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Balázs Patkós, Rényi Institute
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Tree Search Problems

by Ferdinando Cicalese

Introduction

Given a set of objects U = {u1, . . . , un}, a probability distribution p(·) on U, a set of tests
{t1, . . . , tm}, with ti ⊆ U , a cost function c : {t1, . . . , tm} 7→ R+ and a “hidden” marked object, the
Binary Identification Problem (BIP) consists of defining a strategy (decision tree) for adaptively
selecting a sequence of tests that uniquely identify the marked object minimizing the total cost
spent in the worst case (or, alternatively, the expected cost when the marked object is chosen ac-
cording to the the distribution p) [11]. A test t incurs a cost c(t) and allows to determine whether
the marked object is in the set t or in U \ t. The BIP is an NP-Complete problem [13] that does
not admit an o(log n)-approximation unless P = NP [13, 18]. On the other hand, a simple greedy
algorithm attains an O(log n)-approximation [1].

When we impose some structure in the set of tests we have interesting particular cases. If the
set of tests consists of all the subsets of U (i.e., 2U), then the strategy that minimizes the expected
cost is a Huffman tree. Let G be a DAG with vertex set U . If the set of tests is {t1, . . . , tn}, where
ti = {uj|ui ; uj in G}, then we have the problem of searching in a poset [20, 16]. When G is a
directed path we have the alphabetic coding problem [12].

We will focus on the version of the BIP in which the underlying space of objects and tests can
be represented by the set of vertices and edges of a tree, respectively. Hence, c is a cost assignment
to the edges E(T ) of T, i.e., c : e ∈ E(T ) 7→ c(e) ∈ R+

0 . A decision tree for such an instance is a
binary tree recursively defined as follows: if the tree T has only one vertex, then the decision tree
is a single leaf labeled with the only vertex in T. If T has at least one edge, a decision tree for T
has its root r labeled with one edge e = {u, v} in T, and the subtrees rooted at the children of r
are decision trees for the connected components Tu and Tv of T − e.

For the sake of distinguishing between the input tree and the decision tree, we shall reserve the
term node to the decision tree and the term vertex to the input tree.

A decision tree D naturally defines a strategy for identifying an initially unknown vertex x from
T via edge queries. If node w of D is labeled with the edge e = {u, v} of T, we map w to the
question “Is x in Tu or in Tv?”, where Tu (resp. Tv) denotes the component of T − e which contains
u (resp. v). The search strategy now consists in starting with the query at the root of D and then
recursively continuing with the subtree being a decision tree for the component indicated in the
answer. Accordingly, each leaf ` of D is then labeled with the vertex of T uniquely identified by
the sequence of questions and answers corresponding to the path from the root of D to `.

Given a decision tree D, the cost costD(u) of identifying a vertex u following the strategy defined
by D is defined as the sum of the costs of the tests associated to the nodes on the unique path from
the root of D to the leaf associated to u.

We consider two different measures of performance for a decision tree: The worst identification
cost of D, is defined as the maximum over all u ∈ U of the cost of identifying u using the decision
tree D, i.e., in formulae:

worstcost(D) = max
u∈U

costD(u).

We also consider the expected identification cost of D defined as the expected cost of identifying
an objects chosen in accordance to the distribution p(.) when we use the strategy associated to D,
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Figure 1: A tree T with edge costs (left hand side) and a decision tree D for it (right hand side). For example,
identifying the vertex v3 is done by queries to the edges {v3, v6}, {v2, v3}, and {v3, v4}. This identification process
has a cost of 3 + 4 + 1 = 8. The maximum cost of 10 has to be payed for the identification of v2, and this is the
worst identification cost of the depicted decision tree.

i.e., in formulae:

avgcost(D) =
∑
u∈U

p(u) · costD(u).

We refer to Figure 1 for an example.

BIP on Trees, The Edge Ranking Problem and Applications. The BIP for trees is equivalent
to the edge ranking problem for trees. An edge ranking of T is an assignment to each edge e of T
of an integer r(e) (the rank of e) s.t. for any two edges e1, e2 ∈ T if r(e1) = r(e2), then the path
connecting e1 and e2 contains an edge e with r(e) > r(e1). The cost of an edge ranking of a tree
T with edge costs c, denoted by rankcost(T, c) is defined as follows: If T has only one vertex, then
rankcost(T, c) = 0. Otherwise, rankcost(T, c) = c(e∗) + max{rankcost(Tu, c), rankcost(Tv, c)}, where
e∗ = {u, v} is the edge with maximum rank in T and Tu (resp. Tv) is the connected component of
T − e that contains u (resp. v). Given a tree T with edge cost c the edge ranking problem asks
for the minimum cost ranking. The equivalence to the decision tree problem is easily seen (see also
[10]).

The BIP is a basic problem in computer science and has applications in many different scenarios.
The BIP for trees arises when one has to identify the faulty component of a system. As an example,
a system is represented by a network (in our case a tree) and its faulty component (vertex) has to
be found. Different points of the network might require more or less expensive operations for the
inspection. Inspecting one spot (edge) in the network reveals only directional information about
the location of the failure w.r.t. the inspected point. One such problem is described, e.g., in [20] as
searching for holes in an oil pipeline. In [23], the problem of finding a bug in a software application
is mentioned.

The edge ranking problem arises in the context of multi-part product assembly [9, 14]. Assume
that each edge represents the operation of assembling two parts of a product and the weight of
an edge represents the time necessary to complete the corresponding assembly operation. Each
product part can only participate in one assembly operation at a time, which means that, whenever
two edges share an endpoint, the corresponding operations are dependent and cannot be performed
simultaneously. An edge ranking provides a scheduling of the assembly operations with the guaran-
tee that only independent operations are scheduled simultaneously. Moreover, the cost of the edge
ranking is the total time necessary for completely assembling the product.
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The Minimization of the Worst Identification Cost

The minimization of the worst identification cost for the BIP on trees with uniform edge costs has
been extensively studied in the context of searching and edge ranking [14, 8, 19, 2, 22, 23]. Linear
time algorithms that construct an optimal decision tree for the case of uniform costs are presented
in [19, 22].

The case of non-uniform edge costs was also first studied in the context of edge ranking in [9],
where the the problem was proved to be NP-complete already for the class of instances of diameter
at most 10. In the same paper, an O(log n) approximation algorithm was also provided. In fact, the
O(log n) approximation can be attained for the general version of the BIP (not restricted to tree
instances), via a simple greedy procedure [4].

When the tree is a path, the BIP with non-uniform costs is equivalent to the problem of searching
in an ordered array with costs depending on the position probed. A natural DP approach solves this
problem in O(n3) time. A linear time algorithm with constant approximation factor is presented in
[17]. In [3], Charikar et al. consider this problem from a competitive analysis perspective.

The complexity of finding a decision tree with minimum worst identification cost for trees is well
characterized in terms of both the maximum degree and the diameter of the input tree as summa-
rized in the following proposition.

Proposition 1. The problem of determining a search strategy with minimum worst identification
cost for diameter 6 trees is strongly NP-hard. The same complexity holds for degree 3 trees.

There is an O(n2) time algorithm that finds a decision tree with the minimum worst identification
cost for the problem of searching in a path.

For trees of diameter at most 5 there exists a polynomial time algorithm which determines a
decision tree with minimum worst identification cost.

Although these result set the boundaries of tractability of the problem, the question about ap-
proximability in the general case remains wide open. The best result about algorithms for arbitrary
trees is given by the following.

Theorem 2. There is an O(log n/ log log log n)-approximation algorithm for the minimization of
the worst identification costs that runs in O(n2 log n) times.

This last result suggests a separation between the BIP for trees with non-uniform costs on the
tests (queries) and the general BIP since the latter does not admit an o(log n) approximation unless
P = NP . This motivates the following open problem.

Open Problem 1. Is there a constant factor approximation algorithm for the problem of minimiz-
ing the worst case cost for general trees?

The Minimization of the Average Number of Tests

We now consider the measure of performance based on the expected identification cost. Here we
replace the probability distribution with a non-negative weight function w : V → R+ that gives
the likelihood of a vertex being the one marked and we focus on the case of unitary (or uniform)
costs. Then, instead of the expected identification cost, we speak of the average number of tests,
where the (weighted) average is with respect to the function w. It turns out that even if we assume
unitary costs, the problem is NP-complete and it is even hard to approximate in the more general
case of posets.



4 Search

Theorem 3. [5, 6] The problem of minimizing the average number of tests for searching in bounded
degree trees is NP-complete. Moreover, in general posets the problem does not admit an o(log n)
approximation unless NP ⊆ DTIME(nlog logn).

For bounded degree trees there is an FPTAS [7]: Let (T,w) denote an instance of the problem
on the tree T where w is the likelihood function. Let ∆(T ) denote the maximum degree of a vertex
of T . Let w(T ) be the total weight of T i.e., the sum of the weights of all vertices of T and wmin be
the minimum weight among all vertices of T. Then the following holds.

Theorem 4. [7] There is a poly(n · w(T )
wmin

)-time algorithm for finding optimal search trees for the
class of instances (T,w) with ∆(T ) = O(1). In addition, for any ε > 0, there is a poly(n/ε)-time
algorithm for computing a decision tree whose average number of tests is at most a factor (1 + ε)
from the minimum average number of tests achievable by any decision tree for the same instance.

For this, we show a non-trivial Dynamic Programming based algorithm to computes the best pos-
sible search tree, among the search trees with height at most H, in O(n22H) time. Then, one shows
that every tree T admits a minimum cost search tree whose height is at most 4∆(log(w(T )/wmin)+
1) + (∆ + 1) log n, where ∆ is the maximum degree of T , w(T ) is the sum of the weights of the
vertices in T and wmin is the minimum positive weight among all vertices of T . This bound allows
us to execute the DP algorithm with H = 4∆(log(w(T )/wmin) + 1) + (∆ + 1) log n, obtaining a
pseudo-polynomial time algorithm for trees with bounded degree. By scaling the weights w in a
fairly standard way we obtain the FPTAS.

It should be noticed that the bound on the height of optimal search trees generalizes the known
logarithmic bound on the height of optimal search trees for totally ordered sets, and it is nearly
tight since for a complete tree of degree ∆, where only the leaves have weight 1 and all other vertices

have weight 0, it is not difficult to see that any search tree has height Ω
(

∆
log ∆

(log n+ logw(T ))
)
.

Open Problem 2. A natural question which remains open concerns the limit of approximability
in the general case where we do not assume bounded degree tree instances: Is there a PTAS for
unbounded degree instances or does the problem become APX-hard?

Connected to this question is the performance of a natural greedy strategy.

The approximation of the Greedy Approach. For general trees and uniform costs, a simple
greedy approach provides a 1.62-approximation of the minimum average number of queries.

The greedy choice is to always select an edge e = {u, v} which minimizes max{w(Tu), w(Tv)},
where Tu and Tv are the connected components of T − e.

It has been conjectured that Greedy guarantees approximation factor equal to 3/2. In fact, we
can show that 3/2 is a lower bound on the approximation provided by Greedy. To this aim, we
consider the class of input trees with the following structure. Fix an integer m ≥ 1. The input tree
Tm will have 2m + 1 vertices. We denote the root of Tm by r. The root r has m children, which
we denote by a1, . . . , am. For each i = 1, . . . ,m, the vertex ai has only one child, which we denote
by bi. The root r has weight 1, and each vertex ai (i = 1, . . . ,m) has weight ε > 0 while, for each
i = 1, . . . ,m, the vertex bi has weight 2i−1.

In Fig. 2 we show the search tree produced by Greedy, denote by Dm (the rightmost tree) and
an alternative search tree D∗m, (the central tree) which has a smaller cost.
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Figure 2: The input tree Tm (on the left), together with the search trees Dm produced by Greedy (on the right)
and the search tree D∗

m (center) used to show the lower bound on the approximation of Greedy. In the decision
trees, a test on the edge e = {u, v}, is indicated by the vertex in the edge queries which is further from the root of
the input tree.

We have

cost(Dm) =
m∑
i=1

(i+ 1)(2m−i + ε) +m = 3 · 2m +
ε

2
(m2 + 3m)− 3 (0.1)

cost(D∗m) =
m∑
i=1

i2m−i + ε
2m∑

i=m+1

i+ 2m = 2m+1 +
ε

2
(3m2 +m) +m− 2. (0.2)

Since cost(D∗m) is lower bounded by the cost of an optimal search tree for Tm, we have that
cost(Dm)/cost(D∗m) is a lower bound on the approximation of Greedy. The claimed 3/2-approximation
follows by considering the limit of the ratio cost(Dm)/cost(D∗m) for ε→ 0 and m→∞.
Open Problem 3. Can we prove that the approximation guarantee of the greedy strategy is 3/2?
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A question on additivity of pool numbers in group testing

by Peter Damaschke

We are given n elements, where an unknown subset of elements are positive, also called defective.
Let P denote this unknown subset of positive elements. A group test using a pool (subset) Q answers
positively if P ∩ Q 6= ∅, and negatively if P ∩ Q = ∅. We also say that the pool Q is positive or
negative, respectively. A pooling design is simply a set of pools. In the strict group testing (SGT)
problem, some number d is also given beforehand, and a searcher has to identify P whenever |P | ≤ d.
In the case |P | > d the searcher is only supposed to report the fact that |P | > d. The group tests
may be arranged in s stages, where all pools of the pooling design within a stage must be tested
simultaneously. We define t(n, d, s) to be the optimal number of tests needed to solve the SGT
problem on n elements, with the specified d, in s stages. In [1] we made an effort to figure out as
many as possible t(n, d, s) values.

The searcher’s instantaneous knowledge prior to a stage is captured by the response hypergraph
defined as follows. Its vertices are the candidate elements, i.e., those elements that have not yet
appeared in negative pools. Its hyperedges are the positive pools seen so far (but only the candidate
elements therein are kept). The candidate hypergraph, defined on the same vertex set, has as
hyperedges all sets of size at most d which may still be the unknown P . We call them the candidate
sets. (Note that there may exist candidate elements which belong to no candidate set!) The
candidate sets are exactly the hitting sets, of size at most d, of the response hypergraph.

In the following we are concerned with the situation after s − 1 stages, that is, prior to the
last stage. Given the candidate hypergraph G after s − 1 stages, we are obviously interested in
the smallest pooling design that eventually solves the SGT problem in the final stage s. This is
an important subtask in the calculation of t(n, d, s) values. Let us call a pooling design sufficient
for G if the answers to the group tests uniquely determine which candidate set equals P (or allow
to report that P is none of them). Sufficient pooling designs are easy to characterize: A pooling
design is sufficient for G if and only if the complement of every candidate set equals the union of
some of the pools. (Another characterization in terms of certain graph colorings is given in [1].)
We remark that this generalizes the well-known d-disjunctness property for the case s = 1.

In the analysis of t(n, d, s) especially for “large” ratios d/n we have apparently often to deal
with pooling designs on disjoint subsets of elements. This leads us to the problem: Are the test
numbers in the last stage additive, for two “independent” instances of SGT? Below we state our
problem more formally and detailed.

LetGi be some given candidate hypergraph on a set Vi of elements, where i = 1, 2 and V1∩V2 = ∅.
Let ti be the optimal number of pools in a sufficient pooling design on Gi. We define the product
G = G1×G2 to be the candidate hypergraph on V1∪V2 whose candidate sets are exactly all unions
C1∪C2 of candidate sets C1 ⊆ V1 and C2 ⊆ V2. Let t be the optimal number of pools in a sufficient
pooling design on G. Trivially we have t ≤ t1 + t2. Is it always true that t = t1 + t2? If not, is it
true up to some exceptions that we can characterize?

Intuitively one would expect the test numbers to be additive, but the catch is that the searcher
is free to use mixed pools with elements from both V1 and V2, and perhaps save some tests in this
way. (Also, the conjecture is not true for the adaptive variant of SGT.)

A solution to the problem would nicely extend our lower-bound toolbox in [1]. If the problem
turns out to be easy, plan B is to continue on [1] and figure out more t(n, d, s) values ...
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Pooling Design and Probe Selection

by Ding-Zhu Du and Weili Wu

1 Introduction

A few year ago, a newspaper reported the following: “The study suggests that some genes start
working less hard after age 40, at least in some people.” After age 40, “about 400 genes showed
significant changes in how hard they had been working to instruct cell to make certain proteins.”
This is a typical research work about gene functions. The study on gene functions is getting more
and more attentions. Computer technology has been extensively involved in such a study. Usually,
this study requires a DNA library of high quality, which obtained through a large amount of testing
and screening. Consequently, the efficiency of testing and screening becomes a crucial issue to the
success and ultimately the impact of the study of gene functions. Indeed, some efficient method
makes a big difference. For example, the Life Science Division of Los Alamos National Laboratories
[71] reported that they were dealing with 220,000 clones and hence, testing those clones individually
requires 220,000 tests. However, with a smart method, this number was reduced to 376 tests. The
difference is really significant.

This smart method is called the pooling design. The pooling design is a special type of group
testing, which is known as a mathematical search method since 1943 [27, 1]. Given a set of n items
with at most d positive ones, the group testing tests subsets of items, called pools. For example, in
the above mentioned testing at Los Alamos National Laboratories, each pool contains about 5,000
clones. The outcome of a test on a pool is positive if the pool contains a positive item, and is
negative if the pool contains no positive item. When d/n is small, the possibility of a pool being
negative is quite large so that one test can identify many items. This is the basic idea of group
testing.

Group testing was studied starting from the Wassernan-type blood test in World War II [27]
and obtained many developments later due to its various applications, such as multi-channel ex-
cess, chemical testing, software testing, etc. Especially, its significant applications in the study of
molecular biology get more attentions [2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 20, 28, 30, 37, 41, 43, 44, 47,
48, 50, 52, 54, 60, 63, 68, 69, 70, 73, 74, 75, 78, 81, 83, 84, 85, 86, 87, 89, 90, 91].

Consider a set of 16 items with at most one positive item. We can design the following two
group testing algorithms.

The First Algorithm. Arrange 16 items into a 4× 4 matrix. Each row or column represents
a pool. Since there is at most one positive item, there exists at most one positive row and at most
one positive column; if those positive row and column exist, then their intersection is the positive
item. Therefore, we need 8 tests to identify the positive one (Fig. 1(a)).

The Second Algorithm. Bisect 16 items into two pools of size 8. Test both pools. If both
are negative, then all items are negative. If there is a positive pool, then bisect the positive pool
into two parts A and B and test A. If test-outcome is negative, then B is positive; otherwise, A is
positive. Bisect the positive one again until the positive item is singled out. Thus, we need at most
5 tests to identify the positive one (Fig. 1(b)).

The first one is a nonadaptive algorithm. The second one is sequential. In general, a group
testing is nonadaptive if all tests are arranged in a single stage, that is, no information on test
outcomes is available for determining the composition of another test [29, 30]. The sequential group
testing may use less number of tests than nonadaptive group testing while the nonadaptive group
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Figure 1: Nonadaptive and sequential group testing (assume item 5 is positive).

testing saves time. Since testing in molecular biology is often time-consuming, a pooling design is
usually a nonadaptive group testing or a group testing with a small number of stages [6, 13, 67].

A nonadaptive group testing is often represented by a binary matrix with rows indexed with
pools and columns indexed with items. A cell (i, j) contains a 1-entry if and only if the ith pool
contains the jth item. This binary matrix is called the incidence matrix of the represented group
testing.

Note that a pool is positive if it contains a positive item. If each column (item) is considered as
a set of pools with 1-entry in the column, then the union of all columns indexed with positive items
is the set of all positive pools, called test-outcome. Therefore, for a binary matrix representing a
nonadaptive group testing which can identify up to d positive items, all unions of up to d columns
should be distinct. The binary matrix with this property is said to be d̄-separable.

Finding optimal or near-optimal algorithm to minimize the number of tests is a classical research
problem in mathematical search theory. For group testing, such a problem is very hard to solve.
Indeed, the complexity of finding optimal group testing is a long-standing open problem. We
only know that the decision version of group testing belongs to PSPACE and is conjectured to be
PSPACE-complete [33].

Given a test-outcome with a d̄-separable matrix, how to determine all positive items? A naive
way is to compare the given test-outcome with all unions of up to d columns. This takes O(nd)
time. Ming Li (mentioned in [29]) showed that no (decoding) algorithm for d̄-separable matrix can
be done in polynomial-time with respect to n and d unless NP=P. This means that this naive way
is actually the best way.

Indeed, decoding is equivalent to finding a subset of at most d items hitting every positive pool.
Therefore, its computational complexity is reduced to the well-known NP-hard hitting set problem.
However, the input size of this hitting set problem is controlled by the union of negative pools since
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every item in a negative pool is negative and hence can be removed from consideration of decoding.
When no column can be contained by a d-union, every negative item must appear in a negative
pool. Therefore, decoding will become quite easy since all items not appearing in the union of all
negative pools are positive. The binary matrix with the above property is said to be d-disjunct.
For t × n d-disjunct matrix, the decoding time is O(nt). A good design of d-disjunct matrix may
give t = O(d2 log n).

Recently, there is a surprising development in decoding of test-outcome obtained from non-
adaptive group testing. This development was made by Indyk, Ngo and Rudra [57] through the
study of concatenated code which has a close relationship with transversal design (see next section).
They designed a type of nonadaptive group testing whose outcome can be decoded within time in
a polynomial with respect to t, the number of tests. This design is called efficiently decodable
group testing. Here, we would like to propose the study of efficiently decodable group testing with
connection to pooling design and probe selection as follows.

• In efficiently decodable two or three-stage group testing, introduce the competitiveness in
order to reduce the number of tests or to increase efficiency of pooling design.

• Extend the efficiently decodable nonadaptive group testing to complex model which has many
application in molecular biology.

• For an efficiently decodable nonadaptive group testing in hand, how to reduce the number of
tests further. This problem is closely related to the probe section problem.

In the following sections, we will give a detail description for proposed research and background
in each identified problem.

2 Transversal Design and Efficiently Decoding

Nonadaptive group testing has many applications in molecular biology, such as DNA library screen-
ing, gene detection, physical mapping and contig sequencing [30]. In many cases, an item is a clone
(a small piece of DNA) and the test is performed through hybridization.

In fact, a DNA consists of two strands. Each strand is a sequence of four types of nucleotides,
A,C,G, T . The two strands stay together in double helix with a complementary relation A ↔ T
and C ↔ G, that is, one strand can be obtained from the other by changing A to T , T to A, C to
G and G to C. The two strands can be separated under proper heating, but they have a tendency
to bind to each other when put together. This binding tendency is known as hybridization.

The hybridization can be used to find out whether a DNA strand D contains a specific substrand
S. Let S−1 denote the complementary strand of S. Mix D and S−1. If D contains S, then S−1

will hybridize with S. This hybridization effect is magnified by the PCR (polymer chain reaction)
technique so that it becomes observable or measurable. A PCR is essentially a technology to make
copies of existing DNA pieces by using hybridization. The availability of multiple copies is a basic
condition for application of group testing.

A nonadaptive pooling design is called a transversal design if all pools can be divided into
disjoint families, each of which is a partition of all items (pools in different parts are disjoint). In
a transversal design, all items need the same number of copies. Thus, it is easy to implement and
hence is used very frequently in practice.
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A transversal design can be represented by a q-nary matrix. A matrix is q-nary if every entry is
chosen from {0, 1, ..., q− 1}. Let rows be indexed by families and columns indexed by items. A cell
(i, j) contains entry k if and only if item j belongs to the kth pool in the ith family. This matrix
representation is called a transversal matrix of the transversal design. For example, matrix 0 0 1 1 2 2

2 1 0 1 0 2
0 1 1 0 0 1


represents transversal design

{1, 2}, {3, 4}, {5, 6};
{3, 5}, {2, 4}, {1, 6};
{1, 4, 5}, {2, 3, 6}.

Its incidence matrix is 

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 1 0 1 0
0 1 0 1 0 0
1 0 0 0 0 1
1 0 0 1 1 0
0 1 1 0 0 1


.

A transversal design is d-disjunct if and only if its transversal matrix satisfies the following
property: no column is contained in the union of d other columns where the union of d column
vectors is defined to be a column vector with each component being the union of the corresponding
components of those d column vectors. Therefore, a q-nary matrix with this property is also called
a d-disjunct q-nary matrix.

In [32], Du et al. gave a construction of the d-disjunct q-nary matrix as follows: Let GF (q) be
a finite field of order q and k a positive integer satisfying

n ≤ qk (2.1)

f = d(k − 1) + 1 ≤ q. (2.2)

Construct an f × n matrix M(d, n, q, k) by labeling columns with n distinct polynomials of degree
k−1 over the finite field GF (q) and labeling rows with f distinct elements of GF (q), and by putting
entry g(x) into cell (x, g). Then M(d, n, q, k) is a d-disjunct q-nary matrix. In fact, suppose to the
contrary that M(d, n, q, k) is not d-disjunct. Then it has a column g0 contained in the union of
other d columns g1, ..., gd, that is, for each row index xi, g0(xi) = gj(xi) for some j. Note that there
are d(k − 1) + 1 rows. Thus, there exists a gj (1 ≤ j ≤ d) such that g0(xi) = gj(xi) for at least k
row indices xi. By Lagrange Interpolation Formula, a polynomial of degree k−1 can be completely
determined by its values at k distinct places. It follows that g0 = gj, a contradiction.

The following theorem is established in [32].

Theorem 1. For above chosen q and k, M(d, n, q, k) is a d-disjunct f × n q-nary matrix where

f ≤ q0 = (1 + o(1))
d log2 n

log2(d log2 n)
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and
q ≤ 2q0.

Therefore, M(d, n, q, k) represents a transversal design with at most

(2 + o(1))(
d log2 n

log2(d log2 n)
)2

tests.

This is significantly better than other constructions for transversal designs in the literature, such
as the k-dimensional grid design [4,48,53], in which the number of tests can be O(dn1/k), the Chinese

remainder sieve [43], in which the number of tests is O( (d lnn)2

ln(2d lnn)
), and constructions in [74, 78].

In [32], Du et al. also proposed a multiplication theorem as follows.

Theorem 2. If there exist a d-disjunct f × n q-nary matrix M1 and a d-disjunct f ′ × q q′-nary
matrix M2, then there exists a d-disjunct ff ′ × n q′-nary matrix M3.

Actually, M3 can be constructed from M1 and M2 by labeling columns of M2 with 0, 1, ..., q− 1
and replacing each entry of M1 by a corresponding column of M2, denoted by M3 = M1×M2. Note
that M3 gives a transversal design with ff ′q′ tests. If f ′q′ < q, then ff ′q′ < fq. Du and Hwang [30]
indicated that by using this multiplication theorem repeatedly, the number of tests may be reduced
to approach the lower bound

d2 log2 n

log2 d

for nonadaptive group testing [38,39,40].
Indyk, Ngo and Rudra [57] introduced a new concept, list disjunct matrix. A binary matrix is

(d, `)-list disjunct if for any two disjoint column subsets S and T with |S| ≤ d and |T | ≥ `, there
exists a row on which every column in S has entry 0 and at least one column in T has entry 1.
Clearly, the (d, `)-list disjunctness for ` ≥ 2 is weaker than the d-disjunctness. Indyk, Ngo and
Rudra proved the following interesting facts about the list disjunctness.

1. There exist (d, d)-list disjunct binary matrices with O(d log n) rows.

2. There exists a d-disjunct t × n matrix M3 = M1 ×M2 such that M2 is a (d, d)-list disjunct
O(d log q)× q binary matrix and M1 is a q-nary matrix with O(d logn

log q
) rows.

Moreover, M1 can be list recoverable1, which enable M3 to have a decoding algorithm with running
time poly(t), i.e., in polynomial with respect to t. Therefore, they proved the following.

Theorem 3. There exist d-disjunct t× n matrices with decoding time poly(t).

This is a surprising result compared with classic decoding time O(nt) for the d-disjunct matrix.
This efficiently decodable nonadaptive group testing has been applied to data security [57] and
compressed sensing [77]. It has also been extended to the error-tolerant case [76].

3 Proposed Research

In this section, we propose some research problems on efficiently decodable group testing related to
applications in molecular biology.

1This concept is from coding theory. Actually, a q-nary t × n matrix can be seen as a q-nary code of n items;
each code word has length t.
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3.1 Highly Nonadaptive Competitive Group Testing

The competitive group testing was first proposed by Du and Hwang [31] in 1993. For a sample of n
items with d positive ones, let M(d, n) denote the minimum number of tests required in the worst
case when d is known. Let MA(d|n) denote the number of tests performed by Algorithm A in the
worst case when applied on such a sample of n items with d positive ones. Then algorithm A is
called a c-competitive group testing if

MA(d|n) ≤ cM(d, n) + a

for all 0 ≤ d < n where a and c are two constant. The constant c is called the competitive ratio. The
advantage of the competitive group testing is that without knowing the actual number of positive
items or its upper bound, the number of tests is competitive with the worst case possible upper
bound M(d, n). Since M(d, n) = d log n

d
+ o(1), the number of tests is decreased as d, the number

of positive items in an actual sample, becomes smaller.
The algorithm proposed by Du and Hwang [31] is a 2.75-competitive algorithm. Bar-Noy et al.

[3] gave a 2-competitive algorithm. The competitive ratio was further improved by Du et al. [36]
to 1.65 and by Schlaghoff and Triesch [83] to 1.5 + ε where 0 < ε < 0.01. If randomized algorithms
are considered, Damaschke and Sheikh Muhammad [24] showed that one can achieve nearly d log n
tests even with highly nonadaptive group testing strategy. This motivates us to study the following
problem.

Problem 1. Can we design efficiently decodable 2-stage or 3-stage competitive group testing algo-
rithms? Or, can we design efficiently decodable highly nonadaptive randomized group testing?

From the previous section, we know that for applications in molecular biology, we favor non-
adaptive group testing. However, there does not exist a competitive nonadaptive group testing
since in nonadaptive group testing, the number of tests is fixed at the beginning which depends on
the estimation of the upper bound of the number of positive items. If this estimation is far from the
actual number, we may waste a lot of tests. Therefore, it may be worth to add one or two stages
or a certain level of randomness to introduce the competitiveness into efficiently decodable group
testing.

Du and Park [35] introduced another type of competitiveness, the strongly competitive group
testing. They also gave two strongly competitive algorithms. Cheng et al. [15,18] proposed some
improvements. Introducing the strong competitiveness into efficiently decodable group testing may
also be an interesting research subject.

3.2 Error-Tolerant Testing

We may also involve the error-tolerant issue in the study of Problem 1. It was Macula [65] who first
proposed the de-disjunct matrix, an error-tolerant version of d-disjunct matrix, which has attracted
a lot of attention [55,66,78,91,76].

In fact, error-tolerance is an important issue in coding theory [59,80]. So it is in pooling designs
[55,66,76,78,91] since biological tests may not be 100% reliable. Actually, a nonadaptive pooling
design is also called a superimposed code [38,40,51,61]. It was not too hard to extend the efficiently
decodable nonadaptive group testing to error-tolerant one [76]. However, it may be a challenging
job to involve the presence of inhibitors [25,28,30]. Indeed, in the presence of inhibitors, decoding is
an important issue and classic decoding methods are already not so simple. Therefore, the following
problem is interesting to study.

Problem 2. Can we extend the efficiently decodable method to the case when inhibitors are present?
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3.3 Extend to Complex Model

When the positiveness of a test is caused by a subset of items, but not a single item, we need to
consider complex model [30]: Given a set of n items and at most d positive subsets of items, identify
all positive subsets with the minimum number of tests; each test is on a pool (subset of items) and
the test outcome is positive if and only if the pool contains a positive subset.

A pooling design is d-disjunct for a complex model if for any sample, every negative subset is
contained in at least one negative pool, that is, all positive subsets can be identified by excluding
all subsets contained in negative pools. The complex model is said to be r-uniform if all positive
subsets have the same cardinality r. For r-uniform complex model, a pooling design is d-disjunct if
and only if its binary incidence matrix satisfies the following conditions: For any r columns C1, ..., Cr

and any other d columns Cr+1, ..., Cr+d, there exists a row Ri such that C1, ..., Cr have 1-entries in
row Ri and Cr+1, ..., Cr+d have 0-entries in row Ri. A binary matrix satisfying such a property is
called a (d, r]-disjunct matrix [18]. We may also introduce the transversal designs to the complex
model as well the (d, r]-disjunct q-nary matrix corresponding necessary and sufficient condition for
it to represent a (d, r]-disjunct transversal design.

Problem 3. Can we extend the efficiently decodable nonadaptive group testing to the r-uniform
complex model?

This is not an easy job. Actually, we may need first to solve the following problem.

Problem 4. Can we extend the construction of Du et al. for the d-disjunct matrix to the r-uniform
complex model? Can we extend the construction of Indyk-Ngo-Rudra for the (d, d)-list disjunct
matrix to the r-uniform complexity model?

Eextending the construction of Du et al. for the d-disjunct matrix to the (d, r]-disjunct matrix
is already not an easy job. Gao et al. [44] made an attempt. The result is not satisfied because the
number of tests is far from a known lower bound. Actually, we intend to find a new extension.

Indeed, there is another possible interesting way. To explain it clearly, let us consider 2-uniform
complex model, that is, each positive subset contains two items. The 2-uniform complex model is
exactly the group testing in graphs [1,21,22,44,46,58,63]. It has an application in protein-protein
interactions [63,87].

Let M be a (d, 2]-disjunct q-nary matrix M . Then M should have the following property: For
any d+ 1 distinct pairs of columns {C1, C

′
1}, ..., {Cd+1, C

′
d+1}, there exists a row at which the union

of C1 and C ′1 is disjoint from the union of C2 and C ′2, ..., the union of Cd+1 and C ′d+1.
Let P be a collection of polynomial of degree k−1 on a finite field GF (q) such that all products

of two polynomials in the family are distinct. Construct a q-nary matrix M by using polynomials
in P for column labels and 2kd + 1 distinct elements of GF (q) for row labels; for each cell (x, g),
put entry g(x). Then M satisfies required property.

How do we design family P? An idea is to replace polynomials of degree k − 1 by polynomials
of degree k with the coefficient of the first term being 1. Since such a polynomial of degree k can
be determined by its k roots and the product of two polynomials is determined by the union of two
root sets, we can reduce the problem to find a collection of k-multi-subsets of GF (q) such that all
unions of two k-multi-subsets in the collection are different. For simplicity, we may find a collection
of k-subsets of GF (q) such that all unions of two k-subsets in the collection are different. This
means that the transpose of the incident matrix of the collection is a 2-separable matrix. Therefore,
if we design a 2-disjunct q×h matrix with every column having a constant weight k, then we obtain
a family P of h members.

It is not so easy to apply the above idea to general r, which is why it is interesting to study.
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3.4 Probe Selection

A probe is a short oligonucleotide of size 8-25, used for identifying viruses (or bacteria) in a biological
sample through hybridization, where a biological sample is a biological object, such as blood,
containing a subset of viruses. When each probe hybridizes to a unique virus, identification is
straightforward.

Although temperature and salt concentration are very helpful for a probe to hybridize uniquely
to its intended virus, finding unique probes for given set of viruses is still a difficult task, especially
for closely related virus subtypes. Schilep, Torney and Rahman [83] proposed a group testing
method to use non-unique probes to find which viruses are in a biological sample. They consider a
set of viruses hybridized to a probe as a pool and the incidence matrix of probes and viruses as a
pooling design.

A pool yields a positive outcome if it hybridizes to a virus in the biological sample. The problem
here differs from those in previous chapters in the fact that the candidate set of probes is more or
less determined, not subject to our design as in previous chapters. What we can do is to construct
a pooling design by selecting a subset of the candidate set.

If the incidence matrix is d̄-separable, then the presence of up to d viruses in a given biological
sample can be determined with those non-unique probes. Their methodology contains three steps:

Step 1. Find a large set of non-unique probes.
Step 2. From the set of probes obtained in Step 1, find a minimum subset of probes to identify

up to d viruses.
Step 3. Decode the presence or absence of viruses in the given biological sample from testing

outcomes.

The minimization problem in Step 2 can be formulated as follows:

Min-d̄-SS (Minimum d̄-Separable Submatrix). Given a d̄-separable binary matrix M ,
find a minimum d̄-separable submatrix with the same number of columns.

Since for d̄-separable matrix, it is hard to decode at Step 3, we may use d-disjunct matrix
or efficiently decodable d-disjunct matrix instead, which introduce the following two minimization
problem:

Min-d-DS (Minimum d-Disjunct Submatrix). Given a d-disjunct binary matrix M , find
a minimum d-disjunct submatrix with the same number of columns.

Min-d-EDDS (Minimum Efficiently decodable d-Disjunct Submatrix). Given an ef-
ficiently decodable d-disjunct binary matrix M , find a minimum efficiently decodable
d-disjunct submatrix with the same number of columns.

These two problems are unlikely polynomial-time solvable. In fact, for any fixed d, Min-d-DS
is NP-hard. However, the complexity of Min-d-EDDS is hard to determine. Therefore, we have a
research problem as follows.

Problem 5. What is the computational complexity of Min-d-EDDS? Design good approximations
for it.

There are many research works already existing in the literature on Min-d̄-SS, Min-d-DS and
a related problem as follows.
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Min-d-SS (Minimum d-Separable Submatrix). Given a d-separable binary matrix M ,
find a minimum d-separable submatrix with the same number of columns.

We may get some ideas from those existing works to study Min-d-EDDS.
For d = 1, Min-d-SS is exactly the well-known minimum test cover problem [26] (also called the

minimum test set problem [45] or the minimum test collection [49]). Minimum test cover problem
has a greedy approximation with performance 1 + 2 lnn where n is the number of items [45]. This
suggests us to study greedy approximations for Min-d-EDDS.

For Min-d-DS, it is not hard to obtain greedy approximations with performance ratio 1 + (d+
1) lnn. In fact, consider the collection S of all possible pairs (C,D) of one column C and a subset
D of d columns. Clearly |S| < nd+1. A row is said to cover such a pair (C,D) if at this row,
the entry of column C is 1 and all entries of columns in D are 0. Now, we choose rows one by
one to maximize the total number of pairs newly covered by the row. This is a special case of the
minimum set cover problem. It is well-known that the greedy algorithm for the minimum set cover
has performance ratio 1 + ln |S| < 1 + (d+ 1) lnn.

This greedy algorithm works well only for small d because its running time is O(nd+1). When
d is large, it is too slow. Therefore, we must look for other smart ways. Schilep, Torney and
Rahman [84] proposed greedy algorithm which adds probe one by one until the incidence matrix
with considered viruses form a d̄-separable matrix. This doesn’t work for large d, neither. In fact, if
d is not bounded, then testing whether a binary matrix is d-separable, or d̄-separable, or d-disjunct
is co-NP-complete. There exist other methods [62] in the literature, which work well for small d.
However, no efficient method has been found to produce good solutions for larger d. This situation
suggests that the following problem is challenge.

Problem 6. Design good greedy approximation algorithms for Min-d-EDDS, especially in case
that d is larger.

In some applications, the pool size cannot be too big due to the sensitivity of tests. For example,
UNH suggested in ADS testing, each pool should not contain more than five blood samples [80].
When the pool size is bounded, the problem becomes easier. For instance, let us consider the case
that every pool has size at most 2 so that all pools of size 2 together with items form a graph G
where pools are edges and item are vertices. Halldórsson et al. [49] and De Bontridder et al. [26]
proved that in this case, Min-1-SS is still APX-hard, which means that there is no polynomial-
time approximation scheme for it unless NP=P. They also showed that Min-1-SS in this case has
a polynomial-time approximation with performance ratio 7/6 + ε for any fixed ε > 0.

An interesting result was showed by Wang et al. [89] that a subgraph H of G represents a
d-disjunct matrix if and only if every vertex in H has degree at least d+ 1 and hence finding such
an H with minimum number of edges is polynomial-time solvable. What about the case when all
pools have size 3? Wang et al. proved that in this case Min-d-DS is still NP-hard. Motivated from
above research, we propose to study the following problem.

Problem 7. When the pool size is bounded, is there a good approximation for Min-d-EDDS?
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Combinatorial Search Problems

by Gyula O.H. Katona

1

Problem 1. Exactly two (at most two?) distinguished elements x and y of [n] are sought by testing
subsets of [n]. Only subsets of size at most k can be used. The result of the test A is YES, if and
only if at least one of x and y is in A. Determine the minimum number of tests in both cases:
adaptive, non-adaptive.

The case when there is exactly one distinguished element was more or less solved in [1]. The
adaptive case was easy: one could ask disjoint k-element sets until the element was caught or the
remaining part was of size at most 2k. Then the usual halving finished the algorithm.

The non-adaptive case was less easy, [1] gave only lower and upper estimates. But it determined
the form of the matrix of the optimal search (0,1 matrix where the rows represent the test sets). It
was described by its columns: for some integer parameter r, the matrix contains all distinct columns
with at most r 1’s, some columns with r + 1 1’s, and no columns with more than r + 1 1’s. If k is
small, namely n ≥

(
k+1

2

)
+ 1 then the exact minimum of the number of tests is

⌈
2n−1
k+1

⌉
. A new, nice

approach can be found in [2].

2

A graph G(V,E) is given with one distinguished edge. Paths of the graph can be tested if the
distinguished edge is along the path or not. Let α(G) and ν(G) denote the minimum number of
tests in an adaptive and non-adaptive algorithm, finding the distinguished edge, respectively. Since
single edges are also paths, α(G) ≤ ν(G) ≤ |E|.

Problem 2. Determine

α(n, e) = max
|E|=e

α(G)

and

ν(n, e) = max
|E|=e

ν(G).

If G is the complete graph KN then the results of [1] can be well applied in the determination
of α(KN) and ν(KN) since the number of possible distinguished elements is

(
N
2

)
and sizes of the

test sets are bounded by N − 1. In the adaptive case there must be a small difference at the end of
the algorithm, since there is no path of length more than N − 1. But this small gap can probably
bridged. We only have to decompose KN into paths of length N − 1 and one shorter. On the
other hand, in the non-adaptive case, the upper bound obtained by [1] can be probably attained by
constructing the appropriate paths.

It is probably easier to determine the values

max
e
α(n, e),max

n
α(n, e),max

e
ν(n, e),max

n
ν(n, e).
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3

Consider the set S of 0,1 sequences of length n. Introduce the Hamming distance between two such
sequences as the the number of different digits. If u ∈ S is a sequence, R is a non-negative integer
then Br(u) is the ball with center u and radius r.

Problem 3. We want to find one unknown element x ∈ S by asking balls of radius at most k if
x is in the ball or not. Both the adaptive and non-adaptive cases seem to be interesting. Even the
case when k ≥ n

2
seems to be non-trivial.

4

Suppose that there are exactly two unknown elements r and g of [n]. Asking a subset A ⊂ [n] the
answer tells us

RED, if r ∈ A, g 6∈ A,
GREEN, if g ∈ A, r 6∈ A,
WHITE, otherwise.

Problem 4. Determine the minimum lengths of the adaptive and the non-adaptive algorithms.
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Contributed Problems

The plurality problem with three colors

by Gábor Wiener

This is a problem of Martin Aigner [1]. We are given n balls of (at most) three colors. We say
that a ball is in plurality if its color class contains more balls than any other color classes (i.e. if we
have 4 red, 3 green, and 3 yellow balls then the red balls are in plurality, while if we have 5 red, 5
green, and 0 yellow balls then there is no plurality). We have to find a ball of plurality color or to
prove that there is no plurality using pairwise comparisons of the balls. Such a comparison tells us
only whether the two balls have the same color or not. Our aim is to find the minimum number of
comparisons p(n) needed to find a plurality ball or to prove that there is no plurality. For two colors
instead of three, the problem was solved by Saks and Werman [3] who showed that the number of
comparisons needed is n− ν(n), where ν(n) is the number of 1’s in the binary representation of n.
Aigner, De Marco, and Montangero showed [2] that p(n) ≥ 3bn

2
c − 2 and Aigner proved [1] that

p(n) ≤ b5n
3
c − 2. Both bounds are the best known ones and it is believed (as Aigner reports) that

the upper bound is the correct answer. For c ≥ 4 colors it is known that the answer is Θ(cn) [1].
For related problems and more literature also see [1].
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Geometric search

by Dániel Gerbner

Let us consider the simplest group testing model. We are given an underlying set, and we know
that one of its elements is defective. We are also given a family F of its subsets, and we can ask a
member of F as a test; the answer shows if the set contains the defective element or not. Our goal
is to identify the defective element using as few questions as possible.

In our case the points are on the plane, and F is defined by some geometric properties. Let us
consider the case when F is the family of convex sets, and the points are in general position. It was
shown in [1] that the number of tests in a non-adaptive algorithm is between n/(2 log n + 2) and
20n log log n/ log n.

Can this gap be closed? Also, it might be interesting to consider other geometric properties or
other search theoretic questions. Only the most simple ones have been studied.
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The path is more important than the goal, is it?

by Balázs Keszegh

The pyramid graph Py(n) is a directed graph defined in the following way. Py(n) has N =
n(n + 1)/2 vertices on n + 1 levels, for 1 ≤ i ≤ n + 1 the ith level having i vertices vi,1, vi,2 . . . vi,i,
and from every vertex vi,j where 1 ≤ i ≤ n and 1 ≤ j ≤ i, there is a left outgoing edge going to
vi+1,j (its left child) and a right outgoing edge going to vi+1,j+1 (its right child). Py(n) has one root
at the top, v1,1 and n+ 1 sinks at the bottom, the vertices on the (n+ 1)th level.

For each non-sink vertex exactly one of its two outgoing edges is labeled. The labeled edges
define a unique path P from the root to a sink. The search problem we regard is the following: At
the beginning we don’t know anything about which edge is labeled. Determine the (a) path P or
only (b) the endvertex of P (which is a sink) using queries of the following type: in one query we
ask k non-sink vertices of the graph and the answer is the labeled edge going out from each of these
vertices.

Fixing a natural number k, pak is the minimal number of rounds we need to determine the path,
if in each round we can ask k questions. Similarly, sik is the minimal number of rounds we need to
determine the sink of P , if in each round we can ask k questions. Determine these parameters.

For k = 1, 2, 3 we know the exact answer [1] but for bigger k the problem is open.
Is it true that pak = sik for all k?
This problem can of course be generalized to other directed (acyclic) graphs, for example for

complete rooted d-ary trees we know the minimal number of queries for every k.
This problem was originally proposed by Soren Riis.
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Counting induced subgraphs of a bipartite graph by size

by Bhargav P. Narayanan

Dömötör Pálvölgyi asked (see below) if every bipartite graph on 2k edges contains an induced
subgraph on exactly half the number of edges. It would be nice to answer the following question
which is also about sizes of induced subgraphs of a bipartite graph.

Given a graph G, let SG be the set of sizes of all the induced subgraphs of G, i.e.

SG = {e(H) : H is an induced subgraph of G}.

Problem. Is there an absolute constant C such that for every bipartite graph G on m edges,
|SG| = Ω( m

(logm)C
)?

There’s been a large body of work on counting induced subgraphs of a given graph where we
distinguish induced subgraphs by different parameters - for instance, up to isomorphism. The size
is a natural parameter to count induced subgraphs by.

The problem is particularly interesting on bipartite graphs because it is a natural generalisation
of the Erdős multiplication table problem. Estimating the size of SG when G = Kn,n is exactly the
same question as computing the number of distinct products ab with both a, b ≤ n; the multipli-
cation table problem has only recently been resolved but it follows easily from the prime number
theorem that |SKn,n| = Ω( n2

(logn)2
).

Does every bipartite graph with 2k edges have an induced subgraph
with 2k−1 edges?

by Dömötör Pálvölgyi

Suppose we have a (simple) bipartite graph with 2k edges. Is it true that there is a subset of
the vertices such that their induced subgraph has exactly 2k−1 edges?

The answer is no for general graphs, since you can take a K6 plus a disjoint edge. If we don’t
require the number of edges to be a power of 2, the answer is again no as shown by a K5,9 plus a
disjoint edge. I suspect that the answer to my question is also no.

The question is an equivalent formulation of the following problem. Suppose we want to find
the unique defective elements in two disjoint sets in the (adaptive) group testing model and some
questions have been already asked. Is it true that if there are at most 2k possibilities left, then we
can find both elements with k further questions?

For complete bipartite graphs (no questions asked before we start) this has been solved in G.J.
Chang and F.K. Hwang, A group testing problem on two disjoint sets, SIAM J. Alg. Disc. Methods
2 (1981) 35–38. http://epubs.siam.org/doi/abs/10.1137/0602005


