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Strongly connected re-orientations and polarity

by Ahmad Abdi

Let D = (V,A) be a digraph with m arcs whose underlying undirected graph is 3-edge-connected. A
strongly connected re-orientation is a subset J ⊆ A such that D△J (the digraph obtained after �ipping the
orientations of the arcs in J) is strongly connected. Consider the set-system

SCR(D) := {χJ : J is a strongly connected re-orientation} ⊆ {0, 1}m.

This set-system enjoys several appealing discrete geometric properties. Let S := SCR(D) for short. For
instance,

� S is antipodally symmetric, that is, a point belongs to S i� its antipodal point belongs to S: p ∈ S i�
1− p ∈ S.

� S is strictly connected, that is, between every pair of points in S there is a monotone path on the
skeleton graph of {0, 1}m where all the intermediate nodes also belong to S. This follows from [3]
and uses the 3-edge-connectivity of the underlying undirected graph of D.

Let us describe this property in a di�erent but equivalent way. Denote by Gm the skeleton graph
of {0, 1}m. Then, if S′ ⊆ {0, 1}m′

is a restriction of S (i.e. it is obtained from S after restricting
some coordinates to 0 or 1 and then dropping the coordinates altogether), then the subgraph Gm′ [S′]
induced on S′ is connected.

� Finally, S is cube-ideal, that is, its convex hull is described by hypercube and generalized set covering
inequalities. More speci�cally, it is described by

x ≥ 0

x ≤ 1∑
a∈δ+(U)

xa +
∑

a∈δ+(U)

(1− xa) ≥ 1 ∀U ⊊ V,U ̸= ∅.

To see this, note �rst that the integer solutions to this system are precisely the points in S. Secondly,
note that the generalized set covering inequalities form a submodular �ow system, which in turn is
box-TDI and so box-integral. This implies that the system above is integral.

The underpinning theme is to understand which restrictions of S have antipodal points.
Given disjoint I, J ⊆ A, consider the set-system obtained from S ∩ {x : xa = 0 ∀a ∈ I, xb = 1 ∀b ∈ J}

after dropping the coordinates in I ∪ J ; we call this the restriction of S obtained after 0-restricting I and
1-restricting J .

Problem 1. Find su�cient conditions on I, J ⊆ A such that the restriction S′ of S obtained after 0-
restricting I and 1-restricting J , contains antipodal points.

An obvious necessary condition is that the points in S′ do not agree on a coordinate, that is, S′ ⊆ {x :
xi = a} for some i ∈ [m′] and a ∈ {0, 1}.

Let S′ ⊆ {0, 1}m′
be a set-system. We say that S′ is polar if either S′ ⊆ {x : xi = a} for some i ∈ [m′]

and a ∈ {0, 1}, or S′ contains antipodal points; otherwise it is non-polar.
For instance, the following conjecture has been made in relation to the problem above.

Conjecture 2. [2] If A − (I ∪ J) is a spanning tree of D, then the restriction S′ of S obtained after
0-restricting I and 1-restricting J , is polar.
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July 11, 2024 update: This conjecture has recently been solved in the a�rmative, by Meike Neu-
wohner and myself. Together with Mahsa Dalirrooy-Fard, we are hoping to extend this result to the case
when A− (I ∪ J) is a spanning forest with 2 connected components.

Not all restrictions of S are polar. For instance, consider the digraph D below, let I be the set of dashed
arcs, and let J := ∅. (The orientation of the solid arcs is irrelevant, you can orient them arbitrarily.) It can
be shown that if S′ is the restriction of S obtained after 0-restricting I, then the points in S′ do not agree
on a coordinate (every cut either has an incoming dashed arc or has at least two solid arcs), yet S′ does
not contain antipodal points (the solid arcs cannot be oriented in such a way such that every cut either has
an incoming dashed arc, or has solid arcs crossing in both directions).

S′ is strictly non-polar if it is non-polar and every restriction is polar. Observe that every non-polar
set has a restriction that is strictly non-polar. My hope is that the discrete geometric properties above are
helpful in tackling the above problems. More speci�cally,

Problem 3. What can be said about strictly non-polar set-systems that are both cube-ideal and strictly
connected?

In [1], cube-ideal strictly non-polar sets were studied, and partly characterized, as they are helpful in
generating ideal minimally non-packing clutters (for instance, they give rise to 716 such clutters with at
most 14 elements). Interestingly, the notion of strict connectivity showed up and was studied there, albeit
in a di�erent context. I suspect there is more to be said.
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Uniform Covering by Common Bases

by Kristóf Bérczi

LetM = (E,B) be a rank-r matroid whose ground set decomposes into two disjoint bases. Furthermore,
assume that E is colored by r colors, each color appearing exactly twice. A basis of M is called rainbow if
it does not contain two elements of the same color. The following problem was considered in [1].

Problem 1. What is the minimum number of rainbow bases needed to cover E?

By using matroid intersection, one can show that E can be covered by ⌊log2 |E|⌋+1 rainbow bases. On
the other hand, the graphic matroid of K4, where opposite pairs of edges form the color classes, shows that
at least three such bases might be needed, and this value is believed to be the correct answer.

Now consider two matroids M1 = (E,B1) and M2 = (E,B2) on the same ground set, and assume that
E decomposes into two bases in both of them. We propose the following conjecture.

Conjecture 2. M1 and M2 has four common bases that covers each element exactly twice.

Assuming that Conjecture 2 is true, the bound of 3 for Problem 1 follows by leaving out one of the four
common bases � here, we think of the coloring as a partition matroid with color classes of size 2.

The problem is also related to the problem raised by Ahmad. Namely, let G = (V,A,E) be a mixed
graph where A and E denote the sets of directed and undirected edges, respectively. By a dicut of G, we
mean a set ∅ ⊊ Z ⊊ V that has only incoming arcs in A. Suppose that for any dicut Z, the degree of
Z in E is at least 2. This condition ensures that for any edge e ∈ E, if we orient e arbitrarily, then the
remaining edges in E − e can be oriented in such a way that the resulting digraph (including the arcs in
A) is strongly connected.

Problem 3. What is the minimum number of strongly connected orientations of G if every edge in E must
be used in both directions?

Since orientations of E that result in a strongly connected orientation of G are in one-to-one corre-
spondence with the common bases of two matroids whose ground set decomposes into two disjoint bases,
Conjecture 2 would imply a bound of 3 for this problem as well. From the two underlying matroidsM1 and
M2, M2 is simply a partition matroid. However, the de�nition of M1 is more involved and uses a positively
intersecting supermodular function. The following question is then related to Ahmad's problem.

Problem 4. Consider the setting of Problem 3 and assume that E forms a spanning tree/tree/spanning
forest with 2 connected components. Is the matroid M1 strongly base orderable in such cases?

References

[1] Hörsch, F., Kaiser, T., Kriesell, M. (2024). Rainbow bases in matroids. SIAM Journal on Discrete
Mathematics, 38(2), 1472-1491.
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Cut Balanced Orientation

by Karthekeyan Chandrasekaran

Let G = (V,E) be an undirected graph, r ∈ V , and k be an integer. An orientation
−→
E of E is r-rooted

k-cut-balanced if dout−→
E

(U) ≥ (1/k)dE(U) for every U ⊆ V such that r ∈ U . Using nowhere zero �ows, we
can show that every 2-edge-connected graph admits an r-rooted 6-cut-balanced orientation for every root
vertex r.

Problem 1. Does every 2-edge-connected graph admit an r-rooted 5-cut-balanced orientation for every root
vertex r?

One could also consider the {s, t}-separating version: Let G = (V,E) be an undirected graph, s, t ∈ V ,

and k be an integer. An orientation
−→
E of E is (s, t)-separating k-cut-balanced if dout−→

E
(U) ≥ (1/k)dE(U) for

every s ∈ U ⊆ V − t. Using nowhere zero �ows, we can show that every 2-edge-connected graph admits an
{s, t}-separating 6-cut-balanced orientation for every pair of vertices s, t .

Problem 2. Does every 2-edge-connected graph admit an (s, t)-separating 5-cut-balanced orientation for
every pair of vertices s, t?
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Finding near-feasible stable matchings in Resident-allocation

Gergely Csáji

Here, we are given a set of hospitals H, and a set of residents R, which can be partitioned into single
residents S and couples C. A couple ci consists of two residents (ri, r′i).

A hospital h has a strict ranking ≻h over the acceptable residents, a single resident ri has a strict
ranking ≻ri over the acceptable hospitals and each couple ci has a strict ranking ≻ci over acceptable pairs
of hospitals.

Let M be a feasible matching.

� A pair (r, h), r ∈ S, h ∈ H blocks M , if h ≻r M(r) and h has a free seat or there is a resident
r′ ∈M(h) such that r ≻h r

′.

� A couple ci = (ri, r
′
i) blocks with a pair (h, h′) of two distinct hospitals h ̸= h′ if (h, h′) ≻ci M(ci)

and h has a free seat or a resident r ∈ M(h) such that ri ⪰h r and h′ has a free seat or a resident
r′ ∈M(h) such that r′i ⪰h′ r′ (i.e. it could happen that ri = r or r′i = r′).

� A couple ci = (ri, r
′
i) blocks with a hospital h, if (h, h) ≻ci M(ci) and both ri and r′i are among the

best q(h) residents in M(h) ∪ {ri, r′i}.

We say that M is stable, if no such blocking coalition exists.
A stable matching may not exist and is NP-hard to �nd even in extremely restricted settings. However,

we have a very promising recent result.

Theorem 1. (Nguyen and Vohra) [2] Let I be an instance of the hrc. Then, there always exists q′(h)
capacities for each h ∈ H satisfying that |q(h) − q′(h)| ≤ 2 ∀h ∈ H, such that there is a stable integral
matching M with respect to the q′(h) capacities.

Sadly, the way [2] �nds such a near-feasible stable matching is by starting with a stable fractional
solution, which is PPAD-hard to �nd [1].

Problem 1. We have an existential result for a near-feasible stable matching. Can we �nd one in polynomial-
time?

References

[1] Gergely Csáji: On the complexity of stable hypergraph matching, stable multicommodity �ow and related
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Review,
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Stable matchings in TU hypergraphs

Gergely Csáji

Let H = (V,E) be a hypergraph with capacities q(v) and strict preferences ≻v for v ∈ V .
Given a feasible matching M (i.e. it respects the capacities), a hyperedge f is blocking M , if f /∈ M

and for each v ∈ f , either v is unsaturated or there is an fv ∈M , such that v ∈ fv and f ≻v fv.

A matching M is called stable, if there isn't any blocking hyperedge.
The corresponding decision problem is the following.

shm

Input: A hypergraph H = (V, E) with q(v) ∈ Z capacities and ≻v strict preferences.
Question: Is there a stable hypergraph matching M?

In general, shm is NP-hard, even in the 3-regular, 3-uniform case. [1]
There is a central related lemma of Scarf [2].

Lemma 1 (Scarf [2]). Let Q be an n×m nonnegative matrix, such that every column of Q has a nonzero
element and let q ∈ Rn

+. Suppose every row i has an strict ordering >i on those columns j for which
Qij > 0. Then there is an extreme point of {Qx ≤ q, x ≥ 0}, that dominates every column in some row,
where we say that x ≥ 0 dominates column j in row i, if Qix = qi and j ≤i k for all k ∈ {1, . . . ,m}, such
that Qikxk > 0.

By Scarf's lemma, a stable hypergraph matching is guaranteed to exist, if the underlying hypergraph
is TU.

An interesting special case: The University Dual Admission (uda) problem is de�ned as follows. We
have a set U = {u1, . . . , un} of universities, a set C = {c1, . . . , ck} of companies and a set S = {s1, . . . , sm}
of students. For each university ui, each company cj may have a program pij at the university. Each
university ui ∈ U has a capacity c(ui). Furhtermore, each program pij has a quota q(pij). Let the set
of programs be denoted by P , while the set of programs at university ui be denoted by Pi. We assume
that the companies have no aggregate capacity over their programs, and we even allow the companies
to have di�erent ranking over the students for di�erent programs. Hence, the programs can be treated
independently. We reindex the programs in a way such that the programs at university ui are indexed by
pi1, pi2, . . . , piki , where ki is the number of programs at the university.

The students may apply to only a university ui or both a university ui and a program pij , which is
available at university ui. By making a dummy company with dummy programs for each university that
have large enough quotas, we can assume that each student applies to a university-program pair (ui, pil).

Hence, for each student sj , we assume a strict preference list ≻sj over the acceptable university-program
pairs. Each university ui has a strict preference order ≻ui over the students and each program pil has a
≻pil strict ordering over the students.

We aim to �nd an assignment M of the students that is feasible, so |M(sj)| ≤ 1, |M(ui)| ≤ c(ui),
|M(pij)| ≤ q(pij).

We say that a feasible matching M is stable, if there is no (sj , ui, pil) student-university-program triple,
such that (ui, pil) ≻sj M(sj), ui is unsaturated or there is a student sj′ ∈ M(ui) such that sj ≻ui sj′

or sj ∈ M(ui) and the program pil is either unsaturated or there is a student sj′′ ∈ M(pil) such that
sj ≻pil sj′′ .

Theorem 2. The hypergraph H on S ∪ U ∪ P de�ned by the (mutually) acceptable (sj , ui, pil) triples is a
network hypergraph, meaning that its incidence matrix is a network matrix.

Problem 1. We know that because of this, a stable matching always exists in uda. Can we �nd one in
polynomial-time?
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Simultaneous Min Cut

by Naonori KAKIMURA

The question is to determine the approximability of the problem below.

Problem 1. We are given k undirected graphs G1, . . . , Gk on the same vertex set V , and we denote by fi
the cut function of Gi. The problem is to �nd a vertex subset X such that fi(X) is at most d. In other
words, we want to minimize the maximum of fi's.

It is known that the problem is FPT parameterized by k + d [3], as the directed s-t cut variant (with
terminals) is FPT. It would also be interesting to design a speci�c �xed-parameter algorithm for the problem
using the property of the global cuts, which may lead to generalizing to symmetric submodular functions.

Related to the problem, the problem of maximizing the minimum of fi's (simultaneous Max-Cut) is
known to have a 0.8780-approximation algorithm [2], but to be inapproximable within a factor of .87856−
10−5 (under the UGC) [1]. It would also be interesting to �ll in the gap as mentined in [4].

References
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Finding a Dicycle in a Basis Exchange Graph

by Yusuke Kobayashi

For a matroid M = (V, I) and for two disjoint bases B1 and B2 of M, let DM(B1, B2) denote the
bipartite directed graph whose vertex set and arc set are B1 ∪B2 and

{(u, v) | u ∈ B1, v ∈ B2, B1 + v − u ∈ I} ∪ {(v, u) | u ∈ B1, v ∈ B2, B2 + u− v ∈ I},

respectively.

Problem 1. Suppose we are given a matroid M = (V, I) of rank r as an independence oracle and we are
also given two disjoint bases B1 and B2 of M. Can we construct a randomized algorithm for �nding a
dicycle in DM(B1, B2) with high probability that uses o(

√
r) independene oracle queries, or can we prove

that Ω(
√
r) independence oracle queries are necessary?

This problem appeared in a subroutine of an approximation algorithm for the submodular maximization
problem under a matroid constraint. By the basis exchange property of matroids, every vertex is contained
in a dicycle of length two, which can be found by usingO(r) independene oracle queries. Recently, Kobayashi
and Terao [1] gave an algorithm for �nding a dicycle in DM(B1, B2) with high probability that uses
O(

√
r polylog(r)) independene oracle queries. I'm interested in whether this is best possible.

References
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k-Distant Matroid

by Ryuhei Mizutani

For a �nite set S and a positive integer k, a set function f : 2S → R is called k-distant submodular if the
submodular inequality holds for every X,Y ⊆ S with |X∆Y | ≥ k, where X∆Y = (X \ Y )∪ (Y \X). As a
generalization of submodular function minimization, I recently showed that k-distant submodular functions
can be minimized in polynomial time for a �xed positive integer k [1]. Considering that the rank function of
a matroid is submodular, is it possible to consider a relaxation of matroids whose rank function is k-distant
submodular?

Problem 1. What is the axioms for an independence system or a basis family whose rank function is
k-distant submodular?

Problem 2. Can we construct an e�cient algorithm to obtain a maximum weight independent set of such
an independence system?

References
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Proximity of Group-labeled Matroid Bases

by Taihei Oki

Recent research [1, 2] deals with matroids with group-label constraints, which are related to parity,
congruency, and exact-weight constraints.

Let M be a matroid equipped with a labeling ψ : E(M) → Γ from the ground set E(M) of M to an
abelian group Γ. The label of X ⊆ E(M) is de�ned to be ψ(X) :=

∑
e∈X ψ(e). For F ⊆ Γ, a basis B of M

is called F -avoiding if ψ(B) /∈ F .

Conjecture 1 ([1, Conjecture 5.1]). For any basis B, there exists an F -avoiding basis B∗ with |B \B∗| ≤
|F |, provided that at least one F -avoiding basis exists.

Conjecture 1 is true if |F | ≤ 4, Γ is an ordered group (e.g. Γ = Z), or the matroid is strongly base
orderable [1]. A relaxed conjecture that still leads us to a polynomial-time algorithm parameterized by |F |
can also be found in [1].

The following weighted variant is also interesting.

Conjecture 2 ([1, Conjecture 7.1]). Let w : E(M) → R be a weight function. For any minimum-weight
basis B, there exists a minimum-weight F -avoiding basis B∗ with |B \B∗| ≤ |F |, provided that at least one
F -avoiding basis exists.

Conjecture 2 is true for cases where |F | = 1 [1, 2] or the matroid is strongly base orderable [1].
An F -avoiding basis is called a non-zero basis if F = {0} (0 can be changed to any group element).

Non-Zero Matroid Intersection is the problem that, given two matroidsM1 = (E,B1),M2 = (E,B2)
and a group labeling ψ : E → Γ, �nd a non-zero common basis, i.e., B ∈ B1 ∩ B2 with ψ(B) ̸= 0. There is
a dichotomy theorem for non-zero matroid intersection.

Theorem 1 ([1, Theorems 3.7 and 6.1]). Non-Zero Matroid Intersection can be solved in polynomial-
time if and only if Z2 ̸≤ Γ.

Can we generalize this dichotomy theorem to the weighted case? F -avoiding matroid intersection with
|F | ≥ 2 is also open.

References
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In Proc. of ICALP '24, to appear.

[2] S. Liu and C. Xu. On the congruency-constrained matroid base. In Proc. of IPCO '24, to appear.
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Integrality gap for the common intersection of multiple matroids

by Neil Olver

Let M1,M2, . . . ,Mk be k matroids on the same groundset E. Let Pi be the independence polytope of
matroid Mi. Consider the problem of, given a weight vector w : E → R≥0, �nding a maximum weight set
that is independent in all k matroids. We can phrase this as an integer program:

max wTx

s.t. x ∈ Pi i = 1, 2, . . . , k

x ∈ {0, 1}E

Problem 1. What is the integrality gap of the LP relaxation obtained by dropping the integrality constraints?

The conjecture is that it is k − 1. For k = 2, this is of course true�this simply says that the
intersection of two matroid polytopes is integral. For k = 3, it also holds [1]; the proof is via an iterative
rounding/relaxation approach, also with an invocation of matroid intersection. What about k > 3?

A proof of this conjecture would likely yield a (k−1)-approximation for this problem. Using local search
methods rather than LP-based methods, a (k − 1 + ϵ)-approximation is known, for any ϵ > 0 [2]. This has
no implication for the integrality gap, however.
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Packing Problems in Matroids

by András Seb®

A packing problem for a hypergraph (V,E) and weight function w : V → N is asking for a maximum
multi-set of members of E so that each v ∈ V is contained in at most w(v) of them. Hypergraphs for which
the optimal value of this problem is equal to that of its fractional relaxation are called max-�ow-min-cut
(MFMC) hypergraphs.

If A is the 0−1 incidence matrix of an MFMC hypergraph then both the linear programs min cTx,Ax ≥
1, x ≥ 0 and max yTx, yA ≤ c, y ≥ 0 have integer optimal vectors x and y. For the latter linear program
this is just a rewriting of the de�nition of the MFMC property; it is also said that the linear program is
totally dual integral (TDI). For the former linear program integrality is implied by the MFMC property
(Edmonds and Giles).

The hypergraph (V,E) or the incidence matrix A have the packing property if both linear programs
have integer (i.e. 0− 1) optimal vectors for all 0− 1−∞ functions.

Problem 1. [2] A hypergraph has the MFMC property if and only if it has the packing property

A series of other conjectures and results concern the MFMC property and the packing property, and we
have an expert of these at the workshop: Ahmad Abdi, (co)author of the most recent results in the subject.
Another open problem concerning MFMC hypergraphs is the Integer Caratheodory Problem concerning
them. A relation between the two problems may be fruitful.

For some hypergraph classes it has been an open problem since more than 40 years whether the MFMC
property implies the Integer Caratheodory property, that is, whether they have also an optimal solution
containing at most |V | di�erent elements: this was the �Integer Caratheodory Problem". Bill Cunningham
[3] raised it �rst for independent sets in matroids, Cook Fonlupt Schrijver [4] studied it in general, for further
references and proofs in special cases see the �Integer Caratheodory problem"in Schrijver's books (Linear
and Integer programming and Combinatorial Optimization), and [6]. It has been refuted in general, but
for independent sets, bases, of matroids Gijswijt and Regts [5] gave a positive answer. We state a related
open problem in combinatorial terms:

An r-arobrescence is an aprborescence of a digraph rooted in a vertex r.

Problem 2. Given a digraph, If w is the sum of r-arborescences, is it also a sum of r-arborescenses, where
the di�erent r-arborescences have a linearly independent set of incidence vectors ?

Note that r-arborescences are common bases of two matroids. The complexity of packing problem for
common bases of matroids in general had been a long-standing open problem until Bérczi and Schwarcz [1]
has proved it to be NP-hard.

Problem 3. Is there any relation between the complexity of solving packing problems at least for common
bases of matroids and their MFMC or Integer Caratheodory property ? For instance, is the statement of the
preceding problem true for common bases of strongly base orderable matroids ? (For the latter the packing
problem can be solved in polynomial time.)

Note that arborescences are usually not intersections of strongly base orderable matroids: the last
problem is not necessariky more di�cult than the preceding one.
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Spanning Tree with Perfect Matching

by Yutaro Yamaguchi

A tree is called strongly balanced if on one side of the bipartition of the vertex set, there exists a vertex
r such that r is a leaf and all the other vertices have degree 2. This condition holds if and only if

� the tree has a perfect matching M (which is unique), and

� there exists a leaf r such that every vertex is reachable from r with an M -alternating path.

In a bipartite graph, the family of strongly balanced spanning trees can be clearly written as matroid
intersection (graphic + partition), and hence the problem of �nding a minimum-weight strongly balanced
spanning tree is tractable. This fact was utilized to design a nontrivial approximation algorithm for some
kind of connectivity augmentation problem [2]. It is also interesting that this problem is a common gen-
eralization of two fundamental special cases of the weighted matroid intersection problem: the weighted
bipartite matching problem and the weighted arborescence problem.

Recently, it was shown that it is NP-hard to test whether a given subcubic planar graph contains a
strongly balanced spanning tree or not [1]. Natural questions are as follows.

Problem 1. Is there a nontrivial graph class of non-bipartite graphs for which it can be tested in polynomial
time whether a given graph contains a strongly balanced spanning tree?

Problem 2. Is there any nontrivial su�cient condition for non-bipartite graphs to contain a strongly
balanced spanning tree?

Regarding the latter question, for example, it was considered in what graphs every spanning tree has a
perfect matching [3].
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Exact, Correct Parity, and Bounded Correct Parity Matching

by Yutaro Yamaguchi

The exact matching problem (EM) is as follows: given a graph in which each edge is colored by red
or blue, �nd a perfect matching with exactly k red edges. It is known that there exists a randomized
polynomial-time algorithm [4] for EM, but any deterministic polynomial-time algorithm is not known for
more than 40 years since the problem was stated.

Recently, El Maalouly, Steiner, and Wulf [1] showed that the parity-constrained relaxation, called the
correct parity matching problem (CPM), admits a deterministic polynomial-time algorithm: �nd a perfect
matching with k′ ≡ k (mod 2) red edges. This result is based on a linear algebraic trick with the aid of
Lovász' algorithm [3] for �nding a basis of the linear subspace spanned by perfect matchings in a graph.
It is elegant but heavily depends on the fact that we are only interested in the parity of the number of
red edges, from which it seems di�cult to obtain a promising idea to tackle EM. A natural question is as
follows.

Problem 1. Is there a �purely graphic� determinisitic polynomial-time algorithm for CPM?

A natural �purely graphic� approach to CPM is as follows. We �rst �nd a perfect matching M . If the
number of red edges in M has the same parity as k, we are done. Otherwise, it su�ces to �nd an M -
alternating cycle with an odd number of red edges (which is essentially equivalent to CPM). One natural
way to do it is, for each �xed edge e ∈ M , to �nd an M -alternating cycle through e with odd number of
red edges (if exists). Unfortunately, this problem has turned out NP-hard [5, 6]; thus, we have to consider
another way.

In contrast, if we restricted ourselves to bipartite graphs, CPM can be solved by the above approach,
since �nding an M -alternating cycle with odd number of red edges reduces to �nding a directed cycle with
an odd number of red edges in the residual graph. This also works for the optimization version, called the
bounded correct parity matching problem (BCPM) [1]: �nd a perfect matching with k′ ≡ k (mod 2) red
edges minimizing k′. BCPM is also a relaxation of EM, and hence it admits a randomized polynomial-time
algorithm. A natural question is as follows.

Problem 2. Is there a determinisitic polynomial-time algorithm for BCPM in non-bipartite graphs?

These problems in bipartite graphs are naturally extended to matroid intersection, including other
special cases such as arborescences. As a corollary of the results of the last workshop [2], it has been
obtained that the correct parity common basis problem is di�cult (requires an exponential number of
oracle calls) even for the intersection of a partition matroid and a sparse paving matroid.
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Popularity in Matroid Intersection

by Yu Yokoi

In a manner analogous to extending the concept of stable matchings to matroid intersection [1, 2], the
concept of popular matchings has been extended to matroid intersection by Kamiyama [3], who solved the
maximum popular common independent set problem for weakly base orderable matroids. This tractability
result was recently extended to general matroids by Csáji�Király�Yokoi [4]. Below are related problems left
open by them. While the original problems are about popular common independent sets, here we present
their common base variants for simplicity.

Voting in Matroid Intersection LetM = (S, I,≻) be an ordered matroid, i.e., (S, I) is a matroid and
≻ is a total order on the ground set S. We denote the base family by B. Given an ordered pair of bases
(I, J) ∈ B × B, consider a bipartite graph (I \ J, J \ I;EIJ), where

EIJ = {uv : u ∈ I \ J, v ∈ J \ I, I − u+ v ∈ B }.

For two bases I and J and a perfect matching N ⊆ EI,J in this bipartite graph, we de�ne

vote(I, J,N) = |{uv ∈ N : u ≻ v }| − |{uv ∈ N : u ≺ v }|

where u ∈ I \ J and v ∈ J \ I. Considering the most adversarial perfect matching for I, we de�ne

vote(I, J) = min{ vote(I, J,N) : N is a perfect matching in EIJ }.

By considering the most favorable perfect matching for I (i.e., using �max� instead of �min� in the above
de�nition), we can similarly de�ne max-vote(I, J).

Popularity in Matroid Intersection Let M1 = (S, I1,≻1) and M2 = (S, I2,≻2) be ordered matroids
with base families B1 and B2. For an ordered pair (I, J) of common bases and i ∈ {1, 2}, we de�ne
votei(I, J) as above with respect to Mi. For a common base I ∈ B1 ∩ B2, we say that

� I is popular if vote1(I, J) + vote2(I, J) ≥ 0 for every J ∈ B1 ∩ B2,

While we know that a popular common base can be computed e�ciently, we do not know the complexity
of testing the popularity of a given common base.

Problem 1. Given I ∈ B1 ∩ B2, can we check whether I is popular or not e�ciently?

We remark that this problem is tractable if M1 and M2 are partition matroids as shown in [5], but its
proof technique seems di�cult to extend to the matroidal setting.

We next consider some variants of popularity. For a common base I ∈ B1 ∩ B2, we say that

� I is defendable if vote1(J, I) + vote2(J, I) ≤ 0 for every J ∈ B1 ∩ B2.

� I is weakly popular if max-vote1(I, J) +max-vote2(I, J) ≥ 0 for every J ∈ B1 ∩ B2.

In a special case whereM1 andM2 are partition matroids, defendability and weak popularity are equivalent.
This follows from the fact that in this case the exchangeability graph for I and that for J are symmetric
(i.e., I−u+v ∈ B ⇔ J+u−v ∈ B for any u ∈ I \J and v ∈ J \I) and hence −votei(J, I) = max-votei(I, J)
holds. However, for general matroids, there is no such symmetricity and hence the relation between the
values of votei(I, J) (or max-votei(I, J)) and votei(J, I) is unclear from the de�nitions.

In [4], the authors proved that votei(I, J) + votei(J, I) ≤ 0 holds for any bases I, J ∈ Bi, from which it
follows that popularity implies defendability. Also, there is an example demonstrating that weak popularity
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does not imply defendability (that example consists of the graphic matroid of K4 and a partition matroid
U1,2 ⊕ U1,2 ⊕ U1,2). So we know the following relations.

I is popular
⇓ ⇓

I is defendable ⇍ I is weakly popular

We still don't know whether defendability implies weak popularity.

Problem 2. Does defendability imply weak popularity?
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