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12:00 Final presentations, farewell, check-out
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Orientation for Maximum Reachability

by Florian Hörsch

Given a digraph or undirected graph D, we use P (D) for the set of ordered pairs of distinct vertices
in V (D). Next, we de�ne κD : P (D) → {0, 1} by κD(u, v) = 1 if v is reachable from u in D
and κD(u, v) = 0, otherwise. Next, given a digraph D and some P ⊆ P (D), we use RP (D) for∑

(u,v)∈P κD(u, v). It is now interesting to �nd an orientation G⃗ of a given undirected graph G that

maximizes RP (G⃗).
It is known that this problem is APX-hard, but there is a sublogartihmic approximation algo-

rithm [1]. The following question has remained open.

Problem 1. Given an undirected graph G and a set P ⊆ P (G), is there a constant α > 0 and

a polynomial-time algorithm that computes an orientation G⃗0 of G such that RP (G⃗0) ≥ αRP (G⃗)

holds for every orientation G⃗ of G?

Problem 1 can easily be reduced to trees. Moreover, the same question can be asked for orien-
tations of mixed graphs rather than undirected graphs. Here, a sublinear approximation algorithm
and a slightly stronger APX-hardness result is known [2] .

It seems to me that the problem should be much harder in mixed graphs than in undirected
graphs. In particular, the structure of acyclic mixed graphs is much more complex than the structure
of trees. This gives some hope that progress should be possible in some direction. Of course, related
questions and restricted classes can also be studied.
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Fractional Packing of Perfect Matchings

by Alpár Jüttner

For a given a graph G = (V,E), let P denote the polyhedron of the perfect matchings.

Problem 1. For a capacity function u ∈ RE, �nd

max{α : x ∈ P , αx ≤ u}

In other words, we are looking for a maximum fractional packing of perfect matchings. If G is
bipartite, then the problem can be reduced to a network �ow problem, but no strongly polynomial
algorithm is known for the general case. Interestingly, a nice combinatorial algorithm is known for
fractional packing of T -joins, see [1].

The ultimate goal would be to have a combinatorial algorithm for the following minimum cost
fractional 1-packing problem.

Problem 2. Let us given a cost function c ∈ RE and a capacity function u ∈ RE on the edges.
Find

min{cx : x ∈ P , x ≤ u}

As a motivation, let us consider the following Budgeted Inverse Optimization Problem

Problem 3. Let us given a graph G = (V,E), a weight function w ∈ RE, a cost function c ∈ RE

and a budget value B. The goal is the increase the weight of the minimum weight perfect matching
as much as possible by increasing the components of w. Increasing the weight of edge e ∈ E by one
unit costs c(e), and the total cost of the increment must be at most B. Formally, �nd

max
{
min{(w + z)x : x ∈ P} : z ∈ RE, z ≥ 0, cz ≤ B

}
.

It can be shown that if there exists an algorithm for Problem 2 that runs in time T , then
Problem 3 is solvable in O(T 2) time.
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Nowhere-zero Submodular Flows

by Tamás Király

Let G = (V,E) be an undirected graph, r ∈ V , and k ∈ Z+. An orientation E⃗ of E is r-rooted
k-cut-balanced if dout

E⃗
(U) ≥ 1

k
dE(U) for every U ⊆ V containing r. At last year's workshop, Karthik

Chandrasekaran posed the following problem: Does every 2-edge-connected graph admit an r-rooted
5-cut-balanced orientation? As far as I know, no counterexampe is known even for rooted 4-cut-
balanced orientations. It can be shown using Seymour's theorem on nowhere-zero �ows that an
r-rooted 6-cut-balanced orientation always exists (in fact, there is an orientation that is good for
any r). See [1] for results on weighted cut-balanced orientation problems.

An interesting feature of rooted cut-balanced orientations is that they are a special case of
nowhere-zero submodular �ows, a natural extension of the notion of nowhere-zero �ows that has
not yet been systematically studied in the literature. For an integer k ≥ 2, let K be the set of
nonzero integers between −k+ 1 and k− 1. Given a graph G = (V,E) with a reference orientation
G⃗ = (V,A) and a submodular set function b : 2V → Z ∪ {∞}, a nowhere-zero submodular k-�ow
is vector x ∈ KA such that dinx (U) − doutx (U) ≤ b(U) for every U ⊆ V . We note that the existence
of such a vector does not depend on the reference orientation G⃗. Since deciding the existence
of a nowhere-zero 3-�ow or a nowhere-zero 4-�ow is NP-complete, we cannot expect a general
good characterization for the existence of nowhere-zero submodular k-�ows. However, if we �x the
positive and negative arcs, then the problem becomes a normal submodular �ow problem where a
simple characterization is known.

Su�cient conditions for nowhere-zero submodular k-�ows may turn out to be useful for improved
approximations of Woodall's conjecture and for its capacitated versions, since the submodular
function o�ers an additional �exibility compared to cut-balanced orientations.

Problem 1. Give nontrivial su�cient conditions for the existence of nowhere-zero submodular k-
�ows.
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Matchoid Problem

by Yusuke Kobayashi

In the matchoid problem [1], the input consists of a graph G = (V,E) and a matroid Mv on the
ground set δ(v) for each v ∈ V , and the objective is to �nd an edge subset F ⊆ E of maximum
size subject to F ∩ δ(v) is an independent set of Mv for any v ∈ V . When each Mv is given as
an independence oracle, this problem is equivalent to the matroid parity problem (or the matroid
matching problem), and it requires exponential number of queries. Meanwhile, the following positive
results are known.

� If eachMv is a linear matroid and its linear representation is given as input, then the matchoid
problem can be solved in polynomial time (see e.g. [3]).

� If each Mv is given as a list of all the independent sets (i.e., its input size is |Iv|), then the
matchoid problem can be solved in polynomial time [2].

My question is what we obtain when these two results are combined.

Problem 1. Can we solve the matchoid problem in polynomial time when each Mv is given as a
linear representation or a list of all the independent sets?

We might be able to use existing algorithms as a black box.
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Congruency-constrained Shortest Paths

by Mirabel Mendoza

In the Congruency-Constrained Shortest Path (ModPath)q,m, we are given an undi-
rected graph G = (V,E), s, t ∈ V , a weight function w : E → R, two positive integers q,m, and the
goal is to �nd a path P from s to t with minimum weight such that it has length |P | = q mod m.

The following property is not di�cult to see.

Theorem 1 ([1]). For a �xed m, ModPathq,m reduces to ModPathq',m for any pair q, q′ ∈ [m].

Last property follows by adding a path from t to a new vertex t′ of length q − q′ mod m.
When m = 2 and q = 1, the problem is referred to as the Shortest Odd Path. If the weight w

is non-negative, then the problem is solvable in polynomial time [2, 3]. If w is conservative (meaning
there are no cycles with negative weight), the problem is NP-hard [4]. However, when the negative
edges form a tree, the problem can be solved in polynomial time [5]. There are also two FPT
algorithms: one is parameterized by the number of negative edges, and the other is parameterized
by the treewidth [5].

For undirected graphs with positive weights, there exists a linear-time algorithm that computes
the greatest common divisor of the cycle weights [6]. The paper also gave an algorithm that
determines, given two nodes s, t, whether all paths between s and t have length q modulo m. Note
that this problem is not equivalent to ModPathq,m.

Problem 2. Can we �nd a polynomial-time algorithm to solve (ModPath)q,m for q = 0 and m = 3
when the weight function is non-negative?

As Shortest Odd Path is NP-hard when w is a conservative weight function, then (Mod-
Path)q,m it is also NP-hard when w is conservative. Then, we are interested in the question below.

Problem 3. Can we �nd FPT algorithms for (ModPath)q,m when q = 0 and m = 3 for w ≥ 0?

Problem 4. Can we derive FPT algorithms with another parameters for Shortest Odd Path?
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Pfa�an Testing and Signing for Matrix Pairs

by Taihei Oki

Let F be a �eld of characteristic zero. For an r × n matrix A and J ⊆ [n], let A[B] denote the
submatrix of A obtained by collecting columns in J .

A pair (A1, A2) of r × n matrices over F is called Pfa�an [3] if

detA1[B] detA2[B]

is constant for any B ∈
(
[n]
r

)
such that both A1[B] and A2[B] are nonsingular, i.e., B is a common

base of the linear matroids represented by A1 and A2. If (A1, A2) is a Pfa�an pair, then by the
Cauchy�Binet formula,

detA1A
⊤
2 =

∑
B∈([n]

r )

detA1[B] detA2[B]

is proportional to the number of common bases, giving a polynomial-time algorithm for counting
common bases. This generalizes Kirchho�'s matrix-tree theorems for counting spanning trees and
arborescences [1].

The following have been posed in [3].

Problem 1 (Pfa�an testing). Given a pair (A1, A2) of r × n matrices, check if it is Pfa�an or
not.

Problem 2 (Pfa�an signing). Given a pair (A1, A2) of r × n matrices, �nd an n × n diagonal
matrix S such that every diagonal entry of S is ±1 and (A1S,A2) is Pfa�an.

These problems are open even for pairs of totally unimodular matrices. We do not even know
whether these are in NP or not. For instances of bipartite matching, i.e., instances where each
column of Ak has exactly one entry equal to 1 and all others are 0, these problems are nothing but
the so-called Pfa�an orientation and are polynomial-time solvable [2].
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Submodular Facility Location on a Line

by Neil Olver

In the submodular facility location problem, we are given a �nite metric space (V, d), a partition
of V into a set F of facilities and a set C of clients, and a monotone nonnegative submodular
function f : 2C → R≥0 with f(∅) = 0. The goal is to choose an assignment π : C → F . The
meaning of f is that to open a facility that is assigned a set S of clients, we must pay f(S). Our
overall cost is the sum of opening costs and all distances between clients and their assigned facility:

cost(π) =
∑
c∈C

d(c, π(c)) +
∑
v∈F

f(π−1(v)).

Recently, Abbasi, Adamczyk, Bosch-Calvo, Byrka, Grandoni, Sornat and Tinguely [1] gave an
O(log log n)-approximation, where n = |V |, for any metric. Their approach relies on reducing to
HSTs, and then slightly extending the approach of Bosman and Olver [2], which (while motivated
by a di�erent problem) can be interpreted as giving an O(log log n)-approximation if (V, d) is a line
metric.

Problem 1. Let's restrict to the case where (V, d) is a line metric. Can we improve the O(log log n)
approximation to a constant factor? The results mentioned make use of the natural LP relaxation,
which uses the Lovász extension of f . Bosman and Olver show that the integrality gap is O(log log n),
but as far as we know, it could be a constant.
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Philosopher Inequalities for Matroids

by Kanstantsin Pashkovich

Problem 1. Let us consider a scenario where a vendor sells several items and receives o�ers for
items over time. The vendor attempts to maximize their pro�t subject to structural constraints. The
o�ers correspond to random variables v1, v2, . . . , vn drawn independently from distributions known
to the vendor. At each timestamp t, the vendor may choose to sell their t-th item gaining the
value vt, or the vendor may choose to discard this o�er. At the end, the sold items should form an
independent set with respect to the underlying matroid. Let us consider the benchmark introduced
by the so called philosopher. The philosopher does not know the realizations of v1, v2, . . . , vn but
has unlimited computational power. How well can a vendor limited to polynomial time computation
compete with the philosopher, where both know only the distributions of v1, v2, . . . , vn but the latter
has unlimited computational power?

Theorem 2. [1] showed that for graphic matroids, it is PSPACE-hard for the vendor to approximate
the expected gain of the philosopher up to some �xed constant. Moreover, for the graphic matroids
there is no arrival order which �substantially increases competitiveness� of the vendor.

Problem 3. Is there an arrival order for the graphic matroids corresponding to planar graphs
that permits a Polynomial-Time Approximation Scheme (PTAS) for the vendor to approximate the
expected gain of the philosopher?

Problem 4. Do the graphic matroids corresponding to planar graphs permit a Polynomial-Time
Approximation Scheme (PTAS) for the vendor to approximate the expected gain of the philosopher?

Theorem 5. [1] provided a PTAS for all laminar matroids with �left-to-right� arrival orders, in
which elements from each constraint arrive consecutively. Furthermore, the provided PTAS also
holds for arrival orders that are �close� to �left-to-right� orders, i.e., to orders where each element
is contained only in constantly many bins on which the arrival order is not �left-to-right.�

Theorem 6. [2] gave a PTAS for the special cases of bounded-depth laminar matroids and produc-
tion constrained selection.

The result in [1], imposes the conditions on the structure of the arrival order but not on the
structure of the laminar matroid. The result in [2] for bounded-depth laminar matroids, imposes
no conditions on the structure of the arrival order but imposes conditions on the structure of the
laminar matroid.

Problem 7. Do laminar matroids permit a PTAS for the vendor to approximate the expected gain
of the philosopher (with no conditions on the arrival order or the matroid structure)?
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Relaxations of matroid polytopes

by Benjamin Schröter

One may associate to a matroid M on the ground set E its base polytope

PM =

{
eI ∈ RE : I ∈

(
[n]

r

)}
=

{
x ∈ [0, 1]E :

∑
i∈E

xi = r,
∑
i∈F

xi ≤ rk(F ) for all �ats F

}

where r is the rank of M and eI =
∑

i∈I ei is the sum of standard unit vectors indexed by the k
element subset I. These 0/1-polytopes are used in a variety of modern results in matroid theory.

We are interested in relaxations of a matroid base polytope (in the sense of linear or (mixed)
integer optimization) such that the larger polytope is again a matroid base polytope of a matroid
on the same ground set. In other words we study matroids on the same ground set for which
the identity is a weak map. This idea generalizes hyperplane relaxations, but also the recently
introduced notion of relaxation of stressed subsets in [3] which is leads to one of many ways to
characterize elementary split matroids.

Problem 1. Given two (connected) matroids M and N on E . Characterize (in terms of their
�ats) when there is a set F ⊆ E and a number f such that

PM = PN ∩ {x ∈ RE :
∑
i∈F

xi ≤ f}.

Problem 2. Describe all connected matroids M for which PN ⊆ PM implies N = M whenever N
is connected.

A polyhedral subdivision of a polytope P is a collection S of polytopes such that faces of any
member in S are in S, the intersection of any two polytopes in S is a face of both, and the S covers
P , i.e.,

⋃
Q∈S Q = P . We are intersted in matroid subdivions of a matroid base polytope PM , that

is a polyhedral subdivision for which all the polytopes in S are matroid base polytopes.
A variation of the previous problem are the following two problems.

Problem 3. Find all matroids M such that the only matroid subdivision of PM consists of its faces.

We call a subdivision of P regular if it is induced by a height function on the vertices. This
term leads us to the �nal variantion of the above problem.

Problem 4. Describe all (connected) matroids M such that the only regular matroid subdivision of
the polytope PM consists of the faces of PM .

There are several related articles, see for example [2] which shows that if there is a weak map
from M to N then there is not necessarily a regular subdivision that contains PN and re�nes PM ,
[4] who relate these problems to realizability space and [1] which shows that binary matroids belong
to the matroids in Problem 2.
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The Girth of Binary Matroids

by András Seb®

We are interested in the optimal solution of a binary equation, that is, in the problem

min c⊺x, x ∈ {0, 1}n : Ax ≡ b mod 2, (A ∈ {0, 1}m×n, b ∈ {0, 1}m, c ∈ Zn). (1)

This is exactly the problem of �nding a minimum weight cycle containing b in the binary matroid
represented by the the columns of the matrix (A, b). The minimum weight of a cycle without more
requirements is easier in some special cases, but it is also NP-hard in this generality, even if all
the weights are equal to 1 [7]. Odd cycles and their hitting sets, or even cycles are also part of
this framework, by altering the studied binary matroid. A huge amount of related problems and
generalizations are exposed in [3]. These may be grouped to three main complexity behaviors of
relevant special cases that have been identi�ed:

� Polynomially solvable special cases: eg. minimum odd cycle in graphs, minimum transversal
of odd cycles in planar graphs NP-hard in general, equivalent toMax Cut. Minimum weight
odd cuts and their minimum transversals can be found in polynomial time in any graph.

� Open problems: eg. a very special one is the Max Cut problem in graphs embeddable to
the projective plane, open for all 1 weights as well. This problem has been identi�ed [1] as
a special case of Problem 27 of [5], reactivated by [8], and shown to be NP-hard by [4]. We
distinguish two kinds of open problems (Max Cut in the projective plane belongs to 1.1):
1. Open problems that belong to the class RP [3]:

1.1 either through random sampling of polynomials from determinants of variables

1.2 or through Karger-type minimum cut algorithms

2. New open problems specializing NP-complete cases
� NP-hard problems

I select three open problems according to their relevance or simplicity:

Problem 1. Shortest Odd Cycle in ±1-weighted undirected conservative graphs.

Problem 2. Shortest odd cycle through a given vertex in ±1-weighted planar graphs if the negative
edges form a matching.

The famous Planar �Back and Forth vertex-disjoint Paths" problem (BFP) [2] can be reduced to
this problem as in [4]. BFP has been solved in planar graphs [6]. Guyslain Naves pointed out that
I should be more careful in keeping planarity with the reduction and suggested a planarity-keeping
gadget. Taking then the planar dual, and slightly generalizing it, the following problem arises for
planar graphs. I ask whether this can be solved in general, an interesting problem for its own sake,
and an accessible solution would provide such a one for planar BFP [6]:

Problem 3. Let G = (V,E) an arbitrary graph, suppose R ⊆ E, and for every cut C, we have
|C \R| ≥ C ∩R|. Minimize |E \R| − |E ∩R|

a. on T -cuts.
b. on T-cuts containing a given edge of G.
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Directed k-cut

by Daniel P. Szabo

Many versions of k-cut, where we partition the graph into k parts to minimize the sum of the
interpartition edges, have been studied. Surprisingly, the following directed generalization has not:

Problem 1. Given a directed graph G = (V,E) and a positive integer k, �nd a minimum-cost edge
set F ⊆ E for which ∃t1, t2, . . . , tk ∈ V such that there is no ti → tj or tj → ti path for any i ̸= j
in (V,E \ F )

Existing methods seek to minimize over all partitions the sum of the indegrees of the parts, while
here we seek a very di�erent partition. One motivation for this problem is the k = 2 case [1], where
the global bicut problem has a 2−ε-approximation (and no hardness result!), which is strictly better
than the best possible with �xed terminals, suggesting that this problem is completely di�erent in
terms of approximation.
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Maximality Problem of Matroids

by Shin-ichi Tanigawa

Maximality Problem. Let E be a �nite set and M = (E, rM) be a matroid on E of rank rM .
We de�ne the class E(M) of matroids to consist of those whose truncation is equal to M . Formally,
N ∈ E(M) i� N has the ground set E, the rank rN of N is at least rM , and the truncation of N to
rank rM is equal to M .

A general maximality problem asks:

Problem 1. Characterize a matroid M such that E(M) has a unique maximal element with respect
to weak order.

Example 1. Let me �rst give a simple concrete example. Suppose E is the edge set of the complete
graph Kn. Let C be the set of all triangles in Kn. Then C forms the set of non-spanning circuits in
a rank-three paving matroid M on E. (To see this, consider the truncation of the graphic matroid
of Kn to rank three.) Now, E(M) is a class of matroids on E in which any triangle is a circuit
and any other 3-sets are independent. One can show that the graphic matroid of Kn is the unique
maximal matroid in E(M).

Case of Paving Matroids. Problem 1 seems somewhat too general, and it is unclear what kind
of characterization one might expect. An interesting special case, I believe, is when M is a paving
matroid.

Given a �nite set E and a collection C of r-sets in E. We de�ne the paving closure Cp of C to
be a collection of r-sets satisfying

1. C ⊆ Cp,

2. if X, Y ∈ Cp with |X ∪ Y | = r + 1, then any r-set in X ∪ Y is in Cp, and

3. Cp is minimal among those satisfying 1 and 2.

Indeed, Cp is uniquely de�ned as it can be build from C by greedily adding r-sets to satisfy Condition
2. Now, Cp forms the collection of non-spanning circuits of a paving matroid, which is denoted by
MC.

Problem 2. Let E be a �nite set. Characterize a collection C of r-sets in E such that E(MC) has
a unique maximal element with respect to weak order.

Example 2. Let Kn be the complete graph on n vertices and H be a graph. In [1], I and Bill
Jackson have worked in the case when E = E(Kn) and C is the collection CH of all isomorphic
copies of H in Kn.

If H = K3, then CH is the collection of all triangles in Kn, and we recover Example 1.
If H = K1,3, CH is the collection of all copies of K1,3 in Kn. CK1,3 already satis�es Condition 2

above and hence the paving closure does not add any new element. By using the circuit elimination
axiom, one can easily check that E(MCK1,3

) = {MCK1,3
}.

In [1, 2], we have shown that if

H ∈ {Pk, K2 ∪ · · · ∪K2, C4, K3, K4, K5, K
−
4 , K

−
5 , K

−
6 , K1,3, K1,4},
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E(MCH ) has the unique maximal element. On the other hand, if

H ∈ {K2,3, Ct(t ≥ 5), K1,t(t ≥ 5)},

then E(MCH ) have more than one maximal element. (The �rst negative result for C5 was pointed
out by Gyula Pap.) Recently, we have also found that the unique maximality does not hold if
H = Kt,t (t ≥ 4) and the ground set is the edge set of a complete bipartite graph.

Those results are obtained by ad-hoc inspections, and so far there is no theory to understand
them. My current impression is that, for most of su�ciently large H, E(MCH ) has more than one
maximal element.

Example 3. The case when H = K1,r+1 is particularly interesting. In this case, E(MCK1,r+1
) is

a quasi (2nd) symmetric product of the rank-r uniform matroid U r
n in the sense of Lovász [3] and

Mason [4]. (More precisely, a 2nd symmetric product is a matroid on the edge set of a complete
graph with a loop at each vertex; here we only consider the case without loops.) The unique
maximality problem has been posed by Mason, and Las Vergnas gave a negative answer (in the
quasi tensor case). Further negative examples can be found in our recent paper [2].

The class of quasi (2nd) symmetric products of U r
n is slightly di�erent from E(MCK1,r+1

) since a
quasi (2nd) symmetric product of U r

n may have a circuit of size smaller than r. We do not know
how much those two classes are di�erent.

Mason's question for symmetric or non-symmetric tensors has a close connection to Graver's
conjecture, which is a long-standing open problem in graph rigidity theory.

To the best of our knowledge, very little is known about the non-uniform case, and it would be
interesting to collect both positive and negative examples.
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Eulerian Orientations Minimizing the Number of Arborescences

by Lilla Tóthmérész

It is a classical result that an Eulerian digraph has the same number of arborescences for any
root. It seems that the following natural extremal problem was not much investigated yet.

Problem 1. Given an Eulerian graph, which Eulerian orientation has minimal number of arbores-
cences?

I am interested in this, because computations suggest the following neat conjecture:

Conjecture 2. If the Eulerian graph is planar, then the alternating orientation (in- and out-edges
alternate around each vertex) has a minimal number of arborescences among Eulerian orientations.

In the preprint [1], we have solved the problem for some special graph classes (complete, complete
bipartite, each edge multiplicity is even) but the conjecture is wide open.
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Sampling Bases in a Matroid

Victor Verdugo

Let ri ∈ (0, 1) for each i ∈ {1, . . . , n}, and let k =
∑n

i=1 ri be a positive integer. Our goal is to
randomly round the value ri to zero or one, for each i ∈ {1, . . . , n}, to get values R1, . . . , Rn ∈ {0, 1}
satisfying the following:

1. E(Ri) = ri for every i ∈ {1, . . . , n}.
2.

∑n
i=1Ri =

∑n
i=1 ri = k.

While property (1) is easily attained by independent rounding, we need to correlate the rounding to
satisfy (2), i.e., to preserve the summation of the input values. In the past two decades, theoretical
computer scientists have studied this question under the name of dependent randomized rounding [1],
which has proven to be a powerful algorithmic design tool in approximation. However, this question
has its origins in statistics under the name of πps sampling without replacement [2, 3]; in fact, in
1983, Brewer and Hanif [2] already listed 50 methods to solve this question, or a relaxation of it. In
a recent work about dependent rounding and monotone proportional apportionment [4], we studied
the method introduced by Sampford in 1967, which works as follows:

(i) Sample a value i ∈ {1, . . . , n} with probability proportional to ri; call the sampled value i1.
(ii) Then, randomly sample k − 1 values i2, . . . , ik, with replacement from {1, . . . , n}, choosing

each value i with probability proportional to ri/(1− ri).
(iii) If the k drawn values are distinct, select them; otherwise, start over.

Sampford's method solves the dependent rounding question (1)-(2). In a matroid language, we are
given a feasible point r in the k-uniform matroid polytope (i.e., r ∈ [0, 1]n with

∑n
i=1 ri = k), and

we want to sample an extreme point R (i.e., R ∈ {0, 1}n with
∑n

i=1 ri = k) such that E(R) = r.

Problem 1. Generalize Sampford to handle a broader family of matroids.

This would open the possibility to have a selection monotone sampling method for matroids. In
the context of k-uniform matroids, this property requires that for any A ⊆ {1, . . . , n} of size k, if ri
increases for each i ∈ A and rj remains the same or decreases for each j /∈ A, then it is more likely
that the elements in A are rounded up. Sampford's method is selection monotone [4]. However,
this monotonicity property can be easily violated by other rounding methods; e.g., pipage rounding
or maximum entropy are not selection monotone [4].
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Fast Construction of Exact Matching(s)

by Yutaro Yamaguchi

The exact matching problem (EM) is as follows: given a graph in which each edge is colored by
red or blue, �nd a perfect matching with exactly k red edges. It admits a fairly simple randomized
polynomial-time algorithm, but any deterministic polynomial-time algorithm is not known for more
than 40 years since the problem was stated. Recently, Sato and Yamaguchi [3] proposed a fast
randomized algorithm for the decision problem as follows.

Theorem 1. One can �nd with high probability the set of integers k such that there exists a perfect
matching with exactly k red edges in O(nω) time (�eld operations) in total, where n denotes the
number of vertices in the input graph and ω < 2.37134 denotes the matrix multiplication exponent.

The key is a reduction of the bottleneck task in the usual randomized approach, computing the
pfa�an pf T of the Tutte matrix (including the color information) after random substitution to
the edge indeterminates, to computation of the characteristic polynomial det(tI −A) of a constant
matrix A of the same size, which can be done deterministically in O(nω) time [2].

Let us consider construction of solutions. On the one hand, by a divide-and-conquer strategy
with the aid of fast low-rank update of the inverse matrices, one can �nd with high probability a
perfect matching itself in O(nω) time if any [1]. On the other hand, for the exact matching problem,
the above decision algorithm leads to an O(nω+1)-time construction algorithm for each possible k
as follows. In any order, for each vertex v, �x which color should be used to match the vertex v
by testing the existence of an exact matching after removing all the red edges incident to v. This
raises a natrual question as follows.

Problem 2. Is there a faster (randomized) algorithm for �nding a perfect matching with exactly k
red edges? In particular,

1. O(nω+1) time for all possible k in total,

2. O(nω) time for each possible k, or

3. O(nω) time for all possible k in total.
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Parity-Constrained 2-Factor

by Yutaro Yamaguchi

In the workshop in 2024, we obtained the following results on the parity-constrained 2-factor
problem. Here, Odd/Even 2-Factor is the decision problem asking the existence of a 2-factor
containing at least one odd/even cycle, and All-Odd/Even 2-Factor asks the existence of a
2-factor containing no even/odd cycles.

Theorem 1 ([2]). Odd 2-Factor, All-Odd 2-Factor, and All-Even 2-Factor are NP-hard.

A natrual remaining question is as follows.

Problem 2. Is Even 2-Factor in P or RP, or NP-hard?

There is a possible extension to red-blue graphs (where �odd/even� means the parity of the
number of red edges contained in each cycle), which is in fact polynomial-time equivalent. Also,
the following problems can be reduced to Even 2-Factor. Even Dicycle Cover asks the
existence of a directed cycle cover containing at least one even dicycle, and Even Dicycle asks
the existence of a directed cycle of even length. We know that Even Dicycle reduces to Even
Dicycle Cover and Even Dicycle Cover reduces to Even 2-Factor, but the reverse of each
reduction is not known.

It is well-known that Even Dicycle is equivalent to Pólya's permanent problem and in P [3].
Thus, a reverse reduction or another intermediate problem would be welcome. A randomized
approach like [1] might be useful.
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Fair Allocation with Subsidy for Matroid-Related Valuations

by Yu Yokoi

LetN = {1, 2, ..., n} be the set of agents and E the set of items. Each agent i ∈ N has a valuation
vi : 2

E → R+. An allocation is a tuple A = (A1, A2, . . . , An) such that A1 ∪A2 ∪ · · · ∪An = E and
Ai ∩ Aj = ∅ for any distinct i, j ∈ N . The set Ai is the bundle allocated to i ∈ N .

Ideally, we seek an envy-free allocation, i.e., one satisfying vi(Ai) ≥ vi(Aj) for all i, j ∈ N , but
such an allocation may not exist. We therefore consider attaining envy-freeness using subsidy. Let
p⃗ = (p1, p2, . . . , pn) ∈ Rn

+ denote a subsidy vector. A pair (A, p⃗) of an allocation and a subsidy
vector is called envy-free if

vi(Ai) + pi ≥ vi(Aj) + pj (i, j ∈ N).

It was shown in [1] that every instance admits such an envy-free pair. We are interested in the
minimum amount of subsidy required to ensure envy-freeness for any instance.

W.l.o.g., we assume that the marginal value of any item is at most 1, i.e., vi(X∪{e})−vi(X) ≤ 1
for every i ∈ N , X ⊆ E, and e ∈ E \X. Clearly, a subsidy of n − 1 is a lower bound. (If there is
only one item, valued at 1 by all agents, n− 1 agents must each receive a subsidy of 1.)

� For additive valuations, this lower bound n− 1 is tight [2]. There always exists an envy-free
pair (A, p⃗) such that pi ≤ 1 for every i ∈ N (and pi′ = 0 for some i′ ∈ N).

� The same holds for matroid rank functions [3] and more general binary marginal functions [4].

� For general monotone functions, the current best upper bound is n(n− 1)/2 [5].

It may be worth exploring upper and lower bounds for valuations beyond additive and matroid
rank functions. For example, one can consider weighted matroid rank functions, i.e., functions of
the form vi(X) = max{wi(Y ) : Y ⊆ X, Y ∈ Ii} for some matroid (E, Ii) and weight wi ∈ RE

+.

Problem 1. When each vi is a weighted matroid rank function (with marginal values at most 1),
does there exist an envy-free pair (A, p⃗) such that pi ≤ 1 for every i ∈ N?

Problem 2. What about other function classes, such as monotone M ♮-convex or submodular func-
tions? (cf. additive ⊆ weighted matroid rank ⊆ M ♮-concave (gross substitutes) ⊆ submodular)
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