
Preliminary Schedule

Day 1:
10:14 Welcome

10:15 - 11:00 Pach János
11:15 - 12:00 Tóth Géza

Lunch Break
14:00 - 14:45 Károlyi Gyula
15:00 - 15:45 Győri Ervin

16:30 from in front of Rényi: Traveling together to Gyöngyöstarján by private bus.

Other Days:
9:29 Waking up

8:30 - 9:30 Breakfast
9:30 Partitioning to Groups of 3-5 for the day

9:30 - 12:30 Work in Groups of 3-5
11:00 Coffee Break

12:30 - 14:00 Lunch Break
14:00 Optional Repartitioning for the afternoon

14:00 - 17:00 Work in Groups of 3-5
15:45 Coffee Break

17:00 - 18:30 Discussion of Results
18:30 - Dinner and other activities

Day 2 afternoon: Optional hiking led by Ida

Day 3 evening: Obligatory Csocsó tournament

Last Day:
Discussion from 15:00,

Return to Budapest at 16:30, arrival to Rényi at 18:00
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Invited Problems

Boxes and the art of ǫ-net maintenance

by János Pach

All new results mentioned below are based on joint work with Gábor Tardos.

Let X be a finite set and let R be a system of subsets of an underlying set which contains X. In
computational geometry, the pair (X,R) is usually called a range space. The elements of X and R
are said to be the points and the ranges of the range space, respectively. Consider a subset A ⊆ X.
It is called shattered if for every subset B ⊆ A, one can find a range RB ∈ R with RB ∩ A = B.
The size of the largest shattered subset of points, A ⊆ X, is said to be the Vapnik-Chervonenkis
dimension (or VC-dimension) of the range space (X,R).

In [VaC71], Vapnik and Chervonenkis proved that, from the point of view of random sampling,
all range spaces whose VC-dimensions are bounded by a constant behave very nicely. In particular,
for any ε > 0, a randomly selected “small” subset of X, whose number of elements depends only on
the VC-dimension d and ε, will “hit” every range containing at least ε|X| points of X, with large
probability. A set of points in X with the property that every range R ∈ R with |R ∩X| ≥ ε|X|
contains at least one of its elements is called an ε-net for the range space (X,R). Note that these
sets are often called strong ε-nets in the literature, to distinguish them from the so-called weak
ε-nets, which may also contain points from ∪R \ X, but must still hit all ranges that contain at
least ε|X| elements of X.

The ideas of Vapnik and Chervonenkis have been adapted by Haussler and Welzl [HaW87]
to show that the minimum number f = fd(ε) such that every range space of VC-dimension d
admits an ε-net of size at most f satisfies fd(ε) = O

(
d
ε
log d

ε

)
. They asked whether the logarithmic

factor can be removed in this formula. Pach and Woeginger [PaW90] proved that while f1(ε) =
max(2, ⌈1

ε
⌉−1), the logarithmic factor is needed for every d ≥ 2. Moreover, it was shown by Komlós

et al. [KoPW92, PaA95]) that for any d ≥ 2,

(d− 2 +
1

d+ 2
+ o(1))

1

ε
log

1

ε
≤ fd(ε) ≤ (d+ o(1))

1

ε
log

1

ε
,

as ε tends to 0. (Here log denotes the natural logarithm.)

Haussler and Welzl discovered that the above results apply to many geometrically defined range
spaces. Roughly speaking, the VC-dimension is bounded by a constant for any set of ranges with
bounded description complexity, that is if the ranges can be described in terms of a bounded
number of parameters. In a number of basic geometric scenarios it was possible to improve on
the above bounds. For instance, for any finite set of points in the plane, one can find an ǫ-net
of size linear in 1/ε, where the ranges are half-planes, translates of a convex polygon, disks or
certain kind of pseudo-disks. Similar results hold in three-dimensional space for half-space ranges
[PaW90, MaSW90, Ma92, PyR08].

Theorem 1. (Matoušek, Seidel, Welzl [MaSW90, Ma92]) All range spaces (X,R), where X is a
finite set of points in R

3 and R consists of half-spaces, admit ε-nets of size O(1/ε).

Theorem 2. (Aronov, Ezra, Sharir [ArES10]) All range spaces (X,R), where X is a finite set
of points in R

2 (or R
3) and R consists of axis-parallel rectangles (boxes), admit ε-nets of size

O
(
1
ε
log log 1

ε

)
.
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Aronov et al. have also established a similar result for “fat” triangular ranges in the place of
axis-parallel rectangles. For weak ε-nets, Ezra [Ez10] extended Theorem B to higher dimensions.

In algorithmic applications, it is often natural to consider the dual range space, in which the
roles of points and ranges are swapped [BrG95, PaA95]. Given a finite family R of ranges in R

m,
the dual range space induced by them is defined as a set system (hypergraph) on the underlying
set R, consisting of the sets Rx := {R | x ∈ R ∈ R}, for all x ∈ R

m. (Note that Rx andRy may
coincide for x 6= y.) It is easy to see that if the VC-dimension of the range space (X,R) is less than
d for every X ⊂ R

m, then the VC-dimension of the dual range space induced by any subset of R is
less than 2d.

Clarkson and Varadarajan [ClV07] found a simple and beautiful connection between the com-
plexity of the boundary of the union of n members of R and the size of the smallest epsilon-net
in the dual range space. If the complexity of the boundary is o(n log n), then the dual range
space admits ε-nets of size o

(
1
ε
log 1

ε

)
. This connection has been further explored and improved in

[Va09, ArES10]. In particular, it was shown that dual range spaces of “fat” triangles in the plane
admit ε-nets of size O

(
1
ε
log log log 1

ε

)
.

In most range spaces (X,R), one can find roughly 1/ε pairwise disjoint ranges R ∈ R such that
the sets R ∩X are of size at least ε|X|. In these cases, the size of any ε-net is Ω(1/ε). For the last
two decades, “the prevailing conjecture” was that in “geometric scenarios,” this bound is essentially
tight: there always exists an ε-net of size O(1/ε) (see, e.g., [MaSW90, ArES10]. This conjecture
had to be revised after Alon [Al10] discovered some geometric range spaces of small VC-dimension,
in which the ranges are straight lines, rectangles or infinite strips in the plane, and which do not
admit ε-nets of size O(1/ε). Alon’s construction is based on the density version of the Hales-Jewett
theorem [HaJ63], due to Furstenberg and Katznelson [FuK89, FuK91], and recently improved in
[Po09]. However, his lower bound is only barely superlinear: Ω

(
1
ε
g(1

ε
)
)
, where g is an extremely

slowly growing function, closely related to the inverse Ackermann function.

Theorem 3. (P., Tardos, 2011) For any ε > 0 and for any sufficiently large integer n > n0(ε),
there exists a dual range space Σ∗ of VC-dimension 2, induced by n axis-parallel rectangles in R

2,
in which the minimum size of an ε-net is at least C 1

ε
log 1

ε
. Here C > 0 is an absolute constant.

From Theorem 1 it is not hard to deduce the following results for primal range spaces.

Theorem 4. (P., Tardos) For any ε > 0 and for any sufficiently large integer n > n0(ε), there
exists a (primal) range space Σ = (X,R) of VC-dimension 2, where X is a set of n points in R

4,
R consists of axis-parallel boxes with one of their vertices at the origin, and in which the size of the
smallest ε-net is at least C 1

ε
log 1

ε
. Here C > 0 is an absolute constant.

Theorem 5. (P., Tardos) For any ε > 0 and for any sufficiently large integer n > n0(ε), there
exists a (primal) range space Σ = (X,R) of VC-dimension 2, where X is a set of n points in R

4, R
consists of half-spaces, and in which the size of the smallest ε-net is at least C 1

ε
log 1

ε
. Here C > 0

is an absolute constant.

Theorems 4 and 5 show that Theorems 2 and 1 cannot be generalized to 4-dimensional space.
It also follows, by a standard duality argument, that there exist dual range spaces induced by
half-spaces in R

4, for which the size of the smallest ε-net is Ω
(
1
ε
log 1

ε

)
.

The next result shows that Theorem 2 is tight.

Theorem 6. (P., Tardos) For any ε > 0 and for any sufficiently large integer n > n0(ε), there
exists a (primal) range space Σ = (X,R), where X is a set of n points in the plane, R consists
of axis-parallel rectangles, and in which the size of the smallest ε-net is at least C 1

ε
log log 1

ε
. Here

C > 0 is an absolute constant.
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The proofs of Theorems 3 and 5 are based on two constructions from [PaT10] and [ChPS09],
related to hypergraph coloring problems.

In [Ez10], Ezra proved that if X is any finite set of points in R
d and R consists of all axis-parallel

boxes, then (X,R) admits a weak ε-net of size O
(
1
ε
log log 1

ε

)
. This implies that Theorem 4 cannot

be strengthened by requiring that the constructed range spaces do not admit weak ε-nets of size
smaller than 1

ε
log 1

ε
, provided that ε > 0 is sufficiently small.

It is easy to see that the analogue of Theorem 5 is also false for weak ε-nets instead of strong
ones. Indeed, any finite system of half-spaces in R

d can be hit by d + 1 points, so that in (primal
or dual) half-space range spaces there always exist weak ε-nets of size O(1).

Problem 1. (P., Tardos) Does the analogue of Theorem 6 hold for weak ε-nets in place of strong
ones?

Given a point set X in the plane, the Delaunay graph with respect to axis-parallel rectangles is a
graph defined on the vertex set X, whose two points x, y ∈ X are connected by an edge if and only
if there is a rectangle parallel to the coordinate axes that contains x and y, but no other elements
of X.

Problem 2. (Chen, P., Szegedy, Tardos)) Is it true that the Delaunay graph (with respect to axis-
parallel rectangles) of any n-element point set in the plane has an independent set of size at least
n1−o(1)?

The best known lower bound, due to Ajwani, Elbassioni, Govindarajan, and Ray [AjEG07] is
roughly Ω(n0.617).

Problem 3. (Chen, P., Szegedy, Tardos)) Give a nontrivial lower bound on the smallest possible
size of the maximum independent set in the Delaunay graph of an n-element point set with respect
to axis-parallel boxes in d-dimensional space, for a fixed d.

A trivial bound that follows by repeated application of the Erdős-Szekeres lemma on monotone
subsequences is Ω(n1/2d−1

).

Consider any family R of axis-parallel rectangles in the plane, and construct a graph G = (V,E)
on the vertex set V = R by connecting two rectangles if one contains at least one vertex of the
other.

Problem 4. (P., Tardos) Is it true that G is ∆-degenerate for an appropriate absolute constant ∆,
that is, every subgraph of G2 has a vertex of degree at most ∆?

To prove this, it would be sufficient to show that |E| ≤ ∆|V |/2.

Problem 5. (P., Tardos) Does there exist a constant C with the following property: For any set X
of n points in the plane, one can find an n/2-element set Y such that every axis-parallel rectangle
that is disjoint from S contains at most C elements of X?
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Crossing Numbers

by Géza Tóth

In a drawing of a graph G vertices are represented by points and edges are represented by curves
connecting the corresponding points. We assume that the edges do not pass through vertices, any
two edges have finitely many common points and each of them is either a common endpoint, or a
proper crossing. We also assume that no three edges cross at the same point. The crossing number
cr(G) is the minimum number of edge-crossings (i. e. crossing points) over all drawings of G.

The following general lower bound on crossing numbers was discovered by Ajtai–Chvátal–
Newborn–Szemerédi [1] and, independently, by Leighton [5].

Theorem 1. For any graph G with n vertices and e ≥ 17n edges, we have

cr(G) ≥ 1

31.1

e3

n2
. (1)

This estimate has many applications, and it is tight up to a constant factor. The best known
constant, 1/31.1, in (1) is due to Pach, Radoičić, Tardos, and Tóth [7] (see also [9]) who also showed
that the result does not remain true if we replace 1/31.1 ≈ 0.0321 by roughly 0.09.

It was shown in [8] that there is a “best constant” in the following sense. Let κ(n, e) denote the
minimum crossing number of a graph G with n vertices and at least e edges. That is,

κ(n, e) = min
n(G) = n

e(G) ≥ e

cr(G).

Theorem 2. If n ≪ e ≪ n2, then

lim
n→∞

κ(n, e)
n2

e3
= C > 0

exists.

We have 0.0321 ≤ C ≤ 0.09.

Problem 1. Improve the bounds on C.

We define three variants of the notion of crossing number.

(1) The rectilinear crossing number, lin-cr(G), of a graph G is the minimum number of crossings
in a drawing of G, in which every edge is represented by a straight-line segment.

(2) The pairwise crossing number of G, pair-cr(G), is the minimum number of crossing pairs of
edges over all drawings of G. (Here the edges can be represented by arbitrary continuous curves,
so that two edges may cross more than once, but every pair of edges can contribute at most one to
pair-cr(G).)

(3) The odd-crossing number of G, odd-cr(G), is the minimum number of those pairs of edges
which cross an odd number of times, over all drawings of G.

It readily follows from the definitions that

lin-cr(G) ≥ cr(G) ≥ pair-cr(G) ≥ odd-cr(G).

The simplest proof of Theorem 1, with a weaker constant, easily generalizes to these other
crossing numbers.
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Theorem 3. For any graph G with n vertices and e ≥ 4.5n edges, we have

lin-cr(G) ≥ cr(G) ≥ pair-cr(G) ≥ odd-cr(G) ≥ 1

60.75

e3

n2
. (2)

Most likely the arguments in [7] and [9] can be (partly) extended to the pair-crossing number
and the odd-crossing number, but we were unable to do so.

Problem 2. Improve the constant 1
60.75

in 2.

By the Hanani-Tutte theorem [3], [6], if odd-cr(G) = 0, then the graph is planar, so cr(G) =
pair-cr(G) = odd-cr(G) = 0. According to the Fáry-Wagner theorem [4], in this case lin-cr(G) =
0 too. Bienstock and Dean [2] proved that if cr(G) ≤ 3 then cr(G) = lin-cr(G). On the other
hand, they constructed graphs with crossing number 4, whose rectilinear crossing numbers are arbi-
trarily large. What about the relationships between the values of the other three crossing numbers?
It was shown in [10] that these are related to each other.

Theorem 4. For any graph G,

cr(G) ≤ 2odd-cr(G)2.

This implies the following two weaker bounds.
(1) pair-cr(G) ≤ cr(G) ≤ 2pair-cr(G)2, (2) odd-cr(G) ≤ pair-cr(G) ≤ 2odd-cr(G)2.

It was shown by Pelsmajer, Schaefer, and Štefankovič [12] that if odd-cr(G) ≤ 3 then odd-cr(G)
= pair-cr(G) = cr(G). (And by the above mentioned result of Bienstock and Dean, lin-cr(G)
also has the same value.) The bound cr(G) ≤ 2pair-cr(G)2 has been improved several times.
Let k = pair-cr(G). It was shown by Valtr [19] that cr(G) ≤ 2k2/ log k, then in [16] that
cr(G) ≤ 9k2/ log2 k, and finally in [17] that cr(G) ≤ 2k7/4/ log3/2 k. On the other hand, we can
not rule out the possibility, that cr(G) = pair-cr(G) for every graph G! This is probably the
most exciting problem in the area.

Problem 3. a. Is there a constant c such that cr(G) ≤ cpair-cr(G) for every graph G?
b.(*) Is it true that cr(G) = pair-cr(G) for every graph G?

In the case of the other inequalities, between pair-cr and odd-cr, the situation is quite differ-
ent. The bound pair-cr(G) ≤ 2odd-cr(G)2 has not been improved so far, although it does not
look hard at all, and everybody belives that it is very far from the truth.

Problem 4. Improve the inequality pair-cr(G) ≤ 2odd-cr(G)2.

Form the other direction, Pelsmajer, Schaefer, and Štefankovič [11] constructed a series of graphs
with

odd-cr(G) <

(√
3

2
+ o(1)

)

· pair-cr(G).

It was improved in [16] to

odd-cr(G) <

(

3
√
5

2
− 5

2
+ o(1)

)

· pair-cr(G).

by a completely different construction. Note that
√
3
2

≈ 0.866 and 3
√
5

2
− 5

2
≈ 0.855.

Problem 5. Is there a constant c such that pair-cr(G) ≤ codd-cr(G) for every graph G?
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The second construction gives the “smallest” known example where pair-cr(G) and odd-cr(G)
are different. More precisely, using the ideas of the second construction, one can construct a graph
G with odd-cr(G) = 9 and pair-cr(G) = cr(G) = 10.

Problem 6. What is the smallest number k with the property that there is a graph G with
odd-cr(G) = k and pair-cr(G) > k?

By the results mentioned before, 4 ≤ k ≤ 9.
We can further modify each of the above crossing numbers, by applying one of the following

rules:

Rule + : Consider only those drawings where two edges with a common endpoint do not cross
each other.

Rule 0 : Two edges with a common endpoint are allowed to cross and their crossing counts.

Rule − : Two edges with a common endpoint are allowed to cross, but their crossing does not
count.

In the previous definitions we have always used Rule 0. If we apply Rule + (Rule −) in the
definition of the crossing numbers, then we indicate it by using the corresponding subscript, as
shown in the table below. This gives us an array of nine different crossing numbers. It is easy to see
that in a drawing of a graph, which minimizes the number of crossing points, any two edges have
at most one point in common. Therefore, cr+(G) = cr(G), which slightly simplifies the picture.

Rule –

Rule 0

Rule +

cr(G)

cr
−
(G)

pair-cr+(G)

pair-cr(G)

pair-cr
−
(G)

odd-cr+(G)

odd-cr(G)

odd-cr
−
(G)

Moving from left to right or from bottom to top in this array, the numbers do not decrease. It
is not hard to generalize Theorem 3 to each of these crossing numbers.

Tutte [18] wrote that “We are taking the view that crossings of adjacent edges are trivial, and
easily got rid of.”. This is true for the standard crossing number, but not at all obvious for pair-cr
and odd-cr.

Pelsmajer, Schaefer, and Štefankovič [13] generalized Theorem 4 as follows.

Theorem 5. For any graph G,
cr(G) ≤ 2odd-cr−(G)2.

This is the best known bound so far, moreover, this implies the best known bound between
cr−(G) and cr(G). It is hard to imagine that cr−(G) and cr(G) can be diferent for any graph.

Problem 7. a. Is there a constant c such that cr(G) ≤ ccr−(G) for every graph G?
b.(*) Is it true that cr(G) = cr−(G) for every graph G?

Return to the Hanani-Tutte theorem [3].

Theorem 6. (Weak Hanani-Tutte theorem) If G can be drawn in the plane such that any two
edges cross an even number of times, then G is planar.

That is, if odd-cr(G) = 0 then cr(G) = 0. This result has many proofs, the simplest one is
due to Pelsmajer, Schaefer, and Štefankovič [12] Analogous statement holds on any surface instead
of the plane [14].
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Theorem 7. (Strong Hanani-Tutte theorem) If G can be drawn in the plane such that any two
independent edges cross an even number of times, then G is planar.

This statement follows from Kuratowski’s theorem, and there is an elementary proof in [12]. In
contrast to the weak version, the strong wersion is not known to hold on other surfaces, the only
exception is the projective plane (Pelsmajer, Schaefer, Stasi, [15]).

Problem 8. Prove the strong Hanani-Tutte theorem on the torus.
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[8] J. Pach, J. Spencer, and G. Tóth: New bounds for crossing numbers, in: Proceedings of
15th Annual Symposium on Computational Geometry, ACM Press, 1999, 124-133. Also in:
Discrete and Computational Geometry 24 (2000), 623-644.
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[13] M. Pelsmajer, M. Schaefer, D. Štefankovič, Removing Independently Even Crossings, SIAM
Journal on Discrete Mathematics 24 (2010), 379-393.
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[17] G. Tóth, A better bound for the pair-crossing number, manuscript

[18] W. T. Tutte: Toward a theory of crossing numbers, Journal of Combinatorial Theory 8

(1970), 45–53.

[19] P. Valtr, On the pair-crossing number, In: Combinatorial and computational geometry, Math.
Sci. Res. Inst. Publ., 52, 569-575, Cambridge Univ. Press, Cambridge, 2005.
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Ramsey-Type Problems for Geometric Graphs

by Gyula Károlyi

A geometric graph is a graph drawn in the plane so that every vertex corresponds to a point, and
every edge is a closed straight-line segment connecting two vertices but not passing through a third.
The

(
n
2

)
segments determined by n points in the plane, no three of which are collinear, form a

complete geometric graph with n vertices. A geometric graph is convex if its vertices correspond to
those of a convex polygon. Further, we say that a subgraph of a geometric graph is non-crossing,
if no two of its edges have an interior point in common.

For any finite graph G, either G or its complement G is connected. That is, either G or G contains
a spanning tree. This observation extends to a geometric setting as follows, see [10].

Theorem A. If the edges of a finite complete geometric graph are coloured by two colours, there
exists a non-crossing spanning tree, all whose edges are of the same colour.

For convex geometric graphs this follows by simple induction on the number of vertices. If all
edges along the boundary of the convex hull are of the same colour, then there is a monochromatic
non-crossing spanning path. Otherwise let ab and bc be two edges of the convex hull having dif-
ferent colour; omit the vertex b and apply the induction hypothesis. One cannot in general expect
a monochromatic non-crossing spanning path (see below), but probably Theorem 1 can still be
strengthened. A caterpillar is a tree obtained from a path and a set of isolated vertices, connecting
each isolated vertex to the path with a new edge. It was suggested by Micha Perles, that the
following may be true, at least for convex geometric graphs.

Problem 1. The edges of a finite complete geometric graph are coloured by two colours. Is it always
true that there exists a non-crossing monochromatic spanning caterpillar?

For any finite sequence G1, G2, . . . , Gt of simple graphs, R(G1, G2, . . . , Gt) denotes the smallest
integer r with the property that whenever the edges of a complete graph on at least r vertices are
partitioned into t colour classes, there is an integer 1 ≤ i ≤ t such that the ith colour class contains
a subgraph isomorphic to Gi. Such a subgraph will be referred to as a monochromatic subgraph
in the ith colour. In the special case, when each Gi = Kki is a complete graph on ki vertices, we
will simply write R(k1, k2, . . . , kt) for R(G1, G2, . . . , Gt). In general, if Gi has ki vertices, then the
existence of R(G1, G2, . . . , Gt) follows directly from that of R(k1, k2, . . . , kt).

For a sequence of graphs G1, G2, . . . , Gt, the geometric Ramsey number Rg(G1, G2, . . . , Gt) is defined
as the smallest integer r with the property that whenever the edges of a complete geometric graph
on at least r vertices are partitioned into t colour classes, the ith colour class contains a non-crossing
copy of Gi, for some 1 ≤ i ≤ t. The number Rc(G1, G2, . . . , Gt) denotes the corresponding number
if we restrict our attention to convex geometric graphs only. These numbers exist if and only if
each graph Gi is outerplanar, that is, can be obtained as a subgraph of a triangulated cycle (convex
n-gon triangulated by non-crossing diagonals). The necessity of the condition is obvious, whereas
the ‘if part’ is implied by the following result of Gritzmann et al. [7].

Theorem B. Let P be an arbitrary set of n points in the plane in general position. For any
outerplanar graph H on n vertices, there is a straight-line embedding f of H into the plane such
that the vertex set of f(H) is P and no two edges of f(H) cross each other.

Corollary C. R(G1, . . . , Gt) ≤ Rc(G1, . . . , Gt) ≤ Rg(G1, . . . , Gt) ≤ R(k1, . . . , kt) holds for arbitrary
outerplanar graphs G1, . . . , Gt with k1, . . . , kt vertices, respectively.
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Most known results concern the diagonal bi-coloured case, that is, when t = 2 and G1 = G2. For
simplicity, write R(G), Rg(G) and Rc(G) for R(G,G), Rg(G,G) and Rc(G,G), respectively. Due
to the inequality Rc(G) ≤ Rg(G) and the cyclically ordered structure of convex complete geometric
graphs, it is generally easier to obtain/prove upper bounds for Rc than to Rg. On the other hand,
the largest number of crossing edges in a complete geometric graph occurs when the vertices are
in convex position, suggesting that Rg should not be much larger than Rc. I recall once proving
Rg(G) 6= Rc(G) (probably) for long enough paths, but I forgot the details.

Problem 2. Is there an infinite sequence (Gn) of outerplanar graphs Gn on n vertices such that

(a) lim supn→∞ {Rg(Gn)−Rc(Gn)} > 0;

(b) lim supn→∞
Rg(Gn)

Rc(Gn)
> 1;

(x) lim supn→∞
Rg(Gn)

Rc(Gn)
= ∞?

Denote by Ck a cycle of k vertices, Dk a cycle of k vertices triangulated from a vertex, Pk a path of
k vertices (that is, of length k − 1), and Sk a star of k vertices. In addition, M2k = kP2 will stand
for any perfect matching on 2k vertices. Regarding paths, the following results are known [11].

Theorem D. If k ≥ 3, then 2k − 3 = Rc(Pk) ≤ Rg(Pk) = O(k3/2).

The lower bound is implied by a simple construction. The upper bound concerning the convex case
is a consequence of the following result due to Perles (see [11] or [3] for a proof).

Theorem E. If a convex geometric graph of n ≥ k + 1 vertices has more then ⌊(k − 1)n/2⌋ edges,
then it contains a non-crossing path of length k.

Most likely the general upper bound is very far from the truth, but it may be very difficult to find
the right order of magnitude.

Problem 3. Improve upon the upper bound Rg(Pk) = O(k3/2).

The weaker, but somewhat more general bound Rg(Pk+1, Pl+1) ≤ kl + 1 can be proved by the
following argument [10]. Let pi (0 ≤ i ≤ kl) denote the vertices of a complete geometric graph.
Suppose that they are listed in increasing order of their x-coordinates, which are all distinct. Define
a partial ordering of the vertices, as follows. Let pi < pj if i < j and there is an x-monotone red
path connecting pi to pj. By Dilworth’s theorem [6], one can find either k + 1 elements that form
a totally ordered subset Q ⊂ P , or l + 1 elements that are pairwise incomparable. In the first
case, there is an x-monotone red path visiting every vertex of Q. In the second case, there is an
x-monotone blue path of length l, because any two incomparable elements are connected by a blue
edge. The bound follows noting that an x-monotone path cannot intersect itself. The same idea
leads to the following result [11], [13].

Theorem F. Rg(Dk, Dℓ) ≤ (k− 2)(ℓ− 1) + (k− 1)(ℓ− 2) + 2 holds for arbitrary integers k, ℓ ≥ 3.

Since Rc(C4) = 14 [2], this bound is tight for k = ℓ = 4. Given that Rc(C3, Cℓ) = 3ℓ − 3 holds
for every ℓ ≥ 3 [13], it is also tight for the case k = 3. Besides these cases, nothing better than
the general estimate Rc(Ck, Pℓ) ≥ (k − 1)(ℓ − 1) + 1 [12] is known. Let X, Y ∈ {C,D, P} (except
X = Y = P ).
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Problem 4. Find the exact values of any of the functions Rc(Xk, Yℓ), Rg(Xk, Yℓ).

The estimate Rc(Ck, Gℓ) ≥ (k− 1)(ℓ− 1)+1 is known for any connected outerplanar graph Gℓ on ℓ
vertices [12]. The following old result of Chvatal [4] can be used to obtain a matching upper bound
in certain cases.

Theorem G. R(Kk, Tℓ) = (k − 1)(ℓ− 1) + 1 holds for any tree Tℓ on ℓ vertices.

This, together with Theorem B implies Rg(Hk, Sℓ) ≤ (k− 1)(ℓ− 1)+ 1 for every outerplanar graph
Hk on k vertices. Since Rg(Hk, Pℓ) ≤ (k−1)(ℓ−1)+1 can be also proved using the above explained
argument, it is quite plausible that similar estimates hold for any tree Tℓ on ℓ vertices.

Problem 5. Is it true, that Rc(Hk, Tℓ) = Rg(Hk, Tℓ) ≤ (k − 1)(ℓ− 1) + 1 holds for any tree Tℓ on
ℓ vertices and any outerplanar graph Hk on k vertices, which contains a Hamiltonian cycle?

Even though the Ramsey function R(n) is exponentially large, it may well be that all geometric
Ramsey numbers are relatively small.

Problem 6. Is there a universal constant c such that Rg(Gn) < cn2 holds for every outerplanar
graph Gn with n vertices?

If not, the sequence L2n of ‘ladder’ graphs (vertex disjoint paths p1 . . . pn and q1 . . . qn together with
the edges piqi) seems to be a likely candidate for a counterexample.

The multicolour Ramsey number of matchings was determined by Cockayne and Lorimer [5] as

R(M2k1 ,M2k2 , . . . ,M2kt) =
t∑

i=1

ki + max
1≤i≤t

ki − t+ 1.

The same result is true also in the geometric setting if t = 2; Rg(M2k,M2ℓ) = k + 2ℓ − 1 holds

for k ≤ ℓ [9, 10]. For the diagonal Ramsey number R
(t)
g (M2k) = Rg(M2k, . . . ,M2k

︸ ︷︷ ︸

t times

) it implies the

general upper bound [13]

R(t)
c (M2k) ≤ R(t)

g (M2k) ≤







3t
2
k − 3t

2
+ 2 for t even,

3t+1
2

k − 3t+1
2

+ 2 for t odd.

This upper bound is sharp also for t = 4 [13], but most likely it is not for larger values of t. If t ≥ 2

and k ≥ 6t− 10, then R
(t)
c (M2k) ≥ (6/5)tk.

Problem 7. Is there a constant c′ < 3/2 such that R
(t)
c (M2k) < c′tk holds for t ≥ t0, k ≥ k0?

The existence of such a constant would yield to an improved lower bound on the chromatic number
of certain geometric Kneser graphs [1]. The only result pointing in this direction is a minute
improvement for the case k = 2; for t ≥ t0 the additive constant 2 in the above general upper
estimate for R

(t)
c (M4) can be replaced by 1 [8].
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Coloring Vertices and Edges of a Graph by Nonempty Subsets of a Set

by Ervin Győri

All the results are joint work with P.N. Balister and R.H. Schelp.

1 Introduction

In a recent article by Hedge [1], he considered coloring certain graphs G, where |V (G)|+ |E(G)| =
2n − 1 for some integer n, by nonempty subsets of an n-element set. One primary assignment
considered was to assign distinct subsets to the vertices and edges such that each edge is assigned
the symmetric difference of its end vertices. Since |V (G)|+ |E(G)| = 2n−1 this means all nonempty
subsets are used in the assignment. When such an assignment exists it is called a strong set coloring
of the graph. This assignment is similar to ones frequently studied in coding theory.

One interesting conjecture made in this article was that paths of order 2n−1 where n > 2 are not
strongly set colorable. We proved the following theorem, but we learned after submission of this
paper, that A.R. Mehta and G.R. Vijaykumar proved it earlier.

Theorem 1 (Mehta, Vijaykumar [2]). The paths P4 and P8 are not strongly set colorable while all
other paths of the form P2n−1 are strongly set colorable.

An equivalent formulation for a graph to be strongly set colorable and one used throughout
this note is the following one. Let G be a connected graph such that |V (G)| + |E(G)| = 2n − 1
for some n. We say that G is strongly set colorable if there is a bijection f from V (G) ∪ E(G) to
the set of nonzero vectors in F

n
2 , where F2 is the field with two elements, such that for every edge

xy ∈ E(G), f(xy)+f(x)+f(y) = 0. We regard vectors in F
n
2 as 0-1 sequences of length n, addition

in F
n
2 corresponding to componentwise addition modulo 2. The vector v then corresponds to the

subset Sv ⊆ {1, 2, . . . , n}, where Sv consists of all i such that the ith coordinate of v is 1. In this
language the Hegde conjecture says there is no permutation v1, v2, v3, . . . , v2n−1 of the n-dimensional
nonzero vectors of Fn

2 such that vi + vi+1 + vi+2 = 0 for i = 1, 3, 5, . . . , 2n − 3. Here vi represents
the set coloring of a vertex when i is odd and of an edge when i is even. These conditions will
be referred to as sum conditions. When a permutation satisfying the sum conditions exists we will
refer to it as representing vectors in a good permutation or more briefly as a good permutation.

2 Results on strong set colorings

We do not show Theorem 1 but we present the short proof of the first half of it.

Theorem 2. The paths P4 and P8 of orders 4 and 8 are not strongly set colorable.

Proof: First consider the path P4 and suppose there is a good permutation of its representing
vectors v1, . . . , v7. Since for all n > 1 the sum of all the non-zero vectors in F

n
2 is zero, v1 + v2 +

v3 + v4 + v5 + v6 + v7 = 0. By the sum condition both v1 + v2 + v3 = 0 and v5 + v6 + v7 = 0, so we
have v4 = 0, a contradiction. Therefore P4 is not strongly set colorable.

Next consider the path P8. Suppose that there is a good permutation v1, . . . , v15 of the repre-
senting vectors satisfying the sum conditions. First notice that

v4 + v8 + v12 =
15∑

i=1

vi − (v1+v2+v3)− (v5+v6+v7)− (v9+v10+v11)− (v13+v14+v15)

= 0− 0− 0− 0 = 0.



16 Invited Problems

Claim: The vectors v5, v6, v7, v9, v10, v11, v13, v14, v15 can be written in the form vi + v4j where
i, j = 1, 2, 3. We call the forms of these 9 vectors canonical.

Proof: [Proof of Claim.] First we show that these 9 vectors are different from v1, v2, v3, v4, v8, v12.
Suppose that vi1 = vi2 + v4j2 . Then adding vi2 to this vector, we obtain that either v4j2 = 0 if
i1 = i2 or v4j2 is the third vector out of v1, v2, v3 if i1 6= i2, a contradiction in both cases. Likewise
v4i1 6= vi2 + v4j2 , otherwise vi2 = 0 or the third vector of v4, v8, v12. Then, by pigeonhole principle, it
is sufficient to prove that these 9 vectors are pairwise distinct. Suppose that vi1 + v4j1 = vi2 + v4j2 .
If i1 = i2, j1 6= j2, then it follows that v4j1 = v4j2 , a contradiction. If i1 6= i2 then let i3 be the third
index out of 1, 2, 3. Then vi3 = vi1 + vi2 = v4j1 + v4j2 , which is either 0 if j1 = j2 or the third vector
out of v4, v8, v12 if j1 6= j2, a contradiction, completing the proof of this claim.

Define the sets B1 = {v5, v6, v7}, B2 = {v9, v10, v11}, B3 = {v13, v14, v15} as blocks.
Claim: For each block, the vectors v1, v2, v3, v4, v8, v12 appear exactly once in canonical form of

the vectors in the block.
Proof: [Proof of Claim.] Let w1, w2, w3 be the vectors in the block, and suppose that, say, vi1

appears in the canonical form of w1 and w2, i.e., w1 = vi1 + v4j1 and w2 = vi1 + v4j2 where j1 6= j2
since w1 6= w2. Then w3 = w1 +w2 = v4j1 + v4j2 = v4j3 where v4j3 is the third vector in {v4, v8, v12},
a contradiction. The case when v4j1 appears twice can be settled similarly.

Having established the above claims we complete the proof of the theorem.
Observe that v5 = v3 + v4 by the sum condition. If the canonical form of v7 contains v8 then

the sum condition implies that v9 is an element of v1, v2, v3, a contradiction. So v7 has v12 in its
canonical form, and since we have symmetry in v1 and v2, we may assume that v7 = v1 + v12 (and
so v6 = v2 + v8). Then v9 = v1 + v4 by the sum condition. As above, v11 cannot have v12 in its
canonical form, and of course, cannot be v6 = v2 + v8. Thus v11 = v3 + v8, since if v11 = v1 + v8
then v12+ v11 = v1+ v4 = v9 = v13, a contradiction. Then by the sum condition, v13 = v3+ v4 = v5,
a final contradiction, completing the proof of the theorem.

We noticed that the strategy used in the proof of Theorem [2] can be applied beginning with a
strongly set colorable bipartite graph in place of a path.

Theorem 3. Let G be a strongly set colorable bipartite graph with color classes X, Y and edge
set E. Let G1, G2, G3, G4 be four disjoint copies of G with color classes X1, Y1, X2, Y2, X3,
Y3, X4, Y4 and edge sets E1, E2, E3, E3, respectively. Let G0 denote the graph obtained from the
disjoint union of the graphs G1, G2, G3, G4 by adding edges e1, e2, e2 with the following properties:

1. each ei joins two copies of the same vertex;

2. one of the following three possibilities occurs:

(a) the edges join X1 and X2, X1 and X3, X1 and X4, respectively; or

(b) the edges join X1 and X2, X2 and X3, Y3 and Y4, respectively; or

(c) the edges join X1 and X2, Y2 and Y4, Y1 and Y3, respectively.

Then G0 is strongly set colorable.

Proof: Consider the same vector coloring of G1, G2, G3 and G4. Then extend the vectors in
X1, Y1, and E1 with 00, the vectors in X3, Y4, and E2 with 01, the vectors in X2, Y3, and E4 with
10, the vectors in X4, Y2, and E3 with 11. If we color the edges e1, e2, e3 according to the sum
condition, then it is easy to verify that we obtain a desired vector coloring of G0, completing the
proof.

Symmetric possibilities of those listed in the last theorem are clearly strongly set colorable as
well. It is noted in [1] that graphs which are strongly set colorable cannot have it even degree
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vertices covered by two edges. However this condition is not sufficient for graphs to be strongly
set colorable. For example, P8 is not strongly set colorable but does not have its six even degree
vertices covered by two edges. It seems to be difficult to even characterize which trees are strongly
set colorable.

3 Strong set colorings of other trees

The binary tree has a particularly nice set coloring. Another interesting possible construction is
to take a strong set coloring of G and extend it to a new graph G′ obtained from G by adding 2n

pending edges. The color of each of the original edges and vertices of G is obtained by appending 0
to the original color. New edges ei get color 1pi and new vertices ui get color 1qi where the pendent
edge ei = uivi is joined to a vertex vi of color 0vi. We need vi = pi − qi for this to give a strong
coloring of G′, and the set of all pi and qi needs to exhaust Fn

2 . Note that some of the vi’s may be
the same since we can attach several pendent edges to the same vertex. We need

∑
vi = 0 for such

pi and qi to exist (since 0 =
∑

pi +
∑

qi =
∑

vi). It appears that this is sufficient, so we make the
following conjecture.

Conjecture 1. Given 2n−1 non-zero (not necessarily distinct) vectors v1, . . . , v2n−1 ∈ F
n
2 , n ≥ 2,

with
∑2n−1

i=1 vi = 0, there exists a partition of Fn
2 into pairs of vectors {pi, qi}, i = 1, . . . , 2n−1 such

that for all i, vi = pi − qi.

This conjecture, which appears to be of interest in its own right, is true for n ≤ 5. It is also true
if at least half of all the vectors vi are the same and each vector occurs an even number of times.

Theorem 4. Given 2n−1 non-zero vectors v1, . . . , v2n−1 ∈ F
n
2 , n ≥ 2, with v1 = v2 = · · · = v2n−2 and

v2i+1 = v2i+2 for all i = 0, . . . , 2n−2 − 1, there exists a partition of Fn
2 into pairs of vectors {pi, qi},

i = 1, . . . , 2n−1 such that for all i, vi = pi − qi.

Proof: Without loss of generality assume v1 = 00 . . . 01 ∈ F
n
2 . Suppose we have chosen pj and qj

for some pairs j = 2i+1, 2i+2 where vj 6= v1 so that the vectors that have been used form a union
of pairs {u0, u1}, u ∈ S ⊆ F

n−1
2 . Suppose v2i+1 = v2i+2 6= v1 is another pair of vectors for which pj

and qj have not yet been assigned. Write v2i+1 = v2i+2 = va where v ∈ F
n−1
2 and a ∈ {0, 1}. Since

we have chosen fewer than half of all the pj and qj, |S| < 2n−2. Thus by the pigeonhole principle,
there exists a pair p, q /∈ S with p − q = v. Now choose p2i+1 = pa, q2i+1 = q0, p2i+2 = pā, and
q2i+2 = q1, where ā = 1 − a. Then v2i+1 = p2i+1 − q2i+1 and v2i+2 = p2i+2 − q2i+2, and the chosen
vectors form a union of pairs {u0, u1} with u ∈ S ′ = S ∪ {p, q}. Repeat this process until we have
assigned vectors pj and qj for all vj 6= v1. Finally assign for each vj = v1 one of the remaining p /∈ S
and set pj = p1 and qj = p0 so that vj = pj−qj for these values of j as well. This gives the required
partition of Fn

2 into pairs.

4 Proper set colorings of complete bipartite graphs

In [1], a proper set coloring of a graph G is defined as an assignment of subsets of an n-element set
to the vertices and edges of G so that

1. each edge receives the symmetric difference of the sets assigned to its end vertices;

2. distinct vertices receive distinct sets;

3. distinct edges receive distinct non-empty sets; and
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4. every non-empty set appears on some edge.

Note that the same set can occur on both an edge and a vertex. Clearly, if a proper set coloring of
G is to exists we need |E(G)| = 2n − 1.

The following theorem appears as a conjecture in [1].

Theorem 5. If the complete bipartite graph Ks,t has a proper set coloring then either s = 1 or
t = 1.

Writing S1, . . . , Ss and T1, . . . , Tt as the sets assigned to the vertices of Ks,t, this theorem is an
immediate consequence of the following.

Theorem 6. Assume S1, . . . , Ss and T1, . . . , Tt are subsets of {1, . . . , n} and the symmetric differ-
ences Si ⊕ Tj, i = 1, . . . , s, j = 1, . . . , t, are non-empty and represent every non-empty subset of
{1, . . . , n} exactly once (so in particular st = 2n − 1). Then either s = 1 or t = 1.

Some of a lot of open problems:
1. Do we have a strong set coloring of trees if the number of vertices is a power of 2?
2. Find necessary (and sufficient???) conditions for the existence of strong set coloring of graphs.

(With nice or less nice edge and vertex numbers.)
3. Similar questions about proper set colorings.
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Contributed Problems

Edge-connectivity and claw-decomposition of graphs

by János Barát

Problem Let G be a bipartite graph of edge-connectivity 1000, and |E(G)| divisible by 3. Is it
possible to remove some K1,3’s such that the vertex degrees of the remaining graph are all divisible
by 3?

A positive answer would imply the following

Conjecture [1] There exists a smallest natural number kc such that every simple kc-edge-
connected graph G, whose size is divisible by 3, has a K1,3-decomposition.

If we replace K1,3 by P4, that is the path with three edges, then Thomassen [3] proved the
existence of such a constant:

Theorem Every 171-edge-connected graph admits a decomposition into paths with three edges.

It is a long-standing problem, whether 2-edge-connectedness is sufficient for planar triangle-free
graphs, and 3-edge-connectedness for graphs in general [2].

Some claw-decomposition results of [1] can be generalized to K1,2k+1-decompositions. It seems
to be untested whether even claws behave differently:

Problem Let t be a large enough positive integer and k ≥ 2. Does every t-edge-connected
graph admit a K1,2k-decomposition?
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Edge Cover Scheduling

by Dave

For this problem, the input is a graph G = (V,E) and a duration de ∈ Z+ for each edge e. A
schedule of the edges is a vector {xe}e∈E, and in a schedule each edge e is active for all times in the
interval [xe, xe + de]. The coverage of a schedule is the largest T such that, for all 0 ≤ t ≤ T and
all v ∈ V , at least one edge incident to v is active at time t. We want to find a schedule with large
coverage.

Let δ be the minimum degree weighted according to duration, i.e. δ = minv∈V
∑

u:uv∈E duv.
Clearly no schedule has coverage greater than δ. Is there always a schedule of coverage Ω(δ)?
If not, is it still possible to approximate the maximum coverage within O(1) by some polytime
algorithm?

If all durations are unit, a schedule of coverage ⌊(3δ + 1)/4⌋ is always possible — this is an old
result of Gupta, but there is a nice new proof by Alon et al. In the general case, the LLL can show
that a schedule of coverage Ω(δ/ log δ) is always possible.
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Cover Decomposition into Multiple Coverings

by Dömötör

Suppose we have a set system F over some base set S. (E.g. the unit discs in the plane.) Denote
by mk the smallest constant (if exists) such that any finite multiset X ⊂ S can be colored with k
colors such that any F ∈ F that contains at least mk elements of X contains all k colors. (E.g. any
finite set of points can be colored such that any unit disc contains all colors.)

Is it true that if m2 exists, then mk also exists?
(E.g. m2 is known to exist for unit discs but m3 is not.)
Is it true that mk = O(m2)?
(This is the case for all geometric shapes that were examined so far.)

Another problems related to cover-decomposition is to extend established results about open
sets to closed sets. E.g. it is known that any 12-fold covering of the plane with the translates of an
open triangle is decomposable into two coverings but the same is not known about closed triangles,
not even with a weaker constant.

A few related papers:
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Coloring points with respect to discs with three colors

by Keszegh

Is there a k for which every finite set of points P can be colored by 3 colors such that if a disc
contains at least k points of P , then not all of them have the same color? If yes, find the smallest
such k.
With 4 colors, already for k = 2 we can give such a coloring. Indeed, a proper coloring of the
Delaunay-triangulation of a point set P gives such a coloring.

Collinear Clique Graphs

by Péter Maga

Characterize the graphs whose vertices can be mapped into different points of the plane in such a
way that any k > 2 points are collinear if and only if the corresponding vertices form a clique.
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Universal set of lines for trees

by Rado

Does there exist for any n > 0 an arrangement of n lines L in the plane such that for any tree
T = (V,E) on n vertices and any bijection b : V → L there exists a non-crossing, straight-line
embedding of T in which each v ∈ V is represented by a point on the line b(v) ?
The expected answer to this problem is, of course, negative. For general planar graphs it was shown
to be false, by Dujmovic and Langerman (http://arxiv.org/abs/1012.0548), whose proof is a bit
overkill I think.

Multicolour Ramsey

by Zoli Nagy

For a given p, we want to color the edges of Kn with two colors such that every edge has at
least one color and at most a p fraction of the edges can have both colors. What is the biggest
monochromatic subgraph, fp(n), that is guaranteed to exist? (So for p = 0 we get back the original
Ramsey problem.)
The followings are known:
* If p < 1, then fp(n) <

2
log2

2

1+p

log2 n+ 1 holds.

* Let t be a positive integer, and p := 1− 1
t
. Then fp(n) ≤ tf0(

⌈
n
t
)
⌉
) ≤ 2t log2(

n
t
).

* f 1+p

2

(2n) ≤ 2fp(n).
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Results
First place: Rado - Nagy Zoli Second place: Cory - Dani
Third place: Gergő - Viktor Fourth place: Viola - Dömötör

To Collinear Clique Graphs

by János Barát, Filip Morić, Zoltán Nagy, David Pritchard

We made the following conjecture.

Conjecture 1. A graph G has an embedding of the desired form if and only if it has no induced
diamond.

Notice that diamond-free graphs have a nice equivalent description in terms of their maximal
cliques:

Lemma 2. Let V be a set of vertices and S a collection of subsets of V , each of size at least 3.
Then S is the family of maximal cliques for a diamond-free graph if and only if

(1) there is no pair of sets from S intersecting in more than one vertex, and
(2) there is no triple of sets such that each two contain a vertex not contained by the third. (I.e.,

iff there is no hypercycle of length ≤ 3.)

Just to stay on the safe side, we also conjecture that if GQ is a self-dual generalized quadrangle
on more than 15 points, then the graph obtained by replacing each set in the GQ by a clique is a
counterexample to the original Conjecture above.

You can read more at http://daveagp.wordpress.com/2011/01/31/721/

To Cover Decomposition of Closed Sets

by Dave, Dömötör, Máté, Miloš, Viktor, Viola

We tried to extend known results about cover-decomposition of a finite collection of sets to
infinite collections. In this case (unlike in the finite case) it matters whether the underlying set is
open or closed. We proved that the set of intervals of a line is cover-decomposable, i.e. if we have a
100-fold covering of the line with any intervals, then it decomposes into two coverings. (In fact this
was already known with a better constant, it is not hard to prove.) We also proved using a standard
compactness argument that if we cover any closed subset of the plane sufficiently many-fold with
the open copies of a finite-cover-decomposable, bounded set, then we can decompose this covering.
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To Geometric Ramsey-type problems

by Balázs Keszegh, Rado, Filip, Máté

Problem 3. The edges of a finite complete geometric graph are coloured by two colours. Is it always
true that there exists a non-crossing monochromatic spanning caterpillar?

One could relax this problem:

Problem 4. The edges of a finite complete geometric graph are coloured by two colours. Is it always
true that there exists a red non-crossing spanning tree or a blue non-crossing spanning caterpillar?

We proved an even more relaxed version:

Theorem 5. The edges of a finite complete geometric graph are coloured by two colours. There
exists a red (maybe crossing) spanning tree or a blue non-crossing spanning caterpillar.

In other words if the red edges form a non-connected graph then there is a blue non-crossing
spanning caterpillar. This holds for arbitrary (not necessarily convex) geometric graphs.

Proof: Suppose that the red edges form a non-connected graph, then there is a complete
bipartite subgraph with blue edges. We prove that in this graph there is a spanning caterpillar.
Denote by A and B the two classes of this bipartite graph, wlog. suppose A is not bigger then B.
If conv(A) and conv(B) are disjoint then there is a separating line and then using a lemma of ? we
can see that there is an alternating (between the parts) path covering A. The rest of the vertices
of B can be easily joined to the path forming a spanning caterpillar.

If conv(A) and conv(B) have a common point then fix one such point O which is not among the
vertices of G. Now we order the vertices of G according to the slopes of the lines between O and
the vertices (in clockwise order). This defines a cyclic order of the vertices around O. Vertices from
A and B form intervals of type A and B. In each interval take the last vertex and connect it to
every vertex of the next interval. It is easy to see that this way we only used edges of the complete
bipartite graph and we defined a non-crossing self-closed caterpillar (=cycle+hanging leaves).

It is well known (due to Gyárfás?) and easy to see that an abstract complete graph with edges
two-colored has a hamiltonian cycle which is a union of one red path and one blue path (or it is
monochromatic). We pose the following geometric generalization as an open problem.

Problem 6. The edges of a finite complete (convex) geometric graph are coloured by two colours.
Is it always true that its vertices can be covered by the union of a non-crossing red path and a
non-crossing blue path? Perhaps they can be pairwise crossing-free as well? Perhaps they can have
one(two) common endpoint(s) (like in the abstract case)?

In the construction showing that in a convex geometric graph the maximal monochromatic path
cannot be always bigger then n/2, it is trivial to find such pair of covering paths. Also, in this
construction there is exactly one covering non-crossing tree, which is a caterpillar.
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To Edge Cover Scheduling

by Dave

Somewhat after the workshop I was able to solve this problem affirmatively: there is al-
ways a schedule of coverage at least δ/8. The proof is given in the appendix of the paper at
http://arxiv.org/abs/1009.6144 and relies on some ad-hoc properties of graphs. We would now
like to generalize it to hypergraphs (say of maximum edge size 3), but there are counterexamples
showing the current proof does not extend.

To Ramsey-type for geometric graphs

by Marek Krcal, Tomas Valla, Josef Cibulka and Jane Gao

(a) Let M2k be a matching of size k and Pℓ a path on ℓ vertices. Then Rc(M2k, Pℓ) ≤ ℓ+2(k−1).
(b) Let Tℓ be a tree with ℓ vertices and let ∆(Tℓ) denote its maximum degree. ThenRc(M2k, Tℓ) ≥

max{ℓ, 2k + 2⌈∆(Tℓ)/2⌉ − 3}.
(c) LetHℓ be any outerplanar graph on ℓ vertices. Rc(M2k, Hℓ) ≤ Rg(M2k, Hℓ) ≤ ℓ+(k−1)(ℓ+1).
(d) Let Tn be any caterpillar on n vertices and Hm any outerplanar graph on m vertices. Then

Rc(Hm, Tn) ≤ (m− 1)(2n− 1) + 1.
(e) Let L2n be a ladder graph on 2n vertices, then Rc(L2n) ≤ 32n3, and Rg(L2n) = O(n10).

To Strong Set Coloring

by Patkós Balázs, Ida, Terpai, Younjin, Anita

Definition 7. A strong set coloring of a graph G is an injective mapping c : E(G)∪V (G) → 2[m]\{∅}
such that for any edge e = (u, v) ∈ E(G) the equality c(e) = c(u) △ c(v) holds, where A △ B denotes
the symmetric difference (A \B)∪ (B \A). The strong set coloring number ssc(G) of a graph G is
the minimum integer m such that a strong set coloring c : E(G) ∪ V (G) → 2[m] exists.

As all colors must be different, writing |G| = |E(G)|+ |V (G)|, we obtain the trivial lower bound
⌈log(|G|+ 1)⌉ ≤ ssc(G).

Conjecture 8. There exists an absolute constant C such that the inequality ssc(G) ≤ ⌈log(|G| +
1)⌉+ C holds for all finite graph G.
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Theorem 9. For the complete graph the following holds:

ssc(Kn) ≤ 1 + 2⌈log(n+ 1)⌉.

Theorem 10. Let G be a graph with degeneracy number d. The following inequality holds:

ssc(G) ≤ ⌈log(|G|+ 1)⌉+ ⌈log(d+ 1)⌉.

Corollary 11. For any tree T on n vertices the following holds:

⌈log(2n)⌉ ≤ ssc(T ) ≤ ⌈log(2n)⌉+ 1.

Corollary 12. With high probability the following holds:

ssc(G(n, 1/n)) ≤ log n+ log log n+ 1.

To Boxes and the art of ǫ-net maintenance

Corrections

Problem 4 omits the graph description and Janos clarified it should say “Put an edge {R, S} in
G2 if the two rectangles R & S do not cross in four points, and R & S have a point in common not
contained by any other rectangle.” For Problem 5, Y should indeed be S.

Minor results

Dömötör, Viktor, Máté, János, H. Tamás, Marek, Miloš, Géza, Vajk to Crossing numbers: If
e ≥ 4n, then we have two independent edges crossing a third, from which it is possible to slightly
improve the bound for the pair-crossing number.

Cśıkvári, Hubai, Ervin et al to Strong set coloring: Using computer checked trees on 16 vertices,
for P16 there is no even stronger set coloring (meaning sets of vertices contain first element while
sets of edges do not).

János, Dani, Gergő, Ági to Edge-connectivity and claw-decomposition: Instead of K1,3, the
conjecture holds for tree on five vertices with diam 3 and ?

Dani and Dömötör to Universal set of lines for trees: If lines are all vertical, then embedding
deg 3 root binary tree with 10 vertices would give K3,3 (if top four vertices are mapped to the center
four lines, siblings to right and left). Turned out that Rado already knew this...


