounded triangular face and connect it to the three corners of the
triangle. Tk has maximum degree ∆ = 3 · 2k−1.

Research Question 3. How many different slopes are needed for a straight-line drawing of Tk?

Jeĺınek et al. [2] showed that every subgraph of Tk with maximum degree ∆ can be drawn with
O(∆5) slopes.

The following relations between the slopes in a drawing of Kk might be handy:

Proposition 3. Let P1, P2, P3, P4 be four points in the plane with distinct x-coordinates, and let sij
denote the slope of the line through Pi and Pj. Then∑

π∈S4

sign π · sπ(1)π(2)sπ(2)π(3)sπ(3)π(4) = 0, (3.1)

where the summation is over the set S4 of permutations of {1, 2, 3, 4}.
Exercise 4. Show that condition (3.1) is invariant under

1. scaling the x- or y-axis,

2. exchanging the x- and y-axis by a reflection along the diagonal,

3. a shearing operation leaving the y-axis fixed.

Exercise 5. Use a combination of the operations of Exercise 4 to specialize the point set P1, P2, P3, P4

to such a position that Proposition 3 can be conveniently proved.

4 Homotopy of 1-Simple Drawings

We consider a given drawing G of a graph in the plane up to homotopy: that is, each edge can be
continuously deformed as long as it does not move over another vertex.

Research Question 4. If each pair of edges can be homotopically deformed that they cross at most
once, does it follow that all edges can be simultaneously deformed such that they cross pairwise at
most once?

For the purposes of this problem, we can assume that the vertices are aligned on the x-axis in
the order v1, . . . , vn and the homotopy type of an edge is recorded by the sequence of straight edges
(vi, vi+1) and rays (−∞, v1) and (vn,∞) that it crosses from top to bottom or from bottom to top.

5 Maximum Cut in a Special Graph

Prove that, for any n ≥ 2, the maximum of∑
i∈A

∑
j∈{0,1,2,...,n−1}\A

max{n− i− j, 0}

over all subsets A ⊆ {0, 1, 2, . . . , n − 1} is achieved for some interval A of the form {0, 1, . . . , k}.
More generally, prove that the maximum over all subsets A of fixed size |A| = ` is achieved when
A is an interval or the complement of an interval.
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Saturated topological graphs

by Géza Tóth

A simple topological graph G is a graph drawn in the plane so that any pair of edges have at
most one point in common, which is either an endpoint or a proper crossing. G is called saturated
if no further edge can be added so that it remains a simple topological graph. Obviously, if G is a
complete simple topological graph, then it is saturated.

yx

Figure 1: Edge {x, y} cannot be added.

The simple topological graph G1 on Figure 1, found by Kynčl, [7], has six vertices and if we
connect x and y by any curve as an edge, two edges with a common endpoint will cross each other.
So the resulting topological graph is not simple anymore. All other egdes can be added, so we
obtain a saturated simple topological graph of 6 vertices and 14 edges. From this we can construct
a saturated simple topological graph of n vertices and

(
n
2

)
− bn/6c edges.

It is a natural question to ask, whether every saturated simple topological graph with n vertices
must have Ω(n2) edges. It turned out, that there are examples with only a linear number of edges.

Theorem 1. (Kynčl, Pach, Radoičić, Tóth, [6]) For any n ≥ 4, let s(n) be the minimum number
of edges that a saturated simple topological graph on n vertices can have. Then

1.5n ≤ s1(n) ≤ 17.5n.

YX

x

y

Figure 2: Edge {x, y} cannot be added.

The upper bound construction is an iterated version of the topological graph G2 on Figure 2. It
is a simple topological graph, but if we connect vertex x in region X, and vertex y in Y by a curve,
it will cross one of the edges of G2 at least twice.

For the lower bound, it is proved that in a saturated simple topological graph each vertex has
degree at least three. Therefore, the number of edges is at least 1.5n.

The upper bound has been improved recently by Hajnal, Igamberdiev, Rote, and Schulz [5].
For the lower bound, a natural way to improve it is to show that in a saturated simple topological
graph each vertex has degree at least four, or five, or even more. In [5] it is also shown, that we
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k 1 2 3 4 5 6 7 8 9 10 ≥ 11
upper bound in [6] 17.5n 16n 14.5n 13.5n 13n 9.5n 10n 9.5n 7n 9.5n 7n
upper bound in [5] 7n 14.5n

Table 1: Upper bounds on the minimum number of edges in saturated k-simple topological graphs.

cannot expect too much improvement from this simple approach, there could be a vertex of degree
four, or many vertices of degree five.

Theorem 2. (Hajnal, Igamberdiev, Rote, and Schulz [5]) (i)

s(n) ≤ 7n.

(ii) For every n ≥ 6 there is a saturated simple topological graph on n vertices with a vertex of
degree 4.

(iii) For every m ≥ 1 there is a saturated simple topological graph on 10m vertices with m vertices
of degree 5.

Problem 1. Is there a saturated simple topological graph with a vertex of degree three?

Problem 2. Construct a saturated simple topological graph with many vertices of degree four.

Problem 3. Improve the bounds for s(n).

In general, for any positive integer k, a topological graph is called a k-simple if any two edges
have at most k points in common. We also assume that in a k-simple topological graph no edge
crosses itself. A 1-simple topological graph is exactly a simple topological graph. It is not obvious
at all to construct non-complete saturated k-simple topological graphs for k > 1.

Theorem 3. (Kynčl, Pach, Radoičić, Tóth, [6]) For any positive integers k and n ≥ 4, let sk(n) be
the minimum number of edges that a saturated k-simple topological graph on n vertices can have.
Then for k > 1 we have

n ≤ sk(n) ≤ 16n.

For k = 2, the upper bound was improved by Hajnal, Igamberdiev, Rote, and Schulz [5].

Theorem 4. (Hajnal, Igamberdiev, Rote, and Schulz [5])

s2(n) ≤ 14.5n.

For the best upper bounds see Table 1.
In a graph G, an isolated triangle is a triangle (K3) which is not connected to any other vertices.

In the proof of the lower bound s(n) ≥ 1.5n, an essential step is that we prove that there is no
isolated triangle in a saturated simple topological graph. The proof does not work for saturated
k-simple topological graphs, for k > 1, therefore, in this case we can prove only that every vertex
has degree at least 2, which implies sk(n) ≥ n.

Problem 4. For k > 1, can a saturated k-simple topological graph contain an isolated triangle?

But unlike in the case of simple topological graphs, even if we knew that a saturated k-simple
topological graph cannot contain an isolated triangle, we still cannot prove that in a saturated
k-simple topological graph all vertices have degree at least 3.
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Problem 5. Is there a saturated k-simple topological graph for some k > 1 with a vertex of degree
two?

Probably the most natural and exciting problem in this topic is the following.

Problem 6. Is it true that every saturated k-simple topological graph is connected?

The answer might depend on the value of k, and we do not know the answer for any k.

We assumed that in a k-simple topological graph, no edge can cross itself. For any k, a graph
drawn in the plane is called a k-complicated topological graph if any two edges have at most k
points in common, and an edge is allowed to cross itself, at most k times. Somewhat surprisingly,
for saturated k-complicated topological graphs we cannot even prove that every vertex has degree
at least two! We can only prove that a saturated k-complicated topological graph does not have
isolated vertices. Therefore, the best lower bound we have for the minimum number of edges of
a saturated k-complicated topological graph is ck(n) ≥ n/2. On the other hand, for k ≥ 6, using
self-crossings, we can improve our upper bound constructions, to obtain that ck(n) ≤ 5n/2.

Problem 7. Is there a saturated k-complicated topological graph with a vertex of degree one?

Now we study a slightly different problem. It is an easy consequence of Euler’s Formula, that
every planar graph of n vertices has at most 3n − 6 edges. If it has exactly 3n − 6 edges, then it
is a triangulation. If it has less edges and it is drawn in the plane without crossings, than we can
extend it to a triangulation.

A topological graph is 1-plane, if each edge is crossed at most once. A graph is 1-planar, if it has
a 1-plane drawing. It is known that the maximum number of edges of a 1-plane or 1-planar graph
is 4n − 8. Brandenburg et al. [3] and independently Eades et al. [4] observed a very interesting
phenomenon. They noticed that maximal 1-plane or maximal 1-planar graphs can have much fewer
edges.

Theorem 5. (Brandenburg, Eppstein, Gleissner, Goodrich, Hanauer, Reislhuber [3]) Let e1(n)
(resp. e′1(n)) denote the minimum number of edges of a maximal 1-plane (resp. 1-planar) graph of
n vertices. Then we have

2.1n ≤ e1(n) ≤ 2.33n,

2.15n ≤ e′1(n) ≤ 2.64n.

Both lower bounds were recently improved to 2.22n [2].

Problem 8. Improve the bounds for e1(n) and e′1(n).

For any n, e1(n) ≤ e′1(n) since any maximal 1-planar graph has a maximal 1-plane drawing.
Now the best known lower bounds are the same.

Problem 9. Is it true that for every n e1(n) = e′1(n)?

In general, for every k ≥ 1, a topological graph is k-plane, if each edge is crossed at most once. A
graph is k-planar, if it has a k-plane drawing. Let ek(n) (resp. e′k(n)) denote the minimum number
of edges of a maximal k-plane (resp. k-planar) graph of n vertices.

Auer et al. [1] proved that e2(n) ≤ 1.33n and e′2(n) ≤ 2.63n. It is not hard to see, that
ek(n) ≤ cn/k for some c > 0.

Problem 10. Establish some nontrivial bounds for ek(n) and e′k(n).
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Contributed Problems

Planarity testing of cycles and paths with four clusters

by Radoslav Fulek

Let G = (V,E) be a cycle or a path. Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a partition of the vertex set
of G, i.e., Vi ∩ Vj = ∅ if i 6= j.

Can we decide in sub-exponential time, if G with the given partition of its vertex set is c-
planar [3], or in other words, if there exists a planar graph G′ = (V,E ′) such that E ⊆ E ′ and the
induced subgraph G[Vi] is connected for i = 1, 2, 3, 4? Is the problem NP-complete ?

This problem was “almost” solved by Cortese et al. [2]. In particular, it is shown that the
problem is solvable in polynomial time if one of the Vi’s is empty, or G is a cycle and there exists
an edge in G between every pair Vi and Vj, i 6= j, i.e., E[Vi, Vj] 6= ∅ if i 6= j.

Thrackle conjecture on a cylinder

by Radoslav Fulek

A graph G drawn in the plane is a thrackle if every pair of edges in G meet exactly once, either
at a common vertex or in their proper crossing. John Conway conjectured [1] that a thrackle cannot
have more edges than vertices.

The cylinder C is S1 × I, where S1 is a circle and I is an interval. The projection to I in C is
the map that maps (s, i) ∈ C to i. Does Conway’s conjecture hold for graphs drawn on C such that
the projection of every edge to I is injective? It might be helpful first to figure out whether an even
cycle can be drawn as a thrackle in that way.

A related case of x-monotone drawings was settled by Pach and Sterling [4]. An x-monotone
drawing of a graph is a drawing in the plane in which every vertical line intersects every edge at
most once.
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An extremal problem on crossing vectors

by Till Miltzow

(This problem is originally from Édouard Bonnet and we pose it here with his permission.)

How many flips to non-crossing A perfect geometric matching on a set of points P in the
plane is a set of non-crossing line segments such that each point is an endpoint of exactly one line
segment. Given 2n points in general position in the plane it is well known that there always exists
a perfect geometric matching on these points.

One elegant argument to see this is to start with any perfect matching, potentially self-intersecting,
and remove each crossing by a flip, see figure below. Although the total number of crossings might
increase by a flip the total length of all segments decreases. Thus the process will eventually end
with a perfect geometric matching.

Figure 1: two segments cross in the left matching. We can remove this crossing by removing the
segments involved and adding two other segments. This is called a flip.

We say matching M is a successor of matching M ′ if we can construct M from M ′ by a flip as
above. We say that M = (M1, . . . ,Mk) is a valid sequence of matchings, if each matching Mi+1 is
a successor of Mi. The number k denotes the length ofM. Given a set P of 2n points in the plane
we define

f(P ) = max{k : ∃M of length k}.

Consequently the function g(n) is defined as

g(n) = max{f(P ) : P has 2n points}.

The best upper and lower bounds we currently know are

Ω(n2) ≤ g(n) ≤ O(n3).

The lower bound is straight forward. The upper bound uses the following non-trivial idea: Consider
two crossing line segments A and B and let `1 and `2 be lines intersecting A and B as in Figure 2.
Then any flip of A and B reduces the total number of line-segment intersections by at least two.
For any other line ` the number of line-segment intersections cannot increase after a flip. Thus
the total number of line-segment intersections decreases by at least two after any flip, under the
condition that we started with an appropriate set of lines. We can create such a set of lines of size
O(n2). Thus the total number of intersections in the beginning is O(n3) and this gives the upper
bound.

We ask to give better upper or lower bounds!
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A

B

`1
`2

Figure 2: Flipping A and B yields fewer line-segment crossings.

Hadwiger-Debrunner type (p, q, τ) relations

by Dömötör Pálvölgyi

Say that F satisfies the (p, q, τ) property if for any p sets F1, . . . Fp ∈ F there are q of them,
Fi1 , . . . , Fiq , whose union can be stabbed with τ points, x1, . . . xτ , i.e., for every j we have Fij ∩
{x1, . . . xτ} 6= ∅. The celebrated result of Alon and Kleitman says that if F is a finite convex family
from Rd, which has the (p, q, 1) property for p ≥ q ≥ d + 1, then it also has the (n, n, C) property
for some C = C(p, q, d). In short, since we only study finite convex families in Rd, we write this as
(p, q, 1) → (n, n, C) (where we should in fact write →d, but this should be always clear from the
context). Helly’s theorem translates in this notation to (d+ 1, d+ 1, 1)→ (n, n, 1).

We can make some trivial observations among these quantities, like (p, q, t) → (p + 1, q, t),
(p, q, t)→ (p, q − 1, t), (p, q, t)→ (p, q, t+ 1), and (p, q, t)→ (p+ q, 2q, 2t).

Another well-known lemma, by Hadwiger and Debrunner, is (d+ 1 + kd, d+ 1 + k(d− 1), 1)→
(n, n, k + 1) and this is sharp. From this it follows, e.g., that in the plane (5, 4, 1) = 2.

In general, the bounds are growing quite fast, the only result, which is for the first non-
trivial case, is (4, 3, 1) → (n, n, 13) by Kleitman, Gyárfás and Tóth, while the conjecture is that
(4, 3, 1)→ (n, n, 3) with a 100$ reward by the authors.

Notice that all results are about the (p, q, 1) case, so I would propose to study the general version
of the problem.

Problem 1. When does (p, q, t)→ (p′, q′, t′)?

Notice that it follows from the Alon-Kleitman (p, q)-theorem that (p, td + 1, t) → (n, n, C) for
some C, while taking hyperplanes in general position shows that (p, td, t) 6→ (n, n, C). (Nabil and
Shakhar called my attention to this, if I remember well.) It is also easy to make an example that
shows (n, n, 2) 6→ (n+ 1, n+ 1, 2).

It would be also interesting to study what we get from supposing multiple things, like we can
conclude (2, 2, 1) ∧ (4, 3, 1)→ (5, 5, 2). Can we get some non-trivial implications?

Problem 2. Is it true that (2, 2, 1) ∧ (5, 5, 2)→ (n, n, 2)?
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The crossing number of Hanoi graphs

by Cory Palmer

The Tower of Hanoi puzzle consists of d many discs of different sizes distributed among p ≥ 3
many pegs with the restriction that no disc may sit on top of a disc of smaller size (the divine rule).
We may move a single disc from the top of a stack to another (possibly empty) stack as long as we
obey the divine rule.

We define the Hanoi graph Hd
p as follows. The vertices of Hd

p are the possible arrangements of
d discs on p ≥ 3 pegs obeying the divine rule. Two vertices of Hd

p are connected by an edge if they
can be reached from each other by a move of a single disc from the top of a stack to another.

The Hanoi graph Hd
p has pd vertices and 1

2

(
p
2

)
(pd − (p− 2)d) edges and the degree of a vertex is(

p
2

)
−
(
p−k

2

)
where k is the number of pegs with at least one disc. Several graph parameters have

been determined for Hanoi graphs, e.g.,

1. Hd
p has connectivity (p− 1).

2. Hd
p has independence number pd−1.

3. Hd
p has chromatic number p (Arett and Dorée [1]).

4. Hd
p has a Hamiltonian cycle (Hinz and Parisse [3]).

Planarity of Hanoi graphs was characterized by Hinz and Parisse [3]. It is not difficult to show
that for the three-peg game that Hd

3 is planar. The remaining planar Hanoi graphs H0
p , H1

4 , and
H2

4 . A nice exercise is to show that H3
4 is not planar. For d ≥ 4, the Hanoi graph Hd

4 contains H3
4

as a subgraph and is therefore not planar. Furthermore, for p ≥ 5 the Hanoi graph Hd
p contains a

K5 and is therefore not planar.
The problem to determine the crossing number of Hanoi graphs is posed in the monograph of

Hinz, Klavžar, Milutinović, and Petr [2], but the only known bound is by Schmid [4] who showed
that the crossing number of H3

4 is at most 72. Because Hd
p contains many copies of Kp it would be

interesting to determine the crossing number of Hd
p in terms of the crossing number of Kp.
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The Chen-Chvatal conjecture

by Balázs Patkós

One of the classical De Bruijn-Erdős theorems states that for any n non-collinear points P1, P2,
. . . , Pn in the plane, the number of lines defined by P1, P2, . . . , Pn is at least n. One can generalize
the notion of lines in metric spaces with the help of betweenness. In a metric space (M,d), we say
that y is between x and z if d(x, y) + d(y, z) = d(x, z) holds. This is denoted by xyz. The line `x,y
in M defined by the points x and y is the set of points:

`x,y = {x, y} ∪ {z : zxy} ∪ {z : xzy} ∪ {z : xyz}.

Conjecture (Chen - Chvatal). Let (M,d) be a finite metric space. Then either there are points
P1, P2 ∈ M with `P1,P2 = M or the number of lines defined by the pairs of points of M is at least
|M |.

Lots of special cases of the conjecture are known. Also, there are some general bounds. An
incomplete list of references is below.
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