
Preliminary Schedule

Day 1:
9:44 Welcome

9:45 - 10:30 Gyula O.H. Katona
10:45 - 11:30 Gábor Simonyi
11:45 - 12:30 András Gyárfás

Lunch Break
14:00 - 14:45 Zsolt Tuza

15:00 - 15:45 Zoltán Füredi
Traveling together to Gyöngyöstarján.

Other Days:
9:29 Waking up

8:30 - 9:30 Breakfast
9:30 - 12:30 Work in Groups of 3-5

10:45 - 11:00 Coffee Break
12:30 - 14:00 Lunch Break

14:00 - 17:00 Work in Groups of 3-5
15:45 - 16:00 Coffee Break

17:00 - 18:30 Discussion of Results
18:30 - Dinner and other activities

Last Day:
Discussion from 16:00 and then Return to Budapest.
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Invited Problems

Graph and Hypergraph Turán problems

by Zoltán Füredi

1 Union-free subfamilies

The following problem is due to L. Moser: Let A1, · · · , Am be anym sets. Take the largest subfamily
Ai1 , · · · , Air that is union-free, i.e., Aij1

∪ Aij2
6= Aij3

, 1 ≤ j1 ≤ r, 1 ≤ j2 ≤ r, 1 ≤ j3 ≤ r, for
every triple of distinct sets Aj1 , Aj2 , Aj3 . Put f(m) = min r, where the minimum is taken over all
families of m distinct sets. Determine or estimate f(m). Riddel showed that f(n) > c

√
n, and the

Erdős and Komlós [5] showed that
√
n ≤ f(n) ≤ 2

√
2
√
n. These bounds were later improved to√

2n− 1 < f(n) < 2
√
n+1 by Kleitman and by Erdős and Shelah [6], resp. They conjecture that

f(n) = (2 + o(1))
√
n.

One can define f(F ,Γ) as the size of the largest subfamily having property Γ,

f(F ,Γ) := max{|F ′| : F ′ ⊆ F , F ′ has property Γ},

for example exr(n,H), the Turán number, is f(Kn
r ,H-free). Let f(m,Γ) := min{f(F ,Γ) : |F| =

m}.
The case when Γ is the property that

no four distinct sets satisfy A1 ∪ A2 = A3, A1 ∩ A2 = A4

is called B2-free. Erdős and Shelah [6] gave an example that f(m,B2-free) ≤ (3/2)m2/3. They
also conjecture that f(m,B2-free) > c2m

2/3, and in fact it seems likely that f(m,B2-free)/m
2/3

tends to a limit.
What about other properties, like when we exclude A1 ∪ ... ∪ Aa = Aa+1 ∪ · · · ∪ Aa+b, or when

we exclude a Boolan lattice Bd of dimension d?

* * * * *
Hanson posed the following problem: Let g(n) be the smallest integer such that the subsets

of [n] can be split into g(n) classes, where each of the classes is union-free. Hanson proved that
Ω(

√
n) < g(n) ≤ n/2 + 2, and he conjectured that the upper bound is substantially correct. This

was proved in [6] showing g(n) > n/4. They conjecture that lim g(n)/n exists and it is close to
1/2.

One can define g(F ,Γ) as the minimum r such that F can be decomposed into r subfamilies
having property Γ,

g(F ,Γ) := min{r : F = F1 ∪ · · · ∪ Fr, each Fi has property Γ}.

Let g(n,Γ) := g(2[n],Γ).
Erdős and Shelah [6] showed g(n,B2-free) = Θ(

√
n). What about other properties, like Bd-free,

(a, b)-union-free, etc ?

2 Union-free uniform hypergraphs

The classical Turan problem concerning complete subhypergraph, i.e., determining T (n, l, k) seems
to be very difficult. An important wider class of problems was proposed by Brown Erdős and T Sós,
the so called density questions. (For latest results see, e.g., Sarkozy et al. [10], the citations there,
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and the papers in Math Reviews citing it). These are still fairly difficult (like Ruzsa Szemeredi’s
(6,3) theorem), so we further ease the restrictions.

Consider an integer k, 0 < k < n, and denote by exk(n) the maximal size of a family F of
k-subsets of [n], such that all the

(|F|
2

)

unions F1∪F2, F1, F2 ∈ F , are distinct. Let e(k) = 1
2
⌈4k/3⌉.

Solving a problem due to Erdős it was show in [7, 8] that there exist positive constants ck, c
′
k, such

that the relation ckn
e(k) ≤ exk(n) ≤ c′kn

e(k) holds. The proof of the lower bound is based on a
construction using the elementary symmetric polynomials.

One can ask more generally the determinations of exk(n,Γ) where Γ is a forbidden Boole type
relation. For example, exk(n, F1∪F2 = F3∪F4) is mentioned in the previous paragraph. What can
we say about the relation F1 ∪ ... ∪ Fa = Fa+1 ∪ · · · ∪ Fa+b ? Call this (a, b)-union-free.

There are two versions, when repetitions in Γ are allowed and when all the a + b sets must be
distinct. The non-uniform case was widely investigated, mainly because of its connections with
superimposed codes (see, e.g., Ruszinko [9], the citations there, and the 23 papers in Math Reviews
citing it).

3 Covering a complete r-graphs with r-partitions

An r-cut C of the complete r-uniform hypergraph Kn
r is obtained by partitioning its vertex set [n]

into r parts and taking all edges that meet every part in exactly one vertex. In other words it is the
edge set of a spanning complete r-partite subhypergraph of Kn

r . An r-cut cover F := {C1, C2, . . . }
is a collection of r-cuts so that each edge of Kn

r is in at least one of the cuts. While in the graph
case (r = 2) any 2-cut cover on average covers each edge at least 2 − o(1) times, when r is odd
Cioaba, Kundgen, Timmonsz, and Vysotsky [3] exhibited an r-cut cover in which each edge is
covered exactly once.

When r is even no such decomposition can exist, but they bounded the minimum of the average
number of times an edge is cut in an r-cut cover between 1 + 1/(r + 1) and 1 + (1 + o(1))/ log r .

When r is even, and n = r + 1 then Kr+1
r has an odd number of edges, but every r-cut of it

has size 2, so t the minimum total size of an r-cut system is r + 2. It follows from an averaging
argument for all n that

∑ |Ci| ≥ r+2
r+1

(

n
r

)

.
Let M := M(F) be the hypergraph of multiple covered r-sets by the cuts from F . We have

|M| ≥ T (n, r + 1, r), (1)

whenever r is even. So we can apply the known bounds for Turan numbers. D. de Caen’s lower

bound [1] gives that (T (n, l, k) ≥ k−1
(

l−1
k−1

)−1
(n− l + 1)

(

n
k−1

)

, also see in [11, 12])

|M| ≥ 1

r
× n− r

n− r + 1

(

n

r

)

. (2)

Can we impove this lower bound for |M|, can we improve it for
∑ |Ci|? (It seems to be easier than

to determine T (n, r + 1, r)). Can we determine (asymptotically) the case r = 4?

4 Turan’s hypergraph problem in geometry

Let P be an n-element set on the plane, no three on a line. Let h(P ) denote the number of acute
triangles with all three vertices from P . Obviously,

h(P ) ≤ T (n, 4, 3). (3)
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Turan conjectures (see Sidorenko [11, 12]) that

T (n, 4, 3) ≤ |Hn| (?) (4)

where Hn is the largest n-vertex hypergraph of the form V (Hn) = [n] = A0∪A1∪A2 (Ai∩Ai+1 = ∅)
and E(Hn) := {a0a1a2 : ai ∈ Ai} ∪ {b′b′′c : b′, b′′ ∈ Ai, c ∈ Ai+1, i = 0, 1, 2}. So (3) and (4) would
imply h(P ) ≤ |Hn| = 5

9

(

n
3

)

+ o(n3).
Conway, Croft, Erdős, and Guy [4] gave a planer set Pn example where the acute triangles

represents Hn, so we have
h(n) := maxh(P ) ≥ |Hn|. (5)

The best published upper bound on limT (n, 4, 3)/
(

n
3

)

is due to Chung and Lu [2] 3+
√
17

12
=

0.593592 · · · . Can we prove a better bound for limh(n)/
(

n
3

)

? Can we prove it is 5/9?
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Large matchings with few colors

by András Gyárfás

5 A generalized Kneser-type problem.

I address here a problem that came from a recent work with Gábor Sárközy and Stanley Selkow
[16].

Let Kr
n denote the complete r-uniform hypergraph on n vertices, i.e. all r-sets of an n element

ground set. A matching M in a hypergraph is a set of pairwise vertex disjoint edges, the size of M ,
|M | is the number of edges in M . Several recent Ramsey type results, for example [5], [9], [13],[14],
[15], [17] relied on lemmas about sizes of monochromatic matchings. In these applications an
additional connectivity property of monochromatic matchings is needed. Nevertheless the starting
point is the Ramsey number of matchings stated in the following well-known theorem of Alon,
Frankl and Lovász 1986 [2].

Theorem 1. ([2]) Suppose n = (t− 1)(k − 1) + kr and a coloring of the edges of Kr
n is given with

t colors. Then there exists a monochromatic matching M such that |M | ≥ k.

Theorem 1 (conjectured by Erdős 1973 [8]) is at the crossroad of combinatorics and topology
and were preceeded by several notable special cases. The graph case (r = 2) is due to Cockayne
and Lorrimer 1975 [6] (no topology in their proof). The 2-color case (t = 2) was solved (without
topology) 1985 [1], 1985 [12]. The case k = 2 is Kneser’s conjecture, solved by Lovász 1978 [18] who
introduced topological methods, then Bárány 1978 [3], Green 2002 [10], Matousek 2004 [19] gave
new proofs. Results generalizing Theorem 1 were obtained by Schrijver 1978 [22], Dolnikov 1988
[7], Sarkaria 1990 [21], Ziegler 2002 [23], see also [20] for further related material.

Theorem 1 is sharp. To describe easily t-colorings of Kr
n we need, consider partition vectors

with t positive integer coordinates whose sum is equal to n. We assume that V (Kr
n) = {1, 2, . . . , n}.

Then [p1, p2, . . . , pt] represents the coloring obtained by partitioning V (Kn) into parts Ai so that
|Ai| = pi for i = 1, 2, . . . , t and the color of any edge e is the the minimum j for which e has
non-empty intersection with Aj. With this notation, the coloring [k − 1, k − 1, . . . , k − 1, kr − 1]
shows that Theorem 1 is sharp.

Recently [16] a possible extension of Theorem 1 emerged, it uses an additional integer parameter
s satisfying 1 ≤ s ≤ t. A matching with edges colored by at most s distinct colors (out of t colors)
is called an s-colored matching. Thus 1-colored matchings are the monochromatic matchings. We
ask for the smallest n such that in any t-coloring of the edges of Kr

n there is an s-colored matching
of size k. For s = 1 Theorem 1 provides the answer.

Problem 2. Find the smallest n such that every t-coloring of Kr
n contains an s-colored matching

of size k.

In fact, Theorem 1 can be iterated to get an upper bound for Problem 2 because one can take
largest monochromatic matchings step by step through s steps. However, it would be better to find
a tighter, possibly best result - or at least a reasonable conjecture. Based on partition vector

[p, p, . . . , p, pr, pr2, . . . , prs−1, prs]

where the first t− s coordinates are p-s, the following seems to be a plausible conjecture for certain
values of s ∈ {1, 2, . . . , t} (but not always).
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Conjecture 3. Every t-coloring of Kr
n contains an s-colored matching of size k provided that

n ≥ kr +

⌊

(k − 1)(t− s)

1 + r + r2 + . . . rs−1

⌋

.

Notice that the case s = 1 is Theorem 1, the case s = t is trivial (and best possible).

5.1 The case s = 2, t = 3.

The smallest case not covered by Theorem 1 is s = 2, t = 3, r = 2. Conjecture 3 holds for these
parameters and the bound ⌊7k−1

3
⌋ is best possible for every k ≥ 1 [16]. The proof is based on a simple

idea that works well in certain situations to facilitate induction, for example the proof of Cockayne
and Lorrimer [6] for the case r = 2 of Theorem 1 can be formulated this way. For hypergraphs
the same method was applied in [12], and more recently in [17],[15]. I posed the case t = 2, k = r
on 2007 USAMO and 2007 Schweitzer competition. An early appearance of the argument is the
‘bow tie argument’: finding a red and a blue triangle with one common vertex (bow tie) drives the
inductive argument of the proof of R(kK3, kK3) = 5k see [4], [11]. In our case (s = 2, t = 3, r = 2)
the ‘bow tie’ in a 3-coloring of a complete graph K is a subset X ⊂ V (K) such that |X| = 7 and
for any choice of two distinct colors {i, j} ⊂ {1, 2, 3} there is a matching M ⊂ K[X] such that M
has three edges, all colored with some color of {i, j}.

It would be interesting to decide whether Conjecture 3 holds for s = 2, t = 3 and general r, i.e.
for hypergraphs, at least for r = 3.

Conjecture 4. In every coloring of the edges of Kr
n with three colors there is a 2-colored matching

of size at least k provided that n ≥ kr + ⌊k−1
r+1

⌋.
The smallest test case (it also belongs to the next subsection) is r = 3, k = 4: is it true that in

every 3-coloring of the edges of K3
12 there is a 2-colored matching of size four?

5.2 Perfect matchings.

When the second term in Conjecture 3 is zero, i.e.

(k − 1)(t− s)

1 + r + r2 + . . . rs−1
< 1

then the existence of a perfect s-colored matching is claimed. This happens, in particular, when
s = t− 1 and k − 1 = r + · · ·+ rs−1, leading to the following.

Conjecture 5. Suppose that n = r + r2 + · · · + rt−1. In every t-coloring of Kr
n there is a perfect

matching colored with at most t− 1 colors (i.e. missing at least one color).

Note that Conjecture 5 is sharp in the sense that it is not true if n is increased by r, as the
t-coloring of the partition [1, r, r2, . . . , rt−2, rt−1 + r − 1] shows.

5.3 The graph case, r = 2.

• s = t − 1. Conjecture 3 is probably true (t = 3 is solved, [16]). In particular, the special
case of Conjecture 5 seems challenging: for n ≥ ∑t−1

i=1 2
i in every t-colored Kn has a perfect

matching that misses at least one color. Smallest test case: t = 4.

• t = 4, s = 2. There is a 2-colored matching if size k in every 4-coloring of Kn if n ≥ ⌊8k−2
3

⌋.
Smallest test case: k = 6.
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• t = 5, s = 2. There is a 2-colored matching of size k in every 5-coloring of Kn if n ≥ ⌊9k−3
3

⌋.
Smallest test case: k = 6.

• t = 6, s = 2: Here Conjecture 3 fails, the inequality is n ≥ 2k + ⌊4(k−1)
3

⌋. Thus for k = 9 we
get n = 28, i.e. in every coloring of K28 with six colors we should have a 2-colored matching of
size nine. But the partition vector [4, 4, 4, 4, 4, 8] gives only 2-colored matchings of size eight.
The reason for this that for s = 2 the partition vector [p, p, p, p, 2p, 4p] on which Conjecture 3
based on is worse than the partition vector [p, p, p, p, p, 2p] of the Cockayne-Lorrimer bound
(special case of the bound of Theorem 1).

• What is a plausible conjecture for s = 2?
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Miscellany

by Gyula O.H. Katona

Problem 1. Let ξ be a random vector in the d-dimensional Euclidean space, where d ≥ 2.
The modified distribution function of its length is f(x) = P(|ξ| ≥ x). (It is actually 1 minus the
distribution function. We use this instead of the real distribution function, because the results
have nicer forms.) Let ξ and η be independent, identically distributed copies of ξ. The modified
distribution function of the length of their sums is g(x) = P(|ξ + η| ≥ x). Determine the ”best”
functional H such that

g(x) ≥ H(f(x))

holds and the inequality is sharp.
If H can ”use” only one specific place of f(x) then the answer is known. For instance

g(x) ≥ 1

2
f 2(x)

holds when H ”uses” the function f(x) at the same place, that is H is a function of f(x). And this
is the best lower estimate of this form. The answer is also known when H is a function of f(cx)
with a fixed c.

There is a modest lower estimate on g(x) using two places of f(x) namely, f( 1√
2
x) and f(1+

√
3

2
x).

The proofs of these results use elementary (two-dimensional) geometry and Turán type theorems.

Problem 2. Let C be a one-error-correcting code, that is a family of 0-1 sequences (called
codewords) of length n with pairwise Hamming distance at least 3. Let pi denote the number of
codewords containing exactly i ones. The vector (p0, p1, . . . , pn) is called the profile vector of the
code C. It is a point in the n-dimensional space. Take all the profile vectors of the one-error-
correcting codes and consider the convex hull of these points. The ideal goal would be to determine
the extreme points of this convex hall. They would be the profile vectors of codes extremal in
certain sense. It is hopeless to describe the set of extreme points, since the maximum value in
the coordinate i (that is the maximum size of a one-error-correcting code consisting of codewords
having i ones) is unknown.

Is the profile vector of the Hamming code (when n = 2r − 1) extreme? Find good hyperplanes
(inequalities) giving upper bounds for the convex hull.

Problem 3. (Füredi-Zs. Katona) Let F ⊂ 2[n] be a family in which the intersection of
any two sets has at least two elements, while the intersection of any three sets has at most 3
elements. Determine the maximum of |F|. Both versions are interesting, when the sets can be
repeated and when not. In the first case the following construction might be the best. Take all sets
{1, 2, i, j}(3 ≤ i < j ≤ n) twice and the sets [n]− {1}, [n]− {2}.

Problem 4. Let F ⊂
(

[n]
k

)

where k ≥ 3. Its second shadow is defined in the following way.

σ2(F) = {G : |G| = k − 2, G ⊂ F for some F ∈ F}.

What is the minimum of |σ2(F)| under the conditions (i) n, k and |F| are fixed and (ii) the pairwise
symmetric differences of distinct members of F are at least 4.

Is it true that

|F| ≥
(

a
k−1

)

k
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for some integer a implies

|σ2(F)| ≥
(

a

k − 2

)

?

This is trivial for k = 3.

Problem 5. Let F ⊂ 2[n] be a family satisfying the following condition. For any three distinct
members A,B,C at most one of their three pairwise intersections can be empty. Determine the
maximum of |F|.

We conjecture that the largest family consists of all sets of size at least n
2
if n is even. If n is odd

then we have to choose all the sets of size at least n+1
2

and the n−1
2
-element sets containing {1}.

A more general question: find the maximum of F under the condition that for any r distinct
members at most s of the pairwise intersections can be empty. The case s =

(

r
2

)

−1 has been solved
by Kleitman, decades ago.
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Some Problems in Extremal Combinatorics

by Gábor Simonyi

6 Sandglass Conjecture

In its original form the Sandglass Conjecture states the following (in its simplest, binary case):

If A,B ⊆ 2[n] are two set systems such that

(1) ∀A,A′ ∈ A and ∀B,B′ ∈ B A ∪ B = A′ ∪ B′ implies A = A′

and

(2) ∀A,A′ ∈ A and ∀B,B′ ∈ B A ∩ B = A′ ∩ B′ implies B = B′,

then |A||B| ≤ 2n.

If true, this bound is sharp: take all supersets of a fixed set as A and all subsets of the same set
as B. The name of the conjecture refers to the “shape” of this configuration.

I first presented this conjecture in Oberwolfach in 1989, it first appeared in print in [1] where a
generalization to more general lattices can be found. The conjecture is still open, the best bound
for the above is due to Körner and Holzman [5].

By complementing the sets in the first family, one obtains the following simple reformulation, it
appears in this form e.g. in Gil Kalai’s blog [6]:

If A,B ⊆ 2[n] are two set systems such that

(1’) ∀A,A′ ∈ A and ∀B,B′ ∈ B A \B = A′ \B′ implies A = A′

and

(2’) ∀A,A′ ∈ A and ∀B,B′ ∈ B B \ A = B′ \ A′ implies B = B′,

then |A||B| ≤ 2n.

The above was generalized by Ron Aharoni, who formulated the following bold statement as a
possible stronger conjecture:

Let A,B be set systems satisfying conditions (1’) and (2’). Then ΣA∈A,B∈B2
|A∩B| ≤ 2n.

Some other variations can be found in [9].

7 Trifference

The following question was asked by Vera T. Sós during a workshop in Bielefeld in 1991.

What is the minimum number t = tn for which one can give t edge-colorings of the complete
graph Kn so that for every triangle in Kn there is a coloring in which its three edges get three
distinct colors?

It is easy to see that tn ≥ log3(n − 1) (since all pairs among the n − 1 edges at any given
vertex must get different colors in some coloring). In [7] we gave a construction showing that
tn ≤ ⌈log2 n⌉ − 1.

Problem: What is the exact value of tn? In particular, is the above upper bound tight?

It is shown in [2] that the above upper bound is tight for n = 9 which is the first non-trivial
case.
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8 Shannon capacity of Mycielski graphs

Let Gt denote the following graph exponentiation. V (Gt) = [V (G)]t and two vertices, x = x1x2 . . . xt

and y = y1y2 . . . yt are adjacent iff ∃i : {xi, yi} ∈ E(G).

We define the Shannon capacity of a graph as

C(G) := lim(sup)t→∞
1

t
logω(Gt).

(We note that this definition uses a complementary language compared to the original one, but
in certain contexts it is also customary and more convenient.)

Let us denote by Mk the k-chromatic Mycielski graph, that is the graph we obtain after k − 2
iteration of the Mycielski construction when starting with the one edge graph K2.

Problem: Is the always existing limit limk→∞C(Mk) finite or infinite?

The above problem may sound somewhat particular at first glance. Note, however, that it is
equivalent to the following question of Erdős.

Let R(3; k) denote the smallest integer n for which every k-edge-coloring of Kn contains a
monochromatic triangle. Is limk→∞ R(3; k) finite or infinite?

The main observations showing the latter claimed equivalence can be found in [4] (see also [8])
combined with an observation in [3].
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Combin. Theory Ser. B, 82 (2001), no. 1, 1–18.
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Coloring problems related to mixed hypergraphs

by Zsolt Tuza

The upper chromatic number with respect to a given type of coloring is the largest possible
number of colors.

In the following problems, except the last one, we restrict ourselves to C-coloring, what means
that every edge of the hypergraph in question contains two vertices of the same color. (If the
hypergraph is a graph, this means that every connected component is monochromatic, and then
the upper chromatic number is equal to the number of connected components.) A hypergraph is
r-uniform if each of its edges has exactly r vertices.

Conjecture (Bujtás, Tuza) The minimum number of edges in a 3-uniform hypergraph with upper
chromatic number 3 is n2/6 + o(n2).

Comment: Constructions with approximately n2/6 edges are known, the problem is to prove a
matching lower bound.

The independence number of a hypergraph is the maximum number of vertices not containing
any edges. It is easy to see that the upper chromatic number cannot exceed the independence
number. A hypergraph is C-perfect if in each of its induced subhypergraphs the upper chromatic
number is equal to the independence number. (An induced subhypergraph is obtained by specifying
a subset of the vertex set and taking all edges entirely contained in this subset.)

Problem (Voloshin) Characterize the 3-uniform C-perfect hypergraphs.
Comment: Six minimally non-C-perfect 3-uniform hypergraphs are known, perhaps this collec-

tion is complete.
Conjecture (Bujtás, Tuza) For every fixed r, the number of inclusionwise minimal non-C-perfect

r-uniform hypergraphs is finite.
Comment: It is known that the number is finite if we also fix the vertex covering number (or the

packing number). Hence the conjecture is equivalent to the assertion that a minimally C-imperfect
r-uniform hypergraph cannot have an arbitrarily large number of mutually disjoint edges.

A more general structure class is that of color-bounded hypergraphs. Here a lower and upper
bound is specified for each edge, meaning that the number of colors on the vertices of the edge has
to be between the two bounds. (Different edges may have different bounds.) An interval hypergraph
has a linear order on its vertex set, such that every edge is a set of consecutive vertices.

Problem (Bujtás, Tuza) Does there exist a polynomial-time algorithm that decides whether
any given interval hypergraph with lower and upper color bounds on its edges admits at least
one coloring? If the hypergraph is colorable, can the upper chromatic number be determined in
polynomial time?

Comment: Assuming that the input hypergraph is colorable, the minimum possible number of
colors can be determined in linear time.

Some references:
Voloshin, Australasian J. Combin. 11, 1995.
Tuza and Voloshin, Horizons of Combinatorics, Bolyai & Springer, 2008.
Bujtás and Tuza, Graphs Combin. 25:6, 2009.
Bujtás and Tuza, J. Graph Theory 64:2, 2010.
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Contributed Problems

An Inequality for 2-intersecting Families

by Ameera

Let X be an n-element set, and let 2X denote the family of all subsets of X. A family F ⊂ 2X is
called λ-intersecting if we have |F1 ∩ F2| = λ for any distinct F1, F2 ∈ F . For x ∈ X, the degree of
x, denoted deg(x), is defined to be the number of sets in F that contain x. We say F is trivial if
there exists x ∈ X with deg(x) = |F|, and is non-trivial otherwise.

Problem: If F ⊂ 2X is a non-trivial 2-intersecting family of size m < n, is it true that

∑

F∈F

(|F |
2

)

≥
∑

x∈X

(

deg(x)

2

)

= m(m− 1)? (6)

Remarks.

Observe that when F ⊂
(

X
k

)

is k-uniform, then (6) is equivalent to proving

m ≤
(

k

2

)

+ 1. (7)

Hall [2] proved that (7) holds for all non-trivial, k-uniform, 2-intersecting families.

We believe that the only non-trivial 2-intersecting family for which (6) does not hold is

F̂ := {{1, 2, 4}, {1, 4, 6, 7}, {1, 2, 5, 7}, {1, 2, 3, 6}, {2, 3, 4, 7}, {1, 3, 4, 5}, {2, 4, 5, 6}}.

Ryser showed that F̂ is the unique non-uniform 2-intersecting family with size m = n. Hence,
another way to state the problem is:

Restatement: If F ⊂ 2X is a non-trivial 2-intersecting family of size m and F 6= F̂ , then

∑

F∈F

(|F |
2

)

≥
∑

x∈X

(

deg(x)

2

)

= m(m− 1).

If our conjecture is true, it would imply a conjecture of Frankl and Furedi [1] when λ = 2.
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Can we find the max and min against k lies with (k + 1 + ǫ)n
comparisons?

by Dani

Suppose we have n elements with all different weights and in one step we can compare any two
of them to see which one is bigger. It is well-known that n− 1 comparisons are needed to find the
biggest element and ⌈3n

2
⌉− 2 to find the biggest and the smallest. It is also well known that finding

the maximum with k lies, i.e. when k comparisons might return a false result, requires (k+1)n− 1
comparisons in the worst case. Aigner [1] raised the question of what happens if we mix the two
models. In [2] we proved that if k = 1 then 87

32
n + Θ(1) is the optimal answer. Hoffmann et al. [3]

have shown that (k + 1 + C)n comparisons are sufficient for a fixed constant C. Can we do better
if k is big? Can we guarantee that C → 0 as k grows?
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Do shift-chains have Property B?

by Dömötör

For A ⊂ [n] denote by ai the ith smallest element of A.
For two k-element sets, A,B ⊂ [n], we say that A ≤ B if ai ≤ bi for every i.
A k-uniform hypergraph H ⊂ [n] is called a shift-chain if for any hyperedges, A,B ∈ H, we have

A ≤ B or B ≤ A. (So a shift-chain has at most k(n− k) + 1 hyperedges.)
We say that a hypergraph H has Property B if we can color its vertices with two colors such

that no hyperedge is monochromatic.

Is it true that shift-chains have Property B if k is large enough?

Remarks. This question is motivated by decomposition of multiple coverings of the plane by
translates of convex shapes, there are many open questions in this area. (For more, see my brand
new thesis.)

For k = 2 there is a trivial counterexample: (12),(13),(23).

A very magical counterexample was given for k = 3 by Rado [1]:
(123),(124),(125),(135),(145),(245),(345),(346),(347),(357),
(367),(467),(567),(568),(569),(579),(589),(689),(789).

If we allow the hypergraph to be the union of two shift-chains (with the same order), then there
is a counterexample for any k.

References

[1] Intraoffice communication with Radoslav Fulek.
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Is there a rainbow matching in a 6-regular graph if each colorclass is a

C6?

by Padmini

Suppose that we have a 2d-regular graph whose edges are colored such that the edges of each
color form a cycle of length 2d. (So if the graph has 2n vertices, then there are n colors.) Is it true
that there always is a perfect matching containing one edge of each color?

Remarks. A positive result would imply a stronger bound for pairing strategies in certain
combinatorial games, see [1]. For d = 2 there is a simple proof by Zoltán Király who also invented
the above formulation of the problem. I do not even know the answer for d = 3.

References

[1] P. Mukkamala, D. Pálvölgyi, Almost optimal pairing strategy for Tic-Tac-Toe with numerous direc-
tions, http://arxiv.org/abs/1005.5469.



1st Emléktábla Workshop 17

A problem

by Russ

9 The problem

Let H be a d-uniform hypergraph with the following properties:

1. If E1 and E2 are hyperedges then there are vertices v1 ∈ E1 and v2 ∈ E2 \ E1 such that
(E1 \ v1) ∪ v2 is a hyperedge.

2. The “neighborhood hypergraph” with hyperedges

{E \ v : E an edge containing v}

satisfies the same condition, recursively defined.

No harm is done in assuming that every vertex of H is contained in at least one edge. Call a
hypergraph satisfying these properties admissible.

Notice that admissibility is essentially a very strong connectivity condition. A picture is shown
in Figure 1.

Figure 1: The admissibility condition for 2-uniform hypergraphs
=⇒ =⇒

Example 6. If H is a graph, then the condition implies that every two disjoint edges have an edge
connecting them. (I.e., H has no induced subgraph consisting of two disjoint edges.)

A shedding vertex is a vertex v such that for every edge E with v ∈ E, there is a vertex wE such
that (E \ v) ∪ wE is a hyperedge.

Question 7. For a fixed d, is there a number Nd such that if H is an admissible hypergraph with
more than Nd vertices, then H has a shedding vertex?

10 Motivation

A positive answer to Question 7 would solve a conjecture of Wachs.
A simplicial complex ∆ is shellable if there is an ordering of its facets F1, F2, . . . , Fm such

that the intersection of Fi with the complex generated by F1, . . . , Fi−1 is (dimFi − 1)-dimensional.
Shellability is one of the main definitions of algebraic/geometric combinatorics.

A simplicial complex ∆ is an obstruction to shellability if ∆ is not shellable but every proper
induced subcomplex is shellable.

Conjecture 8. (Wachs [2, 3]) There are a finite number of obstructions to shellability that are of
dimension d.



18 Contributed Problems

The first condition of admissible hypergraphs is somewhat weaker than what is required for
shellability and/or obstructions to shellability. It essentially requires only that the induced simplicial
complex on the vertex set of two d-faces is shellable.

An obstruction to shellability ∆ is a strong obstruction to shellability if in addition the simplicial
complex generated by {F : F contains v} is shellable for any fixed v.

Theorem 9. (Hachimori and Kenjiwabara [1]) TFAE:

1. The number of obstructions to shellability of dimension ≤ d is finite.

2. The number of strong obstructions to shellability of dimension ≤ d is finite.

The second condition of admissible hypergraphs is somewhat weaker than what would be re-
quired for strong obstructions to shellability.

We consider the simplicial complex consisting of all subsets of hyperedges from an admissible
hypergraph H. The connection between the shedding vertex of Question 7 and Conjecture 8 is via
the following lemma:

Lemma 10. If ∆ is a simplicial complex with a shedding vertex v such that the induced subcomplex
∆ \ v and the complex generated by {F : v ∈ F} are both shellable, then ∆ is shellable.

The pure d-skeleton of a simplicial complex is the simplicial complex generated by all faces of
dimension d. It is well-known that every pure skeleton of a shellable complex is shellable, hence the
pure d-skeleton of an obstruction to shellability must be non-shellable for some d. Moreover, taking
pure skeletons clearly commutes with taking induced subcomplexes or “links”.

Conjecture 8 is known to hold in dimension ≤ 2 [2], and the obstructions in these dimensions
were explicitly enumerated in [1]. Conjecture 8 is also known to hold in the case where the minimal
non-faces of ∆ form a graph, and the obstructions are in 1-1 correspondence with the cyclic graphs
of length 6= 3, 5 [4].

11 Why is this a reasonable problem?

Dömötör instructed us “no big conjectures”, yet I’ve proposed this problem. Why is this reasonable?
Well, first, it is perhaps not a “big” conjecture (only moderate size). Moreover, it has mainly been of
interest to geometric combinatorialists. I am very hopeful that the problem, as rephrased in Section
1, may fall to some of the combinatorial tools (Ramsey Theory, Lovasz Local Lemma, Szeméredi
Regularity, ???) in which Emléktábla are well-versed, but geometric people are less expert in.
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Results
First place: Rado - Nagy Zoli Second place: Padmini - Dömötör
Third place: Cory - Dani Fourth place: Lindsay - Neal

To Union-free subfamilies problem by Füredi

by Himself, János Barát, Ida Kantor, Younjin Kim, Balázs Patkós

We proved that Erdos and Shelah’s conjecture about B2-free subfamilies is true and established
some general lower and upper bounds on f(m,Bd − free). Also, we obtained f(m, (1, a)− free) ≤
(⌈
√
a+ 1⌉ + o(1))

√
m. (An easy observation shows that f(m, (a, b) − free) = a + b − 1 if both a

and b are at least 2.)

To s=2, t=3 case of problem by Gyárfás

by Himself, Ago, Dani, Diana, Dominik, Lindsay, Neal, Tamás Terpai

Theorem 11. In every 3-edge-colouring of a 3-uniform hypergraph K3
12 on 12 vertices, there is a

2-coloured matching of size 4.

Theorem 12. In every 3-edge-colouring of a 3-uniform hypergraph K3
16 on 16 vertices, there is a

2-coloured matching of size 5.

Theorem 13. In every 3-edge-colouring of a 3-uniform hypergraph K3
19 on 19 vertices, there is a

2-coloured matching of size 6.

For more, see http://kam.mff.cuni.cz/∼ diana/emlektabla/

To Problem 2 about determining profile vectors of codes by Katona

by Cory and Dömötör

We considered the following much simpler problem. Suppose we have linear weights, wi, and we
want to find a 1-error detecting code such that the weighted sum of the codewords is maximal. By
a simple induction argument, we have shown that selecting every odd or every even level is optimal.
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To Problem 3 about set systems with special intersections by Katona

by Fabŕıcio Benevides, Ameerah Chowdhury, Zoltán Gyenes, Michal Przykucki, Ago-Erik Riet and

Manuel Silva

We tried to determine the maximum possible size of F ⊂ 2[n] in which the intersection of any
two sets has at least two elements, while the intersection of any three sets has at most 3 elements.
It was already known, by a simple construction, that max |F| is at least n2 − 5n + 8. We proved
that |F| ≤ 1435n2 for n ≥ 25, that is |F| = O(n2).

To Sandglass conjecture by Simonyi

by Neal Bushaw, Misha Tyomkyn, Dominik Vu and Russ Woodroofe

We examined the proof of the current best bounds by Holzman and Körner, and have sketched
an extension of this to a collection of families of sets where each pair of families is a recovering pair;
the bound on the product of the sizes of the families would match that of Holzman and Körner for
two families, but the proof requires a rather serious technical lemma which remains unproven. We
also have some ideas for extending the proof of Holzman and Körner to truly recovering families
rather than cancellative families, but so far this has yielded no improved bounds.

To Trifference by Simonyi

by Zoltán Gyenes, Cory Palmer

We gave a new proof for the upper bound using a simple induction argument.

To Shift-Chains by Dömötör

by Radoslav Fulek, Tamás Hubai, Balázs Keszegh, Zoltán Nagy, Thomas Rothvoß, Máté Vizer
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Degree bounded cases

First we see, that any counterexample must have a size that is exponential in k:

Lemma 14. If k ≥ 2 log2 n and n ≥ 17, there is a proper coloring χ.

Fast moving shift-chains have Property B

An ℓ-shift-chain is a shift-chain in which neighboring hyperedges differ by at least ℓ elements, i.e.
|ej+1\ej| ≥ ℓ for any j.

Lemma 15. For ℓ ≥ 3 + log2 k, an ℓ-shift chain has Property B.

Few dangerous vertices

Let us call a vertex, v, α-dangerous if deg(v) ≥ α and normal otherwise.

Lemma 16. If the number of ck-dangerous vertices is at most ck and c <
√
2, then for big enough

k there is a proper coloring.

Cyclic Shift-Chains

Theorem 17. For any cyclic shift-chain, H, there is always a non-monochromatic 5-coloring.
Moreover, if five colors are needed, H ′ contains K5 as a subgraph.

To Rainbow matching problem by Padmini

by Fabricio Benevides, Michal Przykucki, Tamás Terpai, Mykhaylo Tyomkyn

An example of a 6-regular graph was constructed that splits into edge-disjoint C6’s but does not
admit any perfect pairing, let alone a rainbow one. It seems that the example can be extended to
d > 3 as well, but we do not know what is the case if the graph is required to be bipartite.

To A problem by Russ

by Dömötör, Péter Csorba and Russ

We gave a negative answer to Question 7 for all d. The construction is the following. Take the
independence complex of Cn and for each vertex add one complex that contains the vertex. E.g.,
if d = 3 and n is odd, then we can take for each vertex the opposing edge. E.g., for n = 7, we take
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the independent sets of C7, together with {1,4,5},{2,5,6},{3,6,7},. . . It is not hard to prove that
this will indeed give an admissible hypergraph without shedding vertices. It is even true that any
association of each edge of Cn with a non-neighboring vertex gives a similar counterexample, by
the same proof. It is possible that some such association gives an infinite family of non-shellable
complexes where every ≤ 6-vertex subset is shellable. Since shellability of every ≤ 7-vertex subset
implies shellability, this would be rather interesting.


