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10:15 - 11:00 Gábor Sárközy
11:15 - 12:00 József Balogh

Lunch Break
14:00 - 14:45 Gábor Tardos
15:00 - 15:45 Miklós Bóna

16:30 from in front of Rényi: Traveling together to Balatonalmádi by private bus.

Other Days:
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18:30 - Dinner and other activities

Last Day:
Discussion from 16:00 and then Return to Budapest.
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Invited Problems

Coverings by monochromatic pieces

by Gábor N. Sárközy

Abstract

The typical problem in (generalized) Ramsey theory is to find the order of the largest
monochromatic member of a family F (for example matchings, paths, cycles, connected sub-
graphs) that must be present in any edge coloring of a complete graph Kn with t colors.
Another area is to find the minimum number of monochromatic members of F that partition
or cover the vertex set of every edge colored complete graph. Here we propose a problem that
connects these areas: for a fixed positive integers s ≤ t, at least how many vertices can be
covered by the vertices of no more than s monochromatic members of F in every edge coloring
of Kn with t colors. Several problems and conjectures are presented, among them a possible
extension of a well-known result of Cockayne and Lorimer on monochromatic matchings for
which we prove an initial step: every t-coloring of Kn contains a (t − 1)-colored matching of
size k provided that

n ≥ 2k +

⌊

k − 1

2t−1 − 1

⌋

.

This problem was proposed at last year’s Emléktábla workshop by András Gyárfás.

1 Introduction

I present a problem that came out of recent investigations with András Gyárfás and Stanley Selkow
[18].

The typical problem in (generalized) Ramsey theory is to find the order of the largest monochro-
matic member of a family F (for example matchings, paths, cycles, connected subgraphs) that must
be present in any edge coloring of a complete graph Kn with t colors. For easier reference these
problems are called Ramsey problems in this paper. Another well studied area, we call them cover
problems, is to find the minimum number of monochromatic members of F that partition or cover
the vertex set of every edge colored complete graph.

Here we propose a common generalization of Ramsey and cover problems. For a fixed positive
integer s, at least how many vertices can be covered by the vertices of no more than s monochromatic
members of F in every edge coloring of Kn with t colors? A somewhat related problem was proposed
by Chung and Liu [4]: for a given graph G and for fixed s, t, find the smallest n such that in every
t-coloring of the edges of Kn there is a copy of G colored with at most s colors.

Several problems and conjectures are formulated, among them a possible extension of a well-
known result of Cockayne and Lorimer on monochromatic matchings. Our main result (Theorem
17) is that every t-coloring of Kn contains a (t − 1)-colored matching of size k provided that

n ≥ 2k +

⌊

k − 1

2t−1 − 1

⌋

.

This result is sharp. A simple consequence (Corollary 18) is that every t-colored K2t−2 has a perfect
matching missing at least one color. This is a special case of a conjecture proposed at last year’s
Emléktábla workshop by András Gyárfás [13].
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1.1 Path and cycle covers

As far as path covers in infinite graphs are concerned, Rado [28] has a “perfect” result stated here
in an abridged form with its simplified original proof.

Theorem 1. The vertex set of any t-colored countable complete graph can be partitioned into finite
or one-way infinite monochromatic paths, each of a different color.

Proof. Call a set C ⊆ {1, . . . , t} of k colors, 1 ≤ k ≤ t, perfect if there exists a set P = {P1, . . . , Pk}
of k vertex disjoint finite paths P1 = . . . x1, . . . , Pk = . . . , xk with the following property: Pi is
monochromatic in color ci and there is an infinite set Y of vertices such that Y is disjoint from the
paths of P and for each i ∈ {1, . . . , k} and for all y ∈ Y , xiy is colored with ci. A perfect color set
exists since any color c1 present on infinitely many edges of a star incident to vertex x forms such a
(one-element) set. Select a perfect set C of k colors so that k is as large as possible (k ≤ t); this is
witnessed by P and Y . Let u be an arbitrary vertex not covered by P . Consider a color c such that
uy has color c for every y ∈ Y ∗ where Y ∗ ⊆ Y , is infinite. It follows from the choice of k that c ∈ C.
Now u can be added to the end of the c-colored path of P , either directly if u ∈ Y , or through a
vertex v ∈ Y ∗ if u /∈ Y . The infinite set witnessing the extension is either Y ∗ or Y ∗ \ {v}. Clearly
the extensions can be continued to place all vertices of the countable complete graph so that all
paths of P are finite or one-way infinite. �

There are several possibilities to “finitize” Theorem 1. The 2-color version works perfectly as
noted in a footnote in [8].

Proposition 2. The vertex set of any 2-colored finite complete graph can be partitioned into
monochromatic paths, each of a different color.

Proof. If P1 = ..., x1, P2 = ..., x2 are red and blue paths and v is uncovered then either v can be
placed as the last vertex of one of the paths Pi or one of the bypasses P1, x2, v or P2, x1, v extends
one monochromatic path (and shortens the other). �

Lehel conjectured that Proposition 2 remains true if paths are replaced by cycles (where the
empty set, one vertex and one edge are accepted as a cycle). Although the existence of a ‘near
partition’ (where the two monochromatic cycles intersect in at most one vertex) follows easily, see
[10], it took a long time until this was proved for large n in [24], [1]. Recently an elementary proof
was found by Bessy and Thomassé [3] that works for all n.

Theorem 3. ([3]) The vertex set of any 2-colored complete graph can be partitioned into two
monochromatic cycles of different colors.

In [11] and [6] several possible extensions of Proposition 2 were suggested. It turned out that for
3 colors one can not expect full partition by distinct colors, the first example of this phenomenon
is from Heinrich [20]. Recently the asymptotic ratios of monochromatic path and cycle partitions
with three distinct colors was obtained in [17].

Theorem 4. ([17]) In every 3-colored Kn at least (3
4
− o(1))n vertices can be partitioned into

monochromatic cycles of distinct colors.

We note that here the asymptotic ratio 3
4

is best possible. Nevertheless in [6] the authors
formulated the striking conjecture that Proposition 2 and Theorem 3 carry over to any number of
colors if repetitions of colors are possible.

Conjecture 5. ([6]) The vertex set of every t-colored complete graph can be partitioned into t
monochromatic cycles.
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The current best result in the direction of this beautiful conjecture is the following (this improved
an earlier estimate from [6]).

Theorem 6. ([14]) For every integer t ≥ 2 there exists a constant n0 = n0(t) such that if n ≥ n0

and the edges of the complete graph Kn are colored with t colors then the vertex set of Kn can be
partitioned into at most 100t log t vertex disjoint monochromatic cycles.

The case of three colors was recently solved in an asymptotic sense.

Theorem 7. ([17]) In every 3-colored Kn at least (1− o(1))n vertices can be partitioned into three
monochromatic cycles.

The proofs of Theorems 4, 6 and 7 rely on the Regularity Lemma and relaxations of cycles to
connected matchings (see Subsection 1.2).

In [29] we generalized Conjecture 5 to non-complete graphs which have a given maximum inde-
pendent set size α(G) = α. We formulated the following conjecture.

Conjecture 8. ([29]) The vertex set of every t-colored graph G with α(G) = α can be partitioned
into αt monochromatic cycles.

The conjecture is known to be true for the special case t = 1 (a theorem of Pósa [27], see also
Exercise 8.3 in [23]). Perhaps the case t = 2 is not hopelessly difficult, especially in light of the
above mentioned Bessy-Thomassé result [3]. In general the current best bound is the following.

Theorem 9. ([29]) If the edges of a graph G with α(G) = α are colored with t colors then the vertex
set of G can be partitioned into at most 25(αt)2 log(αt) vertex disjoint monochromatic cycles.

Returning to complete graphs the new problem we propose here is the following.

Problem 10. Suppose 1 ≤ s ≤ t. What is the maximum number of vertices that can be covered by
s monochromatic cycles (paths) in every t-coloring of the edges of Kn?

We do not have a general conjecture here, not even for the asymptotics (for fixed s, t and large
n). The case s = 1 is the path Ramsey number which is wide open. The case t = 3 ([16]) is the only
evidence that perhaps n

t−1
is the true asymptotic value (n

t
is an easy lower bound). But already the

case t = 4 is open. The case s = t is in Conjecture 5.
The first interesting special case is t = 3, s = 2.

Conjecture 11. In any 3-colored Kn there are two vertex disjoint monochromatic paths (cycles)
covering at least 6n

7
vertices.

A weaker form (for matchings instead of paths) of Conjecture 11 follows from Theorem 17 below
(when t = 3).

1.2 Connected matchings.

One technique used recently in many papers (for example [7], [14] and [16]) in Ramsey and in
covering problems related to paths or cycles is to replace the paths or cycles by a simpler structure,
monochromatic connected matchings, and rely on the Regularity and Blow-up Lemmas to create
paths or cycles from them. A connected monochromatic matching means that all edges of the
matching are in the same component of the subgraph induced by the edges in the color of the
matching.

Thus a natural step towards proving an asymptotic (or sharp for large enough n) version of
Conjecture 11 would be to prove it for connected matchings. However, in the problem mentioned
above we are a step behind, we could only prove Conjecture 11 for matchings (without the connec-
tivity condition). A logical plan is to treat connected pieces and matchings separately, this is done
in Subsection 1.3 and in Section 2.
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1.3 Covers by connected components

Since every connected component contains a spanning tree of the component, we use here the
somewhat simpler tree language. A special case of a conjecture attributed to Ryser, (appearing in his
student, Henderson’s thesis [21]) states that every intersecting t-partite hypergraph has a transversal
of at most t − 1 elements. Using the dual of the hypergraph of monochromatic components in a t-
coloring of complete graphs, one can easily see that the following form of the conjecture (introduced
in [9]) is equivalent.

Conjecture 12. In every t-coloring of the edges of a complete graph, the vertex set can be covered
by the vertices of at most t − 1 monochromatic trees.

If Conjecture 12 is true then an easy averaging argument would easily extend it as follows.

Conjecture 13. For every 1 ≤ s ≤ t− 1 and for every t-coloring of Kn at least ns
t−1

vertices can be
covered by the vertices of at most s monochromatic trees.

Since Conjecture 12 is known to be true for 2 ≤ t ≤ 5, Conjecture 13 is true for 1 ≤ s ≤ t ≤ 5.
Also, the case s = 1 is known for arbitrary t (originally in [9], [12] is a recent survey). Perhaps a
good test case is to try to prove Conjecture 13 for s = 2 (and for general t).

Since Ryser’s conjecture is extended further in [6] by changing cover to partition in Conjecture
12, one may perhaps even require partition in Conjecture 13 as well.

1.4 Covers by copies of a fixed graph

It seems that to find the percentage of vertices that can be covered by monochromatic copies of a
fixed graph H having at most s colors is a difficult problem. Indeed, even the case when H is a
single edge seems difficult. However, somewhat surprisingly, for any fixed connected non-bipartite
graph H and for any fixed t ≥ 3 and fixed s ≤ t, the percentage of vertices of Kn that can be covered
by vertex disjoint monochromatic copies having at most s colors can be rather well approximated.
In fact, the following theorem can be easily obtained from the results of [25]. Let Rt(H) denote the
smallest integer n such that in every t-coloring of the edges of Kn there is a monochromatic copy
of H.

Theorem 14. Suppose that t ≥ 3, 1 ≤ s ≤ t and H is a connected non-bipartite graph. Then
in every t-coloring of the edges of Kn, at least s(n−Rt(H))

t
vertices can be covered by vertex disjoint

monochromatic copies of H using at most s colors. On the other hand, for any n that is divisible
by t, the edges of Kn can be t-colored so that at most sn

t
vertices can be covered by vertex disjoint

monochromatic copies of H having at most s colors.

Proof. The first part follows by selecting successively monochromatic copies of H, removing after
each step the part covered so far. Clearly, the process stops only when fewer than Rt(H) vertices
remain. Then, an obvious averaging argument gives that the copies in s suitable colors cover the
claimed quantity.

The second part follows from the following construction. Partition V (Kn) into t equal parts and
color the edges within the parts with t different colors, say within part i every edge gets color i.
The crossing edges (going from one part to another) are all colored with the same color between any
fixed pair of parts. There are two rules. On one hand, crossing edges of color i cannot be incident
to part i. On the other hand, the union of crossing edges of color i should span a bipartite graph. It
is easy to see that these rules can be easily guaranteed for t ≥ 3 (and impossible to meet for t = 2).
Because H is connected, not bipartite and crossing edges of color i are not adjacent to part i, each
monochromatic copy of H must be completely within a part. Therefore copies of H having at most
s colors are covered by the at most s parts, proving the second statement of the theorem. �
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2 Covers by matchings - how to generalize Cockayne -

Lorimer theorem?

Here we return to the most basic case, when we want to cover by copies of an edge (the simplest
bipartite graph), i.e. by matchings. A matching in a t-colored complete graph is called an s-colored
matching if at most s colors are used on its edges. To describe easily certain t-colorings of Kn we
need, consider partition vectors with t positive integer coordinates whose sum is equal to n. Assume
that V (Kn) = {1, 2, . . . , n}. Then [p1, p2, . . . , pt] represents the coloring obtained by partitioning
V (Kn) into parts Ai so that |Ai| = pi for i = 1, 2, . . . , t and the color of any edge e = (x, y) is the
minimum j for which {x, y} has non-empty intersection with Aj.

Problem 15. Suppose 1 ≤ s ≤ t. What is the size of the largest s-colored matching that can be
found in every t-coloring of the edges of Kn?

The Ramsey problem, the case s = 1 in Problem 15, was completely answered by Cockayne and
Lorimer [5]. Here we state its diagonal case only.

Theorem 16. ([5]) Assume n ≥ (t + 1)p + 2 and Kn is arbitrarily t-colored. Then there is a
monochromatic matching of size p + 1.

Observe that Theorem 16 is sharp, the coloring [p, p, . . . , p, 2p+1] of the complete graph K(t+1)p+1

does not contain a monochromatic matching with p + 1 edges.
Notice that the case s = t of Problem 15 is trivial, any perfect (or near-perfect if n is odd)

matching is obviously optimal. In this paper we settle the case s = t − 1, by showing that the
extremal coloring is close to the coloring [p, 2p, 4p, . . . , 2t−1p]. More precisely we prove the following.

Theorem 17. Every t-coloring of Kn contains a (t − 1)-colored matching of size k provided that

n ≥ 2k +

⌊

(k − 1)

2t−1 − 1

⌋

.

This is sharp for every t ≥ 2, k ≥ 1.

This problem was proposed at last year’s Emléktábla workshop by András Gyárfás. In case of
t = 3 Theorem 17 gives Conjecture 11 in a weaker form. Noting that for k < 2t−1 the second term
is zero in Theorem 17, we get the following.

Corollary 18. Every t-colored K2t−2 has a perfect matching missing at least one color.

We note here that for t = 2, 3, 4 there are results stronger than Theorem 17. Namely, not only
a (t − 1)-colored matching of size k can be guaranteed, but a (t − 1)-colored path on 2k vertices.
For t = 2 this is a well-known result [8], for t = 3 it was proved in [26] and for t = 4 in [22]. In fact,
it was conjectured in [22] that Theorem 17 holds also if the matching of size k is replaced by P2k.

For the case t = 4, s = 2 we suspect that the extremal coloring is essentially [p, p, 2p, 4p]. That
leads to

Conjecture 19. If n ≥ ⌊8k−2
3

⌋ then every 4-coloring of Kn contains a 2-colored matching of size k
.

For the case s = 2, t = 5, the coloring [p, p, p, 2p, 4p] and the coloring [p, p, p, p, 2p] corresponding
to Theorem 16 give essentially the same parameters so we do not risk a conjecture here. Moreover,
for s = 2, t = 6 the latter coloring [p, p, p, p, p, 2p] is better than [p, p, p, p, 2p, 4p]. This leads to the
dilemma whether there are better colorings in this case or [p, p, p, p, p, 2p] is the extremal one? The
latter possibility would be similar to the phenomenon discussed in Subsection 1.4, saying vaguely
that in a 6-colored complete graph the size of the largest 2-matching is twice the size of the largest
monochromatic matching.
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3 Large (t−1)-colored matchings in t-colored complete graphs.

Here we prove Theorem 17. To show that it is sharp, set N = 2k−1 +
⌊

(k−1)
2t−1−1

⌋

= 2k−1 +p, where

p =
⌊

N
2t−1

⌋

=
⌊

k−1
2t−1−1

⌋

. Consider the coloring [p, 2p, 4p, . . . , 2t−2p, q] of KN with q = N − (2t−1−1)p.

If a matching in this coloring misses color j 6= t then it misses at least 2j−1p − ∑

i<j 2i−1p = p
vertices from the vertex set to which color class j is incident to. Thus at most N − p = 2k − 1
vertices are covered by this matching so its size is smaller than k. A matching that misses color t
has at most

∑

i<t 2i−1p = (2t−1 − 1)p ≤ k − 1 edges.
To prove the upper bound, consider a t-colored Kn where

n = 2k +

⌊

(k − 1)

2t−1 − 1

⌋

= 2k + p.

Set V = V (Kn), let Gi denote the subgraph of Kn with vertex set V and containing edges of colors
different from color i, 1 ≤ i ≤ t. We are going to show that for at least one i, Gi has a matching
of size k. The proof is indirect: if the maximum matching of Gi, ν(Gi), is at most k − 1 for each
i, then for the deficiency of Gi, def(Gi), defined as the the number of vertices uncovered by any
maximum matching of Gi, we have

def(Gi) ≥ n − 2ν(Gi) ≥ 2k + p − 2(k − 1) = p + 2.

We apply the following well-known result, where co(G) is the number of odd components of G.

Theorem 20. (Berge formula) def(G) = max{co(V (G) \ X) − |X| : X ⊂ V (G)}.

Thus, for each i, there is a set Xi ⊂ V such that

co(V \ Xi) ≥ |Xi| + p + 2. (1)

Assume w.l.o.g. that |X1| ≤ . . . ,≤ |Xt| and observe that the edges between connected components
of Gi in V \ Xi are all colored with color i. Let C1

1 , . . . , C
1
m1

be the vertex sets of the connected
components of G1 in V \ X1, from (1) we have m1 ≥ |X1| + p + 2.

Lemma 21. There is an index l ∈ {1, 2, . . . ,m1}, say l = 1, such that for every j > 1, ∪i6=1C
1
i ⊂ Xj.

Proof. Suppose that v, w /∈ X2 where v ∈ C1
q , w ∈ C1

r and q 6= r. This implies that the edges of
color 1 form a complete multipartite graph M on V \ (X1 ∪ X2) with at least two partite classes.
Therefore all vertices of M must be in the same connected component of G2 in V \ X2. Thus G2

has at most 1 + |X1| ≤ 1 + |X2| < |X2| + p + 2 odd components in V \X2, contradicting (1). Thus
X2 must cover all but at most one among the C1

i -s, say C1
1 can be uncovered.

Next we show that for all j ≥ 2, we have ∪i6=1C
1
i ⊂ Xj. We have seen this for j = 2, so

assume j > 2. The argument of the previous paragraph gives that Xj covers all but one C1
i ,

say the exceptional one is C1
l . Suppose l 6= 1, say l = 2. The inequality |X2| ≤ |Xj| implies

|X2 \ Xj| ≤ |Xj \ X2| and from this

|X1 ∩ (X2 \ Xj)| + |C1
2 \ Xj| ≤ |X1 ∩ (Xj \ X2)| + |C1

1 \ X2|. (2)

On the other hand, using (1),

|V \ Xj| = |X1 ∩ (X2 \ Xj)| + |X1 \ (X2 ∪ Xj)| + |C1
2 \ Xj| ≥ co(V \ Xj) ≥ |Xj| + p + 2

≥ |X1 ∩ (Xj \ X2)| + |C1
1 \ X2| + |Xj ∩ C1

2 | + | ∪i≥3 C1
i | + p + 2
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which can be rearranged as

(|X1 ∩ (X2 \ Xj)| + |C1
2 \ Xj|) − (|X1 ∩ (Xj \ X2)| + |C1

1 \ X2|) + |X1 \ (X2 ∪ Xj)| ≥

≥ |Xj ∩ C1
2 | + | ∪i≥3 C1

i | + p + 2. (3)

Note that from (2) the left hand side of (3) is at most |X1 \ (X2 ∪ Xj)|. Thus from (3) we get

|X1| ≥ |X1 \ (X2 ∪ Xj)| ≥ |Xj ∩ C1
2 | + | ∪i≥3 C1

i | + p + 2 ≥ m1 − 2 + p + 2 = m1 + p

and this contradicts m1 ≥ |X1| + p + 2 and finishes the proof of the lemma. �

Call Ker1 = C1
2 ∪ . . . ∪ C1

m1
the first kernel. With this notation Lemma 21 claims that each Xj

with j > 1 contains Ker1. We may iterate Lemma 21 to define the set Keri = Ci
2 ∪ . . . ∪ Ci

mi
, the

i-th kernel, so that each Xj with j > i contains Keri. Furthermore, these kernels are disjoint, since
Xi+1 contains Keri, but Keri+1 is contained in V \ Xi+1. This implies that we have the following
recursion on the sizes of the Xi’s.

Claim 1. For every 2 ≤ i ≤ t we have

|Xi| ≥ |X1| + . . . + |Xi−1| + (i − 1)(p + 1).

Indeed, Xi contains all the disjoint kernels Ker1, . . . , Keri−1 and thus using (1) we get

|Xi| ≥
i−1
∑

j=1

|Kerj| ≥
i−1
∑

j=1

(c0(V \ Xj) − 1) ≥
i−1
∑

j=1

(|Xj| + p + 1),

as desired.
Claim 1 implies easily by induction the following

|Xi| ≥ (2i−1 − 1)(p + 1). (4)

But then, since the kernels are disjoint, using (1) again we get the following contradiction

n ≥
t

∑

i=1

|Keri| ≥
t

∑

i=1

(c0(V \ Xi) − 1) ≥
t

∑

i=1

(|Xi| + p + 1) =

=
t

∑

i=1

|Xi| + t(p + 1) ≥
t

∑

i=1

2i−1(p + 1) = (2t − 1)(p + 1) > n.

Here for the last inequality we have to check

(2t − 1)(p + 1) ≥ n + 1 = 2k + p + 1.

This is equivalent to

p + 1 ≥ k

2t−1 − 1
, (5)

which is always true for our choice p = ⌊ k−1
2t−1−1

⌋. Indeed,

⌊

k − 1

2t−1 − 1

⌋

=

⌊

k

2t−1 − 1

⌋

(and so (5) is trivially true) for all cases except when k
2t−1−1

is an integer, but (5) is true in this
case as well, finishing the proof of Theorem 17. �
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bipartite graphs, Algorithms and Combinatorics, Topics in Discrete Mathematics, Volume Ded-
icated to Jarik Nesetril on the Occasion of his 60th Birthday, 2006, ISBN-10 3-540-33698-2,
pp. 133-144.
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[27] L. Pósa, On the circuits of finite graphs, MTA Mat. Kut. Int. Közl., 8 (1963), pp. 355-361.
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Chromatic threshold of graphs

by József Balogh

This is based on a paper of Balogh, Butterfield, Hu, Lenz, and Mubayi.

Abstract

Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of
all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum
degree at least c

(|V (H)|
r−1

)

has bounded chromatic number. This parameter has a long history
for graphs (r = 2), and in this paper we begin its systematic study for hypergraphs.

 Luczak and Thomassé recently proved that the chromatic threshold of near bipartite graphs
is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this
class of hypergraphs, we also show that the exact Turán number is achieved uniquely by the
complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite
families of nondegenerate hypergraphs whose Turán number is determined exactly. In an
attempt to generalize Thomassen’s result that the chromatic threshold of triangle-free graphs
is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs
not containing {abc, abd, cde}, the so-called generalized triangle.

In order to prove upper bounds we introduce the concept of fiber bundles, which can be
thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber

bundle dimension, a structural property of fiber bundles which is based on the idea of Vapnik-
Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions,
many of which use a generalized Kneser hypergraph. Using methods from extremal set theory,
we prove that these generalized Kneser hypergraphs have unbounded chromatic number. This
generalizes a result of Szemerédi for graphs and might be of independent interest. Many open
problems remain.

4 Introduction

An r-uniform hypergraph on n vertices is a collection of r-subsets of V , where V is a set
of n elements. If r = 2 then we call it a graph. The r-sets in a hypergraph are called edges,
and the n elements of V are called vertices. For a hypergraph H let V (H) denote the set of
vertices. We denote the set of edges by either E(H) or simply H. The chromatic number of a
hypergraph H, denoted χ(H), is the least integer k for which there exists a map f : V (H) → [k]
such that if E is an edge in the hypergraph then there exist v, u ∈ E for which f(v) 6= f(u). For
a vertex v in a hypergraph H we let d(v) denote the number of edges in H that contain v. We let
δ(H) = min{d(v) : v ∈ V (H)}, called the minimum degree of H.

Definition. Let F be a family of r-uniform hypergraphs. The chromatic threshold of F , is
the infimum of the values c ≥ 0 such that the subfamily of F consisting of hypergraphs H with
minimum degree at least c

(|V (H)|
r−1

)

has bounded chromatic number.

We say that F is a subhypergraph of H if there is an injection from V (F ) to V (H) such that
every edge in F gets mapped to an edge of H. Notice that this is only possible if both H and F are
r-uniform for some r. If H is an r-uniform hypergraph, then the family of H-free hypergraphs is
the family of r-uniform hypergraphs that do not contain H as a (not necessarily induced) subgraph.

The study of the chromatic thresholds of graphs was motivated by a question of Erdős and
Simonovits [6]: “If G is non-bipartite, what bound on δ(G) forces G to contain a triangle?” This
question was answered by Andrásfai, Erdős, and Sós [3], who showed that the answer is 2/5 |V (G)|,
achieved by the blowup of C5. Andrásfai, Erdős, and Sós’s [3] result can be generalized to construct
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triangle-free graphs with chromatic number at least k and large minimum degree. As k increases,
these constructions have minimum degree approaching 1/3. This led to the following conjecture: if
δ(G) > (1/3 + ǫ) |V (G)| and G is triangle-free, then χ(G) < kǫ, where kǫ is a constant depending
only on ǫ.

Note that the conjecture is equivalent to the statement that the family of triangle-free graphs
has chromatic threshold 1/3. The conjecture was proven by Thomassen [19]. Subsequently, there
have been three more proofs of the conjecture: one by  Luczak [13] using the Regularity Lemma, a
result of Brandt and Thomassé [4] proving that one can take kǫ = 4, and a recent proof by  Luczak
and Thomassé [14] using the concept of Vapnik-Chervonenkis dimension (which is defined later in
this paper).

For other graphs, Goddard and Lyle [9] proved that the chromatic threshold of the family of
Kr-free graphs is (2r − 5)/(2r − 3) while Thomassen [20] showed that the chromatic threshold
of the family of C2k+1-free graphs is zero for k ≥ 2. Recently,  Luczak and Thomassé [14] gave
another proof that the class of C2k+1-free graphs has chromatic threshold zero for k ≥ 2, as well
as several other results about related families, such as Petersen-free graphs. The main result of
Allen, Böttcher, Griffiths, Kohayakawa and Morris [1] is to determine the chromatic threshold of
the family of H-free graphs for all H.

We finish this section with some definitions. For an r-uniform hypegraph H and a set of vertices
S ⊆ V (H), let H[S] denote the r-uniform hypergraph consisting of exactly those edges of H that
are completely contained in S. We call this the hypergraph induced by S. A set of vertices
S ⊆ V (H) is called independent if H[S] contains no edges and strongly independent if there
is no edge of H containing at least two vertices of S. A hypergraph is s-partite if its vertex set can
be partitioned into s parts, each of which is strongly independent.

If H is a family of r-uniform hypergraphs, then the family of H-free hypergraphs is the family
of r-uniform hypergraphs that contain no member of H as a (not necessarily induced) subgraph.
For an r-uniform hypergraph H and an integer n, let ex(n,H) be the maximum number of edges
an r-uniform hypergraph on n vertices can have while being H-free and let

π(H) = lim
n→∞

ex(n,H)
(

n
r

) .

We call π(H) the Turán density of H.

Let Tr,s(n) be the complete n-vertex, r-uniform, s-partite hypergraph with part sizes as equal
as possible. When s = r, we write Tr(n) for Tr,r(n). Let tr(n) be the number of edges in Tr(n). We
say that an r-uniform hypergraph H is stable with respect to Tr(n) if π(H) = r!/rr and for any
ǫ > 0 there exists δ > 0 such that if G is an H-free r-uniform hypergraph with at least (1− δ)tr(n)
edges, then there is a partition of V (G) into U1, U2, . . . , Ur such that all but at most ǫnr edges of G
have exactly one vertex in each part.

Let TKr(s) be the r-uniform hypergraph obtained from the complete graph Ks by enlarging
each edge with r − 2 new vertices. The core vertices of TKr(s) are the s vertices of degree larger
than one. For s > r, let T Kr(s) be the family of r-uniform hypergraphs such that there exists a
set S of s vertices where each pair of vertices from S are contained together in some edge. The
set S is called the set of core vertices of the hypergraph. For s ≤ r, let T Kr(s) be the family of
r-uniform hypergraphs such that there exists a set S of s vertices where for each pair of vertices
x 6= y ∈ S, there exists an edge E with E∩S = {x, y} (the definition is different when s ≤ r so that
a hypergraph which is just a single edge is not in T Kr(s)). It is obvious that TKr(s) ∈ T Kr(s).
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5 Chromatic threshold: Results and Problems

5.1 F5

A classical 3-uniform hypergraph is the so-called “generalized triangle”, which is sometimes such
called F5 is isomorphic to {abc, abd, cde}. Its extremal hypergraph is the complete 3-partite 3-graph
(proved by Frankl and Füredi).

Theorem 22. The chromatic threshold of the family of F5-free 3-uniform hypergraphs is between
6/49 and (

√
41 − 5)/8 ≈ 7/40.

Construction. Our construction is inspired by a construction by Hajnal [6] of a dense triangle-
free graph with high chromatic number. Hajnal’s key idea was to use the Kneser graph to obtain
large chromatic number. The Kneser graph KN(n, k) has vertex set

(

[n]
k

)

, and two vertices F1, F2

form an edge if and only if F1 ∩ F2 = ∅. We use an extension of Kneser graphs to hypergraphs.
Alon, Frankl, and Lovász [2] considered the Kneser hypergraph KNr(n, k), which is the r-uniform
hypergraph with vertex set

(

[n]
k

)

, and r vertices F1, . . . , Fr form an edge if and only if Fi ∩ Fj = ∅
for i 6= j. They gave a lower bound on the chromatic number of KNr(n, k) as follows.

Theorem 1. If n ≥ (t − 1)(r − 1) + rk, then χ(KNr(n, k)) ≥ t.

Fix t ≥ 2 and ǫ > 0. Pick k ≥ 2t and n = 3k + 2(t − 1) and note that n < 4k. By Theorem 1,
KN3(n, k) has chromatic number at least t and it is easy to check that it is F5-free. For integers u,
v, and w where n divides u, let U , V and W be disjoint vertex sets of size u, v, and w respectively.
Partition U into U1, . . . , Un such that |Ui| = u

n
for each i. Let H be the hypergraph with vertex set

V (KN3(n, k)) ∪ U ∪ V ∪ W and the following edges.

• For {S1, S2, S3} ∈ KN3(n, k), make {S1, S2, S3} an edge of H.

• For S ∈ V (KN3(n, k)), x ∈ Ui with 1 ≤ i ≤ n, and y ∈ V , make {S, x, y} an edge of H if
i ∈ S.

• For x ∈ U , y ∈ V , and z ∈ W , make {x, y, z} an edge of H.

Notice that H has chromatic number at least t because KN3(n, k) is a subhypergraph.

Conjecture. The lower bound, i.e. the construction is sharp for F5.

5.2 0-chromatic thresholds: Cycles

Definition. Let Cr
m be the r-uniform hypergraph with m edges on n vertices v1, . . . , vn for which

1. the n vertices are arranged consecutively in a circle,

2. each edge contains r consecutive vertices,

3. if m = 2k + 1 for some integer k > 0 then n = rk + (r − 1), and if m = 2k then n = rk,

4. edges Ei and Ej share vertices if and only if i ∈ {j − 1, j + 1} or i = 1 and j = m,

5. for i ≤ m − 1, if i is odd then |Ei ∩ Ei+1| = 1; if i is even then |Ei ∩ Ei+1| = r − 1, and

6. if m is even then |E1 ∩ Em| = 1; if m is odd then |E1 ∩ Em| = r − 1.

Theorem 23. The chromatic threshold of the family of Cr
2k+1-free hypergraphs is zero for k ≥ 2.

Theorem 24. The extremal hypergraph of Cr
2k+1 is the complete r-partite graph for k ≥ 2 and

r ∈ {3, 4}.
Problem What is the extremal hypergraph of Cr

2k+1 for k ≥ 2 and r ≥ 5?
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5.3 Chromatic thresholds of 3-uniform hypergraphs

Many open problems remain; for most 3-uniform hypergraphs A the chromatic threshold for the
family of A-free hypergraphs is unknown. Interesting hypergraphs to study are those for which we
know the extremal number, ex(n,A), and we will examine a few of those here along with partial
results and conjectures. We conjecture that most of the lower bounds given by the constructions in
this section are tight.

Mubayi [16] showed that if s > r then ex(n, T Kr(s)) = |Tr,s−1(n)| and ex(n, TKr(s)) = (1 +
o(1)) |Tr,s(n)|. Recently, Pikhurko [17] has shown that for large n and s > r, ex(n, TKr(s)) =
|Tr,s−1(n)| and that Tr,s−1(n) is the unique extremal example. Because F5 is a member of T K3(4)
it follows that the chromatic threshold of T K3(4)-free hypergraphs is at most (

√
41 − 5)/8. The

following simple variation of another construction provides a lower bound of 18/361 for both TK3(4)-
free and T K3(4)-free hypergraphs.

Proposition 2. The chromatic threshold of T K3(4)-free hypergraphs is at least 18
361

.

Construction. It is very similar to the one of F5. Choose k, n, u, v, w, U, V,W as in the
construction for F5; that is k, n, u, v, w are integers and U, V,W are disjoint sets of vertices of size
u, v, w respectively. Divide U into U1, . . . , Un so that |Ui| = u/n and divide V into V1, . . . , Vn

such that |Vi| = v/n. Let H be the hypergraph formed by taking KN3(n, k) and adding the
complete 3-partite hypergraph on U, V,W and the following edges. For S ∈ V (KN3(n, k)) and
x ∈ Ui and y ∈ Vj, make {S, x, y} an edge if i, j ∈ S. The minimum degree is maximized when

a = b and c = a/9, which gives minimum degree approximately a2N2/9 ≈ 18
361

·
(

19a/9
2

)

N2, where
N = u + v + w +

(

n
k

)

is the number of vertices in the hypergraphs.

This gives lower bounds on the chromatic thresholds of TK3(4)-free and T K3(4)-free hypergraphs
and leads to the following questions.

Question 3. What is the chromatic threshold for TK3(4)-free hypergraphs? It is between 18/361
and 2/9. What is the chromatic threshold for T K3(4)-free hypergraphs? It has the same lower bound
as for TK3(4)-free hypergraphs, and because F5 ∈ T K3(4) the upper bound is (

√
41 − 5)/8.

A similar construction provides a T K3(s)-free hypergraph for any s ≥ 5. We have not optimized
the values.

Lemma 4. When s ≥ 5, the chromatic threshold of T K3(s)-free hypergraphs is at least (s−2)(s−3)(s−4)2

(s2−13)2
=

1 − 13
s

+ O( 1
s2 ).

5.4 S(7)-free hypergraphs

Next, consider the Fano plane S(7). de Caen and Füredi [5] showed that ex(n, S(7)) = (3
4
+o(1))

(

n
3

)

.
The extremal hypergraph for S(7), proven to be extremal by Füredi and Simonovits [8] and also
by Keevash and Sudakov [10], is the hypergraph formed by taking two almost equal vertex sets U
and V and taking all edges which have at least one vertex in each of U and V . We can modify the
hypergraph from an earlier Section to obtain a lower bound on the chromatic threshold of S(7)-free
hypergraphs.

Proposition 5. The chromatic threshold of S(7)-free hypergraphs is at least 9/17.

Construction. Fix t ≥ 2 and 0 < ǫ ≪ 1. Then by Lemma 1 there exists k large enough that if
n = (3 + ǫ)k then KN3(n, k) has chromatic number at least t. Fix some such k, and fix N ≫

(

n
k

)

.
Partition N vertices into two sets, U and V , with |U | = 9N/17 and |V | = 8N/17. Further

partition U into n parts, U1, . . . , Un, each of size |U |/n. Include as an edge each triple that has
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at least one vertex in each of U , V . Let H be the hypergraph formed by taking the disjoint
union of this hypergraph and KN3(n, k) and adding the following edges. For u ∈ Ui, u′ ∈ Uj, and
X ∈ V (KN3(n, k)) include {X, u, u′} as an edge if i, j ∈ X (recall that vertices in KN3(n, k) are
subsets of [n]). Notice that H has chromatic number at least t, and that V (H) = N +

(

n
k

)

.

Question 6. What is the chromatic threshold of S(7)-free hypergraphs? It is at least 9/17 and at
most 3/4, where the upper bound is from the extremal hypergraph of S(7).

5.5 T5-free hypergraphs

Recall that the 3-uniform hypergraph T5 has vertices A,B,C,D,E and edges {A,B,C}, {A,D,E},
{B,D,E}, and {C,D,E}.

Let B3(n) be the 3-uniform hypergraph with the most edges among all n-vertex 3-graphs whose
vertex set can be partitioned into X1, X2 such that each edge contains exactly one vertex from
X2. Füredi, Pikhurko, and Simonovits [7] proved that for n sufficiently large the extremal T5-free
hypergraph is B3(n). It follows that the chromatic threshold for the family of T5-free hypergraphs
is at most 4/9.

Proposition 7. The chromatic threshold of T5-free hypergraphs is at least 16/49.

Construction Fix t ≥ 2 and 0 < ǫ ≪ 1. Then by Lemma 1 there exists k large enough that if
n = (3/2 + ǫ)k then KN3

2(n, k) has chromatic number at least t. Fix some such k, and fix N ≫
(

n
k

)

.
Partition N vertices into two parts, U and V , with |U | = 4N/7 and |V | = 3N/7. Further

partition U into n parts, U1, . . . , Un, each of size |U |/n. Include as an edge any triple with two
vertices in U and one in V . Let H be the hypergraph formed by taking the disjoint union of this
graph and KN3

2(n, k) and including the following edges. If X ∈ V (KN3
2(n, k)) and u ∈ Ui and v ∈ V

then let {u, v,X} be an edge if i ∈ X (recall that vertices of KN3
2(n, k) are subsets of [n]). Let

K = V (KN3
2(n, k)). Notice that H has chromatic number at least t, and that V (H) = N +

(

n
k

)

.

The minimum degree of H is at least

min

{

2|U ||V |
3

, |U ||V |,
(|U |

2

)}

=
8

49
N2 − 2

7
N.

5.6 Co-chromatic thresholds

There is another possibility when generalizing the definition of chromatic threshold from graphs
to hypergraphs: we can use the co-degree instead of the degree. Recall that if H is an r-uniform
hypergraph and {x1, . . . , xr−1} ⊆ V (H), then the co-degree d(x1, . . . , xr−1) of x1, . . . , xr−1 is
|{z : {x1, . . . , xr1

, z} ∈ H}|. Let F be a family of r-uniform hypergraphs. The co-chromatic

threshold of F is the infimum of the values c ≥ 0 such that the subfamily of F consisting of hyper-
graphs H with minimum co-degree at least c |V (H)| has bounded chromatic number. More generally,
the k-degree d(x1, . . . , xk) of x1, . . . , xk is |{{zk+1, . . . , zr} : {x1, . . . , xk, zk+1, . . . , zr} ∈ H}| and we
can define the k-chromatic threshold similarly. Given a hypergraph H and subsets U, V,W of V (H),
we say that an edge {u, v, w} is of type UV W if u ∈ U, v ∈ V and w ∈ W .

The co-chromatic thresholds of F5-free hypergraphs and TK3(4)-free hypergraphs are trivially
zero because if the minimum co-degree of H is at least 10 then H contains a copy of TK3(4) and
a copy of F5. For the Fano plane, the last author proved [15] that for every ǫ > 0 there exists
n0 such that any 3-uniform hypergraph with n > n0 vertices and minimum co-degree greater than
(1/2 + ǫ)n contains a copy of S(7).
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Notice that the lower bound construction for the chromatic threshold described above has non-
zero minimum co-degree but the co-degree depends on the parameter t. We can modify the con-
struction to prove a better lower bound on the co-chromatic threshold of S(7)-free hypergraphs.

Proposition 8. The co-chromatic threshold of S(7)-free hypergraphs is at least 2/5.

Construction Fix t ≥ 2 and 0 < ǫ ≪ 1. Then by our Lemma there exists k large enough that
if n = (3/2 + ǫ)k then KN3

2(n, k) has chromatic number at least t. Fix N ≫
(

n
k

)

.
Partition N vertices into two parts, U and V , of size 3N

5
and 2N

5
respectively. Include as an edge

any triple with at least one vertex in each part. Further partition U into n sets, U1, . . . , Un, each
of size |U |/n. Let H be the hypergraph formed by taking the disjoint union of this hypergraph
with KN3

2(n, k) and including the following edges. Include any edge of type KUV , where K =
V (KN3

2(n, k)). For any X,Y ∈ K, if |X ∩ Y | < k − 4ǫk then include every edge of the form
{X,Y, u} where u ∈ Ui for some i ∈ X ∪ Y . If |X ∩ Y | ≥ k − 4ǫk then include every edge of the
form {X,Y, u} where u ∈ Ui for some i ∈ X ∩ Y . Notice that H has chromatic number at least t
and that V (H) = N +

(

n
k

)

.
It remains only to compute the minimum degree of H. Vertices S1, S2 ∈ K have co-degree at

least k−4ǫk
n

|U | if |S1 ∩ S2| ≥ k − 4ǫk and at least k+4ǫk
n

|U | otherwise. Vertices u1, u2 ∈ U have
co-degree at least |V | and vertices v1, v2 ∈ V have co-degree at least |U |. All other pairs of vertices
have co-degree at least |U | or |V |. The minimum co-degree is therefore at least

min

{

k(1 − 4ǫ)

k(3/2 + ǫ)
|U |, |U |, |V |

}

=

{

2 − 8ǫ

3 + 2ǫ
· 3

5
N,

3

5
N,

2

5
N

}

.

For some choice of ǫ, this is approximately 2
5
|V (H)|.

Question 9. What is the co-chromatic threshold of the Fano-free hypergraphs? It is between 2/5
and 1/2.

In [1] it was proved that if a family F of graphs has positive chromatic threshold then the
chromatic threshold of F is in fact at least 1/3. We think that a similar statement holds for
hypergraphs. For 3-uniform hypergraphs, we believe that the least positive chromatic threshold is
achieved by the family of TK3(4)-free hypergraphs.

Conjecture 10. If a family F of 3-uniform hypergraphs has positive chromatic threshold then the
chromatic threshold of F is at least 18/361.

5.7 Kneser hypergraphs

Sarkaria [18] considered the generalized Kneser hypergraph KN r
s (n, k), which is the r-uniform hy-

pergraph with vertex set
(

[n]
k

)

, in which r vertices F1, . . . , Fr form an edge if and only if no element of
[n] is contained in more than s of them. Note that the Kneser hypergraph KN r(n, k) is KN r

1 (n, k).
Sarkaria [18] and Ziegler [21] gave lower bounds on the chromatic number of KN r

s (n, k), but Lange
and Ziegler [12] showed that the lower bounds obtained by Sarkaria and Ziegler apply only if one
allow the edges of KN r

s (n, k) to have repeated vertices. We conjecture that for KN r
s (n, k), a state-

ment similar to Theorem 1 is true.

Conjecture There exists T (r, s, t) such that if n ≥ T (r, s, t) + rk/s, then χ (KN r
s (n, k)) ≥ t.

The following much weaker statement is sufficient for our purposes. The proof is similar to an
argument of Szemerédi which appears in a paper of Erdős and Simonovits [6], and the proof of
Claim 1 is motivated by an argument of Kleitman [11].
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Theorem 25. Let c > 0; then for any integers r, t, there exists K0 = K0(c, r, t) such that if k ≥ K0,
s = r − 1, and n = (r/s + c)k, then χ (KN r

s (n, k)) > t.

6 Bipartite v.r.to trianglee-free

Remark. We start by describing the structure of triangle-free graphs with high minimal degrees.
For d ≥ 1 we define a graph Fd as follows. The vertex set V (Fd) consists of the integers modulo 3d−1,
which we denote by Z3d−1. The vertex v ∈ Z3d−1 is adjacent to the vertices v+1, v+4, v+7, · · · , v−1.
Thus Fd is a d-regular graph on 3d − 1 vertices. For example, F1 = K2 consists of a single edge,
and F2 = C5 is a 5-cycle.

For which graphs do the largest bipartite subgraph and largest triangle-free subgraph have the
same number of edges? This question was raised by Erdős [25], who noted that there is equality
for the complete graph Kn (by Turán’s theorem). Babai, Simonovits and Spencer [22] showed that
equality holds almost surely for the random graph where edges are chosen with probability 1/2. A
general condition implying equality was given by Bondy, Shen, Thomassé and Thomassen [24], who
showed that a minimum degree condition is sufficient.

For a graph G we write b(G) for the number of edges in its largest bipartite subgraph, and t(G)
for the number of edges in its largest triangle-free subgraph. Clearly t(G) ≥ b(G). Write δc for
the least number so that, for n sufficiently large, any graph G on n vertices with minimum degree
δ(G) ≥ (δc + o(1))n has t(G) = b(G). Bondy et al. [24] showed that 0.675 ≤ δc ≤ 0.85. J. Balogh,
B. Sudakov and P. Keevash [23] strengthened this as follows.

Theorem 26. 0.75 ≤ δc < 0.791.

Moreover, we believe that the lower bound is tight and propose the following conjecture.

Conjecture 27. In any graph on n vertices with minimum degree at least (3/4 + o(1))n the largest
triangle-free and largest bipartite subgraphs have equal size.

Theorem 28. For any δ < 3/4 there is n and a graph G on n vertices with minimum degree at
least δn in which the largest triangle-free subgraph has more edges than the largest bipartite subgraph.
Therefore δc ≥ 3/4.

Construction. The vertex set V = V (G) of our graph will be divided into parts Vi, i ∈ Z5 each
of size n/5. All pairs uv with u, v ∈ Vi or u ∈ Vi, v ∈ Vi+1 for some i are edges of G. Also, for
every i each pair uv with u ∈ Vi, v ∈ Vi+2 is chosen to be an edge randomly and independently with
probability θ, for some θ < 3/8.
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[6] P. Erdős and M. Simonovits. On a valence problem in extremal graph theory. Discrete Math., 5:323–
334, 1973.
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Simple questions on axis-parallel rectangles in the plane.

by Gábor Tardos

1. Oldest: packing versus piercing. Given a collection H of axis-parallel rectangles in the plane
ν = ν(H) is its packing number: the largest cardinality of a pairwise disjoint subfamily of H, while
τ = τ(H) is its piercing number: the smallest cardinality of a point set meeting all members of H.
Clearly τ ≥ ν (separate points are needed to pierce the disjoint rectangles), but already a system
of five rectangles can show they don’t have to be equal. It’s a very old open problem to determine
if τ = O(ν) holds in general. The best bound known is τ = O(ν log ν).

2. Glass cutting: Given a collection H of n pairwise disjoint convex compact sets on an infinite
sheet of glass (i.e., the plane) cut out as many as you can. The glass is brittle, so you have to cut
along a straight line. It must be the full line at first and then each piece can be further cut along
the intersection of a line with the piece of glass in question. You are done if you identified a subset
of H that lies each on separate pieces of the glass and each are intact (not cut through). How big
a subset can you always find?

For n = 2 one can separate the two pieces, but for some collections with n = 3 sets the first cut
has to break one set in order to separate the two others.

The best bounds for the largest number f(n) that can always be separated from among n sets
are f(n) = O(nlog 2/ log 3) and f(n) = Ω(n1/3).

One can consider the restriction of this problem to line segments or (to get closer to the title) to
axis parallel rectangles, where the situation is very similar to problem 1 above. Among n pairwise
disjoint axis parallel rectangles one can separate Ω(n/ log n) even if restricted to use horizontal and
vertical cuts only, but it is not ruled out that a linear number can be separated this way and I
propose this as a problem.

3. Newest (but was still proposed last year on the same workshop): weak epsilon-nets. Is the
following statement true for any set H of n points in the plane: There exists a set H ′ of n/2 points
in the plane that “represents” H in the sense, that for every axis parallel rectangle containing 1000
points from H also contains at least one point of H ′.

I believe the answer is negative and (assuming it remains negative for any constant in place of
1000) this would imply non-trivial lower bounds for so called weak epsilon nets with respect to axis
parallel rectangles. A strong negation of the above statement was proved when H ′ must be a subset
of of H. Here it is:

For a uniform random set H of n points in the unit square the following holds with high
probability: For any SUBSET H ′ of H of cardinality n/2 one can find an axis parallel rectangle
containing Ω(log log n) points of H and none of H ′.

The log log n is tight in this bound for any point set. The proof is based on estimating the
probability that any fixed H ′ would work, and realizing that this is small even if multiplied by the
total number of subsets of H (namely 2n). This approach have obvious problems when applying to
the original setting with an infinite number of possibilities for H ′, still I believe that something like
this must be true.

Background and references in the talk.
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The Permutation Pattern Avoidance Problem

Classic Questions and New Directions

by Miklós Bóna

7 Classic Problems

The classic definition of pattern avoidance for permutations is as follows. Let p = p1p2 · · · pn be a
permutation, let k < n, and let q = q1q2 · · · qk be another permutation. We say that p contains q
as a pattern if there exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n so that for all indices j and
r, the inequality qj < qr holds if and only if the inequality pij < pir holds. If p does not contain
q, then we say that p avoids q. In other words, p contains q if p has a subsequence of entries, not
necessarily in consecutive positions, which relate to each other the same way as the entries of q do.

Example 29. The permutation 3174625 contains the pattern 1324. Indeed, consider the second,
fourth, sixth and seventh entries.

The enumeration of permutations avoiding a given pattern is a fascinating subject. Let Sn(q)
denote the number of permutations of length n (or, in what follows, n-permutations) that avoid the
pattern q.

7.1 Patterns of Length Three

Among patterns of length three, there is no difference between the monotone pattern and other
patterns as far as Sn(q) is concerned. This is the content of our first theorem.

Theorem 30. Let q be any pattern of length three, and let n be any positive integer. Then Sn(q) =
Cn =

(

2n
n

)

/(n + 1). In other words, Sn(q) is the nth Catalan number.

7.2 Patterns of Length Four

When we move to longer patterns, the situation becomes much more complicated and less well
understood. In his doctoral thesis Julian West published the following numerical evidence.

• for Sn(1342), and n = 1, 2, · · · , 8, we have 1, 2, 6, 23, 103, 512, 2740, 15485

• for Sn(1234), and n = 1, 2, · · · , 8, we have 1, 2, 6, 23, 103, 513, 2761, 15767

• for Sn(1324), and n = 1, 2, · · · , 8, we have 1, 2, 6, 23, 103, 513, 2762, 15793.

These data are startling for at least two reasons. First, the numbers Sn(q) are no longer inde-
pendent of q; there are some patterns of length four that are easier to avoid than others. Second,
the monotone pattern 1234, special as it is, does not provide the minimum or the maximum value
for Sn(q). We point out that for each q of the other 21 patterns of length four, it is known that the
sequence Sn(q) is identical to one of the three sequences Sn(1342), Sn(1234), and Sn(1324).

Exact formulas are known for two of the above three sequences. For the monotone pattern, Ira
Gessel gave a formula using symmetric functions.
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Theorem 31. (Gessel) For all positive integers n, the identity

Sn(1234) = 2 ·
n

∑

k=0

(

2k

k

)(

n

k

)2
3k2 + 2k + 1 − n − 2nk

(k + 1)2(k + 2)(n − k + 1)
(6)

=
1

(n + 1)2(n + 2)

n
∑

k=0

(

2k

k

)(

n + 1

k + 1

)(

n + 2

k + 1

)

. (7)

The formula for Sn(1342) is due to the present author and is quite surprising.

Theorem 32. For all positive integers n, we have

Sn(1342) = (−1)n−1 · (7n2 − 3n − 2)

2

+ 3
n

∑

i=2

(−1)n−i · 2i+1 · (2i − 4)!

i!(i − 2)!
·
(

n − i + 2

2

)

.

This result is unexpected for two reasons. First, it shows that Sn(1342) is not simply less than
Sn(1234) for every n ≥ 6; it is much less, in a sense that we will explain in Subsection 7.4. For now,
we simply state that while Sn(1234) is “roughly” 9n, the value of Sn(1342) is“roughly” 8n. Second,
the formula is, in some sense, simpler than that for Sn(1234). Indeed, it follows from Theorem 32
that the ordinary generating function of the sequence Sn(1342) is

H(x) =
∑

i≥0

F i(x) =
1

1 − F (x)
=

32x

−8x2 + 20x + 1 − (1 − 8x)3/2
.

This is an algebraic power series. On the other hand, it is known that the ordinary generating
function of the sequence Sn(1234) is not algebraic. So permutations avoiding the monotone pattern
are not even the nicest among permutations avoiding a given pattern, in terms of the generating
functions that count them.

There is no known formula for the third sequence, that of the numbers Sn(1324). However, the
following inequality is known

Theorem 33. (Bóna) For all integers n ≥ 7, the inequality

Sn(1234) < Sn(1324)

holds.

7.3 Monotone Patterns of Any Length

For general k, there are some good estimates known for the value of Sn(αk). The first one can be
proved by an elementary method.

Theorem 34. For all positive integers n and k > 2, we have

Sn(123 · · · k) ≤ (k − 1)2n.
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7.4 Stanley-Wilf Limits

The following celebrated result of Adam Marcus and Gábor Tardos shows that in general, it is very
difficult to avoid any given pattern q.

Theorem 35. For all patterns q, there exists a constant cq so that

Sn(q) ≤ cn
q . (8)

It is not difficult to show using Fekete’s lemma that the sequence (Sn(q))1/n is monotone in-
creasing. The previous theorem shows that it is bounded from above, leading to the following.

Corollary 36. For all patterns q, the limit

L(q) = lim
n→∞

(Sn(q))1/n

exists.

The real number L(q) is called the Stanley-Wilf limit, or growth rate of the pattern q. In this
terminology, it can be proved that L(αk) = (k − 1)2. In particular, L(1234) = 9, while Theorem
32 implies that L(1342) = 8. So it is not simply easier to avoid 1234 than 1342, it is exponentially
easier to do so.

Numerical evidence suggests that in the multiset of k! real numbers Sn(q), the numbers Sn(αk)
are much closer to the maximum than to the minimum. This led to the plausible conjecture that
for any pattern q of length k, the inequality L(q) ≤ (k − 1)2 holds. This would mean that while
there are patterns of length k that are easier to avoid than αk, there are none that are much easier
to avoid, in the sense of Stanley-Wilf limits. However, this conjecture has been disproved by the
following result of Michael Albert and al.

Theorem 37. The inequality L(1324) ≥ 11.35 holds.

In other words, it is not simply harder to avoid 1234 than 1324, it is exponentially harder to do
so.

7.5 Questions

1. What is the smallest constant ck so that Sn(q) < cn
k for all patterns of length k?

2. What patterns of length k are the easiest and hardest to avoid? Why?

3. What kind of numbers can occur as limits L(q)? So far, in all cases when L(q) is known, it is
of the form a + b

√
2, with a and b non-negative integers.

4. Find a formula for Sn(1324).

5. Find more patterns q for which L(q) can be computed.
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8 New Directions

8.1 Superpatterns

A k-superpattern is a permutation that contains all k! patterns of length k. Let sp(k) be the length
of the shortest k-superpattern. For instance, sp(2) = 3, as 132 is a 2-superpattern of length three,
and obviously, there is no shorter 2-superpattern. It is easy to see that sp(3) = 5, and a little bit
harder to see that sp(4) = 9.

In general, a recent construction of Alison Miller shows that sp(k) ≤
(

k+1
2

)

. As far as lower
bounds go, we only have the trivial lower bound sp(k) ≥ k2/e2.

The questions here are obvious. Improve the lower and upper bounds on sp(k), or prove that
they are optimal.

8.2 Supersequences

Find the shortest sequence whose elements are from the set {1, 2, · · · , n} that contains all n! per-
mutations of length n. It is known that if m(n) is the length of the shortest such sequence, then

n2 − cn7/4 ≤ m(n) ≤ n2 − 2n + 4.

8.3 Tight Pattern Avoidance

Same as pattern avoidance, but the entries forming a pattern must be in consecutive positions.
Let Tn(q) be the number of n-permutations avoiding q. Let q be of length k. Then a ten-year old
conjecture of Elizalde and Noy states that

Tn(q) ≤ Tn(αk).
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Contributed Problems

Ratio of max and min degree in maximal intersection family

by Balázs Patkós

Let F ⊆
(

[n]
r

)

be a maximal intersecting family such that
⋃F = [n]. Try to maximize and

minimize R(F) = ∆(F)
δ(F)

, the ratio of the maximum and the minimum degree. It is not hard to see
that if r is fixed, then

1

rr
n ≤ R(F) ≤ (1 + o(1))n,

where the upper bound is assymptotically tight but the lower bound seems to be very weak. I
conjecture that

1

r
n ≤ R(F) ≤ (1 + o(1))n,

provided r = o(n1/2).
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Red-blue alternating paths

by Balázs Keszegh

Theorem 38. [Gyárfás and Lehel] For 2 ≤ i ≤ k, let Ti be a path or a star on i vertices. T2, . . . , Tk

can be packed into Kk.

Conjecture 39. [Gerbner Daniel, Cory Palmer, Balázs Keszegh] For 2 ≤ i ≤ k, let Ti be a path
or a star on i vertices. If G is a k-chromatic graph, then T2, . . . , Tk can be packed into G.

The following conjecture implies Conjecture 39 and is an analogue of a key lemma used in the
proof of Theorem 38 by Gyárfás and Lehel.

Conjecture 40. Let G and H be two graphs on the same vertex set where the edges of G are red
and the edges of H are blue. Suppose there is a subset of the vertices Vk = {v1, v2, . . . , vk} such
that for i = 1, 2, . . . , k we have degree d(vi) ≥ i in both G and H. Then it is always possible to find
a family of vertex-disjoint paths of alternating edge colors (among the edges of G and H together)
such that

1 for every i = 1, 2, . . . , k, the vertex vi is contained in a path,

2 each path consists of vertices only from Vk except for exactly one of its endpoints, which must
be outside of Vk.

When G = H, Conjecture 40 is exactly the same as the lemma in the paper of Gyárfás and
Lehel.
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Homomorphism-free coloring of graphs

by János Barát

A vertex coloring of a graph G is homomorphism-free if and only if the identity is the only color-
preserving homomorphism of G. The minimum k, for which there exists a homomorphism-free
coloring of G with k colors, is denoted by hf(G).

Observe that hf(G) = 1 if and only if G is a rigid graph [3].

Problem 1. Which graphs satisfy hf(G) = 2?

I have collected some results in [2]. For instance, P. Varjú and myself proved the following

Lemma If G is a graph with maximum degree ∆, then hf(G) ≤ ∆ + 1.

I believe there is a Brooks-type theorem here. I think it follows from the result for the distin-
guishing number in [4].

On the other hand, I proved that the distinguishing number [1] and hf can be far apart for
some graphs [2].

There are numerous results for trees.

Problem 2. What are the trees, for which hf is large? There is an explicit construction by X.
Zhu for such candidates.
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Choosability with separation

by Mohit

Given a graph G, a list L is called a (k, c)-list if |L(v)| = k,∀v and |L(v)∩L(u)| ≤ c,∀(u, v) ∈ E(G).
Kratochvil, Tuza and Voigt [1] introduced χl(G, c) to be the minimum k so that G is L colorable
for each (k, c) list.

Among other things they showed the following:
1. χl(G, c) ≤

√

2ec(∆ − 1)
2. χl(G, 1) ≤ 4, G planar
3.

√

cn/2 ≤ χl(Kn, c) ≤
√

2ecn

It is now known [2] that limn→∞
χl(Kn,c)√

cn
= 1

Question 1: Is it true that χl(H, c) ≤ χl(G, c) when H is a non-induced subgraph of G ?
Question 2: Is it true that χl(G, c) ≤ χl(Kn, c) when G is an n-vertex graph ?

Remark: There are easy examples of (non-uniform) hypergraphs for which Question 1 is not true.
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The sensitivity of 2-colorings of the d-dimensional integer lattice

by Scott Aaronson

This question is stolen from mathoverflow.
Consider the d-dimensional integer lattice, Zd. Call two points in Zd neighbors if their Euclidean

distance is 1 (i.e., if they differ by 1 on exactly one coordinate).
Let C be a two-coloring of Zd, which makes each point either red or blue. We’ll assume C

has the following property: the origin is colored red, but on each of the d axes through the origin,
there’s a point on that axis that’s colored blue.

Let the “sensitivity” of a point x with respect to C, or sx(C), be the number of x’s neighbors
that are colored differently from x. Then let sd(C) = minC maxx∈Zd sx(C).

QUESTION: How much is sd(C) in terms of d?

As an example, here I show that the sensitivity might be only two even in six dimensions.
The construction is to color everything red except for the following six blue affine subspaces:
(30....), (.30...), (0.3...), (...30.), (....30), (...0.3) where the numbers mean the fixed coordinates, the
dots the free ones.

More generally, if we suppose that there are exactly d blue axis-aligned affine subspaces, then a
simple Turan-type argument shows that d = 2s2 − s is the biggest dimension where sensitivity s is
possible. Can you give any better construction for any dimension?

Can we at least prove that sd(C) is not bounded by some constant?
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Does every polyomino tile R
n for some n?

by Adam Chalcraft

I have also stolen this problem from mathoverlow.
A polyomino is usually defined to be a finite set of unit squares, glued together edge-to-edge.

Here I generalize it to mean a finite set of unit hypercubes, glued together facet-to-facet.
Given a polyomino P in R

m, I can lift it to a polyomino in a higher-dimensional Euclidean
space R

m+n by crossing it with a unit n-cube: the lifted polyomino is just P × [0, 1]n.
Obviously, not all polyominos tile space.
QUESTION: Is it true that given any polyomino P in R

m, there exists some n such that the
lifted polyomino P × [0, 1]n tiles R

m+n?

Note that it does not matter whether we consider only connected dominoes or not: If the original
polyomino, P, is d dimensional, then we can construct a 2d dimensional connected polyomino, Q,
that can be tiled with P. Clearly, this proves the statement, as if it is impossible to tile any space
with P, it is also impossible to do so with Q.

Denote a large enough d dimensional brick that contains P by R. Take the 2d dimensional
polyomino P x R, so here every original cube of P is replaced by a 2d brick, 1 x R. Note that P x R
is contained in an R x R brick. Fill in the missing parts of this R x R brick by 1 x P polyominos.
Notice that this means that R x P will be also filled up completely. This polyomino, Q, will be
connected, as we can freely move anywhere in the first d coordinates in R x P and in the last d
coordinates in P x R.

Note: The complement of the set obtained this way is R\ P x R\ P. If we repeat this, then it
can be achieved that our polyomino is arbitrarily dense, i.e. it fills out at least 99% of a brick.
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