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Friday

Check-out at 10:00.
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Six-point order types as the orientations of families of convex sets

by Péter Ágoston

Definition 1. Take a set of elements and assign a number 	(ABC) ∈ {−1, 1} to all triples ABC,
such that 	(ABC) =	(BCA) =	(CAB) = − 	(ACB) = − 	(CBA) = − 	(BAC). We call
such an assignment a total orientation.

Definition 2. Call a planar family of pairwise intersecting compact convex sets without any 3-
intersections a holey family.

Definition 3. If A, B and C are members of a holey family, then denote the only finite component
of R2 \ (A ∪B ∪ C) by (ABC) (we call this the hollow of A, B and C).
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(b) The 6-point order types in question

Definition 4. Let a C-T3O be a total orientation on a holey family, where 	(ABC) is roughly
defined as in Figure (a). To be more precise, the orientation depends on what order A, B and C
occur on the border of (ABC). For more details, see [1].

Problem 1. Can the orientation corresponding to the order types seen in Figure (b) be realized as
a C-T3O? (All other 6-point order types can be realized.) In case this problem proves to be too easy,
we can ask similar questions for other types of orientations (for details, see [2]). The question here
is the minimum number of points in an order type that does not correspond to such an orientation.
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Translative coverings via the colourful Bang lemma

by Gergely Ambrus

We say that the convex sets C1, . . . , Cn ⊂ Rd permit a translative covering of a convex body
K ⊂ Rd if

K ⊂
n⋃

i=1

(Ci + xi)

for some x1, . . . , xn ∈ Rd. Given K and a fixed convex body C, it is natural to search for a family
of homothets of C as “small” as possible which permit a translative covering of K. The following
result is proven in [1].

Theorem 1. Assume that T ⊂ Rd is a non-degenerate simplex, and λ1, . . . , λn ≥ 0 are so that the
family −λ1T, . . . ,−λnT permits a translative covering of T . Then

n∑
i=1

λi ≥ d.

The proof is based on a generalized, colourful version of Bang’s lemma [1]:

Theorem 2. Assume that all the finite vector sets U1, . . . , Un ⊂ Rd contain the origin in their
convex hull. Then for any set of vectors x1, . . . , xn ∈ Rd we may select ui ∈ Ui for each i ∈ [n] so
that setting u =

∑
i ui,

〈u− xk, uk〉 ≥ |uk|2

holds for every k.

A related conjecture is due to V. Soltan:

Problem 1 (V. Soltan). Assume that K ∈ Rd is a convex body and that λ1K, . . . , λnK permit a
translative covering of K with λi ∈ (0, 1) for every i. Then

n∑
i=1

λi ≥ d.

One may try to tackle special cases of the generalization when covering a convex body K with
homothetic copies of another convex body L (as in Theorem 1).

The following (probably very hard) conjecture is a generalization of the affine plank problem.

Problem 2. Assume that the closed, convex sets C1, . . . , Cn ⊂ Rd permit a translative covering of
the convex body B ⊂ Rd. Then

n∑
i=1

rB(Ci) ≥ 1

holds, where rB(C) is the scaling factor of the largest homothet of B contained in C.

The minimal density of a covering of the whole space Rd with translates of K is called the
translative covering density of K. The following theorem was proven by Januszewski:

Theorem 3 (Januszewski [2]). The translative covering density of a triangle in the plane is 3
2
.

His proof is quite technical. It is natural to expect that a simpler proof may be given using the
colourful Bang lemma.

Problem 3. Find a simpler way of determining the translative covering density of the triangle.
Can we extend the result to higher dimensional simplices, or other convex discs?

Plenty of further references are listed in [1].
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Saturated 2-planar abstract graphs

by János Barát

Let n denote the number of vertices of a graph. In a drawing of a graph in the plane, vertices
are represented by points, edges are represented by curves connecting the points, which correspond
to adjacent vertices. A drawing is simple if any two edges have at most one point in common, which
is either a common endpoint or a crossing.

For any k ≥ 0, an abstract graph G is k-planar if it has a simple drawing in the plane, where
each edge contains at most k crossings. A k-planar graph G is saturated if adding any edge to G
results in a non-k-planar graph.

For saturated 1-planar graphs, the following is known. Brandenburg et al. gave a construction
of a family of saturated 1-planar graphs with ≈ 2.647n edges [3]. On the other hand, Barát and
Tóth proved that any saturated 1-planar abstract graph must have at least ≈ 2.22n edges [2].

Problem 1. How many edges can a saturated 2-planar abstract graph have?

It is easy to see that such a graph must have at least n − 1 edges. We believe that this lower
bound should be improved.

Auer et al. presented a family of saturated 2-planar graphs with ≈ 2.63n edges without proof
[1].
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Problems around the Blocking conjecture

by Martin Balko

Let P be a finite set of points in the plane with no three points lying on a common line. A
visibility-blocking set for P is a set of points Q that is disjoint from P and such that every line
segment between two points from P contains at least one point of Q. Let b(P ) be the smallest
possible size of a visibility-blocking set for P and let b(n) = minP b(P ), where the minimum is
taken over all sets of n points in the plane with no three points lying on a common line; see Figure 1
for an illustration.

Figure 1: Examples showing the upper bounds b(2) ≤ 1, b(3) ≤ 3, b(4) ≤ 5, b(5) ≤ 8, and
b(5) ≤ 10. All these bounds are tight [2]. The points from P are black and the points from Q are
white.

Problem 1 (The Blocking conjecture [5]). We have b(n)/n→∞ as n→∞.

In fact, Pinchasi [4] conjectured b(n) ∈ Ω(n log n). There are linear lower bounds on b(n) [1, 2]
and it is known that there is a contant c such that b(n) ≤ nec

√
logn [2]. If P is a set of n points in

convex position, then b(P ) ≥ Ω(n log n) [2].

Problem 2. Can we improve the bounds on b(n)?

There are numerous open questions around the Blocking conjecture that might be potentially
easier to solve. For example, Matoušek suggested to deal with pseudosegments instead of straight
segments. That is, for a given point set P , we want to construct an arrangement A of pseudolines
and a subset Q of its vertices such that P ∩Q = ∅, each p ∈ P is a vertex of A, no three points of
P lie on a pseudoline, and any two points of P lie on a common pseudoline ` ∈ A and have a point
of Q on the segment of ` between them. Then, the lower bound Ω(n log n) for point sets in convex
position still applies and it is easy to provide here an O(n log n) upper bound.

Problem 3 ([2]). Is there a linear upper bound for some P , not in “convex position” in the pseu-
doline setting?

Some related blocking-type questions can be found here [3].
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Pairwise disjoint perfect matchings

by Zoltán L. Blázsik

Very recently, Mattiolo and Steffen together with Ma and Wolf (in [1, 2]) disproved the conjecture
of Thomassen from 2020 for all even values of r, which stated that every r-edge-connected r-regular
graph of even order has r − 2 pairwise disjoint perfect matchings.

For r ≥ 2, an r-regular graph G is class 1, if it has a set of r pairwise disjoint perfect matchings
of G. Otherwise it is class 2. In [1], one can read the known background of this problem and at the
last section they focus on the r = 5 case. The following question surprisingly seems to be unsolved.

Problem 1. Is there any 5-edge-connected 5-regular class 2 graph?

For planar graphs, the answer to the above question is “no”. Guenin proved that all planar
5-graphs are class 1. Indeed, it is conjectured by Seymour that every planar r-graph is class 1. (so
far this conjecture is proved to be true for all r ≤ 8)

References
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Touchings in intersecting pseudocircles

by Gábor Damásdi

An intersecting arrangement of pseudocircles is a collection of simple closed curves on the sphere
or plane such that any two of the curves either touch in a single point or intersect in exactly two
points where they cross.

Problem 1 (Grünbaum ). Every arrangement of n intersecting pseudocircles has at most 2n − 2
touchings.

Felsner, Roch and Scheucher [2] showed that the conjecture holds for any arrangement, where a
triple of pseudocircles is pairwise touching.
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Limit of non-collinear point sets

by Dömötör 2

The following conjecture has been posed recently by Joshua Erde (Graz).

Conjecture 1 (Joshua Erde). Suppose that S ⊂ Z2 is in general position, i.e., no three points of
S are on a line.

lim inf
|S ∩ {1, 2, . . . , n}2|

n
= 0.

Giving bounds on the growth rate of |S∩{1,2,...,n}
2|

n
would also be interesting.
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Centrally symmetric crossing numbers

by Nóra Frankl

The crossing number cr(G) of a graph G is the minimum number of pairwise crossings of edges
in a drawing of G in the plane. A drawing is called rectilinear if the edges are represented by
straight line segments. The rectilinear crossing number cr(G) is the minimum number of pairwise
crossings of edges in a a rectilinear drawing of G. Determining the crossing and rectilinear crossing
numbers of Kn and Km,n are difficult open problems. While it is conjectured that

cr(Kn) =
1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
,

there is no conjectured value for cr(Kn), and the current best known bounds are

0.37997

(
n

4

)
≤ cr(Kn) ≤ 0.38047

(
n

4

)
.

The rectilinear centrally symmetric crossing number crcs(G) is defined as the mininum number
of crossings over all centrally symmetric rectilinear drawings of G. It was recently introduced in [1],

where they also determined it for K2n exactly: crcs(K2n) = 2
(
n
4

)
+
(
n
2

)2
. The centrally symmetric

crossing number crcs(G) is defined similarly.

(a) Möbius ladder M2n
(b) Centrally symmetric drawing of M16

The Möbius ladder M2n on 2n vertices is the graph shown in Figure (a). cr(M2n) = 1 for any n,
and it is easy to draw M4n in a centrally symmetric position with 1 crossing (see Figure (b)), thus
crcs(M4n) = 1. The following problems are from [2].

Problem 1. Determine crcs(M4n+2) and crcs(M4n+2).

Problem 2. Find good bounds for crcs(Km,n) and crcs(K2n).

Note that if G has an odd number of vertices, then one of its vertices has to be in the centre. If
in the drawing no edge is allowed to contain a vertex other than its endpoints, certain graphs, such
as K3, cannot be drawn in a centrally symmetric position.

References
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Testing Disjointedness of Polygonal Paths

by Radoslav Fulek

For ε > 0 and a polygonal line in the Euclidean plane, that is, a piece-wise linear continuous
map ϕ : [0, 1]→ R2, an ε-perturbation of ϕ is a map ψ : [0, 1]→ R2 such that ‖ψ − ϕ‖ < ε, where
‖.‖ is the supremum norm.

Problem 1. Does there exist a polynomial time algorithm to decide whether a given pair of polygonal
lines can be made disjoint by an arbitrarily small perturbation, or is this problem NP-complete?

A variant of the problem of finding the smallest ε such that there exists an ε perturbation
making a pair of given trajectories disjoint was studied in the field of topology [1, Section 3.2], [4],
see also [3, Example 3.3]. Less formally, seeing the trajectories against the background of a road
network [2], we seek perturbations of the given trajectories staying on the road.

Problem 1 can be considered as a first step towards a thorough understanding of the problem
for general graphs and with metric constraints, which is largely unexplored to the best of our
knowledge. It turned out [3, Section 3] that commonly used topological machinery fails to provide
an efficient algorithm to decide if a given pair of trajectories can be made disjoint by an arbitrarily
small perturbation.

If a polynomial time algorithm in Problem 1 is found, a possible next step is to consider the
following problem.

Problem 2. Does there exist a polynomial time algorithm to decide whether a given pair of closed
polygonal lines, that is, polygons, can be made disjoint by an arbitrarily small perturbation, or is
this problem NP-complete?

References
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Helly number of an integer set

by Attila Jung

For an S ⊂ R2, let H(S) be the smallest number such that the following is true for every finite
family C of convex sets from R2. If the intersection of any H(S) members of C contains a point
from S, then the intersection of all the members from C contains a point from S. If there is no such
number, let H(S) =∞. Dillon posed the following question in [1].

Problem 1. What is H({2n : n ∈ N}2)?

As a special case of Doignon’s Theorem [2], we know that H(Z2) = 4. In [1], it is proved, that
H({p(n) : n ∈ N}2) =∞ if p is a polinomial of degree at least 2.
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Proper coloring directed hypergraphs

by Balázs Keszegh

A directed hypergraph is a hypergraph in which the vertex set of each hyperedge is partitioned
into two parts, the head-vertices and the tail-vertices of the hyperedge. The following is conjectured
by B. Keszegh and D. Pálvölgyi:

Conjecture 1. Suppose that in a directed hypergraph H in every hyperedge the number of head-
vertices is less than the number of tail-vertices, and for every pair of hyperedges H1, H2 ∈ H, if
H1 ∩H2 = {v}, then v is a head-vertex in at least one of the hyperedges. Then H admits a proper
2-coloring.

If v is required to be a head-vertex in both hyperedges, then the conjecture is true. Also, it is
true for graphs, 3-uniform hypergraphs and linear hypergraphs [1]. What about hypergraphs that
have hyperedges of size 2 and 3? What about 4-uniform hypergraphs? Also, in general it might be
the case that the conjecture is not true.
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Unavoidable intersections of given size

by Zoltán Lóránt Nagy

Let G(n, e) denote a graph on n vertices and e edges. Erdős, Füredi, Rothschild and T. Sós
initiated the investigation of the following problem [1]. Fix a positive integer m and a pair of
integers (n, e), such that 0 ≤ e ≤

(
n
2

)
. For which f does it hold that any n-vertex subgraph with

e edges contain an induced subgraph on m vertices having f edges? Equivalently, we are seeking
pairs (m, f) such that m-vertex subgraphs with f edges are unavoidable in graphs of form G(n, e).

We propose a geometric (or q-analogue, if you wish) variant of this problem.

Notation 1. AG(n, q) denotes the affine geometry of dimension n over the q-element field.

Definition 2. Let S(m) ⊆ AG(n, 2) denote a point set of cardinality m in the affine geometry
AG(n, 2), or an m-set in brief. We say that a k-dimensional t-set is unavoidable in m-sets if for
every S(m) ∃ an affine subgeometry H ⊆ AG(n, 2) s.t. H ∼ AG(k, 2) and |H ∩ S(m)| = t.
The property that k-dimensional t-set is unavoidable is denoted by [n,m]→ [k, t].

Problem 1. For fixed [k, t], determine the density of the unavoidability for k-dim t-sets as follows:

ρn(k, t) :=
|{m : [n,m]→ [k, t]}|

2n + 1
or its limit ρ(k, t) := lim

n→∞
ρn(k, t).

Note that if we investigate the case corresponding to AG(n, 3), then avoiding [1, 3] (i.e., a full
line) corresponds to the famous cap-set problem.

Some preliminary results:

Proposition 3. .

� ρn(k, t) = ρn(k, 2n − t).

� ρn(1, 0) = ρn(1, 1) = 2n−1
2n+1

.

� ρ(k, 0) = 1 moreover [n,m]→ [k, 0] for every m < 2n − 2 · 2(1−2−k+1)n.
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Counting maximal independent sets

by Cory Palmer

Recall that a vertex set in a (hyper)graph is independent if it contains no edge. An independent
set is maximal if it is not a proper subset of a larger independent set. Let mis(G) denote the number
of maximal independent sets (MIS) in a graph G. Miller and Muller and independently Moon and
Moser showed that for all n-vertex graphs G

mis(G) ≤ 3n/3

which is sharp as given by the vertex-disjoint union of triangles. When triangles are forbidden from
G, Hujter and Tuza [2] showed

mis(G) ≤ 2n/2

which is achievable by a matching. If we allow at most t vertex-disjoint triangles, then Palmer and
Patkós showed that the best is (roughly) to take t vertex-disjoint triangles and a matching on the
remaining vertices.

There are several natural generalizations of these problems to hypergraphs, especially 3-graphs.

Problem 1. Determine the maximum number of MIS in an n-vertex 3-graph.

Taking vertex-disjoint copies of K3
5 beats copies of K3

4 , so perhaps that has the maximum
number of MIS. Copies of K3

5 (given by Tomescu) gives a lower bound of about 1.5849n and Lonca
and Truszczyński [3] gave an upper bound of about 1.6702n. We can also forbid 3-graphs á la
Hujter–Tuza:

Problem 2. Determine the maximum number of MIS in an n-vertex K3
4 -free 3-graph.

There are also several generalizations in the graph setting. Nielsen [4] showed that the maximum
number of MIS of size k in an n-vertex graph is asymptotic to (n/k)k. He, Nie and Spiro [1] examined
the question when G is taken to be Kt-free. Among others they constructed an n-vertex triangle-free
graph with Ω(nk/2) MIS of size k ≥ 4 and asked for a matching upper-bound:

Problem 3. Show that maximum number of MIS of size k ≥ 4 in a triangle-free graph is O(nk/2).

One more (less natural) question that seems to be very closely related to Problem 2.

Problem 4. Determine the maximum number of maximal triangle-free sets in an n-vertex K4-free
graph.
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Variations on the thrackle conjecture

by Dömötör Pálvölgyi

The following variants of the famous thrackle conjecture are from my very recent joint papers
with Ágoston, Damásdi and Keszegh [1, 2].

Conjecture 1 ([1]). Suppose that we are given n points in the plane, P, and m subsets S1, . . . , Sm ⊂
P , with convex hulls Ci = conv(Si), such that the following hold:

� 1 < |Si| < n for any i;

� Ci ∩ Cj 6= ∅ for any i 6= j;

� Ci ∩ Cj ∩ Ck ⊂ P for any i 6= j 6= k 6= i.

We conjecture that m ≤ n.

Note that if |Si| = 2 for every i, then we get back a linear thrackle (in this case we can get rid
of the condition that Ci ∩ Cj ∩ Ck ⊂ P), in which case it is known that m ≤ n. This also shows
that the conjecture would be sharp for any n. An interesting, and probably easier, special case is
when P is in convex position.

We can strengthen the original thrackle conjecture in a seemingly different direction, but in fact
the below variant is also related to Conjecture 1 (see [2] for the connection).

Conjecture 2 ([2]). Suppose that we are given in the plane n points, P, and m topological trees
that pairwise intersect exactly once such that each leaf of each tree is from P.
We conjecture that m ≤ n.

Note that if each tree consists of a single edge, then we get back the original thrackle conjecture.
Instead of trees, our conjecture might even hold for forests. We could also weaken our conjecture
by requiring that the branching points of the trees also need to be from P . Another interesting,
and probably easier, special case is when we also require that each edge of each tree needs to be a
segment between two points of P .
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Packing and Hitting Rectangles

by András Sebő

The packing number, ν, of a given family of sets is the maximum number of pairwise disjoint
sets in the family, while their hitting number is the minimum number, τ , of points meeting all of
them (with a non-empty intersection). Obviously, τ ≥ ν. A more than half century old conjecture
of Wegner (1965, [2]) asks whether τ ≤ 2ν − 1 for rectangles in the plane. Replacing “2” by any
larger constant the validity of the conjecture is also not known.

We studied the simplest special cases of this conjecture with Marco Caoduro [1]: by taking
small values of some parameters, or by studying squares. I state here two of the most frustrating
questions that we could not answer with Marco. The first concerns axis-parallel rectangles where
none of the points is covered more than twice, the second concerns squares.

Problem 1. Given a set of axis-parallel rectangles such that every point of the plane is contained
in at most two of them, is it true that there are always bn

2
c disjoint ones among them?

Trying to prove Wegner’s conjecture for the case when each point is covered at most twice, an
easy induction shows its equivalence with this statement for sets of axis-parallel rectangles with a
factor-critical intersection-graph.

The packing and hitting problems are NP-hard also for axis-parallel unit squares. Wegner’s
conjecture is easy for them, but for sets of axis-parallel squares of arbitrary size it is not known.
There are no better examples for axis-parallel squares than those giving the 3/2 ratio.

For not necessarily axis-parallel unit squares τ can be as large as 3 and is always at most 4. But
can it be 4? (For unit disks in the plane the exact bound of 3 is known.) The target of the following
problem is to understand the difference between maximum clique of the interesection graph and the
maximum number of sets containing a given point. An example would improve the lower bound for
arbitrary large ν by taking disjoint copies of the example.

Problem 2. We ask the following questions both for (not necessarily axis-parallel) squares, and unit
squares. How large can be the minimum size of a hitting set of pairwise intersecting squares? If no
point is contained in more than two squares what is the maximum number of pairwise intersecting
squares?
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Simplifying drawings

by Géza Tóth

A drawing of a graph is simple, if any two edges have at most one point in common, which is
either a common endpoint or a crossing.

Michael Hoffmann, Liu Chih-Hung, Meghana M. Reddy, and Csaba D. Tóth proved, that if a
graph G is drawn in the plane such that there are at most k crossings on each edge, then it has a
simple drawing with at most 6k3/23k crossings on each edge.

This bound is almost surely very far from optimal, the best lower bound is linear in k. It would
be very interesting to improve this bound.

Schaefer and Štefankovič proved that if a graph G is drawn in the plane such that each edge
is crossed by at most m other edges (but in arbitrarily many points), then it has another (not
necessarily simple) drawing such that there are at most 2m crossings on each edge.

Combining them we obtain the following statement.
If a graph G is drawn in the plane such that each edge is crossed by at most m other edges,

then it has a simple drawing with at most 6 · 23m/232m crossings on each edge.
This doubly exponential bound is completely ridiculous, surely very far from optimal, so it would

be very interesting to improve it.

Michael Hoffmann, Liu Chih-Hung, Meghana M. Reddy, and Csaba D. Tóth ”Simple Topolog-
ical Drawings of k-Planar Graphs.” In International Symposium on Graph Drawing and Network
Visualization, pp. 390-402. Springer, Cham, 2020.

Marcus Schaefer, Daniel Stefankovic ”Decidability of string graphs.” Journal of Computer and
System Sciences 68, no. 2 (2004): 319-334.
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TV coloring

by Tomáš Valla

This is a graph coloring problem, that comes from a realworld application, which is a rare case
in our field. One day, a guy from a television company came to our department, trying to find a
solution for the following commercials scheduling problem in their TV program. There are some
fixed shows during the day and empty slots to be filled with k types of commercials. However, the
number of occurrences of each commercial type is given and moreover, two commercials of the same
type cannot occur too close.

Formally: We have an undirected graph G = (V,E), positive integer k, a partial vertex coloring
γ : V → [k], and nonnegative integers n1, . . . , nk. The task is to find a total coloring c : V → [k]
such that

� c extends γ,

� for each two vertices u, v ∈ V at distance at most 2, c(u) 6= c(v), and

� for each i ∈ [k] the number of occurences of color i is ni, that is, |{v ∈ V ; c(v) = i}| = ni.

This problem was very briefly discussed with V. Blažej, D. Knop, J. Maĺık and O. Suchý more
than two years ago and then abandoned due to covid lockdowns and replaced by other urgent
problems to be solved.

The original TV scheduling problem corresponds to the case where the graph G is a path. There
is a simple dynamic programming algorithm solving this problem efficiently if k is small. We had
some crude argument showing that a certain simple greedy process can always color a path with
precolored endpoints. We also had some idea how to generalise it to trees and bounded treewidth
graphs.

The research task could thus be as follows:

Problem 1. Provide an algorithm for bounded treewidth graphs.

Problem 2. Solve the problem where G is disjoint union of paths. Can some simple greedy algorithm
be devised for paths with precolored endpoints?

Problem 3.

How about generalisation of the distance condition, that is, two vertices at distance at most d must
have different colors? And of course, try to study the problem for other graph classes.


