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Selected topics in positional games

Asaf Ferber Dan Hefetz Michael Krivelevich Miloš Stojaković

1 Positional Games – Introduction

1.1 General framework, examples

Positional games involve two players alternately occupying the elements of a given set X, the
board of the game. The focus of their attention is a given family F = {A1, . . . , Ak} ⊆ 2X of subsets
of X, usually called the winning sets; the family F is called sometimes the hypergraph of the game.
The players exchange turns occupying previously unoccupied elements (vertices) of X. In the most
general version there are two additional parameters – positive integers p and q, the first player in
his turn takes p unoccupied vertices, the second player responds by taking q unoccupied vertices (in
the most basic version p = q = 1 – the so called unbiased game). The game is specified completely
by defining who wins in every final position, or more generally for every possible game scenario. Of
course, the last sentence is not quite mathematically sound, but it is left vague intentionally so as
to accommodate a large variety of games, unified under the same roof; later we will be more specific
when defining a concrete game type.

Here are some concrete illustrative examples of positional games.

Example. Tic-Tac-Toe. This one certainly does not need a formal introduction – it has been to
everyone’s childhood. The game of Tic-Tac-Toe (or Crosses & Noughts) is played by two players,
alternately claiming one unoccupied cell each from a 3-by-3 board; the player completing a winning
line first wins, where winning lines are three horizontal lines, three vertical lines and two diagonals;
if none of the lines is claimed in its entirety by either of the players by the end of the game, the
game is declared a draw. In this case, the board X is [3]2, and the winning sets F form a 3-unform
hypergraph with eight edges. The phrase “every child knows it is a draw” is right to the point here
– this is indeed a draw, and the only known way to prove it is by case analysis (this could well be
your first case analysis proof . . . ).

Example. nd. This is a far reaching and extremely interesting (and complicated) generalization
of Tic-Tac-Toe. Here the board is the d-dimensional cube X = [n]d, and the winning sets are
the so called combinatorial lines in X. A combinatorial line l is a family of n distinct points
(a(1), a(2), . . . , a(n)) of X such that for each coordinate 1 ≤ j ≤ d the sequence of corresponding

coordinates (a
(1)
j , a

(2)
j , . . . , a

(n)
j ) is either 1, 2, . . . , n (increasing) or (n, n − 1, . . . , 1) (decreasing) or

a constant (and of course, at least one of the coordinates should be non-constant). The winner
is the player who occupies a whole line first, otherwise the game ends in a draw. The familiar
Tic-Tac-Toe is 32 in this notation. Our understanding of this family of games is rather limited, we
know in particular (and will explain it later) that for a fixed n, the first player is the one who wins
for large enough d.
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Exercise 1. What is the number of winning sets in nd?

Example. Hex. This game was apparently invented by the Danish mathematician Piet Hein in
1942 and was played and researched by none other than John Nash in his student years. The game
is played on a rhombus of hexagons of size n× n (in commercial/recreational versions n is usually
11), where two players, White and Black, take the two opposite sides of the board each, and then
alternately occupy unoccupied hexagons of the board with their own color. Whoever connects his
own opposite sides of the board first, wins the game. Strictly speaking, Hex as we presented it
does not fit our general framework (can you see why?), but there is a legitimate way to cast it as
a positional game. Apparently thinking of Hex, Nash came up with the idea of Strategy Stealing
(see later) and proved that the first player is the winner; one can argue rather easily that at least
one player wins; proving that there is only one winner is a topological-type statement, see [18].

Example. H-building game. This, somewhat less popular commercially, game is described as
follows. The game is played on the edges of the complete graph Kn on n vertices, Player 1 (Maker)
takes one unoccupied edge in each round, Player 2 (Breaker) responds by taking q unoccupied edges.
Maker wins if he creates a copy of a fixed graph H from his edges, otherwise the win is of Breaker.
Here our knowledge is rather satisfactory, see [7].

Exercise 2. Try to analyze this game for the case of H being a triangle K3; aim to prove that for
q = c

√
n for small enough c > 0 Maker wins, while for q = C

√
n for large enough C > 0 Breaker

is the winner. This is a result of Chvátal and Erdős [9].

The above game represents a very wide and important class of games, whose board is the edge set
of the complete graph Kn; sometimes it is generalized further to games played on the edge set of a
general (rather than complete) graph. We will see many such games later.

The fundamental monograph [4] of József Beck, the main proponent and contributor of the field for
several decades, can serve as a thorough introduction to the subject, covering many of its facets,
and posing many interesting problems (beware though that some of them have been solved since
the first print!). Beck’s recent text [5] has a lot of stuff about games too.

We now proceed to describe and discuss concrete game types.

1.2 Strong games

Strong games is probably the most natural type of games – these are the games played for fun by
normal human beings. A strong game is played on a hypergraph (X,F) by two players, called
Player 1 (Red) and Player 2 (Blue), who take turns in occupying previously unclaimed elements of
the board, one element each time (thus this is an unbiased game); Player 1 starts. The winner is
the first player who completes a winning set A ∈ F ; if this did not happen for the duration of the
game, the game is declared a draw. Both Tic-Tac-Toe and nd are strong games.

Exercise 3. Prove that the strong connectivity game, played on the edge set of the complete graph
Kn (the player completing a spanning tree first wins), is Red’s win.

Since strong games are perfect information games with deterministic moves, assuming the two
players play according to their optimal strategies, the game outcome is determined and it can be
in principle: win of Red, win of Blue, or a draw.
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In reality, there are only two possible outcomes for this kind of games (again, assuming optimal
strategies). The most basic fact about strong games is the so called strategy stealing principle,
asserting formally the advantageous position of the first player.

Theorem 4. In a strong game played on (X,F), the first player (Red) can guarantee at least a
draw.

Proof. (Sketch) Assume to the contrary that Blue has a winning strategy S. The strategy is
a complete recipe, prescribing Blue how to respond to each move of Red, and to reach a win
eventually. Now, Red steals (or rather borrows for the duration of the game, in politically correct
terms) this strategy S and adopts it as follows. He starts with an arbitrary move and then pretends
to be Blue (by ignoring his first move). After each move of Blue, Red consults the strategy book
S and responds accordingly. If he is told to claim an element of X which is still available, then he
does so; if this element has been taken by him as his ignored arbitrary first move, then he takes
another arbitrary move instead. The important point to observe is that an extra move can only
benefit Red.

This is a very powerful result, due to its amazing applicability. Yet, it is a pretty useless statement
at the same time – it is absolutely inexplicit and provides no clue for Red on how to play for (at
least) a draw.

Another general component in the theory of strong games is Ramsey-type results. This is summa-
rized in the following theorem.

Theorem 5. If in a strong game played on (X,F) there is no final drawing position, then Red has
a winning strategy.

Proof. The game is at least a draw for Red by Theorem 4; it cannot end in a draw by the theorem’s
assumption. The only remaining possibility is for Red to win.

The most striking example of the application of this tandem (Strategy Stealing + Ramsey) is
probably for the nd game. Hales and Jewett, in one of the cornerstone papers of modern Ramsey
theory [21] (notice its title – the paper was about positional games!), proved that for a given n and
a large enough d ≥ d0(n), every 2-coloring of [n]d contains a monochromatic combinatorial line.
Thus, the strong game played on such a board cannot end in a draw (the two colors are marks of
the players), and we conclude that Red wins!

Quite disappointingly, the above two statements constitute the whole contents of our bag of general
tools available for tackling strong games. Strong games are notoriously hard to analyze, and rather
few results are available at present. The difficulty in their analysis is partly due to the fact that they
are not hypergraph monotone – adding another edge e to the game hypergraph F is not necessarily
beneficial for the first player and can change the outcome of the game. Problems abound here, let
us mention one concrete example.

Problem 6. Show that for every positive integer k there exist t and n0 such that for every n ≥ n0

Red can win in at most t moves the strong game played on the edge set of the complete graph Kn,
where the goal is to create a copy of the complete graph Kk.
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In other words, we are basically asking for an explicit winning strategy for Red in the Kk-game. Of
course, by Strategy Stealing+Ramsey, for n ≥ R(k, k) the game cannot end in a draw and is thus
Red’s win, but this is non-explicit.

1.3 Maker-Breaker games

Given that the first player has at least a draw in every strong game, it makes sense for the second
player to play explicitly for a draw – which is to put his element into every winning set of the game
hypergraph. This leads us naturally to the concept of Maker-Breaker games which are also known
as weak games. In a Maker-Breaker game, the first player, called Maker, aims to complete a
winning set by the end of the game (i.e. not necessarily first) in which case he wins, while the
second player, called Breaker, aims to prevent Maker from fulfilling his goal, and the win is his if
he succeeds. Consequently here draw is not a possible outcome. For concreteness, let us assume
that Maker moves first. Observe the very non-symmetric positions of the two players here. Maker-
Breaker games are probably the most accessible and most researched type of games, with a large
variety of results obtained over the years; our understanding of this type of games is most advanced
with a nice set of tools and methods at hand.

Quite a few unbiased Maker-Breaker games are an easy win for (a way too powerful) Maker.

Example. Hamiltonicity game. Consider the Maker-Breaker Hamiltonicity game HAM played
on the edges of Kn. The winning sets are all graphs on n vertices containing a Hamilton cycle, i.e.,
Maker wins if he completes a Hamilton cycle by the end of the game. The unbiased version of this
game turns out to be a rather easy (and fast) win for Maker – Chvátal and Erdős proved [9] that,
for all large enough n, Maker has a strategy to complete a Hamilton cycle in at most 2n rounds;
this was taken all the way down to the optimal n+ 1 rounds in [26].

The overwhelming power of Maker in a large variety of games leads naturally to consider biased
(1 : b) Maker-Breaker games, for some integer b ≥ 1 (possibly depending on the size of the board), to
even out the odds of the players. In such a game Breaker responds each time by claiming b elements
of the board (or claiming the rest of the board when there are less than b elements available).

Maker-Breaker games are bias monotone as given in the following proposition.

Proposition 7. Let (X,F) be a hypergraph and let p and q be positive integers. If Maker wins the
(p : q) game on F , then he also wins the (p + 1 : q) game and the (p : q − 1) game. Similarly, if
Breaker wins the (p : q) game on F , then he also wins the (p− 1 : q) game and the (p : q+ 1) game
.

Proof. We will prove the statement for Breaker; the analogous statement for Maker can be proved
similarly. Let SB be a winning strategy of Breaker for the (p : q) game. When playing the (p−1 : q)
game on F , Breaker plays according to SB. Whenever Maker claims his p−1 board elements, Breaker
(in his mind) chooses an arbitrary free board element and “assigns” it to Maker. Whenever Maker
claims a free board element that already “belongs” to him in Breaker’s mind, Breaker “gives” him
another arbitrary free board element. By the end (in Breaker’s mind) of the game, he has already
blocked every winning set (as he played according to his winning strategy SB). Breaker will thus
win the game no matter how it proceeds.

When playing the (p : q + 1) game, Breaker plays according to SB, where in every move he claims
one additional arbitrary free element of X. Whenever he is instructed by SB to claim some element
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which he has already claimed, Breaker claims an arbitrary free element. Since Breaker follows SB
which is assumed to be a winning strategy, by the end of the game Maker will not have claimed a
complete winning set. Since every other element was claimed by Breaker, he has won the game.

Corollary 8. Let (X,F) be a hypergraph satisfying F 6= ∅ and min{|A| : A ∈ F} ≥ 2. Then there
exists a positive integer b∗ such that Breaker wins the (1 : b) game on F if and only if b ≥ b∗.

The integer b∗ is referred to as the threshold bias of F . Determining or estimating the threshold
bias of a game is a typical research goal for many Maker-Breaker games. We will see some concrete
examples and questions about the threshold bias later.

Another possible type of questions for Maker-Breaker games is not to determine the winner, but
rather, say assuming that the winner is Maker, to estimate in how few moves he is guaranteed to
claim an entire winning set. This parameter is sometimes called the move number of the game.
The above mentioned result about the Hamiltonicity game is of this type – the move number of the
Hamiltonicity game is n+ 1, for all large enough n. Finding strategies for fast wins can sometimes
prove useful for attacking (usually much more challenging) strong games played on the same game
hypergraph, more about it later.

1.4 Avoider-Enforcer games

Similarly to card games, in a misére game the goals of the players are reversed, and the player who
would win under normal circumstances is declared the loser. For example, an Avoider-Enforcer
game is the misère version of a Maker-Breaker game: in an Avoider-Enforcer game played on a
game hypergraph (X,F), the first player, called Avoider, wins if by the end of the game he does
not occupy completely any of the winning sets of F . The second player, Enforcer, wins otherwise,
i.e., if he has a strategy to force Avoider to occupy a winning set. We assume that Avoider is the
first to make a move. Avoider-Enforcer games are certainly quite interesting for their own sake,
they can also be used to analyze perhaps more natural Maker-Breaker games.

Example. Biased Maker-Breaker non-planarity game. This example is taken from [23].
Consider the biased (1 : b) non-planarity Maker-Breaker game played on E(Kn), where Maker wins
if in the end he creates a non-planar graph. According to the result of Bednarska and Pikhurko
[8] if b = b(n) is such that Maker completes the game with n− 1 edges or less, then Breaker has a
strategy to force Maker to end up with a forest – which is of course a planar graph. One possible
strategy to derive a matching lower bound for the threshold bias is to argue that if b = (1− ε)n/2,
then Maker has a strategy allowing him to avoid claiming cycles of length at most k almost till the
end of the game, where k = k(ε) is a large enough constant. This will show that, if this Maker’s
strategy is successful, then towards the end of the game his graph M will have about (1 + ε/2)n
edges and girth higher than k. A standard application of Euler’s formula gives then that such
a graph is necessarily non-planar. Observe the – quite typical – change of roles of players for the
analysis of the game, here Maker assumes the role of cycle-Avoider, allowing him to win the original
game.

Exercise 9. Try to complete the details for the above proof sketch.

One extremely important characteristics of Maker-Breaker games is bias monotonicity. Alas, as
noticed in [27], Avoider-Enforcer games are not bias monotone under the traditional game rules –
claiming less elements in each turn does not necessarily help either side.
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Example. Non-monotonicity of Avoider-Enforcer games under traditional rules. Con-
sider the Avoider-Enforcer (p : q) game played on the hypergraph F , whose edge set consists of two
disjoint sets of size two. It is easy to see that for p = q = 2 Avoider wins, for p = 1, q = 2 the win
is Enforcer’s, and finally for p = q = 1 Avoider is the winner again.

This, quite disturbing, feature of the traditional Avoider-Enforcer rules prompted [25] to adjust,
in a rather natural way, the game rules so as to ensure bias monotonicity. Under the so called
monotone rules, for given bias parameters p and q, in a monotone (p : q) Avoider-Enforcer game
played on (X,F), Avoider claims at least p elements of X per turn and Enforcer claims at least q
elements of X per turn. These rules can be argued to be bias monotone very similarly to the proof
of Proposition 7, and thus the threshold bias becomes a well defined notion. Perhaps somewhat
surprisingly, monotone Avoider-Enforces games turn out to be rather different from those played
under traditional rules, and in quite a few cases known results about traditional rules provide a
rather misleading clue about the location of the threshold bias for the monotone version. We will
discuss it in more details later.

1.5 Where does it all belong and how to deal with it?

The term “positional games” can be somewhat misleading mathematically. Classical Game Theory,
initiated by John von Neumann is largely based on the notions of uncertainty and lack of perfect in-
formation, giving rise to probabilistic arguments and the key concept of a mixed strategy. Positional
games in contrast are perfect information games and as such can in principle be solved completely
by an all-powerful computer. In reality, this is (luckily – recall your chess games!) not the case, due
to the prohibitive complexity of the exhaustive search approach; this only stresses the importance
of accessible mathematical criteria for analyzing such games. A probably closer relative is what is
sometimes called “Combinatorial Game Theory”, popularized by John Conway and others, which
includes such games as Nim; the latter is heavily based on algebraic arguments and various notions
of decomposition. Positional games are usually quite different and call for combinatorial arguments
of various sorts.

An important and rather peculiar feature of positional games is a quite unexpected yet almost ubiq-
uitous presence of probabilistic considerations and arguments in the analysis of positional games.
One striking (meta-)example is the so called Erdős paradigm: for quite a few graph properties
P , the threshold bias b∗ = b∗(P ) for the Maker-Breaker P -game played on Kn is approximately
equal to the ratio

(
n
2

)
/(m∗ + 1), where m∗ is the threshold edge number m, for which the random

graph G(n,m) with n vertices and m edges starts typically having P . Another manifestation of
the importance of probability in positional games is the fact that for some games nearly optimal
strategies of the players are shown to be random, see, e.g., [7].
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2 Maker-Breaker games

2.1 General setting

Let p and q be positive integers, let X be a finite set and let F be a family of subsets of X. A (p : q)
Maker-Breaker game (X,F) is played by two players, called Maker and Breaker. The players take
turns in claiming previously unclaimed elements of X (the board). Maker claims exactly p (Maker’s
bias) board elements per turn and Breaker claims exactly q (Breaker’s bias) board elements per
turn (in his last move a player might claim less elements than his bias if not enough free board
elements remain). Unless explicitly stated otherwise, we will assume that Maker is the first player.
Maker wins the game if he is able to fully claim some element of F ; otherwise Breaker wins.

2.2 Tools of the trade

The following theorems describe sufficient conditions for one of the players to have a winning
strategy.

Theorem 10 (Biased Erdős - Selfridge Theorem [6]). Let (X,F) be a hypergraph and let p and q
be positive integers. If ∑

A∈F

(1 + q)−|A|/p <
1

1 + q
,

then Breaker (as the second player) has a winning strategy for the (p : q) game F . If Breaker is the
first player, then

∑
A∈F(1 + q)−|A|/p < 1 is enough to ensure Breaker’s win.

The special case of Theorem 10 where p = q = 1 is due to Erdős and Selfridge [13].

Another (simpler but less applicable) sufficient condition for Breaker’s win is the following.

Theorem 11 (Degree criterion for pairing [4]). Let F be an n-uniform hypergraph. If ∆(F) ≤ n/2
(where ∆(F) is the maximum degree of F), then Breaker has a winning (pairing) strategy for the
game F .

Proof. Let F = {A1, . . . , Am}. Breaker would like to use a pairing strategy, that is, for every
1 ≤ i ≤ m he would like to find a pair {x0

i , x
1
i } ⊆ Ai such that {x0

i , x
1
i } ∩ {x0

j , x
1
j} = ∅ holds for

every 1 ≤ i < j ≤ m. Given such sets he would play as follows: whenever Maker claims xki for
some 1 ≤ i ≤ m and k ∈ {0, 1}, Breaker responds by claiming x1−k

i (if he didn’t already claim it).
In any other case he makes an arbitrary move. This is clearly a winning strategy for Breaker; it
remains to prove that it works, that is, that the required pairs exist. However, this follows from
Hall’s Theorem. Indeed, to every hyperedge Ai we need to match two of its elements. We build
a bipartite graph with two copies of each Ai on one side and with the elements of

⋃m
i=1Ai on the

other. We connect some x ∈
⋃m
i=1 Ai and (both copies of) some Ai by an edge if and only if x ∈ Ai.

Note that each Ai has n neighbors (since F is n-uniform) and each x ∈
⋃m
i=1 Ai has at most n

neighbors (since ∆(F) ≤ n/2 and there are 2 copies of each Ai). Therefore, the required matching
exists by Hall’s Theorem.

Remark 12. In the proof of Theorem 11 the requirement {x0
i , x

1
i } ∩ {x0

j , x
1
j} = ∅ could be relaxed

to |{x0
i , x

1
i } ∩ {x0

j , x
1
j}| 6= 1.
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Exercise 13. 1. Prove that Breaker does not have a pairing winning strategy for the 42 Maker-
Breaker game (note that he does have a winning strategy for this game).

2. Find an explicit pairing winning strategy for Breaker in the 52 Maker-Breaker game.

3. Given an explicit pairing winning strategy for Breaker in the n2 Maker-Breaker game, devise
an explicit pairing winning strategy for Breaker in the (n+ 2)2 Maker-Breaker game.

Theorem 14 (Weak win criterion [6]). Let (X,F) be a hypergraph and let p and q be positive
integers. Let ∆2(F) denote the maximum pair degree of F , that is, ∆2(F) = max{|{A ∈ F :
{u, v} ⊆ A}| : u, v ∈ X}. If ∑

A∈F

(
p+ q

p

)−|A|
>

p2q2

(p+ q)3
·∆2(F) · |X|

then Maker (as the first player) has a winning strategy for the (p : q) game F .

For the special case of hypergraphs consisting of pairwise disjoint hyperedges, we have a sufficient
and necessary condition for Maker’s win. Such a Maker-Breaker game was first studied by Chvátal
and Erdős [9] who called it the Box Game. In the biased (p : 1) Box Game Box(p; a1, . . . , an), there
are n pairwise disjoint sets, labeled 1, . . . , n, that we call boxes. For every 1 ≤ i ≤ n, we denote
the size of box i by ai. In each round, Maker claims p elements of the boxes and then Breaker
responds by claiming one element. Maker’s goal is to claim a whole box by the end of the game.
The following result was proved in [9] (there was in fact an error in the proof, but the statement
itself is correct. The proof was corrected in [22]).

Theorem 15. [9] Let p and a1, . . . , an be positive integers such that |ai − aj| ≤ 1, for every
1 ≤ i < j ≤ n. If Breaker is the first player, then Maker has a winning strategy for Box(p; a1, . . . , an)
if and only if

∑n
i=1 ai ≤ f(n, p), where f(n, p) is defined by the following recursion, f(1, p) = 0 and

f(n, p) =
⌊
n(f(n−1,p)+p)

n−1

⌋
for every n ≥ 2.

Remark 16. When using Theorem 15 it is useful to note that

(p− 1)n
n−1∑
i=1

1/i ≤ f(n, p) ≤ pn
n−1∑
i=1

1/i .

Note that a more general result was proved in [22]. Their condition applies to a (p : q) game (rather
than just q = 1) and for all values of a1, . . . , an (without the assumption that they are almost equal).
Moreover, the proof describes explicitly the strategies of both players. Roughly speaking, Breaker
always claims his elements is the smallest boxes in which he did not previously play whereas Maker
ignores some boxes and tries to level the sizes of the other boxes.

2.3 The threshold bias

Determining the threshold bias of a game is a central problem in the theory of Maker-Breaker
games. It is very hard to determine exactly and we are therefore aiming to find its asymptotic
value. Let X = E(Kn) be the edge set of the complete graph on n vertices and let F be a family
of subsets of X such that every A ∈ F corresponds to a subgraph of Kn with positive minimum
degree. One way for Breaker to win the (1 : q) game (X,F) is by isolating a vertex. This was done
in the seminal paper of Chvátal and Erdős which introduced biased Maker-Breaker games [9].
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Theorem 17. For every ε > 0 there exists an integer n0 such that for every n ≥ n0, playing a
(1 : q) game on Kn, Breaker can isolate a vertex provided that q ≥ (1 + ε)n/ log n.

Proof. (sketch) Breaker’s strategy is didvided into the following two stages.

Stage I: Breaker builds a clique C of order n
2 logn

such that every v ∈ V (C) is isolated in Maker’s

graph. This is possible since, for as long as v(C) < n
2 logn

, Breaker can add at least 2 vertices to his

clique and Maker can touch at most 1 vertex of the clique (note that this stage lasts O(n/ log n)
turns and so Breaker can find isolated vertices to add to his clique).

Stage II: Let V (C) = {u1, . . . , uk}. For every 1 ≤ i ≤ k let Ai = {uiw is a free edge : w ∈
V (Kn)\V (C)} and let F = {A1, . . . , Ak}. Breaker claims all elements of some Ai (and thus isolates
ui). Since the sets Ai are pairwise disjoint, he can do so by assuming the role of Maker in the game
Box(q; |A1|, . . . , |Ak|) (to avoid confusion with Maker of the original game, we refer to Maker in the
BoxGame as BoxMaker). Applying Theorem 15 with these parameters shows that BoxMaker can
win this game and thus Breaker wins the original game.

Theorem 17 provides an upper bound on the threshold bias of many natural games, played on
the edge set of the complete graph. Some natural examples are the Connectivity game C, the
Hamilton cycle game HAM , the Perfect matching game PM , the Minimum-degree-k game Dk, the
k-edge-onnectivity game ECk and the k-vertex-connectivity game VCk (in the last three games k
is a constant). Obtaining a matching lower bound turned out to be much harder. Nevertheles,
following a series of papers spanning about 30 years, the threshold bias of all 6 games mentioned
above was proved to be (1 + o(1))n/ log n (see [20] and [30] for the final touch). Note that, playing
with this bias, at the end of the game Maker will have (1/2 + o(1))n/ log n edges. Interestingly, the
random graph G(n,m) starts having each of these properties (that is, being connected, Hamiltonian,
etc.) for m = (1/2 + o(1))n/ log n. Hence, all of these games are examples of the Erdős paradigm.

In order to introduce some of the basic methods in this theory, we sketch below the proof of the
following weaker result due to Beck [6]:

Theorem 18. For every ε > 0 there exists an integer n0 such that for every n ≥ n0 we have
bCn ≥ (log 2− ε)n/ log n.

Proof. Consider the auxiliary game (E(Kn),F), where F = {{uv : u ∈ S, v ∈ V (Kn) \ S} : S ∈
2V (Kn) \ {∅, V (Kn)}}. We refer to this game as the Cut Game and to the players as CutMaker and
CutBreaker. It is evident that Maker can win the (1 : q) game Cn if and only if CutBreaker can win
the (q : 1) game (E(Kn),F) (with CutBreaker making the first move). However, the latter follows
from Theorem 10 since∑

A∈F

2−|A|/q ≤
n/2∑
t=1

(
n

t

)
2−t(n−t)/q ≤

√
n∑

t=1

nt2−t(n−
√
n)/q +

n/2∑
t=
√
n

(
en√
n

)t
2−t(n−n/2)/q

≤

√
n∑

t=1

[
n2−(1+ε′) logn/ log 2

]t
+

n/2∑
t=
√
n

[
e
√
n2−(1+ε′) logn/(2 log 2)

]t

≤

√
n∑

t=1

[
n−ε

′
]t

+

n/2∑
t=
√
n

[
en−ε

′/2
]t

= o(1) ,
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where ε′ > 0 is an appropriate constant.

2.4 Open problems

2.4.1 Beck’s Neighborhood Conjecture

In this subsection we will restrict our attention to (1 : 1) Maker-Breaker games on an n-uniform
hypergraph (X,F). From now on we will simply refer to this game as F . If follows by the Erdős-
Selfridge Theorem (plug p = q = 1 in Theorem 10) that Breaker has a winning strategy in F if
|F| < 2n−1. That is, if the number of winning sets is not too large as a function of the size of a
winning set, then Breaker wins (no matter which n-sets are winning sets and which n-sets are not).
However, it is not at all clear that the number of winning sets should matter. Indeed, consider for
example the hypergraph (X,F) where X = {u1, . . . , un, v1, . . . , vn} and F = {{ui, vi} : 1 ≤ i ≤ n}
(so F is simply a matching). It is obvious that Breaker wins this game (by a simple pairing strategy)
regardless of the value of n. Moreover, there are natural games F which are Breaker’s win even
though F contains infinitely many finite sets. One such example (see e.g. [4]) is the unrestricted
8-in-a-row. The board of this game is the infinite 2-dimensional grid Z2 and the winning sets are
all diagonal, horizontal and vertical lines of length 8 (that is,

⋃
i∈Z
⋃
j∈Z{{(i, j), (i, j + 1), (i, j +

2), (i, j+ 3), (i, j+ 4), (i, j+ 5), (i, j+ 6), (i, j+ 7)}, {(i, j), (i+ 1, j), (i+ 2, j), (i+ 3, j), (i+ 4, j), (i+
5, j), (i + 6, j), (i + 7, j)}, {(i, j), (i + 1, j + 1), (i + 2, j + 2), (i + 3, j + 3), (i + 4, j + 4), (i + 5, j +
5), (i + 6, j + 6), (i + 7, j + 7)}, {(i, j), (i − 1, j + 1), (i − 2, j + 2), (i − 3, j + 3), (i − 4, j + 4), (i −
5, j + 5), (i− 6, j + 6), (i− 7, j + 7)}}).
Assume that some Maker-Breaker game (X,F) is in progress. Whenever Maker claims some board
element x ∈ X, he only affects (at least at that moment) the winning sets A ∈ F such that x ∈ A.
Hence, it seems plausible to believe that ∆(F) – the maximum degree of F – can replace the size
of F in the Erdős-Selfridge Theorem.

Conjecture 19. [4] There exists a real number c > 1 such that Breaker has a winning strategy for
the game F for any n-uniform hypergraph F with maximum degree at most cn.

Currently, our knowledge with respect to this conjecture is very limited. It follows by standard
examples (e.g. paths from root to leaves in a complete binary tree) that we cannot have c ≥ 2 in
Conjecture 19. The best upper bound we currently know is the following:

Theorem 20. [19] There exists a positive integer k0 such that for every k ≥ k0 and n = 2k there
exists an n-uniform hypergraph F such that ∆(F) ≤ 2n−1

n
and yet Maker has a winning strategy for

the game F .

For the opposite direction we have the linear upper bound on ∆(F) given in Theorem 11.

Let us consider small values of n ≥ 2. If n = 2, then either F is a matching (in which case
∆(F) = 1) or there exist edges A,B ∈ F such that |A ∩ B| = 1 (in which case ∆(F) ≥ 2). In the
former case Breaker has an obvious pairing strategy whereas in the latter Maker wins the game by
claiming the vertex of A∩B in his first move and a vertex of (A∪B) \ (A∩B) in his second move.

For n = 3 Breaker has a pairing strategy if ∆(F) = 1. Consider the hypergraph (X,F) where
X = {1, . . . , 15} and

F = {{1, 2, 3}, {2, 6, 7}, {3, 8, 9}, {6, 8, 10}, {7, 9, 10}, {1, 4, 5}, {4, 11, 12},
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{5, 13, 14}, {11, 13, 15}, {12, 14, 15}}

(see [33]). Note that ∆(F) = 2.

Exercise 21. Prove that Maker has a winning strategy for the game F (requires a simple case
analysis).

For n = 4, it follows by Theorem 11 that Breaker wins if ∆(F) ≤ 2. There is a construction [29] of
a 4-uniform hypergraph F with ∆(F) = 3 which is Maker’s win.

The most challenging open problem is of course to prove or disprove Conjecture 19. However, there
are many interesting partial results which would be nice to obtain. We list a few of them below.

Problem 22. Does there exist a real number ε > 0 and an integer n0 such that for every n ≥ n0

there exists an n-uniform hypergraph F with maximum degree ∆(F) ≤ (2 − ε)n such that Maker
has a winning strategy for the game F?

Problem 23. Does there exist an integer n0 such that for every n ≥ n0 Breaker has a winning
strategy for the game F on any n-uniform hypergraph F satisfying ∆(F) ≤ n?

Problem 24. What is the smallest positive integer t for which there exists a 5-uniform hypergraph
F with maximum degree t such that Maker has a winning strategy for the game F?

2.4.2 The degree game

Let G = (V,E) be a graph on n vertices and let 1 ≤ d ≤ n − 1 be an integer. The board of
the minimum-degree-d game Dd(G) is the set E and its winning sets are the subgraphs of G with
minimum degree at least d. We would like to determine the largest d for which Maker can win the
(1 : 1) game Dd(G). We denote this parameter by d̂(G).

Exercise 25. Let G be a graph. Prove that d̂(G) ≤ dδ(G)/2e.

Exercise 26. Let G = (V,E) be a graph. Prove that, playing a (1 : 1) game on E, Maker can build
a graph M such that dM(v) ≥ bdG(v)/4c holds for every v ∈ V .

For simplicity we restrict our attention to regular graphs G. The simple upper bound of dδ(G)/2e,
turns out to be essentially tight for large graphs which are not too sparse. In particular, it was
proved by Beck [4] that n/2− c1

√
n log n ≤ d̂(Kn) ≤ n/2− c2

√
n for appropriate positive constant

c1, c2 (some related results can be found, e.g., in [2, 4, 17, 28]). However, in general we do not know
how to improve the result stated in Exercise 26. We propose the following open problem:

Problem 27. Prove that for every sufficiently large integer r there exists a real number ε > 0 such
that d̂(G) ≥ (1/4 + ε)r holds for every r-regular graph G.

2.4.3 The fixed graph game

Given a graph H and positive integers n and q, let FH be the Maker-Breaker game whose board
is E(Kn) and whose winning sets are the copies of H in Kn. We are interested in determining
the threshold bias bFH

for this game for every graph H and sufficiently large n. It was proved by
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Chvátal and Erdős [9] that
√

2n+ 2 − 5/2 ≤ bFK3
≤ 2
√
n. The upper bound was improved to

bFK3
≤ (2− 1/24)

√
n by Balogh and Samotij [3].

A far reaching generalization of this result of Chvátal and Erdős, due to Bednarska and  Luczak [7],
asserts that for every graph H with at least 3 non-isolated vertices, the threshold bias satisfies

c1n
1/m2(H) ≤ bFH

≤ c2n
1/m2(H), where m2(H) = max

{
e(G)−1
v(G)−2

: G ⊆ H, v(G) ≥ 3
}

and c2 > c1 > 0

are constants depending on H.

We propose the following related open problems:

Problem 28. Find a constant c such that (c − ε)
√
n ≤ bFK3

≤ (c + ε)
√
n. It follows by the

aforementioned results that
√

2 ≤ c ≤ 2− 1/24. It is believed that in fact c =
√

2.

Problem 29. Prove that for every graph H there exists a constant cH such that (cH − ε)n1/m2(H) ≤
bFH
≤ (cH + ε)n1/m2(H). This was conjectured in [7]. The currently best known constants c1, c2 are

quite far apart in general. It would thus also be interesting to narrow the gap between them.

2.4.4 The k-colorability game

Let k ≥ 2 be an integer. The winning sets of the k-colorability game NCk are the edge sets of all
graphs G on n vertices such that χ(G) > k. It was proved in [23] that for sufficently large n there
exist constants c1 > c2 > 0 such that

c2
n

k log k
≤ bNCk ≤ c1

n

k log k
.

This result determines the order of magnitude of bNCk for every k. As for its asymptotic value,
the constants c1 and c2 which were obtained in [23] are not too far apart (but not equal either),
provided that k is sufficiently large. We have c1 ∼ 2 and c2 ∼ log 2/2 as k tends to infinity. For
the special case k = 2 (that is, Maker’s goal is to claim the edges of an odd cycle) a more accurate
result was proved by Bednarska and Pikhurko [8]. They proved that

(1− 1/
√

2− o(1))n ≤ bNC2 ≤ dn/2e − 1 .

We propose the following related open problems:

Problem 30. Find a constant 1− 1/
√

2 ≤ c ≤ 1/2 such that bNC2 = (c+ o(1))n.

Problem 31. For every (sufficiently large) k find a constant c such that bNCk = (c+ o(1)) n
k log k

.

2.4.5 The given spanning tree game

Let T = (V,E) be a tree on n vertices. The board of the Maker-Breaker tree embedding game
Tn is the edge set of Kn the complete graph on n vertices. The winning sets of Tn are all (edge
sets of) copies of T in Kn. We would like to determine the threshold bias bTn for this game.
This value could depend on T ; in particular, bK1,n−1 = 1 (use Exercise 26 to prove this), whereas
bPn = (1+o(1))n/ log n (see [30]). Since Breaker can ensure that Maker’s graph will be disconnected
if his bias is at least (1+o(1))n/ log n (see Theorem 17 above), it follows that bTn ≤ (1+o(1))n/ log n
holds for every tree T on n vertices. It might be that this is asymptotically tight for every tree
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T of bounded maximum degree (that is, the maximum degree of T is bounded from above by a
constant which is independent of n) – see Problem 1 below. It was proved in [16] that there exist
real numbers α, ε > 0 such that Maker has a winning strategy for the (1 : q) game Tn for every tree
T on n vertices and maximum degree ∆(T ) ≤ nε provided that q ≤ nα.

We propose the following related open problems:

Problem 32. Find the (asymptotic value of the) threshold bias for the game Tn for every tree T
with bounded maximum degree. Is it (1 + o(1))n/ log n?

Problem 33. For every tree T on n vertices, find the threshold bias for the game Tn.

2.4.6 A colorability game of Duffus,  Luczak and Rödl

In this subsection we will consider a game which is played on the edge set of a graph which is not
necessarily the complete graph. Let q ≥ 1 and t ≥ 3 be integers and let G be an arbitrary graph.
The board of the (1 : q) game (E(G),FGt ) is the edge set of the graph G. The winning sets are
the edge sets of all subgraphs H ⊆ G such that χ(H) ≥ t. Clearly, Maker cannot win this game
for every graph G. For example, if χ(G) ≤ t, then Breaker wins regardless of his strategy. On the
other hand, it seems plausible that if χ(G) is “much larger” than t, then Maker should win. Indeed,
this was conjectured in [12]:

Conjecture 34. For every positive integers t and q, there exists an integer r = r(t, q) such that
Maker has a winning strategy for the (1 : q) game (E(G),FGt ), played on any graph G such that
χ(G) ≥ r.

Very little is known about this conjecture. Using a strategy stealing argument, it is not hard
to see that Conjecture 34 holds for q = 1 and any t. Indeed, let G be a graph on n vertices
satisfying χ(G) > (t − 1)2. Let GM and GB = G \ GM denote the subgraphs of G, built by
Maker and Breaker respectively during the game (played according to some strategies). Clearly
χ(GM)χ(G \ GM) ≥ χ(G). Hence, either χ(GM) ≥ t or χ(GB) ≥ t. Assume for the sake of
contradiction that no strategy of Maker guarantees χ(GM) ≥ t. It follows from the above, that there
exists a strategy SB of Breaker, that ensures χ(GB) ≥ t, regardless of Maker’s strategy. However,
Maker can “steal” SB, that is, he can claim an arbitrary first edge and then play according to SB,
pretending to be the second player (whenever he is supposed to claim an edge which is already his,
he claims an arbitrary free edge). It follows by the definition of SB that χ(GM) ≥ t contrary to our
assumption. Note that strategy stealing is a purely existential argument; we do not know of any
explicit strategy for Maker, that ensures his win in the game with these parameters (see Problem 1
below).

For any q ≥ 2 and any t ≥ 3 the conjecture is open. Two partial results were obtained in [1]. The
first shows that χ(G) = Ω(log(|V (G)|)) suffices to ensure Maker’s win.

Theorem 35. Let t and q be positive integers. There exists a constant c = c(t, q) such that, if G
is a graph on n vertices and χ(G) > c log n, then Maker has a winning strategy for the (1 : q) game
(E(G),FGt ).

The second shows that if χ(G) ≥ r holds in some robust way, then Maker has a winning strategy
for the game on G.
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Theorem 36. Let t be a positive integer, let ε > 0 and let G = (V,E) be a graph with n vertices
and m edges, where n is sufficiently large. Assume that χ(H) ≥ t holds for every H ⊆ G such that
|E(H)| > (1− ε)m. Then Maker has a winning strategy for the (1 : q) game (E(G),FGt ), for every
q ≤ cε2m

n log r
, where c > 0 is an appropriate constant.

We propose the following related open problems:

Problem 37. For some sufficiently large positive integer r and for every graph G satisfying χ(G) ≥
r, find an explicit winning strategy for Maker in the (1 : 1) game (E(G),FG3 ).

Problem 38. Prove that there exists a positive integer r such that for every graph G satisfying
χ(G) ≥ r, Maker has a winning strategy for the (1 : 2) game (E(G),FG3 ).
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3 Avoider-Enforcer games

3.1 Two sets of rules

As we already saw, every positional game F can be played in Avoider-Enforcer setting. Since
Avoider loses if he claims a set from F , here we refer to the collection F as the collection of losing
sets. Each game can be viewed under two different sets of rules – the strict game, where in each move
players claim exactly the number of elements given by their respective biases, and the monotone
game, where players claim at least the number of elements given by their respective biases. In all
games, if not explicitly stated otherwise, we will assume that Avoider starts the game.

Given a positional game F , for its strict version we define the lower threshold bias f−F to be the
largest integer such that Enforcer can win the (1 : b) game F for every b ≤ f−F , and the upper
threshold bias f+

F to be the smallest non-negative integer such that Avoider can win the (1 : b) game
F for every b > f+

F .

Exercise 39. Try to construct a game F , that is, construct the hypergraph of the game (you can
choose who starts the game), so that you get the two threshold biases f−F and f+

F as far away from
each other as you can.

If we play the game F under monotone rules, the bias monotonicity implies the existence of the
unique threshold bias fmonF as the non-negative integer for which Enforcer has a winning strategy
in the (1 : b) game if and only if b ≤ fmonF .

The first natural question to ask is – given a positional game F , what is the relation of the three
threshold biases, f−F , f+

F and fmonF ? Could it perhaps be that the inequalities f−F ≤ fmonF ≤ f+
F hold

for every family F? As we will soon see, this is not true in general, not even for such a natural
graph game as the connectivity game, which is even bias monotone under the strict rules (i.e., we
have f− = f+).

Exercise 40. For various example(s) that you created while solving the previous exercise, determine
also the threshold fmonF and observe its position relative to f−F and f+

F .

As the outcome of strict Avoider-Enforcer games can differ substantially from the outcome of the
same game played under monotone rules (even when the strict game is bias-monotone), another
natural question one may ask is: Which set of rules is “better”?

There is no definite answer to this question. The benefit of the strict rules lies in their applicability
to Maker-Breaker games (see, e.g., [23]) or to discrepancy type games (see, e.g., [4, 17, 28]). In
these applications, in order to provide a strategy for Maker or for Breaker, one defines an auxil-
iary Avoider-Enforcer game which models the original Maker-Breaker game, and uses the winning
strategy of Avoider or Enforcer in the auxiliary game. Clearly, in this situation the monotone rules
are useless. On the down side, in some games the outcome heavily depends on how large is the
remainder of integer

division of the size of the board |B| with b+ 1.

The advantage of monotone rules is of course the existence of a threshold bias for every game.
Moreover, some of the results concerning the threshold bias of the monotone Avoider-Enforcer
game tend to show great similarity to their Maker-Breaker analogues. Generally, we find the study
of the differences between the two sets of rules to be quite interesting.
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All the Avoider-Enforcer games that we will look at are played on the edge set of the complete
graph, E(Kn).

3.2 A general criterion

As we saw, for Maker-Breaker games we have several winning criterions, and the Beck’s biased
Erdős-Selfridge theorem [6] is probably the most important and the most widely used. For Avoider-
Enforcer games we have the following result.

Theorem 41. [27] If ∑
A∈F

(
1 +

1

a

)−|A|+a
< 1,

then Avoider wins the biased (a : b) game F , under both strict and monotone rules, for every b ≥ 1.

This criterion turns out to be rather useful, as it is frequently applied. But, its condition does not
take b into account and it is not very effective when b is large. A criterion in full generality would
be of great importance for the field.

Problem 42. Can you extend the criterion from Theorem 41 so that it is sensitive to both a and
b?

3.3 Some games whose losing sets are spanning graphs

We move on to look at some concrete games. The leading term of the threshold bias for the
monotone version of several well-studied positional games is given by the following two theorems.

Theorem 43. [25] If b ≥ (1 + o(1)) n
logn

, then Avoider has a winning strategy in the monotone

(1 : b) min-degree-1 game D1.

Theorem 44. [31] If b ≤ (1 − o(1)) n
logn

, then Enforcer has a winning strategy in the monotone

(1 : b) Hamiltonicity game HAM , and also in the k-connectivity game VCk.

From these results we can obtain the leading term of the threshold biases for the connectivity game,
the Hamiltonicity game, the perfect matching game, the min-degree-k game (for k ≥ 1), the k-edge-
connectivity game (for k ≥ 1) and the k-connectivity game (for k ≥ 1). Indeed, as each of these
graph properties implies min-degree-1, and each of them is implied either by the Hamiltonicity or
the k-connectivity, we have

fmonC , fmonHAM , f
mon
PM , fmonDk , fmonECk , f

mon
VCk = (1 + o(1))

n

log n
. (3.1)

Note that for all these games we have the same threshold bias in the Maker-Breaker game.

For connectivity game under strict rules we know the exact value of the lower and upper threshold
bias, and they are the same.

Theorem 45. [27] For connectivity game under strict rules, we have

f−C = f+
C =

⌊
n− 1

2

⌋
.
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Note the substantial difference between these threshold biases and the monotone threshold bias for
the connectivity game (3.1).

As for the k-edge-connectivity game under strict rules, we have bounds that are just a factor of two
apart.

Theorem 46. [27] For k-edge-connectivity game, for k ≥ 2, we have

n

2k
≤ f−ECk ≤ f+

ECk ≤
n

k
.

Again, the upper and lower threshold biases are far away from the monotone one in (3.1).

Much less is known for the remaining four mentioned games played under strict rules. We know
that the statement of Theorem 44 holds also for the strict rules, so we have the lower bound for the
lower threshold biases

f−HAM , f
−
PM , f

−
Dk , f

−
VCk ≥ (1− o(1))

n

log n
.

As for the bounds from above, nothing is known apart from the obvious. In particular, we lack any
Avoider’s winning strategies that are more powerful than the trivial winning strategy1. It is not
clear how far can we expect to get, as for example in Theorem 45 a trivial Avoider’s strategy turns
out to be the optimal one.

Problem 47. For each of the following games – the Hamiltonicity game, the perfect matching game,
the min-degree-k game (for k ≥ 1) and the k-connectivity game (for k ≥ 2), all played under strict
rules, can you produce better bounds for f− and f+? How close is f+ to f−, are they equal?

3.4 A few more games

We move on to results for several other games on graphs. For the non-planarity game, in which
Avoider wants to keep his graph planar to the end of the game, we know the following.

Theorem 48. [23]
n

2
− o(n) ≤ f−NP ≤ f+

NP ≤ 2n5/4.

One half of proof. We will just show how to get the lower bound. Let us fix an ε > 0, and assume
that b ≤ n

2
(1 − ε). We will provide Enforcer with a strategy which guarantees that Avoider will

occupy the edges of a non-planar graph. Similarly to the Maker-Breaker version of the game that
we already saw, we will rely on Euler’s formula to show non-planarity of Avoider’s graph.

If b ≤ n/7, then Avoider surely loses the game as he will claim more edges than a planar graph can
have, so from now on we can assume that b > n/7.

Let k = k(ε) be the smallest positive integer such that 1
1−ε/2 >

k
k−2

. Enforcer’s strategy will be to
prevent Avoider from claiming a cycle of length smaller than k, which we will call a “short cycle”.
If he succeeds, then at the end of the game Avoider’s graph will have at least⌊ (

n
2

)
b+ 1

⌋
≥ n

1− ε/2
>

k

k − 2
n

1We say that Avoider has a trivial strategy when the Enforcer’s bias is that large that the total number of edges
Avoider will claim in the whole game is less than the size of the smallest losing set, so he can win no matter how he
plays.
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edges, and girth at least k. A graph with such properties cannot be planar, thus Enforcer wins.

It remains to show that Enforcer can indeed prevent Avoider from claiming a short cycle. The
result from [7] for the fixed graph Maker-Breaker game (that we already saw) can be applied to the
cycle Ci, i ≥ 3, giving us that in the (1 : q) game played on edges of Kn Breaker can prevent Maker

from claiming a copy of Ci if q > cin
i−1
i−2 , for a constant ci > 0.

Since for sufficiently large n we have

k−1∑
i=3

cin
i−2
i−1 ≤ n

7
< b,

Enforcer can simultaneously prevent Avoider from claiming any short cycle Ci, 3 ≤ i < k, by simply
playing all k−3 games in parallel, pretending to be Breaker in each of them. That is, after Avoider
claims an edge, Enforcer responds by claiming c3n

1
2 edges according to the strategy in the “triangle

avoidance game”, then he claims c4n
2
3 edges according to the strategy in the “4-cycle avoidance

game”, and so on. His different strategies, for the different cycle-games, might call for claiming the
same edge more than once, in which case he just claims an arbitrary unclaimed edge instead. 2

Adding an additional twist to the proof of this theorem, it can be shown that for the monotone
threshold bias we have the same bounds, n

2
− o(n) ≤ fmonNP ≤ 2n5/4.

Exercise 49. Go through the above proof and see which parts do not hold if we play under monotone
rules. Try fixing it, showing that n

2
− o(n) ≤ fmonNP .

Next, we look at the Avoider-Enforcer non-k-colorability game.

Theorem 50. [23] For every k ≥ 3 there exists a constant s′k, such that

s′kn ≤ f−NCk ≤ f+
NCk ≤ 2kn1+ 1

2k−3 .

Moreover, s′k ∼
log 2

2k log k
as k →∞.

Both upper and lower bound in this theorem hold also for the monotone threshold bias. As we will
later see, the monotone threshold bias for avoiding a triangle is of order n3/2, which may suggest
that the bias for the monotone non-k-colorability is super-linear.

Given t ≥ 3, the Avoider’s goal in the minor game is to avoid a Kt minor. In [23], two linear
lower bounds for the lower threshold bias for the minor game are given, depending on how large t
is compared to n. On the other side, the best upper bound for the upper threshold bias is of order
n5/4.

Problem 51. Improve the bounds on the threshold biases, both monotone or strict, for the non-
planarity game, the non-k-colorability game and the minor game.

3.5 Games with losing sets of constant size

All the games mentioned in (3.1) have one common property – the size of the losing sets grows
linearly with n. The extreme opposite are games with losing sets of constant size, and in particular
the game FH in which Enforcer wants to make Avoider claim a copy of some fixed graph H.

For the 2-path game, we know the order of all three threshold biases, and the monotone one is
between the other two.
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Theorem 52. [25] f+
FP3

=
(
n
2

)
− 2, f−FP3

= Θ
(
n3/2

)
, and fmonFP3

=
(
n
2

)
− bn

2
c − 1.

Exercise 53. There are three statements in the last theorem, how many of them can you verify?

For the triangle game FK3 we know the monotone threshold bias, and it turns out to be strikingly
far from the Maker-Breaker threshold bias for the triangle game, which is of order

√
n.

Theorem 54. [25]
fmonFK3

= Θ
(
n3/2

)
.

For larger graphs H we do not know much, and the results for the 2-path and the triangle game
are not enough to see a more general picture.

Problem 55. Obtain some nontrivial bounds for the monotone (or strict) thresholds for some more
graphs H (other than 2-path and 3-clique). What is the monotone threshold for avoiding the clique
Kk, for k > 3?

It seems that in the strict games with small winning sets the remainder r in the integer division of
the size of the board with b + 1 plays an important role – it can be anywhere between 0 and b, it
changes considerably when the size of the board changes, and when it is large it makes Avoider’s
job much easier. For that reason, we believe that in any strict H-game the distance between f−FH

and f+
FH

will be substantial.

Problem 56. How large is the gap between f−FH
and f+

FH
, for an arbitrary graph H? Can it be

proved that f−FH
and f+

FH
are not of the same order?

Another interesting observation can be made when comparing the same game played under strict
and under monotone rules. Namely, Avoider surely loses the monotone game if he claims a copy of
H− (a copy of H with one edge missing) for which the missing edge is still unclaimed, and there
are “many”, that is, at least b, additional unclaimed edges.2 In most cases (unless the remainder r
is equal to one) this is not the case when playing under the strict rules, especially when r is large.
Hence, it may be reasonable to compare the outcomes and strategies in the strict H− game and the
monotone H game. We are curious whether the fact that the thresholds f−FP3

and fmonFK3
are of the

same order is merely a coincidence, since P3 is exactly one edge short of K3.

2As soon as this happens, Enforcer can claim all the remaining edges except the missing edge, thus winning.
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4 Strong win through fast weak win

4.1 General setting and notation

As we saw, in a positional game there is a board X (usually a finite set), a family of winning sets
F ⊆ 2X and two players who alternately claim previously unclaimed elements of the board X.

In a strong game, the players are called Red (the first player to move) and Blue. The player who
first completes a winning set wins the game. If no one wins by the time all board elements are fully
claimed, then the game ends in a draw.

In a weak game, the players are called Maker and Breaker. Maker wins the game as soon as he
claims all the elements of some winning set F ∈ F . If Maker does not win by the time all the board
elements are claimed, then Breaker wins the game.

In this chapter we examine a connection between fast winning strategies for Maker in weak games
to winning strategies of Red in the analogous strong games. We give some examples, sketch the
proofs of some known results and present some open problems.

Unless stated otherwise, most of the games considered in this lecture are unbiased. Here, we will
mostly deal with games on the board X = E(G), where E(G) is the edge set of some given graph
G, and the winning sets are all the subgraphs of G which possess some given monotone increasing
graph property P , such as being Hamiltonian HAM, admitting a perfect matching PM, being
k-connected VCk, containing a fixed graph H as a subgraph FH , in particular, containing a k-clique
FKk

, containing a fixed spanning tree T etc. Since the graph G on whose edges we play the game
will not always be the complete graph, whenever it necessary we add G to the notation and denote
each of these games by P(G), where P is the relevant property.

The length (move number) of a game P(G) is defined as:

`P(G) = min{k ∈ N : Maker has a strategy to win within k moves }

If the game is not Maker’s win, then we define `P(G) =∞.

4.2 How fast can Maker win a certain game F?

In this section we discuss winning strategies for Maker in various games while limiting his number of
moves. One motivation for that is that most of the natural weak unbiased games played on E(Kn)
are drastically in favor of Maker, therefore, one way to even out the odds is to limit the length of
the game. In later sections we will also show that fast strategies for Maker in a weak game might
help Red to win the analogous strong game. The main problem which we are interested at in this
section is to find the fastest possible winning strategy for Maker in a certain game F . There are
quite a few known results of this type for some natural games. Here we list a few of them and
sketch some proofs.

(1) Maker wins the connectivity game C within n− 1 moves.

Remark: It follows that `C = n− 1.

The proof for that is easy (see Exercise 3). We sketch a proof for the following much stronger result:
Given a multigraph G, Maker (as the second player) wins the game C(G) if and only if G contains
two edge disjoint spanning trees.
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Proof. (Lehman [34]) One direction is quite trivial. Assume that Maker has a winning strategy.
Breaker (as the first player) uses strategy stealing to build a spanning tree. Since Maker has a
winning strategy, it follows that in the end of the game both of the players have spanning trees and
they are disjoint.

The other direction is by induction on |V (G)|. Let T1 and T2 be two edge disjoint spanning trees
in G. Whenever Breaker claims an edge e ∈ E(T1) (without loss of generality), he divides T1

into exactly two components C1 and C2. Adding e to T2 forms a cycle and Maker claims an edge
f on this cycle connecting the two components C1 and C2 (there must be such an edge). Now,
contracting f , we get a new multigraph which contains two edge disjoint spanning trees. By the
induction hypothesis Maker gets a spanning tree on this multigraph. Adding the edge f yields a
spanning tree of G.

(2) Maker wins the game PM within n/2 + 1 moves [24], provided that n is even.

Sketch of proof [24]: In his first few moves, Maker creates a “V” (i.e, claims two edges xy and xz)
and makes sure that Breaker does not have edges of the form wy or wz where w is unmatched in
Maker’s graph. Now, if Breaker claims an edge wy or wz, then Maker makes sure that the vertex
w will be covered by his (partial) matching. In his last move, to complete his perfect matching,
Maker can attach the remaining vertex to either y or z. 2

Exercise 57. Prove that for every even n, Breaker has a strategy to prevent Maker from winning
the game PM in his (n/2)th move. Conclude that `PM = n/2 + 1.

(3) Maker wins the game HAM within n+ 1 moves [26].

(4) Maker wins the game VCk within kn/2 + 1 moves [15].

We prove the weaker result that Maker can win within kn/2+Θ(k2) moves. The strategy for proving
that Maker can win within kn/2 + 1 moves involves some more careful arguments and can be found
at [15]. The main idea of the proof is that, at the beginning of the game, Maker can partition the
board into a few disjoint boards, on each of them Maker wants to play a separate game. If Maker
has a winning strategy for each such game, then Maker also has a winning strategy for the union
of all these games. Indeed, whenever Breaker plays on a board on which Maker has not won yet,
Maker responds according to a fixed winning strategy for this game. Otherwise, Maker chooses a
board for which he has not yet won, fakes a move of Breaker (by marking an edge in his mind) and
responds according to a winning strategy for this board.

Proof. ([15]) Before we present Maker’s strategy, notice that, in a similar way to the proof of (2), we
can prove that Maker has a winning strategy for the game PM(Kn,n) within n+ 1 moves (convince
yourself that it works!). Now, for winning the k-connectivity game, Maker can play as follows:

(i) Maker partitions V (Kn) = V1 ∪ . . .∪ Vk−1 ∪U in such a way that |Vi| = bn/(k− 1)c for every
i ≤ k − 1 (U might be the empty set).

(ii) On every board E(Vi, Vj), i 6= j, Maker plays the perfect matching game.

(iii) On every board E(Vi) Maker plays the Hamiltonicity game.
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(iv) For every vertex u ∈ U , Maker claims k edges from u to V (Kn) \ U .

The resulting graph is clearly k-connected (prove it!) and Maker has wasted at most one move on
every board.

(5) Given a spanning tree T with ∆(T ) = nε, Maker wins the (1 : nδ) T game within n + o(n)
moves for ε > 0 and δ > 0 relatively small (see [16]).

(6) When ∆(T ) = Θ(1), Maker wins the (1 : 1) game T within n moves [11].

Exercise 58. Find a tree T of constant bounded degree with |V (T )| = n so that Breaker has a
strategy to prevent Maker from winning the game T in n− 1 moves.

(7) For every p ≥ polylogn/n, the random graph G(n, p) is typically such that Maker wins the
games PM(G(n, p)), HAM(G(n, p)) and VCk(G(n, p)) within n/2+o(n), n+o(n) and kn/2+o(n)
moves, respectively [10].

4.3 Finding winning strategies for Red is hard

Unlike Maker-Breaker games, in strong games there are essentially no tools to work with. Therefore,
they are much harder to analyze and not too much is known about them.

In order to understand the behavior of these games, it is natural to ask “What does a Red’s win
hypergraph look like?”. For example, given a 2-uniform hypergraph (X,F) (which is actually a
graph), Red wins the game F if and only if F is not a matching. Moreover, notice that in this case
(the 2-uniform case), Red’s win is equivalent to Maker’s win, and if F is not a matching, then Red
can win in exactly two moves.

It turns out that playing on a 3-uniform hypergraph is completely different (see [32]). There are
examples of 3-uniform hypergraphs F for which Maker wins the game F and yet, Blue has a
drawing strategy (for example, Tic-Tac-Toe is such a game). There are also examples of 3-uniform
hypergraphs for which Red wins, but his fastest winning strategy grows with the size of the board
X.

Problem 59. Describe a non-trivial family of hypergraphs (X,F) for which Red has a winning
strategy in the game F .

4.3.1 Non 2-colorable hypergraphs

One non-trivial family of such hypergraphs is the family of all non 2-colorable hypergraphs. Indeed,
since a drawing position is impossible when playing on a non 2-colorable hypergraph F , by the
strategy stealing argument we conclude that Red wins. For example, the hypergraph of the game
FKk

, where n ≥ R(k) is not 2-colorable. Another example, is the k-colorability game NCk(G).
The game NCk(G) is played on G, the winning sets are all the subgraphs of G which are not
k-colorable. Since χ(G) ≤ χ(H)χ(Hc) for every subgraph H ⊂ G, it follows that if χ(G) > k2, then
the hypergraph of the game is not 2-colorable.



4th Emléktábla Workshop 23

4.3.2 A perfectly fast Maker wins as Red

Another example of a non-trivial family of hypergraphs F for which Red has a winning strategy
in the game F is the family of all n-uniform hypergraphs for which Maker has a winning strategy
in the analogous weak game in exactly n moves. Indeed, by following Maker’s strategy, Red wins
before Blue has a chance to complete a winning set of his own.

Examples.

(1) The connectivity game C.
(2) The Hamilton path game HP (see [24]).

Problem 60. Describe a large family of graphs H of fixed size, for which, playing on E(Kn), Maker
can build a copy of H in |E(H)| moves, provided that n is large enough.

4.4 Can almost perfect Maker help Red to win?

Naturally, one can think that given an n-uniform hypergraph (X,F), if Maker can win the game F
within n + 1 moves, then Red can also win the analogous strong game. Unfortunately, this is not
the case as the following example illustrates:

Examples.

(1) The classic [3]2 Tic-Tac-Toe is such a game (prove that!).

(2) A more general example is the following: For n ≥ 3, let X = [3]2 ∪X0 where X0 is an arbitrary
set of size |X0| = 2n− 6. A winning set F ∈ F is the union of a winning set in the classic Tic-Tac-
Toe played on [3]2 and any (n − 3)-element subset of X0. Maker trivially wins this game within
n+ 1 moves by winning the Tic-Tac-Toe game in 4 moves and claiming half of the elements of X0

(convince yourself that he can do so), and yet, Blue can guarantee at least a draw.

Although the last examples illustrate that a fast winning strategy for Maker does not necessarily
imply Red’s win, this does not mean that there is no use in finding such a strategy for strong games.
Since in a strong game Red has to concentrate on building and blocking, it would be much easier
to analyze his possibilities if the game does not last too long. For example, given an n-uniform
hypergraph F , if Maker can win within n+ 1 moves, then using his strategy, all Red needs to do is
enforce Blue to waste one move during the game.

Examples.

(1) The perfect matching game.

Proof (sketch) A fast winning strategy for Maker is known (see [24]). To turn it into Red’s win
we should just find a way to enforce Blue to waste enough moves until Red completes his goal.
A wasted move, for example, is a move where Blue has claimed an edge which is incident with a
vertex of degree at least 1 in his graph (and making it of degree at least 2). Informally, Red plays
as follows: In his first move, Red claims an arbitrary edge. After Blue’s first move, let x be a vertex
which is isolated in Red’s graph and is not isolated in Blue’s graph (there must be such a vertex).
From now on, unless Blue wastes a move, Red claims independent edges without touching x. If
Blue wastes a move then Red starts playing as Maker. At the end, by blocking Red from matching
x, Blue wastes a move (increases the degree of x to at least 2) and Red can build a trap for Blue,
ensuring that every time that Blue blocks him, he must touch x.
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(2) The Hamiltonicity game. It is a little bit more tricky and you can read it in [14].

(3) The k-connectivity game. Red builds a k-connected graph before Blue’s minimum degree is k
[15].

(4) For every constant p, G(n, p) is typically such that Red wins the game PM(G(n, p)) (the main
idea of the proof is that Maker can find a partition of the graph into cliques of relatively large
constant sizes and then play these games in parallel).

4.5 More open problems

We also suggest the following problems:

(1) Can Red win the fixed spanning tree game T ? For which trees?

(2) Find a non-trivial family of graphs H of fixed size, so that Red can win the game F played on
E(Kn) for a sufficiently large n.

(3) Can Red still win the games PM, HAM and VCk when each player claims a > 1 elements per
move? For which values of a?

(4) Is Red the typical winner of the games HAM(G(n, p)) and VCk(G(n, p)) for a constant p > 0?

(5) For which values of p, and for which trees, can Maker win the fixed spanning tree game played
on G(n, p) within n+ o(n) moves?
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Contributed Problems

Voronoi games on graphs

by Miloš Stojaković

Let a be a positive integer and G a graph (with at least 2a vertices). Two players, Mr White and
Mr Black, play a game by alternately claiming unclaimed vertices of G, for a rounds (until each
of them has claimed a vertices). When they are done, we denote by W and B the sets of vertices
claimed by Mr White and Mr Black, respectively. Now for each vertex v ∈ V (G) we find the set Nv

of (one or, in case of ties, more of) its nearest neighbors from W ∪ B. If Nv ⊆ W , the vertex v is
owned by Mr White, if Nv ⊆ B, the vertex v is owned by Mr Black, and otherwise the vertex v is
not owned. The game is won by the player that owns more vertices, and if there is no such player,
the game is a tie.

Figure 1 gives a possible course of the game played on the 11× 11 grid graph, for two rounds. This
particular game is won by Mr White, as in the end (4th picture) he owns 50 vertices, while Mr
Black owns only 49.

Figure 1: Example of 4 moves (2 rounds) of the game played on the 11× 11 grid graph – big circles
mark claimed vertices, small circles mark owned vertices.
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Although the definition of the game is simple and natural, determining the winner for general G
turns out to be rather difficult. Teramoto, Demaine and Uehara [2] determined the outcome of the
game for G a (large) complete k-ary tree. They conjectured that the game is always a tie when
played on a path, which was confirmed as the main result of [1].

Question 1. Determine the outcome of the game for G being a tree!

As we currently know the outcome only for few special classes of trees, partial results may also be
of interest.

In [2] it is shown that determining the winner of the game in full generality is NP-complete, but for
G a tree nothing is known.

Question 2. Is there a polynomial time algorithm for determining the outcome of the game for G
being a tree?

The list of problems does not end here, as one can ask the same questions for any other class of
graphs, e.g. the grid graphs.
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Pairing strategy draws via the combinatorial nullstellansatz

by Dömötör Pálvölgyi

In a Maker-Breaker game we say that Breaker can achieve a pairing strategy draw if there is a
matching among the points of the board such that every winning set contains at least one pair. It
is easy to see that the second player can now force a draw by putting his mark always on the point
which is matched to the point occupied by the first player in the previous step (or anywhere, if the
point in unmatched). This question deals with five-in-a-row game (aka. Amőba) type games, where
Maker has to collect m marks in a row.

It was shown by Hales and Jewett (see [2]), that for the game played on the two dimensional grid
where Maker has to collect m = 9 marks vertically, horizontally or diagonally, Breaker can achieve
a pairing strategy draw. A more general but somewhat weaker result by Kruczek and Sundberg [5]
shows that if there are n winning directions (eg. n = 4 for the traditional game), then if m ≥ 3n,
Breaker has a pairing strategy (in any dimension). They conjectured that there is always a pairing
strategy for m ≥ 2n+ 1, generalizing the result of Hales and Jewett. (It is not hard to show that if
m = 2n, then such a strategy cannot exist.) An asymptotic version of this conjecture was proved.

Theorem 61. [6] If p = m− 1 ≥ 2n+ 1 is a prime, then in the Maker-Breaker game played on Zd,
where Maker needs to put at least m of his marks consecutively in one of n given winning directions,
Breaker can force a draw using a pairing strategy.

The proof is by projecting the board onto a general line and using the following simple lemma
proved by several pairs of authors independently using the Combinatorial Nullstellensatz ([1]).

Lemma 62. [3, 4, 7] Given d1, . . . , dn and p ≥ 2n+ 1 prime, we can select 2n numbers, x1, . . . , xn,
y1, . . . , yn all different modulo p such that xi + di ≡ yi mod p.

Any improvement of the above lemma would lead to an improvement of the above theorem as well.
Unfortunately there is no hope to solve the conjecture this way, as for n = 3 if the directions are
(1, 0), (0, 1), (1, 1), then there can be no pairing strategy where the pair of a grid point depends only
on its projection (although it is not hard to find a pairing strategy). What is the best we can get
in one and in more dimensions?

References

[1] N. Alon, Combinatorial Nullstellensatz.

[2] J. Beck, Combinatorial games: tic-tac-toe theory.

[3] R.N. Karasev, F.V. Petrov, Partitions of nonzero elements of a finite field into pairs.

[4] D. Kohen and I. Sadofschi, A New Approach on the Seating Couples Problem.

[5] K. Kruczek and E. Sundberg, A Pairing Strategy for Tic-Tac-Toe on the Integer Lattice with Numerous
Directions.

[6] P. Mukkamala and D. Pálvölgyi, Asymptotically optimal pairing strategy for Tic-Tac-Toe with nu-
merous directions.

[7] E. Preissmann and M. Mischler, Seating Couples Around the King’s Table and a New Characterization
of Prime Numbers.



30 Contributed Problems

Saturation games

by Balázs Patkós

The saturation game (X,D) is played by two players: former Wales international, FC Liverpool legend, Ian
Rush and former Washington State Cougar running back nowadays Mt San Antonio baseball player Dwight
Tardy. The players pick distinct elements of the board X alternatingly r1, t1, r2, t2, ... (or t1, r1, t2, r2, ...)
such that after each step the sets Dj = {r1, t1, r2, t2, ..., rj} and D′j = {r1, t1, r2, t2, ...ri, tj} formed by the

elements picked until that point belong to the downwards closed family D ⊆ 2X . The game stops when
the set D of already picked elements is maximal in D, i.e. for every x ∈ X \ D we have D ∪ {x} /∈ D.
The score of the game is the total number of elements picked by the two players. Rush’s aim is to keep
the score as low as possible (that is to finish the game as early as possible) while Tardy’s aim is obtain a
score as high as possible. The problem is to determine s(X,D), the score when both Rush and Tardy play
according to their optimal strategy. More precisely, sT (X,D) denotes the score in a game played according
to the optimal strategies and started by Tardy, while sR(X,D) denotes the score of the game with optimal
strategies and started by Rush.

In most examples the board X is either the power set 2[n] of the set [n] of the first n positive integers or the

set
([n]
k

)
of all k-subsetes of [n]. In particular, if k equals 2, then the two players pick edges of the complete

graph or order n. The only studied instance of the problem is the triangle-free game when X =
(

[n]
2

)
and

D = D∆ is the set of all triangle-free subgraphs of the complete graph Kn on n veretices. Füredi, Reiner
and Seress [2] showed that

1

2
n log n ≤ s(

(
[n]

2

)
,D∆) ≤ n2

5

holds and Biró, Horn and Wildstrom [1] announced some improvements on the constant of the upper
bound.

Open Problem 1 Let 2k ≤ n, X =
([n]
k

)
and In,k ⊂ 2([n]

k ) be the set of all k-uniform intersecting families.
Try to determine the asymptotics of s(X, In,k) when k is fixed and n tends to infinity. (Note that the
non-uniform intersecting game is not interesting as all maximal non-uniform intersecting subfamily of 2[n]

has size 2n−1.) It is easy to see that sR(X, In,2) = 3 while sT (X, In,2) = n− 1

Open Problem 2 Let X = 2[n] and Sn ⊂ 22[n]
be the set of all Sperner subfamilies of 2[n]. Try to give

lower and upper bounds on sT (X,Sn). (Clearly, sR(X,Sn) equals 1.)
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The path is more important than the goal, is it?

by Balázs Keszegh

The following problem is in fact a search theoretic problem but we phrase it in a way which looks more
like a problem about games.

The pyramid graph Py(n) is a directed graph defined in the following way. Py(n) has N = n(n + 1)/2
vertices on n + 1 levels, for 1 ≤ i ≤ n + 1 the ith level having i vertices vi,1, vi,2 . . . vi,i, and from every
vertex vi,j where 1 ≤ i ≤ n and 1 ≤ j ≤ i, there is a left outgoing edge going to vi+1,j (its left child) and a
right outgoing edge going to vi+1,j+1 (its right child). Py(n) has one root at the top, v1,1 and n + 1 sinks
at the bottom, the vertices on the (n + 1)th level.

The (asymmetric) biased game we regard is the following: A chooses a vertex set S of size k and B chooses
for each vertex in S an outgoing edge. A wins if there is only one possible directed path starting at the
root and ending in a leaf which is compatible with the choices of B (i.e., for every asked vertex on the path
the path goes along the chosen edge). Of course A wins at some point but what is the minimal number
of rounds in which A can always win? For k = 1, 2, 3 we know the exact answer [1] but for bigger k the
problem is open.

Consider the setting when A wins already if all paths that are compatible with the answers of B end in
the same leaf. Can A finish the game faster in this case?

The game can of course be played on other directed (acyclic) graphs, for example for complete rooted d-ary
trees we know the minimal number of rounds for every k.

This problem was originally proposed by Soren Riis.
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