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Attila Joó, Hamburg University
Tibor Jordán, ELTE
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Covering the circuits of block matroids by paths

by Kristóf Bérczi and Tamás Schwarcz

A matroid M is strongly base orderable if for any two bases A,B there exists a bijection
ϕ : A→ B such that A−X+ϕ(X) is a basis for every X ⊆ A; note that this implies B−ϕ(X)+X
being a basis as well. Strongly base orderable matroids generalizes fundamental matroid classes
that appear in combinatorial optimization problems, such as gammoids (and so partition, laminar,
and transversal matroids). However, they do not include paving or graphic matroids, so the results
for them are not applicable, for example, to graph theoretic problems.

A possible interpretation of strongly base orderability is as follows: for any pair A,B of disjoint
bases of a strongly base orderable matroid M , there exists a graph G consisting of a matching
between the elements of A and B such that G covers every circuit of M that lie in A ∪ B. Here
covering means that every circuit of M spans at least one edge of G. As a relaxation of this
property, we conjecture that an analogous statement holds for arbitrary matroids where G is a path
instead of a matching.

Conjecture 1 (Bérczi, Schwarcz). For disjoint bases A,B of a matroid M , there exists a graph G
consisting of an alternating path between A and B such that G covers every circuit of M that lie in
A ∪B.

Note that the elements of A and B have to appear alternatingly along the path. One might
wonder: why a path is considered instead of a cycle? The path version seems to be stronger, but
the two variants are in fact equivalent. Indeed, a path can simply be closed to get a cycle. To see
the reverse implication, take the direct sum of the matroid with a uniform matroid of rank 1 on
the set {a, b}, that is, A′ := A + a and B′ := B + b are bases of the new matroid. Now arrange
the elements of A′ and B′ around a cycle such that the elements of A′ and B′ receive odd and even
numbers, respectively, and every circuit of the matroid contains two consecutive elements. As a and
b are parallel in the extended matroid, they must follow each other in the cyclic ordering. Hence
the path obtained after breaking up the cycle by deleting a and b satisfies the requirements of the
conjecture.

A weaker version of the conjecture is also of interest. A matroid M is base orderable if for
any two bases A,B there exists a bijection ϕ : A → B such that A − a + ϕ(a) and B + a − ϕ(a)
are bases for every a ∈ A. In terms of covering circuits, this property is equivalent to the existence
of a graph G consisting of a matching between the elements of A and B such that G covers the
fundamental circuits of the elements of A with respect to B, and the fundamental circuits of the
elements of B with respect to A. A relaxation of this property would be the following.

Conjecture 2 (Bérczi, Schwarcz). For disjoint bases A,B of a matroid M , there exists a graph
G consisting of an alternating path between A and B such that G covers C(a,B) for a ∈ A and
C(b, A) for b ∈ B.

The conjectures hold for paving matroids, graphic matroids, and matroids on at most 8 elements.
However, they are wide open in general.
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All-ones vector in a base-polyhedron

by András Frank

Let b be a non-negative, integer-valued, non-decreasing, submodular function on ground-set S
for which b(S) = |S| and b(s) = 2 for each s ∈ S. Consider the base-polyhedron B := B(b) := {x :
x̃(Z) ≤ b(Z) for every Z ⊂ S and x̃(S) = b(S)}, where x̃(Z) :=

∑
[x(s) : s ∈ Z], and suppose that

the identically 1 vector m1 := (1, 1, . . . , 1) is in B, that is, |Z| ≤ b(Z) for every Z ⊆ S.

Problem 1. Does B always have a vertex z for which m2 := 2m1 − z is in B? In other words, is
m1 the arthmetic mean of a vertex z of B and another element of B?

The existence of such a vertex z would provide a simple (iterative) certificate for the property
that m1 is in B. Indeed, since m1 = (z+m2)/2, for certifying that m1 belongs to B it is enough to
certify that m2 ∈ B. But m2 is a (0, 1, 2)-valued vector and hence checking whether m2 is in B is
equivalent to the original problem on a smaller ground-set (obtained by deleting those components
s where m2(s) = 0 and ”contracting” those components s where m2(s) = 2).

The only known certificate for m1 being a member of B is that we express m1 as a convex
combination of vertices of B. But here the coefficients may be wild. In this light, the conjecture
can be viewed as a purely combinatorial certificate for m1 ∈ B. Such a certificate may give rise to
constructing a simple algorithm for deciding whether m1 ∈ B. The only known algorithm for this
problem relies on a general-purpose submodular function minimizer subroutine.

Note that in the special case when b = 2r for a rank-function r of a matroid M with 2r(S) = |S|,
then (by Edmonds and Fulkerson) m1 ∈ B if and only if S can be partitioned into two bases of M .

For a certificate or algorithm, it would be enough to prove the conjectere only for its special
case when b(X) > |X| holds for every non-empty proper subset X of S.
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Balanced submodular flows

by Alpár Jüttner

In balanced optimization problems, the aim is to find a most equitable distribution of resources.
Several problems have been analysed in the literature such as the balanced spanning tree problem
studied by Camerini [2] and by Longshu Wu [6]. Another example is the balanced assignment
problem by Martello[4]. Ahuja proposed a parametric simplex method for the general balanced
linear programming problem [1]. Punnen et al. introduced a strongly NP-hard problem, which is
called the quadratic balanced optimization problem, and showed some algorithms in a special case.
Scutella studied the balanced network flow problem and presented a strongly polynomial algorithm
to solve it [5],[3]. We would like to focus on extending these results to submodular flows, and also
on finding min-max characterizations of the optimal solutions.
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Optimal Pricing for Two Matroids

by Naonori Kakimura

Conjecture 1 (Dütting–Végh (personal communication 2017)). Let M1 = (S,B1) and M2 = (S,B2)
be matroids with a common ground set S such that there exist disjoint bases B1 ∈ B1 and B2 ∈ B2
with B1 ∪ B2 = S. Then, there exists a function p : S → R (called a price vector) satisfying the
following conditions.

1. If B1 is a minimum-cost base in B1 with respect to p, then S \B1 ∈ B2.

2. If B2 is a minimum-cost base in B2 with respect to p, then S \B2 ∈ B1.

The conjecture arises in the context of pricing items in combinatorial markets [1]. Suppose that
there are two buyers and each buyer i ∈ {1, 2} wants to buy a set of items that forms a basis in
Bi. If buyer i comes to a shop first, then she chooses a cheapest set Bi in Bi with an arbitrary
tie-breaking rule. The requirements mean that, regardless of the choice of Bi, the remaining set
S \Bi is an item set the other buyer wants. Thus, whoever comes first, both of the buyers can get
desired item sets.

The conjecture is known to be true if matroids are either partition matroids or strongly-base
orderable matroids, and, in these cases, a desired price vector can be found in polynomial time [2].

References

[1] Vincent Cohen-Addad, Alon Eden, Michal Feldman, and Amos Fiat, The invisible hand of
dynamic market pricing, Proceedings of the 2016 ACM Conference on Economics and Compu-
tation, 383–400, 2016.

[2] Kristóf Bérczi, Naonori Kakimura, Yusuke Kobayashi, Market Pricing for Matroid Rank Val-
uations, SIAM J. Discret. Math., 35(4), 2662–2678, 2021.
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Matroid basis with bounded intersections

by Tamás Király

Let M = (V, r) be a matroid, let H = (V, E) be a hypergraph of maximum degree ∆, and let
fe ≤ ge (e ∈ E) be lower and upper bounds on the hyperedges of H. We consider the following
linear program (LP) for a cost vector c ∈ RV

+:

min
∑
v∈

cvxv

subject to
∑
v∈V

xv = r(V )∑
v∈U

xv ≤ r(U) ∀U ⊆ V

0 ≤ xv ≤ 1 ∀v ∈ V

fe ≤
∑
v∈E

xv ≤ ge ∀e ∈ E .

Clearly, integer feasible solutions are characteristic vectors of bases B that satisfy the additional
constraints fe ≤

∑
v∈E |B ∩ e| ≤ ge for every e ∈ E .

Problem 1. Is it true that if (LP) has a feasible solution, then there is a basis B such that fe −
∆ + 1 ≤

∑
v∈E |B ∩ e| ≤ ge + ∆− 1 for every e ∈ E?

Problem 2. Let OPT denote the optimum value of (LP). Is it true that there is a basis B such
that

∑
v∈B cv ≤ OPT and fe −∆ + 1 ≤

∑
v∈E |B ∩ e| ≤ ge + ∆− 1 for every e ∈ E?

By a result of Singh and Lau [1], the answer to the second question is positive for graphic
matroids. We also know that the answer is positive if only upper bounds (or only lower bounds)
are present [2]. The following may be an easier question: is the statement true if each hyperedge
has either a lower bound or an upper bound, but not both?

References

[1] M. Singh, L.C. Lau, Approximating minimum bounded degree spanning trees to within one of
optimal, Journal of the ACM 62 (2015), 1–19

[2] T. Király, L.C. Lau, M. Singh, Degree bounded matroids and submodular flows, Combinatorica
32 (2012), 703–720
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Matroid Intersection Reconfiguration

by Yusuke Kobayashi

Let M1 = (S, I1) and M2 = (S, I2) be matroids with a common ground set S. We say that two
common independent sets I, I ′ ∈ I1 ∩I2 are adjacent if |I \ I ′| = |I ′ \ I| = 1. For Iini, Itar ∈ I1 ∩I2,
a reconfiguration sequence between Iini and Itar is a sequence 〈I1, I2, . . . , I`〉 such that I1 = Iini,
I` = Itar, Ii ∈ I1 ∩ I2 for i = 1, . . . , `, and Ii and Ii+1 are adjacent for i = 1, . . . , `− 1.

Given matroids M1,M2, and their common independent sets Iini, Itar ∈ I1 ∩ I2, Matroid
Intersection Reconfiguration asks whether there exists a reconfiguration sequence between
Iini and Itar.

Problem 1. Is Matroid Intersection Reconfiguration solvable in polynomial time?

A few special cases can be solved in polynomial time: Reconfiguration of (bipartite) matchings [1]
and Reconfiguration of directed trees [2].

References

[1] T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, Y. Uno, On the
complexity of reconfiguration problems, Theoretical Computer Science, 412, 1054–1065, 2011.

[2] T. Ito, Y. Iwamasa, Y. Kobayashi, Y. Nakahata, Y. Otachi, K. Wasa, Reconfiguring directed
trees in a digraph, Proceedings of COCOON 2021, 343–354, 2021.
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Matroid Intersection

by Dani Kotlar and Ran Ziv

Let M1 and M2 be two matroids defined on the same ground set S.

Problem 1. Assuming in each of the two matroids S can be partitioned into three bases, can S be
partitioned into two subsets S1 and S2 such that each Si (i = 1, 2) spans S in both M1 and M2?
Some insight can be gained by formulating an equivalent question on the duals of M1 and M2.

We call a set A ⊆ S a matroidal matching if A ∈M1 ∩M2. A partition of S into two subsets is
called equitable if the subsets’ sizes differ by at most 1.

Problem 2. Assuming S has a partition into two matroidal matchings, does S have a partition
into two equitable matroidal matchings?



8 Matroid optimization

Hatami-Shor for matroids

by Dani Kotlar and Ran Ziv

A partial transversal of size k in a Latin square is a set of k distinct entries no two of which lie
in the same row or in the same column. A known conjecture of Ryser and Brualdi states that any
odd order Latin square contains a partial transversal of size n (in which case the transversal is not
partial) and any even order Latin square contains a partial transversal of size n− 1.

The best result towards proving this conjecture is due to Hatami and Shor [2]:

Theorem 1. Every Latin square has a partial transversal of length at least n− 11.053 log2 n

We can generalize the notion of Latin square by taking the entries from a ground set of a matroid
instead of the set {1, 2, . . . , n}, and requiring the rows and columns to be bases or independent sets.
We call this a matroidal Latin square (abbrv. MLS) (see [3]) . Note that a Latin square is a
matroidal Latin square over a partition matroid. A partial independent transversal (abbrv. PIT)
is, an independent set of entries no two of which lie in the same row or in the same column. A PIT
in an MLS cannot have in general size larger than n − 1, regardless of whether n is even or odd
([3]). So far we know that in any MLS there is a PIT of size at least n −

√
n. This follows from

the more general result in [1] stating that any n pairwise disjoint sets of size n in the intersection
of two matroids have a rainbow set of size at least n−

√
n in that intersection.

Problem 1. Can the method of proof in [2] be applied to matroidal Latin squares to obtain the
bound n−O(log2 n)?

Using basic properties of circuits, most of the proof in [2] can be adapted to MLSs, but there is
one argument that does not seem to work. I would like to find a way to circumvent this argument.
Details will be provided.

References

[1] R. Aharoni, D. Kotlar, and R. Ziv. Rainbow sets in the intersection of two matroids. Journal
of Combinatorial Theory, Series B, 118:129–136, 2016.

[2] P. Hatami and P. W. Shor. A lower bound for the length of a partial transversal in a latin
square. Journal of Combinatorial Theory, Series A, 115(7):1103–1113, 2008.

[3] D. Kotlar and R. Ziv. On the length of a partial independent transversal in a matroidal Latin
square. Electron. J. Combin, 19(3), 2012.
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Simultaneous combinatorial problems

by Péter Madarasi

Let G = (V,E) be an undirected graph, and let E1, . . . , Ek ⊆ E be such that E =
⋃k
i=1Ei.

Find a maximum size subset M of the edges such that M ∩Ei is a bi-matching for all i = 1, . . . , k.
This problem is known to be NP-hard even for bipartite graphs when k = 2 and bi ≡ 1. However,
when sets Ei (i = 1, . . . , k) restricted to the edges incident to v form a laminar family for each node
v, we get back the Laminar matchoid problem [1], which is polynomial-time solvable. In fact, the
latter case remains tractable even if we have an additional laminar family L on V and prescribe an
upper bound on the degree-sum in each set in L [2] — which gives back the so-called Hierarchical
b-matching problem [3] in the special case k = 0. To prove this, one can formulate the problem as
an integer linear program of the form

max{cx : x ∈ Zn, d ≤ x ≤ c, a ≤Mx ≤ b}, (0.1)

where M ∈ Zm×n and
∑m

i=1 |Mij| ≤ 2 for all j, which is polynomial-time solvable [4]. The following
question remains open.

Problem 1. Is the problem solvable when we have additional parity constraints on the degree-sum in
each set in L? More generally, can we solve (0.1) when we pose parity constraints on the coordinates
of x?

Instead of b-matchings, one can require that M ∩Ei has some other structure. For example, the
case of trees reduces to the matroid intersection problem when k = 2, whereas the case of directed
s− t paths is open:

Problem 2. Let D = (V,A) be a directed graph, and let A1, A2 ⊆ A be such that A = A1 ∪ A2.
Find a (minimum size) subset P of the arcs such that both P ∩ A1 and P ∩ A2 are s− t paths.

References

[1] T. A. Jenkyns, Matchoids : a Generalization of Matchings and Matroids, Thesis (Ph.D.)–
University of Waterloo (1974).
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Locality Gap of the Spanning Tree Neighborhood for Expanding Search

by Jannik Matuschke

In the Expanding Search problem, a searcher wants to find an item which is hidden at a random
node of an undirected graph G = (V,E) according to a known distribution p ∈ ∆(V ). The searcher
starts at a given vertex s ∈ V and can move to adjacent vertices along the edges of the graph.
Traversing an edge e ∈ E for the first time incurs a cost of c(e) ∈ R+, but any additional traversal
of the same edge (in any direction) is free—in other words, the searcher can move within the set of
previously visited nodes at no cost. The item is found once the searcher reaches the node at which
it is located.

The searcher wants to devise a strategy for finding the item at minimum cost. Such a strategy
can be encoded by a spanning tree T of G together with a bijection σ : {1, . . . , |V | − 1} → T ,
specifying the order in which the edges are traversed for the first time. The expected cost of the
search strategy then is

C(T, σ) :=
∑
v∈V

kσ(v)∑
i=1

p(v)c(σ(i)),

where kσ(v) := min{k : {σ(1), . . . , σ(k)} contains an s-v-path}.
It is known that finding an optimal search strategy is NP-hard [2]. However, given a spanning

tree T , a bijection σT minimizing C(T, σT ) can be computed efficiently via dynamic programming [1].
This suggests the following local-search procedure using the edge-swap neighborhood of the graphic
matroid T of G to find a good strategy for the searcher.

1. Let T ∈ T .

2. While there is e ∈ T and e′ ∈ E \ T with T ′ := T ∪ {e} \ {e′} ∈ T and C(T ′, σT ′) < C(T, σT ),
replace T by T ′.

3. Return T .

A tree T ∈ T is locally optimal if there is no e ∈ T and e′ ∈ E \T with T ′ := T ∪{e} \ {e′} ∈ T
and C(T ′, σT ′) < C(T, σT ). Let T ′ denote the set of all locally optimal spanning trees of G. We are

interested in bounding the locality gap
maxT∈T ′ C(T, σT )

minT∈T C(T, σT )
.

Problem 1. Can the locality gap of the above local search procedure be bounded by a constant?

References

[1] S. Alpern and T. Lidbetter. Mining coal or finding terrorists: The expanding search paradigm,
Operations Research 61:265–279, 2013.

[2] I. Averbakh and J. Pereira. The flowtime network construction problem, IIE Transactions
44:681–694, 2012.
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Partition into common bases in base orderable matroids

by Tamás Schwarcz and Kristóf Bérczi

A matroid M = (E,B) on ground set E with family of bases B is called base orderable (resp.
strongly base orderable) if for every two bases A,B ∈ B there exists a bijection ϕ : A → B
satisfying the following property (BO) ((SBO), respectively):

A− x+ ϕ(x) ∈ B and B + x− ϕ(x) ∈ B for every x ∈ A, (BO)

A−X + ϕ(X) ∈ B and B +X − ϕ(X) ∈ B for every X ⊆ A. (SBO)

The following property of strongly base orderable matroids was shown by Davies and McDiarmid.

Theorem 1 ([1]). Let M1 = (E,B1) and M2 = (E,B2) be strongly base orderable matroids such
that E can be partitioned into k disjoint bases of Mi for i = 1, 2. Then E can be partitioned into k
common bases of M1 and M2.

It is natural to ask how one can relax strongly base orderability in Theorem 1. It is open whether
the analogous statement holds for base orderable matroids.

Question 1. Can we replace strongly base orderability by base orderability in Theorem 1?

An even weaker assumption on the matroids would be that neither of them has a minor isomor-
phic to the graphic matroid of K4. However, an example on 8 elements shows that this condition
does not guarantee the existence of k disjoint common bases (not even if k = 2 and one of the
matroids is a partition matroid).

In particular, we are interested in the special case k = 2, when the matroids are block matroids,
that is, their ground set can be partitioned into two disjoint bases. In this special case, one can
slightly relax the strongly base orderability condition in Theorem 1. Let us call a block matroid
locally strongly base orderable if its ground set can be partitioned into bases B1 and B2 such
that there exists a bijection ϕ : B1 → B2 satisfying (SBO).

Proposition 2. If M1 = (E,B1) and M2 = (E,B2) are locally strongly base orderable block matroids,
then E can be partitioned into two common bases of M1 and M2.

By this observation, an affirmative answer to the following question would provide an affirmative
answer to Question 1.

Question 2. Is every base orderable block matroid locally strongly base orderable?

References
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Packing and Hitting Rectangles

by András Sebő

The packing number, ν, of a given family of sets the maximum number of pairwise disjoint sets
in the family, while their hitting number is the minimum number, τ , of points meeting all of them
(with a non-empty intersection). Obviously, τ ≥ ν. A more than half century old conjecture of
Wegner (1965, [2]) asks whether τ ≤ 2ν−1 for rectangles in the plane. Replacing “2” by any larger
constant the validity of the conjecture is also not known.

We studied the simplest special cases of this conjecture with Marco Caoduro [1]: by taking
small values of some parameters, or by studying squares. I state here two of the most frustrating
questions that we could not answer with Marco. The first concerns axis-parallel rectangles where
none of the points is covered more than twice, the second concerns squares.

Problem 1. Given a set of axis-parallel rectangles such that every point of the plane contains at
most two of them, is it true that there are always bn

2
c disjoint ones among them ?

Trying to prove Wegner’s conjecture for the case when each point is covered at most twice, an
easy induction shows its equivalence with this statement for sets of axis-parallel rectangles with a
factor-critical intersection-graph.

The packing and hitting problems are NP-hard also for axis-parallel unit squares. Wegner’s
conjecture is easy for them, but for sets of axis-parallel squares of arbitrary size it is not known.
There are no better examples for axis-parallel squares than those giving the 3/2 ratio.

For not necessarily axis-parallel unit squares τ can be as large as 3 and is always at most 4. But
can it be 4 ? (For unit disks in the plane the exact bound of 3 is known.) The target of the following
problem is to understand the difference between maximum clique of the interesection graph and the
maximum number of sets containing a given point. An example would improve the lower bound for
arbitrary large ν by taking disjoint copies of the example.

Problem 2. We ask the following questions both for (not necessarily axis-parallel) squares, and unit
squares. How large can be the minimum size of a hitting set of pairwise intersecting squares ? If no
point is contained in more than two squares what is the maximum number of pairwise intersecting
squares ?

https://arxiv.org/abs/2206.02185
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Integer Caratheodory for Common Bases of Matroids

by András Sebő

The complexity status of covering the common ground-set of two matroids by common inde-
pendent sets of the two, had been a long-standing open problem until Kristóf [2] has proved it
to be NP-hard. This makes the polynomially solvable special cases, or the question of solvability
with an error of 1 even more precious. Both of these induce a range of interesting open problems, I
think tied with the “IRUP” (integer round up) and “MIRUP” (modified integer round up) properties
respectively.

A nice summary of the results on packing common independent sets of two matroids, and of the
related integer decomposition property – an equivalent reformulation of the above mentiond IRUP,
and also implicitly containing MIRUP with the matroid example of Aharoni and Berger [1]) – can
be found on the following “Egres Open” pages:

http://lemon.cs.elte.hu/egres/open/Packing_common_bases,
http://lemon.cs.elte.hu/egres/open/Integer_polyhedra .
We restrict ourselves here to quick definitions sufficient to explain the specific challenge we state:

sets are represented by their incident vectors indexed by the ground-set. We abuse terminology by
using the same term for a set and its incident vector. In particular, the incidence vector of a
matroid basis will also be said to be a matroid basis and the incidence vector of an arborescence
(as an edge-set) will also be said to be an arborescence. We denote the common rank of M1 and
M2 by ρ.

Let us say that the pair (M1,M2) of connected matroids on the same ground-set S is IRUP if
they have at least one common basis, and for any w : S → N, if w/k with k =

∑
s∈S w(s)/ρ is in

the convex hull of common bases, then w is the sum of common bases.
Does then the “Integer Caratheodory Property” hold” ? Before defining the problem precisely we

state it in the special case of arborescences in digraphs rooted in a vertex r, called r-arobrescences.

Problem 1. If w is the sum of r-arborescences, is it also a non-negative integer combination of
r-arborescenses ?

This is one of the simplest open special cases of the Integer Carathedory problem in (cf. in
Schrijver white or yellow book, in more details in [3], later developments in [6], [4], with pointers
to weaker statements involving the union of two sets of linearly independent bases).

Problem 2. Let M1 and M2 be an IRUP pair of matroids. If w is the sum of common bases, is it
also the non-negative integer combination of a linearly independent set of common bases ?

The origins of the problem lie in the M1 = M2 case raised by Cunningham in the eighties,
and which had also been open for a long time, until Gijswijt and Regts [4] proved that indeed,
independent sets of matroids have the Integer Caratheodory Property, opening new perspectives. I
am not sure anybody has considered the problem ever since.
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Maximizing the number of edge-disjoint directed cuts in orientations

by Lilla Tóthmérész

Suppose that G = (S, T,E) is an undirected bipartite graph, and we want to find the orientation
that maximizes the number of disjoint directed cuts. Then

Proposition 1. The orientation in which each edge is oriented towards S maximizes the number
of disjoint directed cuts.

Proof. The maximal number of (undirected) cuts of G is obviously an upper bound. Let
−→
G be the

orientation on which each edge is oriented towards S. By the result of Frank [1, Theorem 9.6.12],

the maximal number of disjoint cuts in G is equal to the maximal number of disjoint dicuts in
−→
G .

Hence the upper bound is attainable, and
−→
G is a maximizer.

Problem 1. Can we characterize the orientations attaining the maximum?

Problem 2. What can be said about non-bipartite graphs?

We can generalize the problem to non-bipartite graphs in a different way: Let us call an
assignment ` : V → Z a good layering for G, if |`(u) − `(v)| ≤ 1 for each uv ∈ E(G) and
{uv ∈ E(G) : |`(u)− `(v)| = 1} is a spanning subgraph.

Then we can define an oriented spanning subgraph
−→
G` by E(

−→
G`) = {−→uv : `(v) = `(u) + 1}.

For a bipartite graph, the subgraphs corresponding to good layerings are all complete orienta-

tions. Also,
−→
G corresponds to the layering with `(v) = 1 for v ∈ S and `(v) = 0 for v ∈ T .

Now we can ask:

Problem 3. Which good layerings ` maximize the number of disjoint dicuts for
−→
G`?

The motivation behind studying
−→
G` for good layerings is that these oriented subgraps correspond

to facets of the symmetric edge polytope, which is a polytope associated to G. Problem 3 would
give us some information on which facets of this polytope are “small” in a certain sense.
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Tractability/Intractability of Parity Constraints

by Yutaro Yamaugchi

Throughout, let G = (V,E) be a connected undirected graph. A path means a simple path, i.e.,
each vertex can appear at most once. A path is said to be odd (or even) if the number of traversed
edges is odd (or even, resp.).

1 Shortest Odd Path in Conservative Undirected Graphs

Let ` : E → R be edge length, and let s, t ∈ V . We say that ` is conservative if G contains no cycle
C with `(C) =

∑
e∈C `(e) < 0.

If ` is nonnegative, a shortest s–t path can be found in polynomial time by Dijkstra’s method
as with the directed setting. In addition, as two different applications of the weighted matching
problem in general graphs, it is well-known that

� if ` is conservative, a shortest s–t path can be found in polynomial time (note that a reduction
to the directed setting fails because duplicating a negative edge yields a negative cycle);

� if ` is nonnegative, a shortest odd s–t path can be found in polynomial time.

Thus, the following question naturally arises.

Problem 1 (cf. [1, Section 29.11e]). Is there a polynomial-time algorithm for finding a shortest odd
s–t path if ` is conservative?

Note that the problem is NP-hard if ` is not conservative because it includes the Hamiltonian
path problem. It is also known that, in the directed setting, feasibility test is already NP-complete.

2 Lexicographically Smallest Odd Path in Undirected Graphs

Suppose that the vertices in V are indexed by 1, 2, . . . , n = |V |, and let s, t ∈ V . A path is regarded
as a sequence of vertices, and then two paths can be compared in the lexicographic order. By a
naive depth first search, one can find a lexicographically smallest s–t path in linear time.

One can design a rather simple O(nm)-time algorithm for finding a lexicographically smallest
odd s–t path, where m = |E|. The key property is as follows.

Fact 1. In any 2-connected graph that is not bipartite, for any pair of vertices u and w, there exist
both odd and even u–w paths.

By this fact, all s–t paths have the same parity if and only if all the 2-connected components
between s and t (i.e., any s–t path traverses inside) are bipartite. Thus, for fixed t, by checking
bipartiteness of each 2-connected component, the possible parities of u–t paths for all u ∈ V are
computed in linear time. Based on this feasibility check, one can greedily proceed from s to the
neighbor u of s having the minimum index subject to an even u–t path remains in G−s, and recurse
by replacingG, s, t withG−s, u, t (also “odd” with “even”). The recursion depth is trivially bounded
by n, and the total computational complexity is bounded by O(nm).

Problem 2. Is there an o(nm)-time algorithm for finding a lexicographically smallest odd s–t path
in undirected graphs?
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3 Exact Parity Matching in Red-Blue Edge-Colored Graphs

Suppose that each edge in E is colored by one of two fixed colors, say red and blue. It is known that
there exists a polynomial-time randomized algorithm for finding a perfect matching with exactly
k red edges, where k is also included in the input. In contrast, any polynomial-time deterministic
algorithm is not known even for the parity constraint case, i.e., for finding a perfect matching with
an odd number of red edges in red-blue edge-colored graphs.

Problem 3 (cf. [2]). Is there a polynomial-time deterministic algorithm for finding a perfect match-
ing with an odd number of red edges in red-blue edge-colored graphs?

If we restricted ourselves to bipartite graphs, the problem can be solved by finding an arbitrary
perfect matching in the input graph and, if it is not desired parity, by finding a directed cycle
with an odd number of red edges in the residual graph (the latter part is not so trivial but still
elementary). This problem is naturally extended to matroid intersection, including other special
cases such as arborescences. Note that these are special cases of three matroid intersection.

Problem 4. Is there a polynomial-time algorithm for finding a common base with an odd number of
red elements in red-blue element-colored matroid intersection? What kinds of matroids are tractable?
Is there any characterization?

Note that the main issue is as follows: in the general matroid intersection case, even if one can
find an “odd” cycle in the exchange bipartite graph, the cycle itself may not be exchangeable.
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Matroid Generalizations of Some Game Theoretic Problems

by Yu Yokoi

We present some game theoretic problems, which have been (partially) solved for base-orderable
matroids but are open for general matroids.

A matroid (E, I) is called base-orderable (or weakly base-orderable) if, for any two bases B1, B2,
there exists a bijection ϕ : B1 → B2 such that, for every e ∈ B1, both B1−e+ϕ(e) and B2+e−ϕ(e)
are bases. A class of base-orderable matroids includes gammoids, which include laminar matroids
and transversal matroids. Base-orderability is known to be minor-closed.

1 Stable matching with ties under matroid constraints

Stable matching is a well-studied combinatorial structure proposed by Gale and Shapley [1]. Its
matroid generalization, called matroid-kernel, is proposed by Fleiner [2, 3], who showed that a
matroid-kernel always exists and can be found efficiently. Another generalization is the model with
ties (or indifferences) in the preference lists. In the model with ties, unlike the original model,
stable matchings have different cardinalities (when the underlying bipartite graph is incomplete).
The problem of finding a maximum stable matching in this setting, called MAX-SMTI, is known
to be NP-hard and the current best approximation ratio is 1.5 [4, 5, 6].

We can naturally define a common generalization of the above two. Let (E, I1,%1), (E, I2,%2)
be two weakly ordered matroids on E. That is, for each k = 1, 2, the pair (E, Ik) is a matroid on E
and %k is a weak preference relation on E. We use the notation “%k: e1 ( e2 e3 ) e4 e5 ( e6 e7 e8 ) ”
to mean that %k is defined as e1 �k e2 ∼k e3 �k e4 �k e5 �k e6 ∼k e7 ∼k e8.

We call X ⊆ E a matroid-kernel if X ∈ I1 ∩ I2 and every e ∈ E \ X satisfies the following
condition for some k ∈ {1, 2}: X + e 6∈ Ik and any f ∈ X with X + e − f ∈ Ik satisfies f %k e.
The problem of finding a maximum cardinality matroid-kernel is a generalization of MAX-SMTI,
and hence is NP-hard.

For the special case in which the two matroids are base-orderable, Yokoi [7] showed that a 1.5-
approximate solution can be found efficiently. However, it is open whether this approximability
extends to the case of general matroids.

Problem 1. Is there an efficient algorithm to find a 1.5-approximate solution for the problem of
finding a maximum matroid-kernel in the setting with ties?

Note that the algorithm in [7] is defined for general matroids, and base-orderability is used only
in the approximation ratio analysis. We have not yet found an instance for which the algorithm fails
to find a 1.5-approximate solution. Therefore, there is a possibility that some new proof technique
shows that the algorithm’s approximation ratio is 1.5 for general matroids. Below, we explain the
algorithm in [7], which can be regarded as a matroid generalization of Király’s algorithm [5] for
MAX-SMTI (with some ideas from [8]).

Given a pair of weakly ordered matroids (E, I1,%1) and (E, I2,%2), we first construct two or-
dered matroids (E∗, I∗1 ,�∗1) and (E∗, I∗2 ,�∗2) as follows. LetE be represented as E = {e1, e2, . . . , em}.
Let E∗ = {xi, yi, zi | i = 1, 2, . . . ,m }. For each k = 1, 2, let

I∗k = {S∗ ⊆ E∗ | |{xi, yi, zi} ∩ S∗| ≤ 1 for any ei ∈ E and π(S∗) ∈ Ik },

where π(S∗) := { ei ∈ E | {xi, yi, zi} ∩ S∗ 6= ∅ }. That is, the matroid (E∗, I∗k) is obtained from
(E, Ik) by replacing each element ei with its three parallel copies xi, yi, zi.
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The linear order �∗1 on E∗ is defined as follows. Take a tie (ei1ei2 · · · ei`) in %1. We replace it
with a strict linear order of 2` elements xi1xi2 · · · xi`yi1yi2 · · · yi` . Apply this operation to all the
ties in %1, where an element not included in any tie is regarded as a tie of length one. Next, at
the end of the resultant list, append the original list %1 with each ei replaced with zi and all the
parentheses omitted. Here is a an example of of a weak order %1 and the resultant linear order �∗1.

%1: ( e2 e5 ) e1 ( e3 e4 )

�∗1: x2 x5 y2 y5 x1 y1 x3 x4 y3 y4 z2 z5 z1 z3 z4

The linear order �∗2 is defined in the same manner, where the roles of xi and zi are interchanged.
Here is a an example of %2 and the resultant linear order �∗2.

%2: e3 ( e1 e2 e4 ) e5

�∗2: z3 y3 z1 z2 z4 y1 y2 y4 z5 y5 x3 x1 x2 x4 x5

For the pair (E∗, I∗1 ,�∗1) and (E∗, I∗2 ,�∗2), we can find a matroid-kernel X∗ ⊆ E∗ efficiently by
the framework of Fleiner [2]. Let X := π(X∗) = { ei ∈ E | {xi, yi, zi} ∩X∗ 6= ∅ } and output X.

It is shown in [7] that (i) X is a matroid-kernel of (E, I1,%1) and (E, I2,%2), and (ii) if the
matroids are base-orderable, |X| is at least 2

3
of the size of a maximum matroid-kernel.

2 EF1 allocation under matroid constraints

Fair allocation of indivisible goods is a research area actively studied recently. Since a completely
envy-free allocation may not exist when items are indivisible, several relaxed notions have been
proposed. One of them is envy freeness up to one good (EF1) introduced by Budish [9].

Let N = {1, 2, . . . , n} be the set of agents and E be the set of items. Each agent i has a
valuation vi : E → R+, and i values each bundle X ⊆ E at vi(X) :=

∑
e∈X vi(e). An allocation is

a subpartition X = (X1, X2, . . . , Xn) of E, where Xi is the bundle allocated to i ∈ N . We call an
allocation complete if all items are allocated. An allocation X is envy free up to one good (EF1) if,
for every i, j ∈ N , we have vi(Xi) ≥ vi(Xj) or there is e ∈ Xj such that vi(Xi) ≥ vi(Xj \ {e}).

In the setting without constraints, a complete EF1 allocation always exists and can be found
easily by the Round-Robin method. Settings with matroid constraints are studied in [10, 11]. When
the agents have different constraints, the existence of such an allocation is not guaranteed even in a
very restricted case (two agents, partition matroids, identical binary additive valuations) [11]. Here
we focus on the case where all agents have the same constraints.

Let (E, I) be a matroid defined on the set E of items. An allocation X = (X1, X2, . . . , Xn) is
called feasible if Xi ∈ I for every agent i ∈ N . We suppose that the matroid admits a complete
feasible allocation. The main questions here are the following.

Problem 2. Is there a complete feasible EF1 allocation? Can we find it efficiently?

For the following special cases, the above questions are solved affirmatively in previous works.

� Partition matroid [10]

� Base-orderable matroid, identical valuations (vi = vj for any i, j ∈ N) [10]

� Base-orderable matroid, two agents [11]

� Base-orderable matroid, three agents, binary values (vi(e) ∈ {0, 1} for any i ∈ N , e ∈ E) [11]
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The algorithm for the first case explicitly uses the partition structure of the matroid. For the other
three cases, base-orderability is explicitly used to define the algorithms. These algorithms repeat
swapping elements from two bundles, and the bijection of symmetric exchange is needed here to
show that there exists a swap for the improvement. To solve the problem for the general matroids,
a novel approach will be required.
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